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Abstract

This paper focuses on supervised and unsupervised online label shift, where the
class marginals Q(y) varies but the class-conditionals Q(x|y) remain invariant. In
the unsupervised setting, our goal is to adapt a learner, trained on some offline la-
beled data, to changing label distributions given unlabeled online data. In the super-
vised setting, we must both learn a classifier and adapt to the dynamically evolving
class marginals given only labeled online data. We develop novel algorithms that
reduce the adaptation problem to online regression and guarantee optimal dynamic
regret without any prior knowledge of the extent of drift in the label distribution.
Our solution is based on bootstrapping the estimates of online regression oracles
that track the drifting proportions. Experiments across numerous simulated and
real-world online label shift scenarios demonstrate the superior performance of our
proposed approaches, often achieving 1-3% improvement in accuracy while being
sample and computationally efficient. Code is publicly available at this url.

1 Introduction

Supervised machine learning algorithms are typically developed assuming independent and identically
distributed (iid) data. However, real-world environments evolve dynamically [55, 67, 46, 29]. Absent
further assumptions on the nature of the shift, such problems are intractable. One line of research
has explored causal structures such as covariate shift [64], label shift [61, 51], and missingness shift
[86], for which the optimal target predictor is identified from labeled source and unlabeled target data.
Let’s denote the feature-label pair of an example by (x, y). Label shift addresses the setting where
the label marginal distribution Q(y) may change but the conditional distribution Q(x|y) remains
fixed. Most prior work addresses the batch setting for unsupervised adaptation, where a single shift
occurs between a source and target population [61, 51, 1, 2, 1, 26]. However, in the real world, shifts
are more likely to occur continually and unpredictably, with data arriving in an online fashion. A
nascent line of research tackles online distribution shift, typically in settings where labeled data is
available in real time [4], seeking to minimize the dynamic regret.

Researchers have only begun to explore the role that structures like label shift might play in such
online settings. Initial attempts to learn under unsupervised online label shifts were made by Wu
et al. [76] and Bai et al. [8], both of which rely on reductions to Online Convex Optimization (OCO)
[37, 54]. This line of research aims in updating a classification model based on online data so that
the overall regret is controlled. However, Wu et al. [76] only control for static regret against a fixed
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Figure 1: UOLS and SOLS setup. Dashed (double) arrows are exclusive to UOLS (SOLS) settings.
Other objects are common to both setups. Central question: how to adapt the model in real-time to
drifting label marginals based on all the available data so far?

classifier (or model) in hindsight and makes the assumption of the convexity (of losses), which
is often violated in practice. In the face of online label shift, where the class marginals can vary
across rounds, a more fitting notion is to control the dynamic regret against a sequence of models in
hindsight. Motivated by this observation, Bai et al. [8] control for the dynamic regret. However, their
approach is based on updating model parameters (of the classifier) with online gradient descent and
relying on convex losses limits the applicability of their methods (e.g. algorithms in Bai et al. [8] can
not be employed with decision tree classifiers).

In this paper, we study the problem of learning classifiers under Online Label Shift (OLS) in both
supervised and unsupervised settings (Fig.1). In both these settings, the distribution shifts are an online
process that respects the label shift assumption. Our primary goal is to develop algorithms that side-
step convexity assumptions and at the same time optimally adapt to the non-stationarity in the label
drift. In the Unsupervised Online Label Shift (UOLS) problem, the learner is provided with a pool of
labeled offline data sampled iid from the distribution Q0(x, y) to train an initial model f0. Afterwards,
at every online round t, few unlabeled data points sampled from Qt(x) are presented. The goal is
to adapt f0 to the non-stationary target distributions Qt(x, y) so that we can accurately classify the
unlabelled data. By contrast, in Supervised Online Label Shift (SOLS), our goal is to learn classifiers
from only the (labeled) samples that arrive in an online fashion from Qt(x, y) at each time step, while
simultaneously adapting to the non-stationarity induced due to changing label proportions. While
SOLS is similar to online learning under non-stationarity, UOLS differs from classical online learning
as the test label is not seen during online adaptation. Below are the list of contributions of this paper.

• Unsupervised adaptation. For the UOLS problem, we provide a reduction to online regression
(see Defn. 1), and develop algorithms for adapting the initial classifier f0 in a computationally
efficient way leading to minimax optimal dynamic regret. Our approach achieves the best-of-
both worlds of Wu et al. [76], Bai et al. [8] by controlling the dynamic regret while allowing us
to use expressive black-box models for classification (Sec. 3).

• Supervised adaptation. We develop algorithms for SOLS problem that lead to minimax optimal
dynamic regret without assuming convexity of losses (Sec. 4). Our theoretically optimal solution
is based on weighted Empirical Risk Minimization (wERM) with weights tracked by online
regression. Motivated by our theory, we also propose a simple continual learning baseline which
achieves empirical performance competitive to the wERM from scratch at each time step across
several semi-synthetic SOLS problems while being 15× more efficient in computation cost.

• Low switching regressors. We propose a black-box reduction method to convert an optimal
online regression algorithm into another algorithm that switches decisions sparingly while
maintaining minimax optimality. This method is relevant for online change point detection. We
demonstrate its application in developing SOLS algorithms to train models only when significant
distribution drift is detected, while maintaining statistical optimality (App. D and Algorithm 6).

• Extensive empirical study. We corroborate our theoretical findings with experiments across
numerous simulated and real-world OLS scenarios spanning vision and language datasets
(Sec. 5). Our proposed algorithms often improve over the best alternatives in terms of both final
accuracy and label marginal estimation. This advantage is particularly prominent with limited
initial holdout data (in the UOLS problem) highlighting the sample efficiency of our approach.

Notes on technical novelties. Even-though online regression is a well studied technique, to the best
of our knowledge, it is not used before to address the problem of online label shift. It is precisely
the usage of regression which lead to tractable adaptation algorithms while side-stepping convexity
assumptions thereby allowing us to use very flexible models for classification. This is in stark contrast
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to OCO based reductions in [76] and [8]. We propose new theoretical frameworks and identify
the right set of assumptions for materializing the reduction to online regression. It was not evident
initially that this link would lead to minimax optimal dynamic regret rates as well as consistent
empirical improvement over prior works. Proof of the lower bounds requires adapting the ideas from
non-stationary stochastic optimization [10] in a non-trivial manner. Further, none of the proposed
methods require the prior knowledge of the extent of distribution drift.

2 Problem Setup

Let X ⊆ Rd be the input space and Y = [K] := {1, 2, . . . ,K} be the output space. Let Q be
a distribution over X × Y and let q(·) denotes the corresponding label marginal. ∆K is the K-
dimensional simplex. For a vector v ∈ RK , v[i] is its ith coordinate. We assume that we have a
hypothesis classH. For a function f ∈ H : X → ∆K , we also use f(i|x) to indicate f(x)[i]. With
ℓ(f(x), y), we denote the loss of making a prediction with the classifier f on (x, y). L denotes the
expected loss, i.e., L = E(x,y)∼Q [ℓ(f(x), y)]. Õ(·) hides dependencies in absolute constants and
poly-logarithmic factors of horizon and failure probabilities.

In this work, we study online learning under distribution shift, where the distribution Qt(x, y) may
continuously change with time. Throughout the paper, we focus on the label shift assumption where
the distribution over label proportions qt(y) can change arbitrarily but the distribution of the covariate
conditioned on a label value (i.e., Qt(x|y)) is assumed to be invariant across all time steps. We
refer to this setting as Online Label Shift (OLS). Here, we consider settings of unsupervised and
supervised OLS settings captured in Frameworks 1 and 3 respectively. In both settings, at round t a
sample (xt, yt) is drawn from a distribution with density Qt(xt, yt). In the UOLS setting, the label is
not revealed to the learner. However, we assume access to offline labeled data sampled iid from Q0

which we use to train an initial classifier f0. The goal is to adapt the initial classifier f0 to drifting
label distributions. In contrast, for the SOLS setting, the label is revealed to the learner after making
a prediction and the goal is to learn a classifier ft ∈ H for each time step.

Next, we formally define the concept of online regression which will be central to our discussions.
Simply put, an online regression algorithm tracks a ground truth sequence from noisy observations.
Definition 1 (online regression). Fix any T > 0. The following interaction scheme is defined to be
the online regression protocol.

• At round t ∈ [T ], an algorithm predicts θ̂t ∈ RK .
• A noisy version of ground truth zt = θt + ϵt is revealed where θt, ϵt ∈ RK , and
∥ϵt∥2, ∥θt∥2≤ B. Further the noise ϵt are independent across time with E[ϵt] = 0 and
Var(ϵt[i]) ≤ σ2 ∀i ∈ [K].

An online regression algorithm aims to control
∑T

t=1∥θ̂t − θt∥22. Moreover, the regression algorithm
is defined to be adaptively minimax optimal if with probability at least 1 − δ,

∑n
t=1∥θ̂t − θt∥22=

Õ(T 1/3V
2/3
T ) without knowing VT ahead of time. Here VT :=

∑T
t=2∥θt − θt−1∥1 is termed as the

Total Variation (TV) of the sequence θ1:T .

3 Unsupervised Online Label Shift

In this section, we develop a framework for handling the UOLS problem. We summarize the setup in
Framework 1. Since in practice, we may need to work with classifiers such as deep neural networks
or decision trees, we do not impose convexity assumptions on the (population) loss of the classifier as
a function of the model parameters. Despite the absence of such simplifying assumptions, we provide
performance guarantees for our label shift adaption techniques so that they are certified to be fail-safe.

Under the label shift assumption, we have Qt(y|x) as a re-weighted version of Q0(y|x):

Qt(y|x) =
Qt(y)

Qt(x)
Qt(x|y) =

Qt(y)

Qt(x)
Q0(x|y) =

Qt(y)Q0(x)

Qt(x)Q0(y)
Q0(y|x) ∝

Qt(y)

Q0(y)
Q0(y|x),

where the second equality is due to the label shift assumption. Hence, a reasonable strategy is to re-
weight the initial classifier f0 with label proportions (estimate) at the current step, since we only have
to correct the label distribution shift. This re-weighting technique is widely used for offline label shift
correction [51, 2, 1] and for learning under label imbalance [41, 74, 18].
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Framework 1 Unsupervised Online Label Shift
(UOLS) protocol
Input: Initial classifier f0 : X → ∆K trained on
offline labeled dataset {(xi, yi)}Ni=1 sampled iid
from Q0;

1: f1 = f0
2: for each round t ∈ [T ] do
3: Nature samples xt ∈ X and yt ∈ Y , with

(xt, yt) ∼ Qt; Only xt is revealed to the
learner.

4: Learner predicts a label i ∼ ft(xt) ∈ ∆K .
5: ft+1 = A(f0, x1:t), where A is strategy to

adapt the classifier based on past data.
6: end for

Algorithm 2 RegressAndReweight to handle
UOLS
Input: i) Online regression oracle ALG; ii) Ini-
tial classifier f0; iii) The confusion matrix C; iv)
The label marginal q0 ∈ D of the training distri-
bution;

1: At round t, get the classifier covariate xt.
2: Let q̂t = ΠD (ALG(s1:t−1)), where

ΠD(x) = argminy∈D∥y − x∥2.
3: Sample a label i with probability ∝

q̂t(i)
q0(i)

f0(i|xt).
4: Let st = C−1f0(xt).
5: Update the online regression oracle with the

estimate st.

Our starting point in developing a framework is inspired by Wu et al. [76], Bai et al. [8] . For self-
containedness, we briefly recap their arguments next. We refer interested readers to their papers for
more details. Wu et al. [76] considers a hypothesis class of re-weighted initial classifier f0. The loss
of a hypothesis is parameterised by the re-weighting vector. They use tools from OCO to optimise
the loss and converge to a best fixed classifier. However as noted in Wu et al. [76], the losses are not
convex with respect to the re-weight vector in practice. Hence usage of OCO techniques is not fully
satisfactory in their problem formulation.

In a complementary direction, Bai et al. [8] abandons the idea of re-weighting. Instead, they update
the parameters of a model at each round using online gradient descent and a loss function whose
expected value is assumed to be convex with respect to model parameters. They provide dynamic
regret guarantees against a sequence of changing model parameters in hindsight, and connects it to the
variation of the true label marginals. More precisely, they provide algorithms with

∑T
t=1 Lt(wt)−

Lt(w
∗
t ) to be well controlled where w∗

t is the best model parameter to be used at round t and Lt is a
(population level) loss function. However, there are some scopes for improvement in this direction as
well. For example, the convexity assumption can be easily violated when working with interpretable
models based on decision trees, or if we want to retrain few final layers of a deep classifier based on
new data. Further as noted in the experiments (Sec. 5), their methods based on retraining the classifier
require more data than re-weighting based methods. Our experiments also indicate that re-weighting
can be computationally cheaper than re-training without sacrificing the classifier accuracy.

Thus, on the one hand, the work of Wu et al. [76] allows us to use the power of expressive initial
classifiers while only controlling the static regret against a fixed hypothesis. On the other hand, the
work of Bai et al. [8] allows controlling the dynamic regret while limiting the flexibility of deployed
models. We next provide our framework for handling label shifts that achieves the best of both worlds
by controlling the dynamic regret while allowing the use of expressive blackbox models.

In summary, we estimate the sequence of online label marginals and leverage the idea of re-weighting
an initial classifier as in Wu et al. [76]. In particular, given an estimate q̂t(y) of the true label
marginal at round t, we compute the output of the re-weighted classifier ft as q̂t(y)

q0(y)
f0(y|x)/Z where

Z =
∑

y
q̂t(y)
q0(y)

f0(y|x). However, to get around the issue of non-convexity, we separate out the
process of estimating the re-weighting vectors via a reduction to online regression which is a well-
defined and convex problem with computationally efficient off-the-shelf algorithms readily available.
Second, and more importantly, Wu et al. [76] competes with the best fixed re-weighted hypothesis.
However, in the problem setting of label shift, the true label marginals are in fact changing. Hence,
we control the dynamic regret against a sequence of re-weighted hypotheses in hindsight. All proofs
for the next sub-section are deferred to App. C.

3.1 Proposed algorithm and performance guarantees

We start by presenting our assumptions. This is followed by the main algorithm for UOLS and its
performance guarantees. Similar to the treatment in Bai et al. [8], we assume the following.

4



Assumption 1. Assume access to the true label marginals q0 ∈ ∆K of the offline training data
and the true confusion matrix C ∈ RK×K with Cij = Ex∼Q0(·|y=j),f0(i|x). Further the minimum
singular value σmin(C) = Ω(1) is bounded away from zero.

As noted in prior work [51, 26], the invertibility of the confusion matrix holds whenever the classifier
f0 has good accuracy and the true label marginal q0 assigns a non-zero probability to each label.
Though we assume perfect knowledge of the label marginals of the training data and the associated
confusion matrix, this restriction can be easily relaxed to their empirical counterparts computable
from the training data. The finite sample error between the empirical and population quantities can be
bounded by O(1/

√
N) where N is the number of initial training data samples. To this end, we operate

in the regime where the time horizon obeys T = O(
√
N). However, similar to Bai et al. [8], we make

this assumption mainly to simplify presentation without trivializing any aspect of the OLS problem.

Next, we present our assumptions on the loss function. Let p ∈ ∆K . Consider a classifier that
predicts a label ŷ(x), by sampling ŷ(x) according to the distribution that assigns a weight p(i)

q0(i)
f0(i|x)

to the label i. Define Lt(p) to be any non-negative loss that ascertains the quality of the marginal p.
For example, Lt(p) = E[ℓ(ŷ(x), y)] where the expectation is taken wrt the randomness in the draw
(x, y) ∼ Qt and in sampling ŷ(x). Here ℓ is any classification loss (e.g. 0-1, cross-entropy).
Assumption 2 (Lipschitzness of loss functions). Let D be a compact and convex domain. Assume
that Lt(p) is G Lipschitz with p ∈ D ⊆ ∆K , i.e, Lt(p1)−Lt(p2) ≤ G∥p1−p2∥2 for any p1, p2 ∈ D.
The constant G need not be known ahead of time.

We show in Lemmas 11 and 12 that the above assumption is satisfied under mild regularity conditions.
Furthermore, the prior works such as Wu et al. [76] and Bai et al. [8] also require that losses are
Lipschitz with a known Lipschitz constant apriori to set the step sizes for their OGD based methods.

The main goal here is to design appropriate re-weighting estimates such that the dynamic regret:

Rdynamic(T ) =

T∑
t=1

Lt(q̂t)− Lt(qt) ≤
T∑

t=1

G∥q̂t − qt∥2 (1)

is controlled where q̂t ∈ ∆K is the estimate of the true label marginal qt. Thus we have reduced the
problem of handling OLS to the problem of online estimation of the true label marginals.

Under label shift, we can get an unbiased estimate of the true marginals at any round via the techniques
in Lipton et al. [51], Azizzadenesheli et al. [2], Alexandari et al. [1]. More precisely, st = C−1f0(xt)
has the property that E[st] = qt (see Lemma 15). Further, the variance of the estimate st is bounded
by 1/σ2

min(C). Unfortunately, these unbiased estimates can not be directly used to track the moving
marginals qt. This is because the total squared error

∑T
t=1 E[∥st − qt∥22] grows linearly in T as the

sum of the variance of the point-wise estimates accumulates unfavorably over time.

To get around these issues, one can use online regression algorithms such as FLH [38] with online
averaging base learners or the Aligator algorithm [7]. These algorithms use ensemble methods to
(roughly) output running averages of st where the variation in the true label marginals is small
enough. The averaging within intervals where the true marginals change slowly helps to reduce the
overall variance while injecting only a small bias. We use such online regression oracles to track the
moving marginals and re-calibrate the initial classifier. Overall, Algorithm 2 summarizes our method
which has the following performance guarantee.
Theorem 2. Suppose we run Algorithm 2 with the online regression oracle ALG as FLH-FTL (App. F)
or Aligator [7]. Then under Assumptions 1 and 2, we have

E[Rdynamic(T )] = Õ

(
K1/6T 2/3V

1/3
T

σ
2/3
min(C)

+

√
KT

σmin(C)

)
,

where VT :=
∑T

t=2∥qt − qt−1∥1 and the expectation is taken with respect to randomness in the
revealed co-variates. Further, this result is attained without prior knowledge of VT .
Remark 3. We emphasize that any valid online regression oracle ALG can be plugged into Algorithm
2. This implies that one can even use transformer-based time series models to track the moving
marginals qt. Further, we have the flexibility of choosing the initial classifier to be any black-box
model that outputs a distribution over the labels.
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Framework 3 Supervised Online Label
Shift (SOLS) protocol
input A hypothesis classH.

1: for each round t ∈ [T ] do
2: Nature samples N iid data points

xt,1:N ∈ X and yt,1:N ∈ Y , with
each (xt,i, yt,i) ∼ Qt; xt,1:N is
revealed to the learner.

3: For each i ∈ [N ], learner predicts
a label ft(xt,i).

4: The label yt,i ∈ Y for each i ∈
[N ] is revealed.

5: ft+1 =
A(ft, {x1:t,1:N , y1:t,1:N}) where
algorithmA updates the classifier
with past data.

6: end for

Algorithm 4 TrainByWeights to handle SOLS

input Online regression oracle ALG, hypothesis classH
1: At round t ∈ [T ], get estimated label marginal q̂t

from ALG(s1:t−1).
2: Update the hypothesis with weighted ERM:

ft = argmin
f∈H

t−1∑
i=1

N∑
j=1

q̂t(yi,j)

q̂i(yi,j)
ℓ(f(xi,j), yi,j) (2)

3: Get co-variates xt,1:N and make predictions with ft
4: Get labels yt,1:N
5: Compute st[i] =

1
N

∑N
j=1 I{yt,j = i} for all i ∈

[K].
6: Update ALG with the empirical label marginals st.

Remark 4. Unlike prior works such as [76, 8], we do not need a pre-specified bound on the gradient
of the losses. Consequently Eq.(1) holds for the smallest value of the Lipschitzness coefficient G,
leading to tight regret bounds. Further, the projection step in Line 2 of Algorithm 2 is done only to
safeguard our theory against pathological scenarios with unbounded Lipschitz constant for losses. In
our experiments, we do not perform such projections.

We next show that the performance guarantee in Theorem 2 is optimal (modulo factors of log T ) in a
minimax sense.

Theorem 5. Let VT ≤ 64T . There exists a loss function, a domain D (in Assumption 2), and
a choice of adversarial strategy for generating the data such that for any algorithm, we have∑T

t=1 E([Lt(q̂t)] − Lt(qt)) = Ω
(
max{T 2/3V

1/3
T ,
√
T}
)
, where q̂t ∈ D is the weight estimated

by the algorithm and qt ∈ D is the label marginal at round t chosen by the adversary. Here the
expectation is taken with respect to the randomness in the algorithm and the adversary.

4 Supervised Online Label Shift

In this section, we focus on the SOLS problem where the labels are revealed to the learner after it
makes decisions. Framework 3 summarizes our setup. Let f∗

t := argminf∈H Lt(f) be the population
minimiser. We aim to control the dynamic regret against the best sequence of hypotheses in hindsight:

RH
dynamic(T ) =:

T∑
t=1

Lt(ft)− Lt(f
∗
t ) . (3)

If the SOLS problem is convex, it reduces to OCO [37, 54] and existing works provide Õ(T 2/3V
1/3
T )

dynamic regret guarantees [82]. However, in practice, since loss functions are seldom convex with
respect to model parameters in modern machine learning, the performance bounds of OCO algorithms
cease to hold true. In our work, we extend the generalization guarantees of ERM from statistical
learning theory [11] to the SOLS problem. All proofs of next sub-section are deferred to App. E.

4.1 Proposed algorithms and performance guarantees

We start by providing a simple initial algorithm whose computational complexity and flexibility
will be improved later. Note that due to the label shift assumption, for any j, t ∈ [T ], we have
E(x,y)∼Qt

[ℓ(f(x), y)] = E(x,y)∼Qj

[
qt(y)
qj(y)

ℓ(f(x), y)
]

. Here we assume that the true label marginals
qt(y) > 0 for all t ∈ [T ] and all y ∈ [K]. Based on this, we propose a simple weighted ERM
approach (Algorithm 4) where we use an online regression oracle to estimate the label marginals
from the (noisy) empirical label marginals computed with observed labeled data. With weighted

6



ERM and plug-in estimates of importance weights, we can obtain our classifier ft. One can expect
that by adequately choosing the online regression oracle ALG, the risk of the hypothesis ft computed
will be close to that of f∗

t . Here the degree of closeness will also depend on the number of data points
seen thus far. Consequently, Algorithm 4 controls the dynamic regret (Eq.(3)) in a graceful manner.
We have the following performance guarantee:
Theorem 6. Suppose the true label marginal satisfies mint,k qt(k) ≥ µ > 0. Choose the online
regression oracle in Algorithm 4 as FLH-FTL (App. F) or Aligator from Baby et al. [7] with its
predictions clipped such that q̂t[k] ≥ µ. Then with probability at least 1− δ, Algorithm 4 produces

hypotheses with RH
dynamic = Õ

(
T 2/3V

1/3
T +

√
T log(|H|/δ)

)
, where VT =

∑T
t=2∥qt − qt−1∥1.

Further, this result is attained without any prior knowledge of the variation budget VT .

The above rate contains the sum of two terms. The second term is the familiar rate seen in the
supervised statistical learning theory literature under iid data [11]. The first term reflects the price we
pay for adapting to distributional drift in the label marginals. While we prove this result for finite
hypothesis sets, the extension to infinite sets is direct by standard covering net arguments [70].
Remark 7. Theorem 6 requires that the estimates of the label marginals to be clipped from below by
µ. This is done only to facilitate theoretical guarantees by enforcing that the importance weights
used in Eq.(2) do not become unbounded. However, note that only the labels we actually observe
enters the objective in Eq.(2). In particular, if a label has very low probability of getting sampled
at a round, then it is unlikely that it enters the objective. Due to this reason, in our experiments, we
haven’t used the clipping operation (see Section 5 and Appendix F for more details).

The proof of the theorem uses concentration arguments to establish that the risk of the hypothesis ft
is close to the risk of the optimal f∗

t . However, unlike the standard offline supervised setting with
iid data, for any fixed hypothesis, the terms in the summation of Eq.(2) are correlated through the
estimates of the online regression oracle. We handle it by introducing uncorrelated surrogate random
variables and bounding the associated discrepancy. Next, we show (near) minimax optimality of the
guarantee in Theorem 6.
Theorem 8. Let VT ≤ T/8. There exists a choice of hypothesis class, loss function, and adversarial

strategy of generating the data such that RH
dynamic = Ω

(
T 2/3V

1/3
T +

√
T log(|H|)

)
, where the

expectation is taken with respect to randomness in the algorithm and adversary.
Remark 9. Though the rates in Theorems 5 and 8 are similar, we note that the corresponding regret
definitions are different. Hence the minimax rates are not directly comparable between the supervised
and unsupervised settings.

Even-though Algorithm 4 has attractive performance guarantees, it requires retraining with weighted
ERM at every round. This can be computationally expensive. To alleviate this issue, we design a
new online change point detection algorithm (Algorithm 5 in App. D) that can adaptively discover
time intervals where the label marginals change slow enough. We show that the new online change
point detection algorithm can be used to significantly reduce the number of retraining steps without
sacrificing statistical efficiency (up to constants). Due to space constraints, we defer the exact details
to App. D. We remark that our change point detection algorithm is applicable to general online
regression problems and hence can be of independent interest to online learning community.
Remark 10. Algorithm 5 helps to reduce the run-time complexity. However, both Algorithms 4 and 5
have the drawback of storing all data points accumulated over the online rounds. This is reminiscent
to FTL / FTRL type algorithms from online learning. We leave the task of deriving theoretical
guarantees with reduced storage complexity under non-convex losses as an important future direction.

5 Experiments2

5.1 UOLS Setup and Results

Setup Following the dataset setup of Bai et al. [8], we conducted experiments on synthetic
and common benchmark data such as MNIST [50], CIFAR-10 [49], Fashion [77], EuroSAT [40],
Arxiv [15], and SHL [31, 71]. For each dataset, the original data is split into labeled data available

2Code is publicly available at https://github.com/Anon-djiwh/OnlineLabelShift.
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Figure 2: Results on the UOLS problem. (a) and (b): Ablation on CIFAR10 with monotone shift
over sizes of holdout data used to update model parameters and compute confusion matrix, with
amount of training data held fixed. FLH-FTL (ours) outperforms all other alternatives throughout
in classification error and mean square error in label marginal estimation. Unlike the alternatives,
the performance of FLH-FTL (ours) is unaffected by the decrease in amount of holdout data. (c):
CIFAR10 results with monotone shift using varying amount of training data, with the remaining
labeled data used as holdout (total number of samples fixed to 50k). The performance of FLH-FTL
is minimally impacted by the reduction in the quantity of holdout data, thus yielding the greatest
advantage from utilizing a larger volume of training data.

Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

Base 8.6±0.2 8.2±0.3 4.9±0.4 3.9±0.0 16±0 16±0 13±0 13±0 15±0 15±0 23±1 19±0

OFC 6.4±0.6 5.5±0.2 4.4±0.5 3.2±0.3 12±1 11±0 11±1 10±1 7.9±0.1 7.1±0.1 20±2 15±0

Oracle 3.7±0.8 3.9±0.2 2.5±0.5 1.5±0.1 5.4±0.5 5.8±0.1 3.9±0.3 4.1±0.1 3.7±0.2 3.6±0.1 7.7±1.0 5.1±0.1

FTH 6.5±0.6 5.7±0.3 4.5±0.6 3.3±0.2 11±0 11±0 10±0 9.6±0.0 8.5±0.3 6.9±0.4 20±1 14±0

FTFWH 6.6±0.5 5.7±0.3 4.5±0.6 3.3±0.2 11±1 11±0 9.8±0.4 9.6±0.1 8.2±0.6 6.9±0.4 20±1 14±0

ROGD 7.9±0.3 7.2±0.6 6.2±2.8 4.4±1.5 16±3 13±0 14±1 13±1 10±1 8.2±0.7 23±2 17±1

UOGD 8.1±0.6 7.5±0.6 5.4±0.6 4.0±0.0 14±0 14±1 10±1 9.8±0.7 11±2 11±2 21±1 17±1

ATLAS 8.0±1.0 7.5±0.6 5.2±0.6 3.7±0.2 13±0 13±1 10±1 9.9±0.7 12±2 12±2 21±1 16±0

FLH-FTL (ours) 5.4±0.7 5.4±0.4 4.4±0.7 3.3±0.2 10±0 11±0 9.2±0.4 9.6±0.1 7.7±0.4 7.0±0.0 19±1 14±0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

FTH 0.19±0.01 0.10±0.00 0.27±0.00 0.14±0.00 0.27±0.01 0.14±0.00 0.27±0.00 0.14±0.00 0.29±0.01 0.14±0.01 0.29±0.01 0.15±0.00

FTFWH 0.19±0.02 0.09±0.00 0.26±0.02 0.13±0.00 0.25±0.02 0.13±0.00 0.25±0.01 0.13±0.00 0.25±0.04 0.14±0.01 0.27±0.02 0.15±0.00

ROGD 0.29±0.03 0.24±0.01 0.41±0.08 0.37±0.06 0.39±0.04 0.30±0.05 0.43±0.04 0.35±0.03 0.37±0.02 0.30±0.01 0.34±0.03 0.28±0.01

FLH-FTL (ours) 0.10±0.01 0.08±0.00 0.15±0.01 0.12±0.00 0.17±0.01 0.13±0.00 0.16±0.01 0.13±0.00 0.18±0.02 0.14±0.01 0.23±0.01 0.15±0.00

Table 1: Results for UOLS problems under sinusoidal (Sin) and Bernoulli (Ber) shifts. Top:
Classification Error. Bottom: Mean-squared error in estimating label marginal. For both, lower is
better. Across all datasets, we observe that FLH-FTL (ours) often improves over best alternatives.

during offline training and validation, and the unlabeled data that we observe during online learning.
We experiment with varying sizes of holdout offline data which is used to obtain the confusion matrix
and update the model parameters to adapt to OLS to probe the sample efficiency of all the methods.
In contrast to previous works [8, 76], we have chosen to use a smaller amount of holdout offline
data for our main experiments. We made this decision because the standard practice for deployment
involves training and validating models on training and holdout splits, respectively (e.g., with k-fold
cross-validation). Then, the final model is deployed by training on all available data (i.e., the union
of train and holdout) with the identified hyperparameters. However, to employ UOLS techniques
in practice, practitioners must hold out data that was not seen during training to update the model
during online adaptation. Therefore, methods that are efficient with respect to the amount of offline
holdout data required might be preferable.
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Base Oracle ROGD FTH FTFWH FLH-FTL
(ours)

Cl Err 18±1 6.3±1.3 19±3 14±2 14±2 13±2

MSE NA 0.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0 0.2±0.0

Table 2: Results with a Random Forest classi-
fier on MNIST dataset. Note that methods that
update model parameters are not applicable here.
FLH-FTL outperforms existing alternatives for
both accuracy and label marginal estimation.

CT
(base)

CT-RS (ours)
w FTH

CT-RS (ours)
w FLH-FTL

w-ERM
(oracle)

Cl Err 20.0±0.5 18.38±0.4 17.12±0.8 16.32±0.7

MSE NA 0.18±0.01 0.12±0.01 NA

Table 3: Results on SOLS setup on CIFAR10
SOLS with Bernoulli shift. CT with RS improves
over the base model (CT) and achieves competi-
tive performance with respect to weighted ERM
oracle. MNIST results are similar (see App. F).

For all datasets except SHL, we simulate online label shifts with four types of shifts studied in Bai
et al. [8]: monotone shift, square shift, sinusoidal shift, and Bernoulli shift. For SHL locomotion, we
use the real-world shift occurring over time. For architectures, we use an MLP for Fashion, SHL and
MNIST, Resnets [39] for EuroSAT, CINIC, and CIFAR, and DistilBERT [62, 75] based models for
arXiv. For alternate approaches, along with a base classifier (which does no adaptation) and oracle
classifier (which reweight using the true label marginals), we make comparisons with adaptation
algorithms proposed in prior works [76, 8]. In particular, we compare with ROGD, FTH, FTFWH
from Wu et al. [76] and UOGD, ATLAS from Bai et al. [8]. For brevity, we refer to our method
as FLH-FTL (though strictly speaking, our methods are based on FLH from Hazan and Seshadhri
[38] with online averages as base learners). We run all the online label shift experiments with the
time horizon T = 1000 and at each step 10 samples are revealed. We repeat all experiments with
3 seeds to obtain means and standard deviations of the results. For other methods that perform re-
weighting correction on softmax predictions, we use the labeled holdout data to calibrate the model
with temperature scaling, which tunes one temperature parameter [35]. We provide exact details
about the datasets, label shift simulations, models, and prior methods in App. F.

Results Overall, across all datasets, we observe that our method FLH-FTL performs better than
alternative approaches in terms of both classification error and mean squared error for estimating the
label marginal. Note that methods that directly update the model parameters (i.e., UOGD, ATLAS)
do not provide any estimate of the label marginal (Table 1). UOGD and ATLAS also require offline
holdout labeled data (i.e., from time step 0) to make online updates to the model parameters. For this
purpose, we use the same labeled data that we use to compute the confusion matrix.

As we increase the holdout offline labeled dataset size for updating the model parameters (and to
compute the confusion matrix), we observe that classification error and MSE with FLH-FTL stay
(relatively) constant whereas the classification errors of other alternatives improve (Fig. 2). This
highlights that FLH-FTL can be much more sample efficient with respect to the size of the hold-out
offline labeled data. Motivated by this observation, we perform an additional experiment in which we
increase the offline training data and observe that we can overall improve the classification accuracy
significantly with FLH-FTL (Fig. 2). We present results on SHL dataset with similar findings on semi-
synthetic datasets in App. G.5. Finally, we also experiment with a random forest model on the MNIST
dataset. Note methods that update model parameters (e.g., UOGD and ATLAS) with OGD are not
applicable here. Here, we also observe that we improve over existing applicable alternatives (Table 2).

5.2 SOLS setup and results

Setup For the supervised problem, we experiment with MNIST and CIFAR datasets. We simulate
a time horizon of T = 200. For each dataset, at each step, we observe 50 samples with Bernoulli
shift. Motivated by our theoretical results with weighted ERM, we propose a simple baseline which
continually trains the model at every step instead of starting ERM from scratch every time. We
maintain a pool of all the labeled data received till that time step, and at every step, we randomly
sample a batch with uniform label marginal to update the model. Finally, we re-weight the updated
softmax outputs with estimated label marginal. We call this method Continual Training via Re-
Sampling (CT-RS). Its relation as a close variant of weighted ERM is elaborated in App. F.1. To
estimate the label marginal, we try FTH and ours FLH-FTL.

Results On both datasets, we observe that empirical performance with CT-RS improves over the
naive continual training baseline. Additionally, CT-RS results are competitive with weighted ERM

9



while being 5–15× faster in terms of computation cost (we include the exact computational cost in
App. F.1). Moreover, as in UOLS setup, we observe that FLH-FTL improves over FTH for both
target label marginal estimation and classification.

6 Conclusion

In this work, we focused on unsupervised and supervised online label shift settings. For both settings,
we developed algorithms with minimax optimal dynamic regret. Experimental results on both real
and semi-synthetic datasets substantiate that our methods improve over prior works both in terms of
accuracy and target label marginal estimation.

In future work, we aim to expand our experiments to more real-world label shift datasets. Our
work also motivates future work in exploiting other causal structures (e.g. covariate shift) for online
distribution shift problems.
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Appendix

A Limitations

Our work is based on the label shift assumption which restricts the applicability of our methods to
scenarios where this assumption holds. However, as noted in Section 1, the problem of adaptation to
changing data distribution is intractable without imposing assumptions on the nature of the shift.

Furthermore, as noted in Remark 9, our methods in the SOLS settings have a memory requirement
that scales linearly with time, which may not be feasible in scenarios where memory is limited. This
is reminiscent to FTL / FTRL type algorithms from online learning. We leave the task of deriving
theoretical guarantees with reduced storage complexity under non-convex losses as an important
future direction.

B Related work

Offline total variation denoising The offline problem of Total Variation (TV) denoising constitutes
estimating the ground truth under the observation model in Definition 1 with the caveat that all
observations are revealed ahead of time. This problem is well studied in the literature of locally
adaptive non-parametric regression [20, 21, 23, 52, 69, 45, 66, 73, 60, 34]. The optimal total squared
error (TSE) rate for estimation is known to be Õ(T 1/3V

2/3
T + 1) [22]. Estimating sequences of

bounded TV has received a lot of attention in literature mainly because of the fact that these sequences
exhibit spatially varying degree of smoothness. Most signals of scientific interest are known to contain
spatially localised patterns [44]. This property also makes the task of designing optimal estimators
particularly challenging because the estimator has to efficiently detect localised patterns in the ground
truth signal and adjust the amount of smoothing to be applied to optimally trade-off bias and variance.

Non-stationary online learning The problem of online regression can be casted into the dynamic
regret minimisation framework of online learning. We assume the notations in Definition 1. In this
framework, at each round the learner makes a decision θ̂t. Then the learner suffers a squared error loss
ℓt(θ̂t) = ∥zt−θ̂t∥22. The gradient of the loss at the point of decision,∇ℓt(θ̂t) = 2(θ̂t−zt), is revealed
to the learner. The expected dynamic regret against the sequence of comparators θ1:T is given by

R(θ1:T ) =

T∑
t=1

E[ℓt(θ̂t)− ℓt(θt)]

=

T∑
t=1

E[∥zt − θ̂t∥22]− E[∥zt − θt∥22]

=

T∑
t=1

E
[
∥θ̂t∥22−∥θt∥22−2zTt θ̂t + 2zTt θt

]
=

T∑
t=1

E[∥θ̂t − θt∥22],

where in the last line we used the fact that the noise ϵt (see Definition 1) is zero mean and independent
of the online decisions θ̂t. Due to this relation, we conclude that any algorithm that can optimally
control the dynamic regret with respect to squared error losses ℓt(x) = ∥zt − x∥22 can be directly
used to control the TSE from the ground truth sequence θ1:T .

The minimax estimation rate is defined as follows:

R∗(T, VT ) = min
θ̂1:T

max
θ1:T∑T

i=2∥θi−θi−1∥1≤VT

T∑
t=1

E[∥θ̂t − θt∥22]

Algorithms that can control the dynamic regret with respect to convex losses such as those presented
in the works of Jadbabaie et al. [43], Besbes et al. [10], Yang et al. [78], Chen et al. [14], Zhang
et al. [81], Goel and Wierman [32], Zhao et al. [84], Zhao and Zhang [83], Zhao et al. [85], Chang
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Algorithm Run-time Memory
FLH-FTL [38] O(T 2) O(T 2)

Aligator [7] O(T log T ) O(T )
Arrows [3] O(T log T ) O(1)

Table 4: Run-time and memory complexity of various adaptively minimax optimal online regression
algorithms (see Definition 1). For practical purposes, the storage requirement is negligible even for
FLH-FTL. For example, with 10 classes and T = 1000, the storage requirement of FLH-FTL is only
40KB, which is insignificant compared to the storage capacity of most modern devices.

and Shahrampour [13], Jacobsen and Cutkosky [42], Baby and Wang [6] can lead to sub-optimal
estimation rates of order O(

√
T (1 + VT )).

On the other hand, algorithms presented in Hazan and Seshadhri [38], Daniely et al. [19], Baby and
Wang [3], Baby et al. [7], Raj et al. [56], Baby and Wang [4, 5] exploit the curvature of the losses and
attain the (near) optimal estimation rate of Õ(T 1/3V

2/3
T + 1).

Online non-parametric regression The task of estimating a sequence of TV bounded sequence
from noisy observations can be cast into the online non-parametric regression framework of Rakhlin
and Sridharan [57]. Results on online non-parametric regression against reference class of Lipschitz
sequences, Sobolev sequences and isotonic sequences can be found in [25, 47, 48] respectively.
However as noted in Baby and Wang [3], these classes feature sequences that are more regular than
TV bounded sequences. In fact they can be embedded inside a TV bounded sequence class [59] . So
the minimax optimality of an algorithm for TV class implies minimax optimality for the smoother
sequence classes as well.

Offline label shift Dataset shifts are predominantly studied under two scenarios: covariate shift
and label shift [65]. Under covariate shift, p(y|x) doesn’t change, while in label shift p(x|y) remains
invariant. Schölkopf et al. [63] articulates connections between label shift and covariate shift with
anti-causal and causal models respectively. Covariate shift is well explored in past [80, 79, 17, 16, 33].
The offline label shift assumption has been extensively studied in the domain adaptation literature
[61, 65, 80, 51, 36, 26, 1, 30] and is also related to problems of estimating mixture proportions
of different classes in unlabeled data where previously unseen classes may appear (e.g., positive
and unlabeled learning; Elkan and Noto [24], Bekker and Davis [9], Garg et al. [27, 28], Roberts
et al. [58]). Classical approaches suffer from the curse of dimensionality, failing in settings with
high dimensional data where deep learning prevails. More recent methods work leverage black-box
predictors to produce sufficient low-dimensional representations for identifying target distributions of
interest [51, 2, 61, 1]. In our work, we leverage black box predictors to estimate label marginals at
each step which we track with online regression oracles to trade off variance with (small) bias.

C Omitted proofs from Section 3

In the next two lemmas, we verify Assumption 2 for some important loss functions.
Lemma 11 (cross-entropy loss). Consider a sample (x, y) ∼ Q. Let p ∈ RK

+ and p̃(x) ∈ ∆K

be a distribution that assigns a weight proportional p(i)
q0(i)

f0(i|x) to the label i . Let ℓ(p̃(x), y) =∑K
i=1 I{y = i} log(1/p(x)[i]) be the cross-entropy loss. Let L(p) := E(x,y)∼Q[ℓ(p(x), y)] be its

population analogue. Then L(p) is 2
√
K/µ Lipschitz in ∥·∥2 norm over the clipped box D := {p ∈

RK
+ : µ ≤ p(i) ≤ 1 ∀i ∈ [K]} which is compact and convex. Further, the true marginals qt ∈ D

whenever qt(i) ≥ µ for all i ∈ [K].

Proof. We have

L(p) = −
K∑
i=1

E[E[Qt(i|x) log(p̃(x)[i])|x]]

= E[log(

K∑
i=1

wip(i))]−
K∑
i=1

E[E[Qt(i|x) log(wip(i))|x]],
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where we define wi := f0(i|x)/q0(i). Then we can see that

∇L(p)[i] = E

[
wi∑K

j=1 wjp(j))

]
− E

[
Qt(i|x)
p(i)

]
.

So if mini p(i) ≥ µ, we have that wi∑K
j=1 wjp(j)

≤ 1/µ and Qt(i|x)/p(i) ≤ 1/µ. So by triangle

inequality, |∇L(p)[i]|≤ 1/µ+ 1/µ.

Lemma 12 (binary 0-1 loss). Consider a sample (x, y) ∼ Q. Let p ∈ RK
+ and p̃(x) ∈ ∆K be

a distribution that assigns a weight proportional p(i)
q0(i)

f0(i|x) to the label i. Let ŷ(x) be a sample
obtained from the distribution p̃(x). Consider the binary 0-1 loss ℓ(ŷ(x), y) = I(ŷ(x) ̸= y). Let
L(p) := E(x,y)∼Q,ŷ(x)∼p̃(x)I(ŷ(x) ̸= y) be its population analogue. Let q0(i) ≥ α > 0. Then
L(p) is 2K3/2/(ατ) Lipschitz in ∥·∥2 norm over the domain D := {p ∈ RK

+ :
∑K

i=1 p(i)f0(i|x) ≥
τ, p(i) ≤ 1 ∀i ∈ [K]} which is compact and convex. Further, the true marginals qt ∈ D whenever
qt(i) ≥ µ for all i ∈ [K].

Proof. We have that

L(p) =

K∑
i=1

E[Q(y ̸= i|x)p̃(x)[i]].

Denote p̃(x)[i] = p(i)wi/
∑K

j=1 p(j)wj with wj := f0(i|x)/q0(i). Then we see that

∣∣∣∣∂p̃(x)[i]∂p(i)

∣∣∣∣ =
∣∣∣∣∣∣∣

wi∑K
j=1 wjp(j)

− (wip(i))wi(∑K
j=1 wjp(j)

)2
∣∣∣∣∣∣∣

≤ 1

ατ
+

wi∑K
j=1 wjp(j)

≤ 2/(ατ).

Similarly, ∣∣∣∣∂p̃(x)[i]∂p(j)

∣∣∣∣ = wip(i)wj(∑K
j=1 wjp(j)

)2
≤ 1/(ατ).

Thus we conclude that ∥∇p̃(x)[i]∥2≤ 2
√
K/(ατ), where the gradient is taken with respect to

p ∈ RK
+ .

Therefore,

∥∇L(p)∥2 ≤
K∑
i=1

∥∇p̃(x)[i]∥2

≤ 2K3/2/(ατ).

Remark 13. The condition
∑K

i=1 f0(i|x)p(i) ≥ τ is closely related to Condition 1 of Garg et al. [26].
Note that this is strictly weaker than imposing the restriction that the distribution p(i) ≥ µ for each i.

Remark 14. We emphasize that the conditions in Lemmas 11 and 12 are only sufficient conditions that
imply bounded gradients. However, they are not necessary for satisfying bounded gradients property.
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Lemma 15. Let µ, ν ∈ ∆K be such that µ[i] = qt(i). Let st = C−1f0(xt), where C is the confusion
matrix defined in Assumption 1. We have that E[st] = µ and Var(st) ≤ 1/σ2

min(C)

Proof. Let q̃t(ŷt) = Ext∼QX
t ,ŷ(xt)∼f0(xt)I{ŷ(xt) = ŷt} be the probability that the classifier f0

predicts the label ŷt. Here QX
t (x) :=

∑K
i=1 Qt(x, i). Let’s denote Qt(ŷ(xt) = ŷt|yt = i) :=

Ext∼Qt(·|y=i),ŷ(xt)∼f0(xt)I{ŷ(xt) = ŷt}. By law of total probability, we have that

q̃t(ŷt) =

K∑
i=1

Qt(ŷ(xt) = ŷt|yt = i)qt(i)

=

K∑
i=1

Q0(ŷ(xt) = ŷt|yt = i)qt(i),

where the last line follows by the label shift assumption.

Let µ, ν ∈ RK be such that µ[i] = qt(i) and ν[i] = q̃t(i). Then the above equation can be represented
as ν = Cµ. Thus µ = C−1ν.

Given a sample xt ∈ Qt, the vector f0(xt) forms an unbiased estimate of ν. Hence we have that the
vector µ̂ := C−1f0(xt) is an unbiased estimate of µ. Moreover,

∥µ̂∥2 ≤ ∥C−1∥2∥f0(xt)∥
≤ 1/σmin(C).

Hence the variance of the estimate µ̂ is bounded by 1/σ2
min(C).

We have the following performance guarantee for online regression due to Baby et al. [7].
Proposition 16 (Baby et al. [7]). Let st = C−1f0(xt). Let q̂t := ALG(s1:t−1) be the online estimate
of the true label marginal qt produced by the Aligator algorithm by taking s1:t−1 as input at a round
t. Then we have that

T∑
t=1

E
[
∥q̂t − qt∥22

]
= Õ(K1/3T 1/3V

2/3
T (1/σ

4/3
min(C)) +K),

where VT :=
∑T

t=2∥qt − qt−1∥1. Here Õ hides dependencies in absolute constants and poly-
logarithmic factors of the horizon. Further this result is attained without prior knowledge of the
variation VT .

By following the arguments in Baby and Wang [4], a similar statement can be derived also for the
FLH-FTL algorithm of Hazan and Seshadhri [38] (Algorithm 7).
Theorem 2. Suppose we run Algorithm 2 with the online regression oracle ALG as FLH-FTL (App. F)
or Aligator [7]. Then under Assumptions 1 and 2, we have

E[Rdynamic(T )] = Õ

(
K1/6T 2/3V

1/3
T

σ
2/3
min(C)

+

√
KT

σmin(C)

)
,

where VT :=
∑T

t=2∥qt − qt−1∥1 and the expectation is taken with respect to randomness in the
revealed co-variates. Further, this result is attained without prior knowledge of VT .

Proof. Owing to our carefully crafted reduction from the problem of online label shift to online
regression, the proof can be conducted in just a few lines. Let q̃t be the value of ALG(s1:t−1)
computed at line 2 of Algorithm 2. Recall that the dynamic regret was defined as:

Rdynamic(T ) =

T∑
t=1

Lt(q̂t)− Lt(qt) ≤
T∑

t=1

G∥q̂t − qt∥2 (4)
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Continuing from Eq.(4), we have

E[Rdynamic(T )] ≤
T∑

t=1

G · E[∥q̂t − qt∥2]

≤
T∑

t=1

G · E[∥q̃t − qt∥2]

≤
T∑

t=1

G
√
E∥q̃t − qt∥22

≤ G

√√√√T

T∑
t=1

E[∥q̃t − qt∥22]

= Õ

(
K1/6T 2/3V

1/3
T (1/σ

2/3
min(C)) +

√
KT/σmin(C)

)
,

where the second line is due to non-expansivity of projection, the third line is due to Jensen’s
inequality, fourth line by Cauchy-Schwartz and last line by Proposition 16. This finishes the proof.

Next, we provide matching lower bounds (modulo log factors) for the regret in the unsupervised label
shift setting. We start from an information-theoretic result which will play a central role in our lower
bound proofs.
Proposition 17 (Theorem 2.2 in Tsybakov [68]). Let P and Q be two probability distributions onH,
such that KL(P||Q) ≤ β <∞, Then for anyH-measurable real function ϕ : H → {0, 1},

max{P(ϕ = 1),Q(ϕ = 0)} ≥ 1

4
exp(−β).

Theorem 5. Let VT ≤ 64T . There exists a loss function, a domain D (in Assumption 2), and
a choice of adversarial strategy for generating the data such that for any algorithm, we have∑T

t=1 E([Lt(q̂t)] − Lt(qt)) = Ω
(
max{T 2/3V

1/3
T ,
√
T}
)
, where q̂t ∈ D is the weight estimated

by the algorithm and qt ∈ D is the label marginal at round t chosen by the adversary. Here the
expectation is taken with respect to the randomness in the algorithm and the adversary.

Proof. We start with a simple observation about KL divergence. Consider distributions with density
P (x, y) = P0(x|y)p(y) and Q(x, y) = P0(x|y)q(y) where (x, y) ∈ R × [K]. Note that these
distributions are consistent with the label shift assumption. We note that

KL(P ||Q) =

K∑
i=1

∫
R
P0(x|i)p(i) log

(
P0(x|i)p(i)
P0(x|i)q(i)

)
dx

=

K∑
i=1

∫
R
P0(x|i)p(i) log

(
p(i)

q(i)

)
dx

=

K∑
i=1

p(i) log

(
p(i)

q(i)

)

Thus we see that under the label shift assumption, the KL divergence is equal to the KL divergence
between the marginals of the labels.

Next, we define a problem instance and an adversarial strategy. We focus on a binary classification
problem where the labels is either 0 or 1. As noted before, the KL divergence only depends on the
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marginal distribution of labels. So we fix the density Q0(x|y) to be any density such that under the
uniform label marginals (q0(1) = q0(0) = 1/2) we can find a classifier with invertible confusion
matrix (recall from Fig. 1 that Q0 corresponds to the data distribution of the training data set).

Divide the entire time horizon T is divided into batches of size ∆. So there are M := T/∆ batches
(we assume divisibility). Let Θ =

{
1
2 − δ, 1

2 + δ
}

be a set of success probabilities, where each
probability can define a Bernoulli trial. Here δ ∈ (0, 1/4) which will be tuned later.

The problem instance is defined as follows:

• For batch i ∈ [M ], adversary selects a probability q̊i ∈ Θ uniformly at random.

• For any round t that belongs to the ith batch, sample a label yt ∼ Ber(qt) and co-variate
xt ∼ Q0(·|yt). Here qt = q̊i. The co-variate xt is revealed.

• Let q̂t be any estimate of qt at round t. Define the loss as Lt(q̂t) := I{qt ≥ 1/2}(1− q̂t) +
I{qt < 1/2}q̂t.

We take the domain D in Assumption 2 as [1/2 − δ, 1/2 + δ]. It is easy to verify that Lt(q̂t) is
Lipschitz over D. Note that unlike Besbes et al. [10], we do not have an unbiased estimate of the
gradient of loss functions.

Let’s compute an upperbound on the total variation incurred by the true marginals. We have

T∑
t=2

|qt − qt−1| =
M∑
i=2

|̊qi − q̊i−1|

≤ 2δM

≤ VT ,

where the last line is obtained by choosing δ = VT /(2M) = VT∆/(2T ).

Since at the beginning of each batch, the sampling probability is chosen uniformly at random, the
loss function in the current batch is independent of the history available at the beginning of the batch.
So only the data in the current batch alone is informative in minimising the loss function in that
batch. Hence it is sufficient to consider algorithms that only use the data within a batch alone to make
predictions at rounds that falls within that batch.

Now we proceed to bound the regret incurred within batch 1. The computation is identical for any
other batches.

Let P be the joint probability distribution in which labels (y1, . . . , y∆) within batch 1 are sampled
with success probability 1/2− δ (i.e qt = 1/2− δ)

P(y1, . . . , y∆) = Π∆
i=1(1/2− δ)yi(1/2 + δ)1−yi .

Define an alternate distribution Q such that

Q(y1, . . . , y∆) = Π∆
i=1(1/2 + δ)yi(1/2− δ)1−yi .

According to the above distribution the data are independently sampled from Bernoulli trials with
success probability 1/2 + δ. (i.e qt = 1/2 + δ)

Moving forward, we will show that by tuning ∆ appropriately, any algorithm won’t be able to detect
between these two alternate worlds with constant probability resulting in sufficiently large regret.
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We first bound the KL distance between these two distributions. Let

KL(1/2− δ||1/2 + δ) := (1/2 + δ) log

(
1/2 + δ

1/2− δ

)
+ (1/2− δ) log

(
1/2− δ

1/2 + δ

)
≤(a) (1/2 + δ)

2δ

1/2 + δ
− (1/2− δ)

2δ

1/2 + δ

=
16δ2

1− 4δ2

≤(b)
64δ2

3
,

where in line (a) we used the fact that log(1+x) ≤ x for x > −1 and observed that−4δ/(1+2δ) >
−1 as δ ∈ (0, 1/4). In line (b) we used δ ∈ (0, 1/4).

Since P and Q are product of the marginals due to independence we have that

KL(P||Q) =

∆∑
t=1

KL(1/2− δ||1/2 + δ)

≤ (64∆/3) · δ2

= 16/3

:= β, (5)

where we used the choices δ = ∆VT /(2T ) and ∆ = (T/VT )
2/3.

Suppose at the beginning of batch, we reveal the entire observations within that batch y1:∆ to the
algorithm. Note that doing so can only make the problem easier than the sequential unsupervised
setting. Let q̂t be any measurable function of y1:∆. Define the function ϕt := I{q̂t ≥ 1/2}. Then by
Proposition 17, we have that

max{P(ϕt = 1),Q(ϕt = 0)} ≥ 1

4
exp(−β), (6)

where β is as defined in Eq.(5).

Notice that if qt = 1/2− δ, then Lt(q̂t) ≥ 1/2 for any q̂t ≥ 1/2. Similarly if qt = 1/2 + δ, we have
that Lt(q̂t) ≥ 1/2 for any q̂t < 1/2.

Further note that Lt(qt) = 1/2− δ by construction.

For notational clarity define Lp
t (x) := x and Lq

t (x) := 1− x. We can lower-bound the instantaneous
regret as:

E[Lt(q̂t)]− Lt(qt) =(a)
1

2
(EP[L

p
t (q̂t)]− Lp

t (1/2− δ)) +
1

2
(EQ[L

q
t (q̂t)]− Lq

t (1/2 + δ))

≥(b)
1

2
(EP[L

p
t (q̂t)|q̂t ≥ 1/2]− Lp

t (1/2− δ)P(ϕt = 1)

+
1

2
(EQ[L

q
t (q̂t)|q̂t < 1/2]− Lq

t (1/2 + δ)Q(ϕt = 0)

≥(c)
1

2
δP(ϕt = 1) +

1

2
δQ(ϕt = 0)

≥ δ/2max{P(ϕt = 1),Q(ϕt = 0)}

≥(d)
δ

8
exp(−β),

where in line (a) we used the fact the success probability for a batch is selected uniformly at random
from Θ. In line (b) we used the fact that Lp

t (q̂t)−Lp
t (1/2−δ) ≥ 0 since q̂t ∈ D = [1/2−δ, 1/2+δ].

Similarly term involving Lq
t is also handled. In line (c) we applied (EP[L

p
t (q̂t)|q̂t ≥ 1/2]−Lp

t (1/2−
δ)) ≥ δ since EP[L

p
t (q̂t)|q̂t ≥ 1/2] ≥ 1/2 and Lp

t (1/2− δ) = 1/2− δ. Similar bounding is done
for the term involving EQ as well. In line (d) we used Eq.(6).
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Algorithm 5 LPA: a black-box reduction to produce a low-switching online regression algorithm

input Online regression oracle ALG, failure probability δ, maximum standard deviation σ (see
Definition 1).

1: Initialize prev = 0 ∈ RK , b = 1
2: Get estimate θ̃t from ALG(z1:t−1)

3: Output θ̂t = prev
4: Receive an observation zt

// test to detect non-staionarity
5: if

∑t
j=b+1∥prev− θ̃j∥22> 5Kσ2 log(2T/δ) then

6: Set b = t+ 1, prev = zt
7: Restart ALG
8: else if t− b+ 1 is a power of 2 then
9: Set prev =

∑t
j=b zj/t−b+1

10: end if
11: Update ALG with zt

Thus we get the total expected regret within batch 1 as

∆∑
t=1

E[Lt(q̂t)]− Lt(qt) ≥
δ∆

8
exp(−β)

The total regret within any batch i ∈ [M ] can be lower bounded using exactly the same arguments as
above. Hence summing the total regret across all batches yields

T∑
t=1

E[Lt(q̂t)]− Lt(qt) ≥
T

∆
· δ∆

8
exp(−β)

=
VT∆

16
· exp(−β)

= T 2/3V
1/3
T exp(−β)/16.

The Ω(
√
T ) part of the lowerbound follows directly from Theorem 3.2.1 in Hazan [37] by choosing

D with diameter bounded by Ω(1).

D Design of low switching online regression algorithms

Even-though Algorithm 4 has attractive performance guarantees, it requires retraining with weighted
ERM at every round. This is not satisfactory since the retraining can be computationally expensive. In
this section, we aim to design a version of Algorithm 4 with few retraining steps while not sacrificing
the statistical efficiency (up to constants). To better understand why this goal is attainable, consider a
time window [1, n] ⊆ [T ] where the true label marginals remain constant or drift very slowly. Due to
the slow drift, one reasonable strategy is to re-train the model (with weighted ERM) using the past
data only at time points within [1, n] that are powers of 2 (i.e via a doubling epoch schedule). For
rounds t ∈ [1, n] that are not powers of 2, we make predictions with a previous model hprev computed
at tprev := 2⌊log2 t⌋ which is trained using data seen upto the time tprev. Observe that this constitutes
at least half of the data seen until round t. This observation when combined with the slow drift of
label marginals implies that the performance of the model hprev at round t will be comparable to the
performance of a model obtained by retraining using entire data collected until round t.

To formalize this idea, we need an efficient online change-point-detection strategy that can detect
intervals where the TV of the true label marginals is low and retrain only (modulo at most log T
times within a low TV window) when there is enough evidence for sufficient change in the TV of
the true marginals. We address this problem via a two-step approach. In the first step, we construct
a generic black-box reduction that takes an online regression oracle as input and converts it into
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another algorithm with the property that the number of switches in its predictions is controlled without
sacrificing the statistical performance. Recall that the purpose of the online regression oracles is to
track the true label marginals. The output of our low-switching online algorithm remains the same
as long as the TV of the true label marginals (TV computed from the time point of the last switch)
is sufficiently small. Then we use this low-switching online regression algorithm to re-train the
classifier when a switch is detected.

We next provide the Low switching through Phased Averaging (LPA) (Algorithm 5), our black-box
reduction to produce low switching regression oracles. We remark that this algorithm is applicable to
the much broader context of online regression or change point detection and can be of independent
interest.

We now describe the intuition behind Algorithm 5. The purpose of Algorithm 5 is to denoise the
observations zt and track the underlying ground truth θt in a statistically efficient manner while
incurring low switching cost. Hence it is applicable to the broader context of online non-parametric
regression [3, 56, 7] and offline non-parametric regression [66, 72].

Algorithm 5 operates by adaptively detecting low TV intervals. Within each time window it performs
a phased averaging in a doubling epoch schedule. i.e consider a low TV window [b, n]. For a round t ∈
[b, n] let tprev := 2⌊log2(t−b+1)⌋. In round t, the algorithm plays the average of the observations zb:tprev .
So we see that in any low TV window, the algorithm changes its output only at-most O(log T ) times.

For the above scheme to not sacrifice statistical efficiency, it is important to efficiently detect windows
with low TV of the true label marginals. Observe that the quantity prev computes the average of
at-least half of the observations within a time window that start at time b. So when the TV of the
ground truth within a time window [b, t] is small, we can expect the average to be a good enough
representation of the entire ground truth sequence within that time window. Consider the quantity
Rt :=

∑t
j=b+1∥prev − θj∥22 which is the total squared error (TSE) incurred by the fixed decision

prev within the current time window. Whenever the TV of the ground truth sequence θb:t is large,
there will be a large bias introduced by prev due to averaging. Hence in such a scenario the TSE will
also be large indicating non-stationarity. However, we can’t compute Rt due to the unavailability
of θj . So we approximate Rt by replacing θj with the estimates θ̃j coming from the input online
regression algorithm that is not constrained by switching cost restrictions. This is the rationale behind
the non-stationarity detection test at Step 5. Whenever a non-staionarity is detected we restart the
input online regression algorithm as well as the start position for computing averages (in Step 6).

We have the following guarantee for Algorithm 5.
Theorem 18. Suppose the input black box ALG given to Algorithm 5 is adaptively minimax optimal
(see Definition 1). Then the number of times Algorithm 5 switches its decision is at most Õ(T 1/3V

2/3
T )

with probability at least 1− δ. Further, Algorithm 5 satisfies
∑T

t=1∥θ̂t − θt∥22= Õ(T 1/3V
2/3
T ) with

probability at least 1− δ, where VT =
∑T

t=2∥θt − θt−1∥1.
Remark 19. Since Algorithm 5 is a black-box reduction, there are a number of possible candidates
for the input policy ALG that are adaptively minimax. Examples include FLH with online averages
as base learners [38] or Aligator algorithm [7].

Armed with a low switching online regression oracle LPA, one can now tweak Algorithm 4 to have
sparse number of retraining steps while not sacrificing the statistical efficiency (up to multiplicative
constants). The resulting procedure is described in Algorithm 6 (in App. E) which enjoys similar
rates as in Theorem 6 (see Theorem 22).

E Omitted proofs from Section 4

First we recall a result from Baby et al. [7].
Proposition 20 (Theorem 5 of Baby et al. [7]). Consider the online regression protocol defined in
Definition 1. Let θ̂t be the estimate of the ground truth produced by the Aligator algorithm from Baby
et al. [7]. Then with probability at-least 1− δ, the total squared error (TSE) of Aligator satisfies

T∑
t=1

∥θt − θ̂t∥22 = Õ(T 1/3V
2/3
T + 1),

23



where VT =
∑T

t=2∥θt− θt−1∥1. This bound is attained without any prior knowledge of the variation
VT .

The high probability guarantee also implies that
T∑

t=1

E[∥θt − θ̂t∥22] = Õ(T 1/3V
2/3
T + 1),

where the expectation is taken with respect to randomness in the observations.

By following the arguments in Baby and Wang [4], a similar statement can be derived also for the
FLH-FTL algorithm of Hazan and Seshadhri [38] (Algorithm 7).

Next, we verify that the noise condition in Definition 1 is satisfied for the empirical label marginals
computed at Step 5 of Algorithm 4.
Lemma 21. Let st be as in Step 5 of Algorithm 4. Then it holds that st = qt + ϵt with ϵt being
independent across t and Var(ϵt) ≤ 1/N .

Proof. Since st is simply the empirical label proportions, it holds that E[st] = qt. Further Var(st) ≤
1 as the indicator function is bounded by 1/N . This concludes the proof.

Theorem 6. Suppose the true label marginal satisfies mint,k qt(k) ≥ µ > 0. Choose the online
regression oracle in Algorithm 4 as FLH-FTL (App. F) or Aligator from Baby et al. [7] with its
predictions clipped such that q̂t[k] ≥ µ. Then with probability at least 1− δ, Algorithm 4 produces

hypotheses with RH
dynamic = Õ

(
T 2/3V

1/3
T +

√
T log(|H|/δ)

)
, where VT =

∑T
t=2∥qt − qt−1∥1.

Further, this result is attained without any prior knowledge of the variation budget VT .

Proof. In the proof we first proceed to bound the instantaneous regret at round t. Re-write the
population loss as:

Lt(h) =
1

N(t− 1)

t−1∑
i=1

N∑
j=1

E

[
qt(yij)

qi(yij)
ℓ(h(xij), yij)

]
,

where the expectation is taken with respect to randomness in the samples.

We define the following quantities:

Lemp
t (h) :=

1

N(t− 1)

t−1∑
i=1

N∑
j=1

qt(yij)

qi(yij)
ℓ(h(xij), yij), (7)

L̃t(h) :=
1

N(t− 1)

t−1∑
i=1

N∑
j=1

E

[
q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij)

]
, (8)

and

L̃emp
t (h) :=

1

N(t− 1)

t−1∑
i=1

N∑
j=1

q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij).

We decompose the regret at round t as

Lt(ht)− Lt(h
∗
t ) = Lt(ht)− L̃t(ht) + L̃t(ht)− L̃emp

t (ht) + Lemp
t (h∗

t )− Lt(h
∗
t ) + L̃emp

t (ht)− Lemp
t (h∗

t )

≤ Lt(ht)− L̃t(ht)︸ ︷︷ ︸
T1

+ L̃t(ht)− L̃emp
t (ht)︸ ︷︷ ︸

T2

+Lemp
t (h∗

t )− Lt(h
∗
t )︸ ︷︷ ︸

T3

+ L̃emp
t (h∗

t )− Lemp
t (h∗

t )︸ ︷︷ ︸
T4

,
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where in the last line we used Eq.(2). Now we proceed to bound each terms as note above.

Note that for any label m,∣∣∣∣qt(m)

qi(m)
− q̂t(m)

q̂i(m)

∣∣∣∣ ≤ ∣∣∣∣qt(m)

qi(m)
− qt(m)

q̂i(m)

∣∣∣∣+ ∣∣∣∣qt(m)

q̂i(m)
− q̂t(m)

q̂i(m)

∣∣∣∣
≤ 1

µ2
(|qi(m)− q̂i(m)|+|qt(m)− q̂t(m)|) , (9)

where in the last line, we used the assumption that the minimum label marginals (and hence of the
online estimates via clipping) is bounded from below by µ. So by applying triangle inequality and
using the fact that the losses are bounded by B in magnitude, we get

T1 ≤ B

N(t− 1)µ2

t−1∑
i=1

N∑
j=1

E [∥q̂i − qi∥1+∥q̂t − qt∥1]

≤ B
√
K

(t− 1)µ2

t−1∑
i=1

E [∥q̂i − qi∥2+∥q̂t − qt∥2]

≤(a)
B
√
K

µ2

E[∥q̂t − qt∥2] +

√∑t−1
i=1 E[∥qi − q̂i∥22]

t− 1


≤(b)

B
√
K

µ2

(
E[∥q̂t − qt∥2] + ϕ ·

V
1/3
T

(t− 1)1/3

)
, (10)

where line (a) is a consequence of Jensen’s inequality. In line (b) we used the following fact: by
Lemma 21 and Proposition 16, the expected cumulative error of the online oracle at any step is
bounded by ϕt1/3V

2/3
t for some multiplier ϕ which can contain poly-logarithmic factors of the

horizon (see Proposition 20).

Proceeding in a similar fashion, the term T4 can be bounded by Eq.(10).

Next, we proceed to handle T3. Let h ∈ H be any fixed hypothesis. Then each summand in Eq.(7) is
an independent random variable assuming values in [0, B/µ] (recall that the losses lie within [0, B]).
Hence by Hoeffding’s inequality we have that

Lemp
t (h)− Lt(h) ≤

B

µ

√
log(3T |H|/δ)
N(t− 1)

,

≤ B

µ

√
log(3T |H|/δ)

(t− 1)
, (11)

with probability at-least 1 − δ/(3T |H|). Now taking union bound across all hypotheses in H, we
obtain that:

T3 ≤ B

µ

√
log(3|H|/δ)

(t− 1)
, (12)

with probability at-least 1− δ/(3T ).

To bound T2, we notice that it is not possible to directly apply Hoeffding’s inequality because the
summands in Eq.(8) are correlated through the estimates of the online algorithm. So in the following,
we propose a trick to decorrelate them. For any hypothesis h ∈ H, we have that
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q̂t(yij)

q̂i(yij)
ℓ(h(xij , yij))− E

[
q̂t(yij)

q̂i(yij)
ℓ(h(xij , yij))

]
=

(
q̂t(yij)

q̂i(yij)
− qt(yij)

qi(yij)

)
ℓ(h(xij , yij))︸ ︷︷ ︸

Uij

−

E

[(
q̂t(yij)

q̂i(yij)
− qt(yij)

qi(yij)

)
ℓ(h(xij , yij))

]
︸ ︷︷ ︸

Vij

+

qt(yij)

qi(yij)
ℓ(h(xij , yij))− E

[
qt(yij)

qi(yij)
ℓ(h(xij , yij))

]
︸ ︷︷ ︸

Wij

.

Now using Eq.(9) and proceeding similar to the bouding steps of Eq.(10), we obtain

1

N(t− 1)

t−1∑
i=1

N∑
j=1

Uij ≤
B

N(t− 1)µ2

t−1∑
i=1

N∑
j=1

∥q̂i − qi∥1+∥q̂t − qt∥1

≤ B
√
K

µ2(t− 1)

t−1∑
i=1

∥q̂i − qi∥2+∥q̂t − qt∥2

≤(a)
B
√
K

µ2

∥q̂t − qt∥2+

√∑t−1
i=1∥qi − q̂i∥22

t− 1


≤(b)

B
√
K

µ2

(
∥q̂t − qt∥2+ϕ ·

V
1/3
T

(t− 1)1/3

)
,

with probability at-least 1− δ/3. In line (a) we used Jensen’s inequlaity and in the last line we used
the fact the the online oracle attains a high probability bound on the total squared error (TSE) (see
Proposition 20).

1
N(t−1)

∑t−1
i=1

∑N
j=1 Vij can be bounded using the same expression as above using similar logic.

To bound 1
N(t−1)

∑t−1
i=1

∑N
j=1 Wij , we note that it is the sum of independent random variables.

Hence using the same arguments used to obtain Eq.(11), we have that

1

N(t− 1)

t−1∑
i=1

N∑
j=1

Wij ≤
B

µ

√
log(3T |H|/δ)

(t− 1)
,

with probability at-least 1− δ/(3T |H|). Hence taking a union bound across all hypothesis classes
and across the high probability event of low TSE for the online algorithm yields that

T2 ≤ 2B
√
K

µ2

(
∥q̂t − qt∥2+ϕ ·

V
1/3
T

(t− 1)1/3

)
+

B

µ

√
log(3T |H|/δ)

(t− 1)
,

with probability at-least 1− 2δ/(3T ).

Combining the bounds developed for T1,T2,T3 and T4 and by taking a union bound across the event
that resulted in Eq.(12), we obtain the following bound on instantaneous regret.
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Lt(ht)− Lt(h
∗
t ) ≤

2B
√
K

µ2

(
∥q̂t − qt∥2+E[|q̂t − qt∥2] + ϕ ·

V
1/3
T

(t− 1)1/3
+

√
log(3T |H|/δ)

(t− 1)

)
,

(13)

with probability at-least 1− δ/T .

Note that via Jensen’s inequality:

T∑
t=1

E[∥qt − q̂t∥2] ≤

√√√√T

T∑
t=1

E[∥qt − q̂t∥22]

≤ ϕT 2/3V
1/3
T ,

where in the last line we used Proposition 20.

Similarly it can be shown that

T∑
t=1

∥qt − q̂t∥2 ≤ ϕT 2/3V
1/3
T ,

under the event that resulted in Eq.(13).

Observe that
T∑

t=1

V
1/3
T

t1/3
≤ 2T 2/3V

1/3
T .

Finally note that

T∑
t=1

1√
t
≤ 2
√
T .

Hence combining the above bounds and adding Eq.(13) across all time steps, followed by a union
bound across all rounds, we obtain that

T∑
t=1

Lt(ht)− Lt(h
∗
t ) ≤

4B
√
K

µ2

(
3ϕT 2/3V

1/3
T +

√
T log(3T |H|/δ)

)
,

with probability at-least 1− δ.

Next, we prove Theorem 18.
Theorem 18. Suppose the input black box ALG given to Algorithm 5 is adaptively minimax optimal
(see Definition 1). Then the number of times Algorithm 5 switches its decision is at most Õ(T 1/3V

2/3
T )

with probability at least 1− δ. Further, Algorithm 5 satisfies
∑T

t=1∥θ̂t − θt∥22= Õ(T 1/3V
2/3
T ) with

probability at least 1− δ, where VT =
∑T

t=2∥θt − θt−1∥1.

Proof. First we proceed to bound the number of switches. Observe that between two time points
where condition in Line 5 of Algorithm 5 evaluates true, we can have at-most log T switches due to
the doubling epoch schedule in Line 8.

We first bound the number of times, condition in Line 5 is satisfied. Suppose for some some time t,
we have that

∑t
j=b+1∥prev− θ̃j∥22> 4Kσ2 log(T/δ). Suppose throughout the run of the algorithm,

this is ith time the previous condition is satisfied. Let ni := t − b + 1 and let Ci = TV[b → t]
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where TV[p→ q] =
∑q

t=p+1∥θt − θt−1∥1. Due to the doubling epoch schedule, we have that that

prev = 1
ℓ

∑ℓ
j=b yj and E[prev] = 1

ℓ

∑ℓ
j=b θj for some ni ≥ ℓ ≥ (t− b+ 1)/2 = ni/2.

So we have
t∑

j=b+1

∥prev− θ̃j∥22 ≤
t∑

j=b+1

2∥prev− θj∥22+2∥θ̃j − θj∥22

≤
t∑

j=b+1

2∥E[prev]− θj∥22+2∥prev− E[prev]∥22+2∥θ̃j − θj∥22

≤(a) 2(ℓC
2
i + 2σ2K log(2T/δ)) + 2ϕn

1/3
i C

2/3
i

≤ 4max{niC
2
i , ϕn

1/3
i C

2/3
i }+ 4σ2K log(2T/δ)), (14)

with probability at-least 1 − δ/(T ). In line (a) we used the following facts: i) Due to Hoeffding’s
inequality, ∥prev−E[prev]∥22≤ σ2K log(4T/δ))/ℓ ≤ 2σ2K log(2T/δ))/ni with probability at-least
1− δ/(2T ); ii) ∥E[prev]− θj∥2= ∥ 1ℓ

∑ℓ
i=b θi − θj∥2≤ 1

ℓ

∑ℓ
i=b∥θi − θj∥2] ≤ Ci; iii) ∥θ̃j − θj∥22≤

ϕn
1/3
i C

2/3
i with probability at-least 1− δ/(2T ) due to condition in Theorem 18; iv) Union bound

over the events in (i) and (iii).

Since the condition in Line 5 is satisfied at round t, Eq.(14) will imply that 5Kσ2 log(2T/δ) ≤
4max{niC

2
i , ϕn

1/3
i C

2/3
i }+ 4σ2K log(2T/δ)). Rearranging the above, we find that

Ci ≳ K/
√
ni,

where we suppress the dependence on constants and log T .

Let the condition in Line 5 be satisfied M number of times. By union bound, we have that with
probability at-least 1− δ

VT ≥
M∑
i=1

Ci

≳
M∑
i=1

K/
√
ni

≳(a) KM
1√

(1/M)
∑M

i=1 ni

≳ KM3/2/
√
T ,

where in Line (a) we used Jensen’s inequality. Rearranging we get that

M = Õ(T 1/3V
2/3
T K−2/3), (15)

with probability at-least 1− δ.

Now we proceed to bound the total squared error (TSE) incurred by Algorithm 5. Let θ̂j be the output
of Algorithm 5 at round j. Suppose at times b− 1 and c+ 1, the condition in Line (5) is satisfied.
Observe that the condition in Line 5 is not satisfied for any times in [b, c]. Then we can conclude that
within the interval [b, c] we have that

∑c
j=b∥θ̂j − θ̃j∥22≤ 5Kσ2 log(4T/δ) log(T ), since there are

only at-most log T times within [b, c] where condition in Line 9 is satisfied. So we have that

c∑
j=b

∥θ̂j − θj∥22 ≤
c∑

j=b

∥θ̂j − θ̃j∥22+∥θj − θ̃j∥22

≤ 5Kσ2 log(2T/δ) log(T ) + ϕ · n1/3
i C

2/3
i ,
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with probability at-least 1− δ/T . Here ni := b− c+ 1 and Ci := TV[b→ c]. Further we have that
∥θ̂c+1 − θc+1∥22≤ 2B2 due to the boundedness condition in Definition 1.

Thus overall we have that
∑c+1

j=b = Õ(K+n
1/3
i C

2/3
i ), with probability at-least 1− δ for any interval

[b,c+1] such that condition in Line 5 is satisfied at times b− 1 and c+ 1. Thus we have that

T∑
t=1

∥θ̂j − θj∥22 ≾
M∑
i=1

K + n
1/3
i C

2/3
i

≾(a) T
1/3V

2/3
T K1/3 +

M∑
i=1

n
1/3
i C

2/3
i

≾(b) T
1/3V

2/3
T K1/3 +

(
M∑
i=1

ni

)1/3( M∑
i=1

Ci

)2/3

≾ T 1/3V
2/3
T K1/3,

with probability at-least 1− δ. In line (a) we used Eq.(15). In line (b) we used Holder’s inequality
with the dual norm pair (3, 3/2). This concludes the proof.

We now present the tweak of Algorithm 4 by instantiating ALG with Algorithm 5 and prove its regret
guarantees. The resulting algorithm is described in Algorithm 6.

Algorithm 6 Lazy-TrainByWeights: handling label shift with sparse ERM calls
Input: Instance ALG of Algorithm 5, A hypothesis ClassH

1: At round t ∈ [T ], get estimated label marginal q̂t ∈ RK from ALG(s1:t−1).
2: if q̂t == q̂t−1 then
3: ht = ht−1

4: else
5: Update the hypothesis by calling a weighted-ERM oracle:

ht = argmin
h∈H

t−1∑
i=1

N∑
j=1

q̂t(yi,j)

q̂i(yi,j)
ℓ(h(xi,j), yi,j)

6: end if
7: Get N co-variates xt,1:N and make predictions according to ht

8: Get labels yt,1:N
9: Compute st[i] =

1
N

∑N
j=1 I{yt,j = i} for all i ∈ [K].

10: Update ALG with the empirical label marginals st.

Theorem 22. Assume the same notations as in Theorem 6. Suppose we run Algorithm 6 (see Appendix
E) with ALG instantiated using Algorithm 5 with σ2 = 1/N and predictions clipped as in Theorem
6. Further let the online regression oracle given to Algorithm 5 be chosen as one of the candidates
mentioned in Remark 19. Then with probability at-least 1− δ, we have that

RH
dynamic = Õ

(
T 2/3V

1/3
T +

√
T log(|H|/δ)

)
.

Further, the number of number of calls to ERM oracle (via Step 5) is at-most Õ(T 1/3V
2/3
T ) with

probability at-least 1− δ.

Sketch. The proof of this theorem closely follows the steps fused for proving Theorem 6. So we only
highlight the changes that need to be incorporated to the proof of Theorem 6.

Replace the use of Proposition 20 in the proof of Theorem 6 with Theorem 18.
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For any round t, where Step 5 of Algorithm 6 is triggered, we can use the same arguments as in the
Proof of Theorem 22 to bound the instantaneous regret by Eq.(13). i.e:

Lt(ht)− Lt(h
∗
t ) ≤

2B
√
K

µ2

(
∥q̂t − qt∥2+E[|q̂t − qt∥2] + ϕ ·

V
1/3
T

(t− 1)1/3
+

√
log(3T |H|/δ)

(t− 1)

)
,

(16)

with probability at-least 1− δ/T .

For a round t, where Step 5 is not triggered, we proceed as follows:

Let t′ be the most recent time step prior to t when Step 5 is executed. Notice that the population loss
can be equivalently represented as

Lt(h) =
1

N(t′ − 1)

t′−1∑
i=1

N∑
j=1

E

[
qt(yij)

qi(yij)
ℓ(h(xij), yij)

]
,

where the expectation is taken with respect to randomness in the samples.

We define the following quantities:

Lemp
t (h) :=

1

N(t′ − 1)

t′−1∑
i=1

N∑
j=1

qt(yij)

qi(yij)
ℓ(h(xij), yij),

L̃t(h) :=
1

N(t′ − 1)

t′−1∑
i=1

N∑
j=1

E

[
q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij)

]
,

and

L̃emp
t (h) :=

1

N(t′ − 1)

t′−1∑
i=1

N∑
j=1

q̂t(yij)

q̂i(yij)
ℓ(h(xij), yij).

We decompose the regret at round t as

Lt(ht)− Lt(h
∗
t ) = Lt(ht)− L̃t(ht) + L̃t(ht)− L̃emp

t (ht) + Lemp
t (h∗

t )− Lt(h
∗
t ) + L̃emp

t (ht)− Lemp
t (h∗

t )

≤ Lt(ht)− L̃t(ht)︸ ︷︷ ︸
T1

+ L̃t(ht)− L̃emp
t (ht)︸ ︷︷ ︸

T2

+Lemp
t (h∗

t )− Lt(h
∗
t )︸ ︷︷ ︸

T3

+ L̃emp
t (h∗

t )− Lemp
t (h∗

t )︸ ︷︷ ︸
T4

,

where in the last line we used Eq.(2). Now we proceed to bound each terms as note above.

By using the same arguments as in Proof of Theorem 6 and replacing the use of Proposition 20 with
Theorem 18, we can bound T1-4. This will result in an instantaneous regret bound at round t (which
doesn’t trigger step 5) as:

Lt(ht)− Lt(h
∗
t ) ≤

2B
√
K

µ2

(
∥q̂t − qt∥2+E[|q̂t − qt∥2] + ϕ ·

V
1/3
T

(t′ − 1)1/3
+

√
log(3T |H|/δ)

(t′ − 1)

)
,

≤ 2B
√
K

µ2

(
∥q̂t − qt∥2+E[|q̂t − qt∥2] + ϕ · 41/3 ·

V
1/3
T

(t− 1)1/3
+

√
4 log(3T |H|/δ)

(t− 1)

)
,

(17)

30



with probability at-least 1− δ/T . In the last line we used the fact that t′− 1 ≥ (t/2)− 1 ≥ (t− 1)/4
for all t ≥ 3.

Now adding Eq.(16) and (17) across all rounds and proceeding similar to the proof of Theorem 6
(and replacing the use of Proposition 20 with Theorem 18) completes the argument.

We next prove the matching (up to factors of log T ) lower bound.
Theorem 8. Let VT ≤ T/8. There exists a choice of hypothesis class, loss function, and adversarial

strategy of generating the data such that RH
dynamic = Ω

(
T 2/3V

1/3
T +

√
T log(|H|)

)
, where the

expectation is taken with respect to randomness in the algorithm and adversary.

Proof. First we fix the hypothesis class and the data generation strategy. In the problem instance we
consider, there are no co-variates. The hypothesis class is defined as

H := {hp : hp predicts a label y ∼ Ber(p); p ∈ [|H|]}.

Further we design the hypothesis class such that both h0, h1 ∈ H. Next we fix the data generation
strategy:

• Divide the time horizon into batches of length ∆.

• At the beginning of a batch i, the adversary picks q̊i uniformly at random from {1/2 −
δ, 1/2 + δ}.

• For all rounds t that falls within batch i, the label yt ∼ Ber(qt) is sampled with qt := q̊i.

• Learner predicts a label ŷt ∈ {0, 1} and then the actual label yt is revealed (hence N = 1 in
the protocol of Fig.3).

• Learner suffers a loss given by ℓt(ŷt) = I{ŷt ̸= yt}.

It is easy to see that the losses are bounded in [0, 1]. Now let’s examine the two possibilities of
generating labels within a batch. Let’s upper bound the variation incurred by the label marginals:

T∑
t=2

|qt − qt−1| =
M∑
i=2

|̊qi − q̊i−1|

≤ 2δM

≤ VT ,

where the last line is obtained by choosing δ = VT /(2M) = VT∆/(2T ).

Since at the beginning of each batch, the sampling probability of true labels is independently renewed,
the historical data till the beginning of a batch is immaterial in minimising the loss within the batch.
So we can lower bound the regret within each batch separately and add them up. Below, we focus on
lower bounding the regret in batch 1 and the computations are similar for any other batch.

Suppose that the probability that an algorithm predict label yt = 1 is q̂t, where q̂t is a measurable
function of the past data y1:t−1. Then we have that the population loss Lt(q̂t) := E[ℓt(ŷt)] =
(1− q̂t)qt + q̂t(1− qt). Here we abuse the notation L(qt) := L(hqt). We see that the population loss
Lt(q̂t) are convex and its gradient obeys∇Lt(q̂t) = 1− 2qt = E[1− 2yt] since by our construction
yt ∼ Ber(qt). Thus the population losses are convex and its gradients can be estimated in an unbiased
manner from the data.

We use the following Proposition due to Besbes et al. [10].

Proposition 23 (due to Lemma A-1 in Besbes et al. [10]). Let P̃ denote the joint probability of the
label sequence y1:∆ within a batch when they are generated using Ber(1/2− δ). So

P̃(y1, . . . , y∆) = Π∆
i=1(1/2− δ)yi(1/2 + δ)1−yi .
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Similarly define Q̃ as

Q̃(y1, . . . , y∆) = Π∆
i=1(1/2 + δ)yi(1/2− δ)1−yi .

According to the above distribution the data are independently sampled from Bernoulli trials with
success probability 1/2 + δ. Let q̂t be the decision of the online algorithm qt round t so that the
algorithm predicts label 1 with probability q̂t.

Let P denote the joint probability distribution across the decisions q̂1:∆ of any online algorithm under
the sampling model P̃. Similarly define Q. Note that any online algorithm can make decisions at round
t only based on the past observed data y1:t−1. Further after making the decision q̂t at round t, an
unbiased estimate of the population loss can be constructed due to the fact that∇Lt(q̂t) = E[1−2yt].
Under the availability of unbiased gradient estimates of the losses, it holds that

KL(P||Q) ≤ 4∆δ2.

By choosing δ = VT /(2M) = VT∆/(2T ) and ∆ = (T/VT )
2/3, we get that KL(P||Q) ≤ 1.

Since VT ≤ T/8, the above choice implies that δ ∈ (0, 1/4).

For notational clarity, define LP(q) = (1− q)(1/2− δ) + q(1/2 + δ) and LQ(q) = (1− q)(1/2 +
δ) + q(1/2− δ). These corresponds to the population losses according to the sampling models P and
Q respectively. Observe that minq L

P(q) = minq L
Q(q) = 1/2 − δ. The minimum of LP and LQ

are achieved at 0 and 1 respectively. Note that both h0, h1 ∈ H. So there is always a hypothesis inH
that corresponds the minimiser of the loss.

Further whenever q̂ ≥ 1/2 we have that

LP(q) = (1/2− δ) + q(2δ)

≥ 1/2.

Similarly whenever q < 1/2 we have LQ(q) ≥ 1/2. So we define the selector function as ϕt :=
I{q̂t ≥ 1/2}. Let q∗t ∈ {0, 1} be the minimiser of the loss at round t. Now we can lower bound the
instantaneous regret similar as

E[Lt(q̂t)− Lt(q
∗
t )] =

1

2
(EP[L

P
t (q̂t)− LP

t (0)] +
1

2
(EQ[L

Q
t (q̂t)− LQ

t (1)]

≥ 1

2
(EP[L

P
t (q̂t)− LP

t (0)|ϕt = 1]P(ϕt = 1) +
1

2
(EQ[L

Q
t (q̂t)− LQ

t (1)|ϕt = 0]Q(ϕt = 0)

≥ δ/2max{P(ϕt = 1),Q(ϕt = 0)}
≥ (δ/8)e−1,

where the last line is obtained by Propositions 23 and 17.

Thus we get a total lower bound on the instantanoeus regret as

T∑
t=1

E[Lt(q̂t)− Lt(q
∗
t )] ≥ Tδ/(8e)

= ∆VT /(16e)

= T 2/3V
1/3
T /(16e),

where the last line is obtained by using our choices of δVT∆/(2T ) and ∆ = (T/VT )
2/3.

The second term of of Ω(
√
T log|H|) can be obtained from the existing results on statistical learning

theory without distribution shifts. (see for example Theorem 3.23 in Mohri et al. [53]).
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F More details on experiments

In Algorithm 7, we describe the FLH-FTL algorithm from Hazan and Seshadhri [38] when specialised
to squared error losses. When specialized to squared error losses, this algorithm runs FLH with online
averages as the base experts.

Algorithm 7 An instance of FLH-FTL from Hazan and Seshadhri [38] with squared error losses

1: Parameter α is defined to be a learning rate
// initializations and definitions

2: For FLH-FTL instantiations within UOLS algorithms (as in Algorithm 2), we set α ←
σ2
min(C)/(8K), where C is the confusion matrix as in Assumption 1. For instantiations within

SOLS algorithms (as in Algorithm 4) we set α← 1/(8K)

3: For each round t ∈ [T ], vt := (v
(1)
t , . . . , v

(t)
t ) is a probability vector in Rt. Initialize v

(1)
1 ← 1

4: For each j ∈ [T ], define a base learner Ej . For each t > j, the base expert outputs Ej(t) :=
1

t−j

∑t−1
i=j zj , where zj to be specified as below. Further Ej(j) := 0 ∈ RK

// execution steps
5: In round t ∈ [T ], set ∀j ≤ t, xj

t ← Ej(t) (the prediction of the jth base learner at time t). Play
xt =

∑t
j=1 v

(j)
t x

(j)
t .

6: Receive feedback zt, set v̂(t+1)
t+1 ← 0 and perform update for 1 ≤ i ≤ t:

v̂
(i)
t+1 ←

v
(i)
t e−α∥x(i)

t −zt∥2
2∑t

j=1 v
(j)
t e−α∥x(j)

t −zt∥2
2

7: Addition step - Set v(t+1)
t+1 to 1/(t+ 1) and for i ̸= t+ 1:

v
(i)
t+1 ← (1− (t+ 1)−1)v̂

(i)
t+1

Rationale behind the learning rate setting at Line 2 of Algorithm 7 The loss that is incurred
by Algorithm 7 and any of its base learners at round t is defined to be the squared error loss
ℓt(x) = ∥zt−x∥22. Whenever ∥zt∥22≤ B2 and ∥x∥22≤ B2, the losses ℓt(x) are 1/(8B2) exp-concave
(see for eg. Chapter 3 of [12]). The notion of exp-concavity is crucial for FLH-FTL algorithm since
the learning rate is set to be equal to the exp-concavity factor of the loss functions (see Theorem 3.1
in Hazan and Seshadhri [38]).

For the UOLS problem, from Algorithm 2, we have ∥zt∥2= ∥C−1f0(xt)∥2≤
√
K/σmin(C). Since

the decisions of the algorithm is a convex combination of the previously seen zt, we conclude that
the losses ℓt(x) are σ2

min(C)/(8K) exp-concave.

For the SOLS problem, let zt = st where st is as defined in Algorithm 4. We have that ∥zt∥2≤
√
K.

Hence arguing in a similar fashion as above, we conclude that the losses ℓt(x) are 1/(8K) exp-
concave for the SOLS problem.

This is the motivation behind Line 2 in Algorithm 7, where the learning rates are set according to the
problem setting.

Dataset and model details.

• Synthetic: For the synthetic data, we generated 72k samples as described in Bai et al. [8].
There are three classes each with 24k samples generated from three Gaussian distributions
in R12. Each Gaussian distribution is defined by a randomly generated unit-norm centre v
and covariance matrix 0.215 · I . 60k samples are used as source data, and 12k samples are
used as target data to be sampled from during online learning. We used logistic regression
to train a linear model. It is trained for a single epoch with learning rate 0.1, momentum 0.9,
batch size 200, and l2 regularization 1× 10−4.

• MNIST [50]: An image dataset of 10 types of handwritten digits. 60k samples are used as
source data and 10k as target data. We used an MLP for prediction with three consecutive
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hidden layers of sizes 100, 100, and 20. It is trained for a single epoch with a learning rate
0.1, momentum 0.9, batch size 200, and l2 regularization 1× 10−4.

• CIFAR-10 [49]: A dataset of colored images of 10 items: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. 50k samples are used as source data and 10k as target
data. We train a ResNet18 model (He et al. [39]) from scratch. It is finetuned for 70 epochs
with learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization 1× 10−4. The
learning rate decayed by 90% at the 25th and 40th epochs.

• Fashion [77]: An image dataset of 10 types of fashion items: T-shirt, trouser, pullover, dress,
coat, sandals, shirt, sneaker, bag, and ankle boots. 60k samples are used as source data
and 10k as target data. We trained an MLP for prediction. It is trained for 50 epochs with
learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization 1× 10−4.

• EuroSAT [40]: An image dataset of 10 types of land uses: industrial buildings, residential
buildings, annual crop, permanent crop, river, sea & lake, herbaceous vegetation, highway,
pasture, and forest. 60k samples are used as source data and 10k as target data. We cropped
the images to the size (3, 64, 64). We train a ResNet18 model for 50 epochs with learning
rate 0.1, momentum 0.9, batch size 200, and l2 regularization 1× 10−4.

• Arxiv [15]: A natural language dataset of 23 classes over different publication subjects.
198k samples are used as source data and 22k as target data. We trained a DistilBERT
model (Sanh et al. [62]) for 50 epochs with learning rate 2 × 10−5, batch size 64, and l2
regularization 1× 10−2.

• SHL [31, 71]: A tabular locomotion dataset of 6 classes of human motion: still, walking,
run, bike, car and bus. 30k samples are used as source data and 70k as target data. We
trained an MLP for prediction for 50 epochs with learning rate 0.1, momentum 0.9, batch
size 200, and l2 regularization 1× 10−4.

For all the datasets above, the initial offline data are further split by 80 : 20 into training and holdout
data, where the former is used for offline training of the base model and the latter for computing the
confusion matrix and retraining (e.g. updating the linear head parameters with UOGD or updating the
softmax prediction with our FLT-FTL) during online learning. To examine how well the algorithms
adapt when holdout data is limited, we use 10% of the holdout data (i.e., 2% of the initial offline data)
in the main paper unless stated otherwise. In App. G.2, we ablate with full hold-out data.

Types of Simulated Shifts. We simulate four kinds of label shifts to capture different non-stationary
environments. These shifts are similar to the ones used in Bai et al. [8]. For each shift, the label
marginals are a mixture of two different constant marginals µ1, µ2 ∈ ∆K with a time-varying
coefficient αt: µyt

= (1 − αt)µ1 + αtµ2, where µyt
denotes the label distribution at round t and

αt controls the shift non-stationarity and patterns. In particular, we have: Sinusoidal Shift (Sin):
αt = sin iπ

L , where i = t mod L and L is a given periodic length. In the experiments, we set
L =

√
T . Bernoulli Shift (Ber): at every iteration, we keep the αt = αt−1 with probability p ∈ [0, 1]

and otherwise set αt = 1 − αt−1. In the experiments, the parameter is set as p = 1/
√
T , which

implies Vt = Θ(
√
T ). Square Shift (Squ): at every L rounds we set αt = 1 − αt−1. Monotone

Shift (Mon): we set αt = t/T . Square, sinusoidal, and Bernoulli shifts simulate fast-changing
environments with periodic patterns.

Methods for UOLS Adaptation.

• Base: the base classifier without any online modifications.
• OFC: the optimal fixed classifier predicts with an optimal fixed re-weighting in hindsight as

in Wu et al. [76].
• Oracle: re-weight the base model’s predictions with the true label marginal of the unlabeled

data at each time step.
• FTH: proposed by Wu et al. [76], follow-the-history classifier re-weights the base model’s

predictions with a simple online average of all marginal estimates seen thus far.
• FTFWH: proposed by Wu et al. [76], follow-the-fixed-window-history classifier is a version

of FTH that tracks only the k most recent marginal estimates. We choose k = 100 throughout
the experiments in this work.
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CT
(base)

CT-RS (ours)
w FLH

CT-RS (ours)
w FLT-FTL

w-ERM
(oracle)

MNIST
Cl Err 5.0±0.5 4.71±0.2 4.53±0.1 3.2±0.4

MSE NA 0.12±0.01 0.08±0.01 NA

Table 5: Results on SOLS setup. We report results with MNIST SOLS setup runs for T = 200 steps.
We observe that continual training with re-sampling improves over the base model which continually
trains on the online data and achieves competitive performance with respect to weighted ERM oracle.

CT-RS (ours) w-ERM
(oracle)

CIFAR 145±3.7 1882±14

MNIST 20±2.7 107±3.6

Table 6: Comparison on computation time (in minutes). We report results with MNIST and CIFAR
SOLS setup runs for T = 200 steps. We observe that continual training with re-sampling is
approximately 5–15× more efficient than weighted ERM oracle.

• ROGD: proposed by Wu et al. [76], ROGD uses online gradient descent to update its re-
weighting vector based on current marginal estimate.

• UOGD: proposed by Bai et al. [8], retrains the last linear layer of the model based on current
marginal estimate.

• ATLAS: proposed by Bai et al. [8] is a meta-learning algorithm that has UOGD as its base
learners.

The learning rates of ROGD, UOGD, and ATLAS are set according to suggestions in the original
works. The learning rate of FLH-FTL is set to 1/K. This corresponds to a faster rate than the
theoretically optimal learning rate given in Line 2 of Algorithm 7. It has been observed in prior works
such as Baby et al. [7] that the theoretical learning rate is often too conservative and faster rates lead
to a better performance.

F.1 Supervised Online Label Shift Experiment Details

For each dataset, we first fix the number of time steps and then simulate the label marginal shift.
To train the learner with all the methods, we store all the online data observed giving the storage
complexity of O(T ). We observe N = 50 examples at every iteration and we split the observed
labeled examples into 80:20 split for training and validation. The validation examples are used to
decide the number of gradient steps at every time step, in particular, we take gradient steps till the
validation error continues to decrease.

Dataset and model details.

• MNIST [50]: An image dataset of 10 types of handwritten digits. At each step, we sample
50 samples with the label marginal that step without replacement and reveal the examples to
the learner. We used an MLP for prediction with three consecutive hidden layers of sizes
100, 100, and 20. It is trained for a single epoch with a learning rate 0.1, momentum 0.9,
batch size 200, and l2 regularization 1× 10−4.

• CIFAR-10 [49]: A dataset of colored images of 10 items: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck. At each step, we sample 50 samples with the label marginal
that step without replacement and reveal the examples to the learner. It is finetuned for 70
epochs with learning rate 0.1, momentum 0.9, batch size 200, and l2 regularization 1×10−4.

We simulate Bernoulli label shifts to capture different non-stationary environments.

Connection of CT-RS to weighted ERM Before making the connection, we first re-visit the CT-
RS algorithm. Step 1: Maintain a pool of all the labeled data received till that time step, and at every
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iteration, we randomly sample a batch with uniform label marginal to update the model. Step 2: Re-
weight the softmax outputs of the updated model with estimated label marginal. Below we show that
it is equivalent to wERM:

ft = argmin
f∈H

t−1∑
i=1

N∑
j=1

q̂t(yi,j)

q̂i(yi,j)
ℓ(f(xi,j), yi,j)

= argmin
f∈H

K∑
k=1

q̂t(k)

t−1∑
i=1

N∑
j=1

1 (yi,j = k)

q̂i(k)
ℓ(f(xi,j), k)

= argmin
f∈H

K∑
k=1

q̂t(k)

(1/K)

t−1∑
i=1

N∑
j=1

1 (yi,j = k)

K · q̂i(k)
ℓ(f(xi,j), k)

= argmin
f∈H

K∑
k=1

µ̂t,k

t−1∑
i=1

N∑
j=1

1 (yi,j = k)

µ̂i,k
ℓ(f(xi,j), k)︸ ︷︷ ︸

Lt−1,k

where µ̂t,k = q̂t(k)/(1/K) is the importance ratio at time i with respect to uniform label marginal.
Similarly, we define µ̂i,k = q̂i(k)/(1/K). Here, Lt−1,k is the aggregate loss at t-th time step for k-th
class such that at each step the sampling probability of that class is uniform. By continually training a
classifier with CT-RS, Step 1 approximates the classifier f̃t trained to minimize the average of Lt−1,k

over all classes with uniform proportion for each class. To update the classifier f̃t according to label
proportions at time t, we update the softmax output of f̃t according to µ̂t.

The primary benefit of CT-RS over wERM is to avoid re-training from scratch at every iteration.
Instead, we can leverage the model trained in the previous iteration to warm-start training in the next
iteration.
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G Additional Unsupervised Online Label Shift Experiments

G.1 Additional results with Monotone and Square Shifts and Low Amount of Holdout Data

Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ

Base 8.7±0.1 8.5±0.2 4.7±0.0 4.4±0.2 17±0 17±0 13±0 13±0 15±0 15±0 22±0 21±0

OFC 6.9±0.1 6.6±0.3 4.1±0.1 3.9±0.2 14±0 14±0 11±1 11±0 9.0±0.0 9.6±0.5 18±1 18±0

Oracle 5.2±0.2 3.6±0.2 2.5±0.1 2.2±0.1 7.7±0.1 6.8±0.2 5.3±0.2 4.4±0.0 5.1±0.1 4.1±0.1 6.9±0.3 6.6±0.2

FTH 7.1±0.3 6.8±0.4 4.1±0.1 4.0±0.0 13±1 13±0 11±0 11±0 9.3±0.6 8.9±0.4 19±1 18±0

FTFWH 6.3±0.2 7.0±0.0 4.0±0.0 4.1±0.1 12±0 13±0 9.9±0.2 11±0 8.4±0.3 9.1±0.5 18±1 18±0

ROGD 7.8±0.3 7.8±0.3 4.5±0.2 5.4±1.7 14±1 15±0 11±0 14±1 8.9±0.4 10±1 19±1 21±1

UOGD 8.1±0.3 8.1±0.5 4.9±0.1 4.8±0.4 15±1 15±0 10±1 11±1 11±2 12±2 20±1 19±0

ATLAS 8.0±0.0 8.2±0.5 4.6±0.2 4.5±0.3 15±1 15±0 10±1 11±1 12±2 12±1 20±1 19±1

FLH-FTL (ours) 6.3±0.3 5.6±0.4 4.0±0.0 4.0±0.0 12±0 12±0 10±0 10±0 8.6±0.4 8.4±0.4 18±1 17±0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ Mon Squ

FTH 0.11±0.00 0.21±0.01 0.14±0.00 0.27±0.00 0.15±0.01 0.28±0.00 0.14±0.01 0.28±0.00 0.16±0.02 0.28±0.01 0.18±0.00 0.30±0.00

FTFWH 0.05±0.00 0.23±0.01 0.07±0.00 0.30±0.00 0.07±0.00 0.30±0.00 0.07±0.00 0.30±0.00 0.08±0.01 0.31±0.01 0.09±0.00 0.32±0.00

ROGD 0.18±0.01 0.29±0.01 0.28±0.05 0.41±0.04 0.22±0.04 0.37±0.03 0.27±0.03 0.41±0.02 0.21±0.01 0.37±0.01 0.21±0.01 0.36±0.01

FLH-FTL (ours) 0.05±0.00 0.11±0.00 0.07±0.00 0.15±0.00 0.09±0.01 0.17±0.00 0.08±0.01 0.17±0.01 0.09±0.01 0.18±0.02 0.11±0.00 0.24±0.00

Table 7: Results for UOLS problems with monotone and square shifts using low amount of holdout
data. Top: Classification Error. Bottom: Mean-squared error in estimating label marginal.

G.2 Additional results with All of Holdout Data

Methods Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

Base 8.6±0.3 8.2±0.3 3.8±0.3 3.9±0.0 17±0 16±0 13±0 13±0 15±0 15±0 23±0 19±0

OFC 6.7±0.2 5.5±0.2 3.4±0.4 3.4±0.2 13±0 11±0 11±1 9.8±1.3 8.3±0.5 6.8±0.2 21±1 14±0

Oracle 3.7±0.1 3.7±0.1 1.7±0.2 1.5±0.1 6.3±0.1 5.9±0.1 4.0±0.0 4.1±0.1 3.5±0.2 3.6±0.1 7.8±0.2 5.1±0.1

FTH 6.8±0.2 5.5±0.3 3.2±0.2 3.2±0.2 12±0 10±0 11±0 9.5±0.1 8.0±0.0 6.8±0.2 20±0 14±0

FTFWH 6.6±0.3 5.5±0.2 3.3±0.2 3.2±0.1 12±0 10±0 10±0 9.4±0.2 7.9±0.0 6.9±0.2 20±0 14±0

ROGD 7.8±0.3 7.2±0.3 4.7±0.3 3.3±0.2 15±0 11±0 11±0 10±0 14±5 8.2±0.2 23±0 16±1

UOGD 7.6±0.4 7.0±0.0 3.2±0.2 3.2±0.2 11±0 10±0 7.7±0.0 7.3±0.2 9.6±0.2 8.6±0.1 19±0 14±0

ATLAS 7.5±0.3 6.8±0.3 3.2±0.3 3.2±0.2 12±0 11±0 9.1±0.0 8.3±0.2 12±0 11±0 21±0 16±0

FLH-FTL (ours) 5.4±0.3 5.3±0.2 3.2±0.2 3.3±0.2 11±0 10±0 9.4±0.2 9.3±0.1 7.5±0.1 7.0±0.0 19±0 14±0

Synthetic MNIST CIFAR EuroSAT Fashion ArXiv

Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin Ber Sin

FTH 0.20±0.00 0.10±0.00 0.25±0.00 0.14±0.00 0.28±0.00 0.14±0.00 0.27±0.00 0.14±0.00 0.27±0.00 0.14±0.00 0.29±0.00 0.15±0.00

FTFWH 0.19±0.00 0.09±0.00 0.24±0.00 0.13±0.00 0.24±0.00 0.13±0.00 0.26±0.00 0.13±0.00 0.24±0.00 0.13±0.00 0.28±0.00 0.15±0.00

ROGD 0.29±0.00 0.23±0.00 0.43±0.00 0.33±0.00 0.31±0.00 0.21±0.00 0.41±0.00 0.34±0.00 0.45±0.08 0.31±0.00 0.34±0.00 0.28±0.00

FLH-FTL (ours) 0.09±0.00 0.08±0.00 0.13±0.00 0.12±0.00 0.15±0.00 0.13±0.00 0.15±0.00 0.13±0.00 0.15±0.00 0.13±0.00 0.22±0.00 0.15±0.00

Table 8: Results for UOLS problems using all hold-out data. Top: Classification Error. Bottom:
Mean-squared error in estimating label marginal. Compared to the result in the main paper (Table 1),
we observe that the performances of ROGD, UOGD, and ATLAS depend more on availability of
holdout data that FLH-FTL. Notably, UOGD becomes competitive in the majority of the datasets
when abundant holdout data are available.
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G.3 Ablation over Number of Online Samples

Here we examine how different algorithms perform as the number of online samples varies. We
introduce an additional baseline BBSE, which simply uses the label marginal estimate provided by
black box shift estimator to reweight the predictions of classifiers. Figure 3 shows an interesting trend
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Figure 3: Performances of online learning algorithms with different number of online samples.
CIFAR-10 results with bernouli shift and limited holdout data. Solid line is the classification error
(Error) and the dotted line is the marginal estimation mean squared error (MSE).

that as number of online samples increases, the simple baseline BBSE becomes more competitive
and eventually outperforms UOGD, whereas our algorithm remains competitive.

G.4 Ablation over Types of Marginal Estimates

All the algorithms examined in this work use black box shift estimate (BBSE) [51] to obtain an
unbiased estimate of the target label marginal. However, two alternative methods exist: Maximum
Likelihood Label Shift (MLLS) [61] and Regularized Learning under Label Shift (RLLS) [2]. Table 9
presents additional results using these two estimates. The results shows using the alternative estimates
do not substantially change the performances of the algorithms considered in this work.
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Datasets Synthetic CIFAR Fashion

MARG EST. BBSE MLLS RLLS BBSE MLLS RLLS BBSE MLLS RLLS

Bernouli

Base 8.6±0.2 8.6±0.2 8.6±0.2 16±0 16±0 16±0 15±0 15±0 15±0

OFC 6.4±0.6 6.4±0.6 6.4±0.6 12±1 12±1 12±1 7.9±0.1 7.9±0.1 7.9±0.1

FTH 6.5±0.6 6.5±0.7 6.5±0.7 11±0 11±1 11±0 8.5±0.3 8.0±0.0 8.6±0.2

FTFWH 6.6±0.5 6.7±0.5 6.6±0.5 11±1 11±1 11±1 8.2±0.6 7.9±0.2 8.3±0.6

ROGD 7.9±0.3 7.9±0.3 7.9±0.2 16±3 16±3 15±2 10±1 10±1 9.6±1.2

UOGD 8.1±0.6 8.0±1.0 8.0±1.0 14±0 13±0 14±0 11±2 10±1 11±1

ATLAS 8.0±1.0 7.9±0.5 8.0±1.0 13±0 13±0 13±0 12±2 11±1 12±1

FLH-FTL (ours) 5.4±0.7 5.4±0.8 5.4±0.7 10±0 10±1 10±0 7.7±0.4 7.3±0.3 7.6±0.3

Sinusoidal

Base 8.2±0.3 8.2±0.3 8.2±0.3 16±0 16±0 16±0 15±0 15±0 15±0

OFC 5.5±0.2 5.5±0.2 5.5±0.2 11±0 11±0 11±0 7.1±0.1 7.1±0.1 7.1±0.1

FTH 5.7±0.3 5.7±0.2 5.7±0.2 11±0 11±0 11±0 6.9±0.4 6.6±0.2 6.8±0.4

FTFWH 5.7±0.3 5.6±0.2 5.7±0.3 11±0 11±0 11±0 6.9±0.4 6.6±0.3 6.9±0.4

ROGD 7.2±0.6 7.2±0.6 7.2±0.6 13±0 13±0 13±0 8.2±0.7 8.9±0.6 8.2±0.3

UOGD 7.5±0.6 7.4±0.5 7.4±0.5 14±1 13±1 14±1 11±2 9.4±0.9 11±2

ATLAS 7.5±0.6 7.4±0.6 7.4±0.6 13±1 13±1 13±1 12±2 11±1 12±2

FLH-FTL (ours) 5.4±0.4 5.4±0.3 5.4±0.4 11±0 10±0 11±0 7.0±0.0 6.6±0.2 6.9±0.4

Table 9: Performances of online learning algorithms with different types of marginal estimates with
low amount of holdout data.

G.5 Additional results and details on the SHL dataset
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Figure 4: Additional results and details on the SHL datasets with real shift. (a) and (b): The
accuracies and mean square errors in label marginal estimation on SHL dataset over 7,000 time steps
with limited amount of holdout data. (c): Label marginals of the six classes of SHL dataset. Each
time step here shows the marginals over 700 samples.

G.6 Reweighting Versus Retraining Linear Layer

Here we compare the efficacies of re-weighting (RW-FLH-FTL) and retraining (RT-FLH-FTL) given
the marginal estimate provided by FLH-FTL; the latter retrains the last linear layer on the loss of the
holdout data re-weighted by the marginal estimate. Note that RW-FLH-FTL corresponds to FLH-
FTL in the main text. We retrain RT-FLH-FTL for 50 epochs at each time step. To compare against
the best possible retrained classifiers, we used all the holdout data for retraining. Table 10 shows
that retraining is often worse and at best similar to re-weighting in performance, despite greater
computational cost and need for holdout data.
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Datasets Synthetic CIFAR

Shift Mon Sin Ber Squ Mon Sin Ber Squ

Base 8.7±0.1 8.2±0.3 8.6±0.3 8.5±0.2 17±0 16±0 17±0 17±0

OFC 6.8±0.1 5.5±0.2 6.7±0.2 6.7±0.3 14±0 11±0 13±0 13±1

FTFWH 7.0±0.0 5.5±0.3 6.8±0.2 6.8±0.3 13±0 10±0 12±0 13±0

UOGD 7.4±0.1 7.0±0.0 7.6±0.4 7.6±0.2 12±0 10±0 11±0 13±0

RW-FLH-FTL (ours) 6.3±0.2 5.3±0.2 5.4±0.3 5.5±0.2 12±0 10±0 11±0 12±0

RT-FLH-FTL (ours) 6.7±0.1 6.2±0.2 6.0±0.0 6.3±0.4 12±0 10±0 11±0 12±0

Table 10: Comparison of performances of re-weighting and retraining strategies with high amount of
holdout data.

40


	Introduction
	Problem Setup
	Unsupervised Online Label Shift
	Proposed algorithm and performance guarantees

	Supervised Online Label Shift
	Proposed algorithms and performance guarantees

	Experiments
	UOLS Setup and Results
	SOLS setup and results

	Conclusion
	Limitations
	Related work
	Omitted proofs from Section 3
	Design of low switching online regression algorithms
	Omitted proofs from Section 4
	More details on experiments
	Supervised Online Label Shift Experiment Details

	Additional Unsupervised Online Label Shift Experiments
	Additional results with Monotone and Square Shifts and Low Amount of Holdout Data
	Additional results with All of Holdout Data
	Ablation over Number of Online Samples
	Ablation over Types of Marginal Estimates
	Additional results and details on the SHL dataset
	Reweighting Versus Retraining Linear Layer


