
Minimax Forward and Backward Learning of
Evolving Tasks with Performance Guarantees

Verónica Álvarez1 Santiago Mazuelas1,2 Jose A. Lozano1,3

1Basque Center of Applied Mathematics (BCAM)
2IKERBASQUE-Basque Foundation for Science 3University of the Basque Country UPV/EHU

{valvarez, smazuelas, jlozano}@bcamath.org

Abstract

For a sequence of classification tasks that arrive over time, it is common that tasks
are evolving in the sense that consecutive tasks often have a higher similarity. The
incremental learning of a growing sequence of tasks holds promise to enable accu-
rate classification even with few samples per task by leveraging information from
all the tasks in the sequence (forward and backward learning). However, existing
techniques developed for continual learning and concept drift adaptation are ei-
ther designed for tasks with time-independent similarities or only aim to learn the
last task in the sequence. This paper presents incremental minimax risk classifiers
(IMRCs) that effectively exploit forward and backward learning and account for
evolving tasks. In addition, we analytically characterize the performance improve-
ment provided by forward and backward learning in terms of the tasks’ expected
quadratic change and the number of tasks. The experimental evaluation shows
that IMRCs can result in a significant performance improvement, especially for
reduced sample sizes.

1 Introduction

In practical scenarios, it is often of interest to incrementally learn a growing sequence of classifica-
tion problems (tasks) that arrive over time. In such a sequence, it is common that tasks are evolving
in the sense that consecutive tasks often have a higher similarity. Examples of evolving tasks are the
classification of portraits from different time periods [1] and the classification of spam emails over
time [2]; in these problems, the similarity between consecutive tasks (portraits of consecutive time
periods and emails from consecutive years) is significantly higher (see Figure 1). The incremental
learning of a growing sequence of tasks holds promise to significantly improve performance by lever-
aging information from different tasks. Specifically, at each time step, information from preceding
tasks can be used to improve the performance of the last task (forward learning) and, reciprocally,
the information from the last task can be used to improve the performance of the preceding tasks
(backward learning) [3–5]. Such transfer of information can enable accurate classification even in
cases with reduced sample sizes, thus significantly increasing the effective sample size (ESS) of
each task. However, exploiting the benefits of forward and backward learning is challenging due
to the continuous arrival of samples from tasks characterized by different underlying distributions
[6–8].

Techniques developed for concept drift adaptation (aka learning in a dynamic scenario) [9–16] are
designed for evolving tasks but only aim to learn the last task in the sequence. In particular, methods
based on learning rates learn the last task by slightly updating the classification rule for the preceding
task [12, 13]; and methods based on sliding windows learn the last task by using a set of stored
samples from the most recent preceding tasks [14, 15]. In concept drift adaptation, at each time

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Forward learningSingle-task learning Forward and backward learning

200019901970 1980

p1
p2

p3 p4

U1

U2

U3
U4

Figure 1: Tasks that arrive over time are characterized by different underlying distributions and consecutive
tasks often have a higher similarity. The black line represents the evolution of the underlying distributions that
characterize different tasks. IMRCs minimize the worst-case error probability over uncertainty sets Ui that can
include the underlying distribution pi. A single task uncertainty set (blue hexagons) can be obtained leveraging
information only from the corresponding task, while a forward uncertainty set (green hexagons) can be obtained
leveraging information from preceding tasks. Then, the proposed methodology obtains forward and backward
uncertainty sets (red hexagons) leveraging information from all the tasks in the sequence.

step only the last task is considered of interest, and is learned leveraging information from the most
recent preceding tasks since they are the most similar to the last task.

Techniques developed for continual learning (aka lifelong learning) [4–7, 17–20] aim to learn the
whole sequence of tasks but existing methods are designed for situations where tasks’ similarities
do not depend on the time steps when tasks are observed. In particular, methods based on dynamic
architectures learn shared parameters using samples from all the tasks together with task-specific
parameters using samples from the corresponding task [6, 20]; and methods based on replay learn
parameters using a pool of stored samples from all the preceding tasks together with the samples
from the last task [5, 7]. Existing methods for continual learning are not designed for evolving tasks
and consider scenarios in which the order of the tasks in the sequence is not relevant. In the current
literature of continual learning, only [21] considers scenarios with evolving tasks but focus on the
theoretical analysis of transferring information from the preceding tasks.

This paper presents incremental minimax risk classifiers (IMRCs) that determine classification rules
minimizing worst-case error probabilities over uncertainty sets that can contain the sequence of
evolving underlying distributions. The proposed techniques can effectively exploit forward and
backward learning by obtaining uncertainty sets that get smaller using information from all the tasks
(see Figure 1). Specifically, the main contributions presented in the paper are as follows.

• We propose forward learning techniques that recursively use the information from preced-
ing tasks to reduce the uncertainty set of the last task.

• We propose forward and backward learning techniques that use the information from the
last task to further reduce the sequence of uncertainty sets obtained with forward learning.

• We analytically characterize the increase in ESS provided by the presented methods in
terms of the expected quadratic change between consecutive tasks and the number of tasks.

• We numerically quantify the performance improvement provided by IMRCs in comparison
with existing techniques using multiple datasets, sample sizes, and number of tasks.

Notations Calligraphic letters represent sets; ‖ · ‖1 and ‖ · ‖∞ denote the 1-norm and the infinity
norm of its argument, respectively; � and � denote vector inequalities; I{·} denotes the indicator
function; and Ep{ · } and Varp{·} denote the expectation and the variance of its argument with
respect to distribution p. For a vector v, v(i) and v

T denote its i-th component and transpose.
Non-linear operators acting on vectors denote component-wise operations. For instance, |v| and
v
2 denote the vector formed by the absolute value and the square of each component, respectively.

For the reader’s convenience, we also provide in Table 2 in Appendix A a list with the main notions
used in the paper and their corresponding notations.

2

2 Preliminaries

This section first formulates the problem of incrementally learning a growing sequence of tasks, and
describes evolving tasks in comparison with the time-independent assumption common in continual
learning. Then, we briefly describe MRCs that determine classification rules by minimizing the
worst-case error probability over an uncertainty set.

2.1 Problem formulation

In the following, we denote by X the set of instances or attributes, Y the set of labels or classes,
∆(X ×Y) the set of probability distributions over X ×Y , and T(X ,Y) the set of classification rules.
A classification task is characterized by an underlying distribution p∗ ∈ ∆(X × Y), and standard
supervised classification methods use a sample set D = {(xi, yi)}ni=1 formed by n i.i.d samples
from distribution p∗ to find a classification rule h ∈ T(X ,Y) with small expected loss ℓ(h, p∗).

In the addressed settings, sample sets D1, D2, . . . arrive over time steps 1, 2, . . . corresponding
with different classification tasks characterized by underlying distributions p1, p2, Incremen-
tal learning aims to continually learn over time the growing sequence of tasks exploiting informa-
tion acquired from all the tasks. At each time step k, learning methods obtain classification rules
h1, h2, . . . , hk for the current sequence of k tasks using the new sample set Dk and certain informa-
tion retained from step k − 1. The performance of learning methods is assessed at each time step k
by quantifying the performance in the current k tasks. For instance, overall performance can be as-
sessed by the averaged error 1

k

∑k
j=1 ℓ(hj , pj) with ℓ(hj , pj) the expected loss of the classification

rule hj for distribution pj .

Evolving tasks are considered by methods for concept drift adaptation, but existing continual learn-
ing methods are designed for scenarios where tasks’ similarities do not depend on the time steps
when tasks are observed. These scenarios are usually mathematically modeled assuming that the
tasks’ distributions p1, p2, . . . are independent and identically distributed (i.i.d.) [18, 19]. In this
paper, we develop techniques designed for evolving tasks that can be mathematically modeled as-
suming that the changes between consecutive distributions p2−p1, p3−p2, . . . are independent and
zero-mean (evolving task assumption). The assumption in this paper is not stronger than the usual
i.i.d. assumption and can better describe evolving tasks; their main difference is considering inde-
pendent changes between consecutive distributions instead of independent distributions. Note that
with independent distributions the difference between the distributions of the i-th and the (i + t)-th
tasks has zero mean and variance Var{pi+t − pi} = Var{pi+1 − pi} = 2Var{p1} that does not
depend on t. On the other hand, with independent changes between consecutive distributions, the
difference between the distributions of the i-th and the (i + t)-th tasks has zero mean and variance
Var{pi+t − pi} =

∑t
j=1 Var{pi+j − pi+j−1} that increases with t. Appendix H further describes

how the assumption used in the paper is more appropriate for evolving tasks than the conventional
i.i.d. assumption using real datasets.

2.2 Minimax risk classifiers

The methods presented in the paper are based on robust risk minimization [22, 23] instead of em-
pirical risk minimization since training samples corresponding to different tasks follow different
distributions. In particular, we utilize MRCs [24, 25] that learn classification rules by minimizing
the worst-case expected loss against an uncertainty set given by constraints on the expectation of a
feature mapping Φ : X × Y → R

m as

U = {p ∈ ∆(X × Y) : |Ep{Φ(x, y)} − τ | � λ} (1)

where τ denotes a mean vector of expectation estimates and λ denotes a confidence vector. Feature
mappings are vector-valued functions over X × Y , e.g., one-hot encodings of labels [26] with in-
stances represented by values from the last layers in a neural network [8, 27] or by random Fourier
features (RFF) [28, 29].

Given the uncertainty set U , MRC rules are solutions of the optimization problem

R(U) = min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (2)

3

where R(U) denotes the minimax risk and ℓ(h, p) denotes the expected loss of classification rule h
for distribution p. In the following, we utilize the 0-1-loss so that ℓ(h, p) = Ep{I{h(x) 6= y}}
and the expected loss with respect to the underlying distribution becomes the error probabil-
ity of the classification rule. Deterministic MRCs assign each instance x ∈ X with the label
h(x) ∈ argmaxy∈Y Φ(x, y)Tµ∗ where the parameter µ∗ is the solution of the convex optimization
problem

min
µ

1− τ Tµ+ max
x∈X ,C⊆Y

∑

y∈C Φ(x, y)
Tµ− 1

|C| + λ
T|µ| (3)

given by the Lagrange dual of (2) [24, 25].

The baseline approach of single-task learning obtains a classification rule hj for each j-th task
leveraging information only from the sample set Dj = {(xj,i, yj,i)}nj

i=1 given by nj samples from
distribution pj . In that case, IMRCs coincide with MRCs for standard supervised classification that
obtain the mean and confidence vectors as

τ j =
1

nj

nj
∑

i=1

Φ (xj,i, yj,i) , λj =
√
sj , sj =

σ2
j

nj
(4)

with σ2
j an estimate of Varpj

{Φ(x, y)}, e.g., the sample variance of the nj samples. The vector sj
describes the mean squared errors (MSEs) of the mean vector components and directly gives the
confidence vector λj as shown in (4).

MRCs provide bounds for the minimax risk R(Uj) in terms of the smallest minimax risk as de-
scribed in [24, 25, 30]. The smallest minimax risk is that corresponding to the ideal case of
knowing mean vectors exactly, that is, the minimax risk corresponding with the uncertainty set
U∞
j = {p ∈ ∆(X × Y) : Ep{Φ(x, y)} = τ∞

j } given by the expectation τ∞
j = Epj

{Φ(x, y)}. In
the baseline approach of single-task learning, if R∞

j and µ∞
j denote the smallest minimax risk and

the MRC parameter corresponding with U∞
j , with probability at least 1− δ we have that

R(Uj) ≤ R∞
j +

M(κ+ 1)
√

2 log(2m/δ)
√
nj

‖µ∞
j ‖1 (5)

where M and κ are such that ‖Φ(x, y)‖∞ ≤ M for any (x, y) ∈ X × Y and subG(Φj) � κσj ,
subG(·) denotes the sub-Gaussian parameter of the argument components, and Φj denotes the ran-
dom variable given by the feature mapping of samples from the j-th task. Inequality (5) is obtained
using the bounds in [25] together with the Chernoff bound [31] for sub-Gaussian variables.

In the following sections, we describe techniques that obtain the mean and MSE vectors using for-
ward and backward learning. Once such vectors are obtained, IMRC methods obtain the classifier
parameterµj for each j-th task solving the convex optimization problem in (3) that can be efficiently
addressed using conventional methods [32, 33].

3 Forward learning with performance guarantees

This section presents the recursions that allow to obtain mean and MSE vectors for each task retain-
ing information from preceding tasks. In addition, it characterizes the increase in ESS provided by
forward learning in terms of the tasks’ expected quadratic change and the number of tasks.

3.1 Forward learning

Let τ⇀
j and s⇀j denote the mean and MSE vectors for forward learning corresponding to the j-th

task. The following recursions allow to obtain τ⇀
j and s⇀j for each j-th task using the vectors for

the preceding task τ⇀
j−1, s

⇀
j−1 as

τ⇀
j = τ j +

sj

s⇀j−1 + sj + d
2
j

(

τ⇀
j−1 − τ j

)

, s⇀j =

(

1

sj
+

1

s⇀j−1 + d
2
j

)−1

(6)

with τ j and sj given by (4) and τ⇀
1 = τ 1 and s⇀1 = s1.

4

The vector d2
i assesses the expected quadratic change between consecutive tasks described by

wi = τ∞
i − τ∞

i−1. Taking d2
i = E{w2

i } and σ2
i = Varpi

{Φ (x, y)} for any i, the first recur-
sion in (6) provides the unbiased linear estimator of the mean vector τ∞

j based on D1, D2, . . . , Dj

that has the minimum MSE, while the second recursion in (6) provides its MSE (see Appendix B for
a detailed derivation). Vectors σ2

i and d2
i can be estimated online using the sample sets. In particular,

σ2
i can be estimated as the sample variance, while d2

i can be estimated using sample averages as

d2
i =

W
∑

l=1

(τ il − τ il−1
)2

W
where i0, i1, . . . , iW are the closest indexes to i ∈ {1, 2, . . . , k}. (7)

Recursions in (6) obtain mean and MSE vectors for the j-th task by using information from pre-
ceding tasks and the j-th sample set Dj . Specifically, the first recursion in (6) obtains the mean
vector τ⇀

j by adding a correction to the sample average τ j . This correction is proportional to the
difference between τ j and τ⇀

j−1 with a proportionality constant that depends on the MSE vectors

sj , s
⇀
j−1 and the expected quadratic change d2

j . In particular, if sj ≪ s⇀j−1 +d2
j , the mean vector is

given by the sample average as in single-task learning, and if sj ≫ s⇀j−1 + d2
j , the mean vector is

given by that of the preceding task. Note that for forward learning, at each step k, only the vectors
for the last task τ⇀

k and s⇀k need to be obtained from those of the (k − 1)-th task, the vectors for
the remaining tasks stay the same as at step k − 1 (see also Fig. 2 and Alg. 1 below).

3.2 Performance guarantees and effective sample sizes with forward learning

The following result provides bounds for the minimax risk for each task using forward learning.

Theorem 1. Let U⇀
j be the uncertainty set given by (1) using the mean and confidence vectors τ⇀

j

and λ⇀
j =

√

s⇀j provided by (6), and let κ be such that subG(Φj) � κσj and subG (wj) � κdj

for j = 1, 2, . . . , k. Then, under the evolving task assumption of Section 2, we have with probability
at least 1− δ that

R(U⇀
j) ≤ R∞

j +
M(κ+ 1)

√

2 log (2m/δ)
√

n⇀
j

∥

∥µ∞
j

∥

∥

1
for any j ∈ {1, 2, . . . , k} (8)

with n⇀
1 = n1 and n⇀

j ≥ nj + n⇀
j−1

‖σ2
j‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

for j ≥ 2.

Proof. See Appendix C.

The value n⇀
j in (8) is the ESS of the proposed IMRC method with forward learning since the bound

in (8) coincides with that of single-task learning in (5) if the sample size for the j-th task is n⇀
j . The

ESS of each task is obtained by adding a fraction of the ESS for the preceding task to the sample
size. In particular, if d2

j is large, the ESS is given by the sample size, while if d2
j is small, the ESS

is given by the sum of the sample size and the ESS of the preceding task.

The bound in (8) shows that recursions in (6) do not need to use very accurate values for σj and dj .
Specifically, the coefficienty κ in (8) can be taken to be small as long as the values used for σj and
dj are not much lower than the sub-Gaussian parameters of Φj and wj , respectively. In particular,

κ is smaller than the maximum of M/minj,i{σ(i)
j } and 2M/minj,i{d(i)j } due to the bound for the

sub-Gaussian parameter of bounded random variables (see e.g., Section 2.1.2 in [31]).

Theorem 1 shows the increase in ESS in terms of the ESS of the preceding task. The following result
allows to directly quantify the ESS in terms of the tasks’ expected quadratic change and the number
of tasks.

Theorem 2. If ‖d2
j‖∞ ≤ d2, M ≤ 1, and nj ≥ n for j = 1, 2, . . . , k, then for any j ∈ {1, 2, . . . , k},

we have that the ESS in (8) can be taken so that it satisfies

n⇀
j ≥ n

(

1 +
(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α

)

with α =
2

√

1 + 4
nd2 − 1

. (9)

In particular, if nd2 < 1/j2, we have that n⇀
j ≥ n

(

1 + j−1
3

)

.

Proof. See Appendix D.

5

The above theorem characterizes the increase in ESS provided by forward learning in terms of the
tasks’ expected quadratic change. Such increase grows monotonically with the number of preceding
tasks j as shown in (9) and becomes proportional to j when the expected quadratic change is smaller
than 1/(j2n). Figure 3 below further illustrates the increase in ESS with respect to the sample size
(n⇀

j /n) due forward learning in comparison with forward and backward learning.

4 Forward and backward learning with performance guarantees

This section presents the recursions that allow to obtain mean and MSE vectors for each task lever-
aging information from all the tasks. In addition, it characterizes the increase in ESS provided by
forward and backward learning in terms of the tasks’ expected quadratic change and the number of
tasks.

Backward learning is more challenging than forward learning since the new task provides additional
information for preceding tasks at each time step, while the information from preceding tasks is
always the same. The techniques proposed below for backward learning effectively increase the
ESS over time by carefully accounting for the new information at each step.

4.1 Forward and backward learning

At each step k, the proposed techniques learn to classify each j-th task leveraging information
obtained from the j preceding tasks (tasks {1, 2, . . . , j}) and from the k− j succeeding tasks (tasks
{j+1, j+2, . . . , k}). From preceding tasks, we obtain the forward mean and MSE vectors τ⇀

j , s⇀j
using recursions in (6), while from succeeding tasks, we obtain the backward mean and MSE vectors
τ↽k
j , s↽k

j using recursions in (6) in retrodiction. Specifically, vectors τ↽k
j and s↽k

j are obtained

using the same recursion as for τ⇀
j and s⇀j in (6) with s↽k

j+1,d
2
j+1, and τ↽k

j+1 instead of s⇀j−1,d
2
j ,

and τ⇀
j−1.

Let τ⇋k
j and s⇋k

j denote the mean and MSE vectors for forward and backward learning correspond-
ing to the j-th task for j ∈ {1, 2, . . . , k}. The following recursions allow to obtain the mean and
MSE vectors τ⇋k

j and s⇋k
j for each j-th task using those vectors for forward learning τ⇀

j , s⇀j and
backward learning τ↽k

j+1, s
↽k
j+1 as

τ⇋k
j = τ⇀

j +
s⇀j

s⇀j + s↽k
j+1 + d2

j+1

(

τ↽k
j+1 − τ⇀

j

)

, s⇋k
j =

(

1

s⇀j
+

1

s↽k
j+1 + d2

j+1

)−1

(10)

with τ↽k
k = τ k, s

↽k
k = sk and τ⇋k

k = τ⇀
k , s⇋k

k = s⇀k . Analogously to the case of forward
learning in Section 3.1, taking d2

i = E{w2
i } and σ2

i = Varpi
{Φ (x, y)} for any i, the first recursion

in (10) provides the unbiased linear estimator of the mean vector τ∞
j based on D1, D2, . . . , Dj and

Dj+1, Dj+2, . . . , Dk that has the minimum MSE, while the second recursion in (10) provides its
MSE (see Appendix B for a detailed derivation).

Recursions in (10) obtain at step k the mean and MSE vectors for the j-th task by retaining infor-
mation from preceding tasks and acquiring information from the new task. Specifically, the first
recursion in (10) obtains the mean vector τ⇋k

j by adding a correction to the mean vector of the cor-
responding task τ⇀

j obtained for forward learning. This correction is proportional to the difference
between τ⇀

j and τ↽k
j+1 with a proportionality constant that depends on the MSE vectors s⇀j , s↽k

j+1

and the expected quadratic change d2
j+1. In particular, if s⇀j ≪ s↽k

j+1 + d2
j+1, the mean vector is

given by that of the corresponding task for forward learning, and if s⇀j ≫ s↽k
j+1 + d2

j+1, the mean
vector is given by that of the next task for backward learning.

4.2 Implementation

This section describes the implementation of the proposed IMRCs with forward and backward learn-
ing and its computational and memory complexities.

Figure 2 depicts the flow diagram for the proposed IMRC methodology. The presented
techniques carefully avoid the repeated usage of the same information from the sequence

6

of tasks. At each step k, the IMRC method obtains forward mean vector τ⇀
k for the k-

th task leveraging information from preceding tasks using the forward mean vector τ⇀
k−1

and the sample average τ k. Reciprocally, backward mean vectors τ↽k
j+1 for each j-th

task are obtained leveraging information from the k-th task through the sample average τ k.

τ j−1 τ j τ j+1τ⇋k
j

τ⇀
j−1 τ⇀

j τ⇀
j+1

τ↽k
j+1τ↽k

j−1 τ↽k
j

τ⇋k
j−1

Figure 2: Diagram for IMRC methodology.

Then, the forward and backward mean vectors
τ⇋k
j are obtained from the forward mean vec-

tors τ⇀
j and the backward mean vectors τ↽k

j+1.
In particular, τ⇀

j provides the information from
the preceding tasks 1, 2, . . . , j, while τ↽k

j+1 pro-
vides the information from the succeeding tasks
j + 1, j + 2, . . . , k. At each step k, the IMRC
method obtains forward and backward mean
vectors τ⇋k

j for j = k − b, k − b + 1, . . . , k
with b the number of backward steps. In partic-
ular, if b = 0, IMRC carries out only forward
learning. Note that, at each step k, the proposed
IMRC methods only need to retain the forward
mean vectors τ⇀

j and sample averages τ j for
j = k − b, k − b+ 1, . . . , k.

Algorithm 1 IMRC at step k

Input: Dk from new task, and τ j , sj , τ
⇀
j , s⇀

j for k − b ≤ j ≤ k − 1 from previous b− 1 steps
Output: µj for k − b ≤ j ≤ k, τk, sk, τ

⇀
k , s⇀

k

Obtain sample average and MSE vectors τ↽k
k = τk, s

↽k
k = sk using the sample set Dk ⊲ Single-task

Estimate the tasks’ expected quadratic change d2
k using (7)

Obtain the forward mean and MSE vectors τ⇀
k , s⇀k using (6) ⊲ Forward

Take λ⇀
k =

√
s⇀
k and obtain classifier parameter µk solving the optimization problem (3)

for j = k − 1, k − 2, . . . , k − b do
Estimate the tasks’ expected quadratic change d2

j using (7)
Obtain backward mean and MSE vectors τ↽k

j+1, s
↽k
j+1 using (6) in retrodiction ⊲ Backward

Obtain mean and MSE vectors τ⇋k
j , s⇋k

j using (10) ⊲ Forward and backward

Take λ⇋k
j =

√

s⇋k
j and obtain classifier parameters µj solving the optimization problem (3)

Algorithm 1 details the implementation of the proposed IMRCs at each step. For k steps, IMRCs
have computational complexity O((b+1)Kmk) and memory complexity O((b+ k)m) where K is
the number of iterations used for the convex optimization problem (3), m is the length of the feature
vector, and b is the number of backward steps. The complexity of forward and backward learning
increases proportionally to the number of backward steps that can be taken to be rather small, as
shown in the following. Even more efficient implementations can be obtained using Rauch-Tung-
Striebel recursions (see e.g., Section 7.2 in [34]) that can be used to obtain τ⇋k

j from τ⇋k
j+1, as

shown in Appendix E.

4.3 Performance guarantees and effective sample sizes with forward and backward learning

The following result provides bounds for the minimax risk for each task using forward and backward
learning

Theorem 3. Let U⇋k
j be the uncertainty set given by (1) using the mean and confidence vector

τ⇋k
j and λ

⇋k
j =

√

s⇋k
j provided by (10), and let κ and n⇀

j be as in Theorem 1. Then, under the

evolving task assumption of Section 2, we have with probability at least 1− δ that

R(U⇋k
j) ≤ R∞

j +
M(κ+ 1)

√

2 log (2m/δ)
√

n⇋k
j

∥

∥µ∞
j

∥

∥

1
for any j ∈ {1, 2, . . . , k} (11)

7

with n⇋k
k = n⇀

k and n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+ n↽k

j+1‖d2
j+1‖∞

for j ≤ k − 1, where the backward

ESSs satisfy n↽k
k = nk and n↽k

j ≥ nj + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+n↽k

j+1‖d2
j+1‖∞

.

Proof. See Appendix F.

Theorem 3 shows that the methods proposed can increase ESS of each task by leveraging informa-
tion from all the tasks. In particular, the bounds for forward and backward learning provided by
inequality (11) are significantly lower than those for forward learning in Theorem 1. The ESS of
each task is obtained by adding a fraction of the ESS for the next task to the ESS of the correspond-
ing task using forward learning. In particular, if d2

j is large, the ESS is given by that with forward
learning, while if d2

j is small, the ESS is given by the sum of the ESS using forward learning and
the ESS of the next task.

Theorem 3 shows the increase in ESS in terms of the ESS with forward learning and the ESS of the
next task. The following result allows to directly quantify the ESS in terms of the tasks’ expected
quadratic change and the number of tasks.

Theorem 4. If ‖d2
j‖∞ ≤ d2, M ≤ 1, and nj ≥ n for j = 1, 2, . . . , k, then for any j ∈ {1, 2, . . . , k},

we have that the ESS in (11) can be taken so that it satisfies

n⇋k
j ≥ n

(

1 +
(1 + α)2j−1 − 1− α

α(1 + α)2j−1 + α
+

(1 + α)2(k−j)+1 − 1− α

α(1 + α)2(k−j)+1 + α

)

with α =
2

√

1 + 4
nd2 − 1

.

(12)
In particular, for j ≥ 2, we have that

n⇋k
j ≥ n⇀

j + n
j(k − j)

j + 2(k − j)
≥ n

(

1 +
j − 1

3
+

j(k − j)

j + 2(k − j)

)

if nd2 <
1

j2

n⇋k
j ≥ n⇀

j +
1

5

√

n

d2
≥ n

(

1 +
2

5
√
nd2

)

if
1

j2
≤ nd2 < 1

n⇋k
j ≥ n⇀

j +
1

3d2
≥ n

(

1 +
2

3nd2

)

if nd2 ≥ 1.

Proof. See Appendix G.

The above theorem characterizes the increase in ESS provided by forward and
backward learning. This increase grows monotonically with the number of pre-
ceding tasks j and with the number of succeeding tasks k − j as shown in (12).

E
S

S
/n

100

10−4

10

5

2

20

110−2

n⇀
10/n

n⇋13
10 /n

n⇋20
10 /n

n⇀
100/n

n⇋103
100 /n

n⇋110
100 /n

nd2

Figure 3: ESS increase provided by forward and back-
ward learning.

In addition, it becomes proportional to the total
number of tasks k when the expected quadratic
change is smaller than 1/(j2n) and j ≥ k/2.
Figure 3 further illustrates the increase in ESS
with respect to the sample size (n⇋k

j /n) due
to forward and backward learning in compari-
son with forward learning. As the figure shows,
the increase in ESS can be classified into three
regimes depending on the sample size n and the
expected quadratic change d2. The ESS is only
marginaly larger than the sample size for size-
ble values of nd2 (large samples sizes or drastic
changes in the distribution); the ESS quickly in-
creases when nd2 becomes small (reduced sam-
ple sizes and moderate changes in the distribu-
tion); and the ESS becomes proportional to the
total number of tasks k if nd2 is rather small
(very small sample sizes and very slow changes
in the distribution).

8

Table 1: Classification error, standard deviation, and running time of the proposed IMRC method in comparison
with existing techniques using n = 10 samples per task.

Method GEM [5] MER [17] ELLA [4] EWC [6] Condor [9] DriftSurf [10] AUE [16] IMRC

Yearbook [1] .18 ± .03 .16 ± .03 .45 ± .01 .47 ± .05 .14 ± .01 .33 ± .02 .33 ± .02 .13 ± .04

I. noise [35] .39 ± .08 .17 ± .03 .48 ± .05 .47 ± .04 .16 ± .02 .48 ± .02 .48 ± .02 .15 ± .03

DomainNet [36] .69 ± .05 .38 ± .04 .67 ± .05 .75 ± .04 .45 ± .04 .32 ± .02 .33 ± .02 .34 ± .06

UTKFaces [37] .12 ± .00 .17 ± .09 .19 ± .12 .12 ± .00 .23 ± .00 .12 ± .00 .12 ± .00 .10 ± .01

R. MNIST [38] .36 ± .06 .37 ± .09 .48 ± .05 .48 ± .01 .45 ± .02 .48 ± .02 .48 ± .02 .36 ± .01

CLEAR [39] .57 ± .10 .10 ± .03 .61 ± .06 .65 ± .03 .35 ± .00 .33 ± .00 .33 ± .01 .09 ± .03

P. Supply [10] .46 ± .01 .47 ± .01 .41 ± .07 .47 ± .00 .36 ± .01 .45 ± .02 .45 ± .02 .30 ± .01

Usenet1 [40] .48 ± .02 .48 ± .02 .39 ± .05 .48 ± .02 .48 ± .02 .40 ± .01 .40 ± .01 .32 ± .03

Usenet2 [40] .36 ± .01 .33 ± .01 .39 ± .03 .48 ± .02 .42 ± .01 .35 ± .03 .39 ± .03 .33 ± .02

German [41] .38 ± .16 .38 ± .10 .33 ± .04 .35 ± .11 .41 ± .02 .36 ± .00 .35 ± .02 .34 ± .01

Spam [2] .25 ± .05 .13 ± .02 .28 ± .07 .33 ± .11 .22 ± .02 .24 ± .03 .25 ± .03 .13 ± .01

Covert. [10] .09 ± .01 .08 ± .00 .13 ± .01 .09 ± .00 .09 ± .00 .10 ± .00 .11 ± .00 .08 ± .00

Ave. running time 0.238 0.250 0.055 0.313 0.184 0.128 0.044 0.275

5 Numerical results

This section first compares the classification performance of IMRCs with existing techniques us-
ing multiple datasets, then we show the performance improvement of the presented IMRCs due to
forward and backward learning. In Appendix H, we provide additional implementation details and
numerical results. The implementation of the proposed IMRCs is available on the web https://
github.com/MachineLearningBCAM/IMRCs-for-incremental-learning-NeurIPS-2023.

The proposed method is evaluated using 12 public datasets composed by evolving tasks [10, 1,
35–41, 2]. Six datasets are formed by images with characteristics/quality/realism that change over
time; while the rest are formed by tabular data that are segmented by time (see further details in
Appendix H). For instance, each task in the “Yearbook” dataset corresponds to portrait’s photographs
from one year from 1905 to 2013 and the goal is to predict males and females; and each task in the
“CLEAR” dataset corresponds to images with a natural temporal evolution of visual concepts per
year from 2004 to 2014 and the goal is to predict if an image is soccer, hockey, or racing. For the
image datasets, instances are represented by pixel values in "Rotated MNIST" dataset, and by the
last layer of the ResNet18 pre-trained network [42] in the remaining datasets; while for the tabular
datasets, instances are represented by 200 RFFs [28, 29] with scaling parameter σ2 = 10.

The proposed IMRC method is compared with 7 state-of-the-art-techniques: 2 techniques of contin-
ual learning based on experience replay [5, 17], a technique of continual learning based on regular-
ization [6], a technique of continual learning based on dynamic architectures [4], 2 techniques of
concept drift adaptation based on weight factors [9, 16], and a technique of concept drift adaptation
based on sliding windows [10]. The hyper-parameters in all methods are set to the default values
provided by the authors. IMRCs are implemented using b = 3 backward steps and the expected
quadratic change d

2
j is estimated using W = 2 in (7). In Appendix H, among other additional re-

sults, we study the change in classification error and processing time achieved by varying the number
b of backward steps.

In the first set of numerical results, we compare the performance of the proposed IMRCs with
existing techniques using n = 10 samples per task. These numerical results are obtained computing
the average classification error over all the time steps and tasks in 50 random instantiations of data
samples. As can be observed in Table 1, IMRCs can significantly improve performance in evolving
tasks with respect to existing methods. Certain techniques of continual learning or concept drift
adaptation achieve top performance in specific datasets, but the performance improvement of the
methods presented are realized over general datasets with evolving tasks. The results for n = 10
samples per task in Table 1 are complemented with results for n = 50, 100, and 150 samples per task
in Tables 4, 5, and 6 in Appendix H. These results show that the improved performance of IMRCs
compared to the state-of-the-art techniques is similar for different sample sizes. In addition, Table 1
shows that the average running time per task of IMRC methods is similar to other state-of-the-art
methods.

9

https://github.com/MachineLearningBCAM/IMRCs-for-incremental-learning-NeurIPS-2023
https://github.com/MachineLearningBCAM/IMRCs-for-incremental-learning-NeurIPS-2023

Forward n = 100
Forward and backward n = 10

Forward n = 10

Forward and backward n = 100
C

la
ss

ifi
ca

ti
on

er
ro

r/
si

ng
le

-t
as

k

10 30 50 70

0.8

0.6

1

Number of tasks k

(a) Classification error per number of tasks in “Year-
book” dataset.

C
la

ss
ifi

ca
ti

on
er

ro
r

Forward k = 10
Single-task

Forward and backward k = 10
Forward k = 100
Forward and backward k = 100

Sample size n
10 30 50 70 90

0.1

0.2

0.3

(b) Classification error per sample size in “Year-
book” dataset.

Figure 4: Forward and backward learning can sharply boost performance and ESS as tasks arrive.

In the second set of numerical results, we analyze the contribution of forward and backward learn-
ing to the final performance of IMRCs. In particular, we show the relationship among classification
error, number of tasks, and sample size for single-task, forward, and forward and backward learn-
ing. These numerical results are obtained averaging, for each number of tasks and sample size, the
classification errors achieved with 10 random instantiations of data samples in "Yearbook" dataset
(see Appendix H for further details). Figure 4a shows the classification error of IMRC method di-
vided by the classification error of single-task learning for different number of tasks with n = 10
and n = 100 sample sizes. Such figure shows that forward and backward learning can significantly
improve the performance of IMRCs as tasks arrive. In addition, Figure 4b shows the classification
error of IMRC method for different sample sizes with k = 10 and k = 100 tasks. Such figure shows
that IMRCs with forward and backward learning for k = 100 tasks and n = 10 samples achieve
significantly better results than single-task learning using n = 100 samples. In particular, the ex-
periments show that the methods proposed can effectively exploit backward learning that results in
enhanced classification error in all the experimental results.

6 Conclusion

The paper proposes IMRCs that effectively exploit forward and backward learning and account for
evolving tasks by using a sequence of uncertainty sets that can contain the true underlying distribu-
tions. In addition, the paper analytically characterizes the increase in ESS achieved by the proposed
techniques in terms of the tasks’ expected quadratic change and number of tasks. The numerical
results assess the performance improvement of IMRCs with respect to existing methods using multi-
ple datasets, sample sizes, and number of tasks. The proposed methodology for incremental learning
with evolving tasks can lead to techniques that further approach the humans’ ability to learn from
few examples and to continuously improve on tasks that arrive over time.

Acknowledgments

Funding in direct support of this work has been provided by projects PID2022-137063NB-
I00, PID2022-137442NB-I00, CNS2022-135203, and CEX2021-001142-S funded by
MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR,
BCAM Severo Ochoa accreditation CEX2021-001142-S / MICIN / AEI/ 10.13039/501100011033
funded by the Ministry of Science and Innovation, and programes ELKARTEK, IT1504-22, and
BERC-2022-2025 funded by the Basque Government.

10

References

[1] Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of por-
traits: A visual historical record of american high school yearbooks. In IEEE International
Conference on Computer Vision Workshops, 2015.

[2] Tegjyot Singh Sethi and Mehmed Kantardzic. On the reliable detection of concept drift from
streaming unlabeled data. Expert Systems with Applications, 82, 2017.

[3] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Morgan & Claypool Publishers,
second edition, 2018.

[4] Paul Ruvolo and Eric Eaton. ELLA: An efficient lifelong learning algorithm. In International
Conference on Machine Learning, volume 30, 2013.

[5] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in Neural Information Processing Systems, volume 30, 2017.

[6] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, (13), 2017.

[7] Christian Henning, Maria Cervera, Francesco D’Angelo, Johannes Von Oswald, Regina Tra-
ber, Benjamin Ehret, Seijin Kobayashi, Benjamin F Grewe, and João Sacramento. Posterior
meta-replay for continual learning. In Advances in Neural Information Processing Systems,
volume 34, 2021.

[8] Julio Hurtado, Alain Raymond, and Alvaro Soto. Optimizing reusable knowledge for continual
learning via metalearning. In Advances in Neural Information Processing Systems, volume 34,
2021.

[9] Peng Zhao, Le-Wen Cai, and Zhi-Hua Zhou. Handling concept drift via model reuse. Machine
Learning, 109(3), 2020.

[10] Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and Phillip B Gibbons. Drift-
Surf: stable-state/reactive-state learning under concept drift. In International Conference on
Machine Learning, volume 38, 2021.

[11] Verónica Álvarez, Santiago Mazuelas, and Jose A Lozano. Minimax classification under con-
cept drift with multidimensional adaptation and performance guarantees. In International Con-
ference on Machine Learning, volume 39, 2022.

[12] Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels.
IEEE Transactions on Signal Processing, 52(8), 2004.

[13] Francesco Orabona, Joseph Keshet, and Barbara Caputo. The projectron: a bounded kernel-
based perceptron. In International Conference on Machine Learning, volume 25, 2008.

[14] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive windowing.
In SIAM International Conference on Data Mining, 2007.

[15] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. In International Conference on Learning Representations, 2018.

[16] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept drift: The
accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning
Systems, 25(1), 2013.

[17] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. In International Conference on Learning Representations, 2018.

[18] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multi-
task representation learning. Journal of Machine Learning Research, 17(81), 2016.

11

[19] Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-within-
online meta learning. In Advances in Neural Information Processing Systems, 2019.

[20] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In Advances in Neural Information
Processing Systems, volume 31, 2018.

[21] Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. In Advances
in Neural Information Processing Systems, volume 28, 2015.

[22] Farzan Farnia and David Tse. A minimax approach to supervised learning. In Advances in
Neural Information Processing Systems, volume 29, 2016.

[23] Rizal Fathony, Anqi Liu, Kaiser Asif, and Brian D. Ziebart. Adversarial multiclass classifica-
tion: A risk minimization perspective. In Advances in Neural Information Processing Systems,
volume 29, 2016.

[24] Santiago Mazuelas, Andrea Zanoni, and Aritz Perez. Minimax classification with 0-1 loss and
performance guarantees. In Advances in Neural Information Processing Systems, volume 33,
2020.

[25] Santiago Mazuelas, Mauricio Romero, and Peter Grünwald. Minimax risk classifiers with 0-1
loss. Journal of Machine Learning Research, 24(208):1–48, 2023.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. MIT press, 2018.

[27] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),
2013.

[28] Jing Lu, Steven CH Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. Large scale online kernel
learning. Journal of Machine Learning Research, 17(1), 2016.

[29] Yanning Shen, Tianyi Chen, and Georgios B Giannakis. Random feature-based online multi-
kernel learning in environments with unknown dynamics. The Journal of Machine Learning
Research, 20(1), 2019.

[30] Santiago Mazuelas, Yuan Shen, and Aritz Pérez. Generalized maximum entropy for supervised
classification. IEEE Transactions on Information Theory, 68(4), 2022.

[31] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge
University Press, 2019.

[32] Yu Nesterov and Vladimir Shikhman. Quasi-monotone subgradient methods for nonsmooth
convex minimization. Journal of Optimization Theory and Applications, 165(3), 2015.

[33] Wei Tao, Zhisong Pan, Gaowei Wu, and Qing Tao. The strength of Nesterov’s extrapolation
in the individual convergence of nonsmooth optimization. IEEE Transactions on Neural Net-
works and Learning Systems, 31(7), 2019.

[34] Brian DO Anderson and John B Moore. Optimal Filtering. Prentice-Hall, 1979.

[35] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469, 2022.

[36] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In IEEE International Conference on Computer
Vision, 2019.

[37] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adver-
sarial autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[38] Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples
for online task-free continual learning. In Advances in Neural Information Processing Systems,
volume 34, 2021.

12

[39] Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The CLEAR benchmark: Continual
learning on real-world imagery. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

[40] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. An ensemble of classifiers for
coping with recurring contexts in data streams, 2008.

[41] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

13

A Main notations used in the paper.

In this section we summarize the notations used in the paper. Table 2 shows the notation used for the
mean vector, the confidence vector, the MSE vector, the ESS, the uncertainty set, and the minimax
risk using single task, forward, backward, and forward and backward learning.

Table 2: Main notations used in the paper
Single task Forward Backward Forward and Backward

Mean vector τ j τ⇀
j τ↽k

j τ⇋k
j

Confidence vector λj λ⇀
j λ↽k

j λ⇋k
j

MSE vector sj s⇀j s↽k
j s⇋k

j

ESS nj n⇀
j n↽k

j n⇋k
j

Uncertainty set Uj U⇀
j U↽k

j U⇋k
j

Minimax risk R(Uj) R(U⇀
j) R(U↽k

j) R(U⇋k
j)

B Derivation of recursions in (6) for forward learning and recursions in (10)
for forward and backward learning

This section shows how recursions in (6) and recursions in (10) are obtained using those for filtering
and smoothing in linear dynamical systems.

The mean vectors evolve over time steps through the linear dynamical system

τ∞
j = τ∞

j−1 +wj (13)

where vectors wj for j ∈ {2, 3, . . . , k} are independent and zero-mean because pj − pj−1 are
independent and zero-mean. In addition, each state variable τ∞

j is observed at each step j through
τ j that is the sample average of i.i.d. samples from pj , so that we have

τ j = τ∞
j + vj (14)

where vectors vj for j ∈ {1, 2, . . . , k} are independent and zero mean, and independent of wj for
j ∈ {1, 2, . . . , k}. Therefore, equations (13) and (14) above describe a linear dynamical system
(state-space model with white noise processes) [34]. For such systems, the Kalman filter recur-
sions provide the unbiased linear estimator with minimum MSE based on samples corresponding
to preceding steps D1, D2, . . . , Dj , and fixed-lag smoother recursions provide the unbiased linear
estimator with minimum MSE based on samples corresponding to preceding and succeeding steps
D1, D2, . . . , Dk [34]. Then, equations in (6) and equations in (10) are obtained after some algebra
from the Kalman filter recursions and fixed-lag smoother recursions, respectively.

C Proof of Theorem 1

Proof. To obtain bound in (8) we first prove that the mean vector estimate and the MSE vector given
by (6) satisfy

P

{

|τ∞j (i) − τ⇀j
(i)| ≤ κ

√

2s⇀j
(i) log

(

2m

δ

)

}

≥ (1− δ) (15)

for any component i = 1, 2, . . . ,m. Then, we prove that ‖√s⇀j ‖∞ ≤ M/
√

n⇀
j for j ∈

{1, 2, . . . , k}, where the ESSs satisfy n⇀
1 = n1 and n⇀

j ≥ nj + n⇀
j−1

‖σ2
j‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

for j ≥ 2.

To obtain inequality (15), we prove by induction that each component i = 1, 2, . . . ,m of the error in

the mean vector estimate z⇀j
(i) = τ∞j

(i)−τ⇀j
(i) is sub-Gaussian with parameter η⇀j

(i) ≤ κ
√

s⇀j
(i).

Firstly, for j = 1, we have that

z⇀1
(i) = τ∞1

(i) − τ⇀1
(i) = τ∞1

(i) − τ
(i)
1 .

14

Since the bounded random variable Φ
(i)
1 is sub-Gaussian with parameter σ(Φ(i)

1), then the error in
the mean vector estimate z⇀1

(i) is sub-Gaussian with parameter that satisfies

(

η⇀1
(i)
)2

=
σ
(

Φ
(i)
1

)2

n1
≤ κ2σ2

1
(i)

n1
= κ2s

(i)
1 .

If z⇀j−1
(i) = τ∞j−1

(i) − τ⇀j−1
(i) is sub-Gaussian with parameter η⇀j−1

(i) ≤ κ
√

s⇀j−1
(i) for any

i = 1, 2, . . . ,m, then using the recursions in (6) we have that

z⇀j
(i) = τ∞j

(i) − τ⇀j
(i) = τ∞j−1

(i) + w
(i)
j − τ

(i)
j −

s
(i)
j

s⇀j−1
(i) + s

(i)
j + d2j

(i)

(

τ⇀j−1
(i) − τ

(i)
j

)

= τ∞j−1
(i) + w

(i)
j − τ⇀j−1

(i) +

(

1−
s
(i)
j

s⇀j−1
(i) + s

(i)
j + d2j

(i)

)

(

τ⇀j−1
(i) − τ

(i)
j

)

= τ∞j−1
(i) + w

(i)
j − τ⇀j−1

(i) −
s⇀j

(i)

s
(i)
j

(

τ
(i)
j − τ⇀j−1

(i)
)

since wj = τ∞
j − τ∞

j−1. If vj = τ j − τ∞
j , the error in the mean vector estimate is given by

z⇀j
(i) = τ∞j−1

(i) + w
(i)
j − τ⇀j−1

(i) −
s⇀j

(i)

s
(i)
j

(

τ∞j
(i) + v

(i)
j − τ⇀j−1

(i)
)

= τ∞j−1
(i) + w

(i)
j − τ⇀j−1

(i) −
s⇀j

(i)

s
(i)
j

(

τ∞j−1
(i) + w

(i)
j + v

(i)
j − τ⇀j−1

(i)
)

=

(

1−
s⇀j

(i)

s
(i)
j

)

z⇀j−1
(i) +

(

1−
s⇀j

(i)

s
(i)
j

)

(

w
(i)
j

)

−
s⇀j

(i)

s
(i)
j

v
(i)
j

where w
(i)
j and v

(i)
j are sub-Gaussian with parameter σ(w

(i)
j) and σ

(

Φ
(i)
j

)

/
√
nj , respectively.

Therefore, we have that z⇀j
(i) is sub-Gaussian with parameter η⇀j

(i) that satisfies

(

η⇀j
(i)
)2

=

(

1−
s⇀j

(i)

s
(i)
j

)2
(

η⇀j−1
(i)
)2

+

(

1−
s⇀j

(i)

s
(i)
j

)2

σ
(

w
(i)
j

)2

+

(

s⇀j
(i)

s
(i)
j

)2 σ
(

Φ
(i)
j

)2

nj

since z⇀
j−1, wj , and vj are independent. Using that η⇀j−1

(i) ≤ κ
√

s⇀j−1
(i) and the definition of κ,

we have that

(

η⇀j
(i)
)2

≤
(

1−
s⇀j

(i)

s
(i)
j

)2

κ2s⇀j−1
(i) +

(

1−
s⇀j

(i)

s
(i)
j

)2

κ2d2j
(i)

+

(

s⇀j
(i)

s
(i)
j

)2

κ2
σ2
j
(i)

nj

≤
(

1−
s⇀j

(i)

s
(i)
j

)2

κ2

(

1

s⇀j
(i)

− 1

sj(i)

)−1

+ d2j
(i)

+

(

s⇀j
(i)
)2

s
(i)
j

κ2 (16)

=

(

1−
s⇀j

(i)

s
(i)
j

)

κ2s⇀j
(i) + κ2

(

s⇀j
(i)
)2

s
(i)
j

where (16) is obtained using the second recursion in (6).

The inequality in (15) is obtained using the union bound together with the Chernoff bound (concen-
tration inequality) [31] for the random variables z⇀j

(i) that are sub-Gaussian with parameter η⇀j
(i).

Now, we prove by induction that, for any j, ‖√s⇀j ‖∞ ≤ M/
√

n⇀
j where the ESSs satisfy n⇀

1 = n1

and n⇀
j ≥ nj + n⇀

j−1
‖σ2

j‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

for j ≥ 2. For j = 1, using the definition of s⇀j in the

15

second recursion in (6), we have that for any component i
(

s⇀1
(i)
)−1

=
(

s
(i)
1

)−1

=
n1

σ2
1
(i)

≥ n1

M2
.

Then, vector s⇀1 satisfies

‖
√

s⇀1 ‖∞ ≤ M√
n1

=
M√
n⇀
1

.

If ‖√s⇀j−1‖∞ ≤ M/
√

n⇀
j−1, then we have that for any component i

(

s⇀j
(i)
)−1

=
1

s
(i)
j

+
1

s⇀j−1
(i) + d2j

(i)
≥ 1

s
(i)
j

+
1

M2

n⇀
j−1

+ d2j
(i)

≥ 1

M2

nj +

1

1
n⇀
j−1

+
d2
j
(i)

M2

≥ 1

M2

nj +

1

1
n⇀
j−1

+
‖d2

j‖∞

‖σ2
j
‖∞

by using the second recursion in (6) and the induction hypothesis. Then, vector s⇀j satisfies
∥

∥

∥

√

s⇀j

∥

∥

∥

∞
≤ M
√

nj + n⇀
j−1

‖σ2
j
‖∞

‖σ2
j
‖∞+n⇀

j−1‖d2
j
‖∞

. (17)

The inequality in (8) is obtained because the minimax risk is bounded by the smallest minimax risk
as shown in [24, 25, 30] so that

R(U⇀
j) ≤ R∞

j +
(

‖τ∞
j − τ⇀

j ‖∞ + ‖λ⇀
j ‖∞

) ∥

∥µ∞
j

∥

∥

1

that leads to (8) using (15), (17), and the fact that 1 ≤
√

2 log
(

2m
δ

)

.

D Proof of Theorem 2

Proof. To obtain bound in (9), we proceed by induction. For j = 1, using the expression for the
ESS in (8), we have that

n⇀
1 = n1 ≥ n.

If (9) holds for the (j − 1)-task, then for the j-th task, we have that

n⇀
j ≥ nj + n⇀

j−1

‖σ2
j‖∞

‖σ2
j‖∞ + n⇀

j−1‖d2
j‖∞

≥ n+ n⇀
j−1

1

1 + n⇀
j−1d

2
= n

(

1 +
1

n
n⇀
j−1

+ nd2

)

where the second inequality is obtained because nj ≥ n, ‖σ2
j‖∞ ≤ 1, and ‖d2

j‖∞ ≤ d2. Using that

n⇀
j−1 ≥ n

(

1 + (1+α)2j−3−1−α
α(1+α)2j−3+α

)

, the ESS of the j-th task satisfies

n⇀
j ≥ n

1 +

1
n

n
(

1+ (1+α)2j−3−1−α

α(1+α)2j−3+α

) + nd2

= n

1 +
1

α(1+α)2j−3+α
(1+α)2j−2−1 + nd2

= n

1 +
1

α(1+α)2j−3+α
(1+α)2j−2−1 + α2

α+1

 (18)

= n

(

1 +
(1 + α)2j−1 − 1− α

α(1 + α)2j−2 + α(α+ 1) + α2(1 + α)2j−2 − α2

)

where (18) is obtained because nd2 = α2

α+1 since α = nd2

2

(√

1 + 4
nd2 + 1

)

.

Now, we obtain bounds for the ESS if nd2 < 1
j2 . In the following, the constant φ represents the

golden ratio φ = 1.618

16

If nd2 < 1
j2 ⇒

√
nd2 ≤ α ≤

√
nd2φ ≤ φ

j ≤ 1 because α = nd2

2

(√

1 + 4
nd2 + 1

)

=
√
nd2

√
nd2+4+

√
nd2

2 , then we have that n⇀
j satisfies

n⇀
j ≥ n

(

1 +
1

α

α(2j − 2)

2 + α(2j − 1)

)

= n

(

1 +
2j − 2

2 + α(2j − 1)

)

where the first inequality follows because (1+α)2j−2 ≥ 1+α(2j− 2). Using α ≤ φ
j , we have that

n⇀
j ≥ n

(

1 +
2j − 2

2 + φ
j (2j − 1)

)

≥ n

(

1 +
2j − 2

2 + 2φ− φ
j

)

≥ n

(

1 +
j − 1

1 + φ

)

.

E More efficient recursions for forward and backward learning

The Rauch-Tung-Striebel smoother recursions [34] allow to obtain forward and backward mean and
MSE vectors directly from those vectors for the succeeding task. Specifically, for each j-th task, the
mean vector τ⇋k

j together with the MSE vector s⇋k
j can be obtained using those vectors for the

succeeding task τ⇋k
j+1, s

⇋k
j+1 as

τ⇋k
j = τ⇀

j +
s⇀j

s⇀j + d2
j+1

(

τ⇋k
j+1 − τ⇀

j

)

s⇋k
j =

1

s⇀j
+

d
2
j+1 +

(

1

s⇋k
j+1

− 1

s⇀j + d2
j+1

)−1

−1

−1

.

The above recursions provide the same mean vector estimate as the recursions in (10) in the pa-
per since they are obtained using the Rauch-Tung-Striebel smoother recursions instead of fixed-lag
smoother recursions [34].

F Proof of Theorem 3

Proof. To obtain bound in (11) we first prove that the mean vector estimate and the MSE vector
given by (10) satisfy

P

{

|τ∞k (i) − τ⇋k
j

(i)| ≤ κ

√

2s⇋k
j

(i)
log

(

2m

δ

)

}

≥ (1 − δ) (19)

for any component i = 1, 2, . . . ,m. Then, we prove that ‖s⇋k
j ‖∞ ≤ M/

√

n⇋k
j for j ∈

{1, 2, . . . , k}, where the ESSs satisfy n⇋k
k = n⇀

k and n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+ n↽k

j+1‖d2
j+1‖∞

for j ≥ 2.

To obtain inequality (19), we prove that each component i = 1, 2, . . . ,m of the error in the mean

vector estimate z⇋k
j

(i)
= τ∞j

(i) − τ⇋k
j

(i)
is sub-Gaussian with parameter η⇋k

j

(i) ≤ κ

√

s⇋k
j

(i)
.

Analogously to the proof of Theorem 1, it is proven that each component in the error of the backward

mean vector τ↽k
j+1 is sub-Gaussian with parameters satisfying η↽k

j+1 � κ
√

s↽k
j+1. The error in the

forward and backward mean vector estimate is given by

z⇋k
j

(i)
= τ∞j

(i) − τ⇋k
j

(i)
= τ∞j

(i) − τ⇀j
(i) −

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

τ↽k
j+1

(i) − τ⇀j
(i)
)

17

where the second equality is obtained using the recursion for τ⇋k
j

(i)
in (10). Adding and subtracting

s⇀j
(i)

s⇀
j

(i)+s↽k
j+1

(i)+d2
j+1

(i) τ
∞
j+1

(i), we have that

z⇋k
j

(i)
= z⇀j

(i) −
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

τ∞j+1
(i) − τ∞j+1

(i) + τ↽k
j+1

(i) − τ⇀j
(i)
)

= z⇀j
(i) −

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

τ∞j
(i) + w

(i)
j+1 − z↽k

j+1

(i) − τ⇀j
(i)
)

since wj = τ∞
j − τ∞

j−1 and z⇀j
(i) = τ∞j

(i) − τ⇀j
(i). Then, we have that

z⇋k
j

(i)
= z⇀j

(i) −
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

z⇀j
(i) + w

(i)
j+1 − z↽k

j+1

(i)
)

(20)

=

(

1−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)

z⇀j
(i) −

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

(

w
(i)
j+1 − z↽k

j+1

(i)
)

where z⇀j
(i), z↽k

j+1
(i)

, and w
(i)
j+1 are sub-Gaussian with parameters η⇀j

(i) ≤ κ
√

s⇀j
(i), η↽k

j+1
(i) ≤

κ

√

s↽k
j+1

(i)
, and σ(w

(i)
j), respectively. Since z⇀

j , z↽k
j+1, and wj+1 are independent, we have that

z⇋k
j

(i)
given by (20) is sub-Gaussian with parameter that satisfies

(

η⇋k
j

(i)
)2

=

(

1−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2
(

η⇀j
(i)
)2

+

(

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2
(

σ
(

w
(i)
j

)2

+
(

η↽k
j+1

(i)
)2
)

≤
(

1−
s⇀j

(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2

κ2s⇀j
(i)

+

(

s⇀j
(i)

s⇀j
(i) + s↽k

j+1
(i)

+ d2j+1
(i)

)2

κ2
(

dj+1
(i) + s↽k

j+1

(i)
)

Using the second recursion in (10) we have that the sub-Gaussian parameter satisfies

(

η⇋k
j

(i)
)2

≤

1−
s⇋k
j

(i)

s↽k
j+1

(i)
+ d2j+1

(i)

2

κ2

1

s⇋k
j

(i)
− 1

s↽k2

j+1

(i)
+ d2j+1

(i)

−1

+

(

s⇋k
j

(i)
)2

s↽k
j+1

(i)
+ d2j+1

(i)
κ2

=

s↽k
j+1

(i)
+ d2j+1

(i) − s⇋k
j

(i)

s↽k
j+1

(i)
+ d2j+1

(i)

κ2s⇋k
j

(i)

+

(

s⇋k
j

(i)
)2

s↽k
j+1

(i)
+ d2j+1

(i)
κ2 = κ2s⇋k

j

(i)
.

The inequality in (19) is obtained using the union bound together with the Chernoff bound (con-

centration inequality) [31] for the random variables z⇋k
j

(i)
that are sub-Gaussian with parameter

η⇋k
j

(i)
.

18

Now, we prove that, for any j, ‖
√

s⇋k
j ‖ ≤ M/

√

n⇋k
j where the ESSs satisfy n⇋k

k = n⇀
k and

n⇋k
j ≥ n⇀

j + n↽k
j+1

‖σ2
j‖∞

‖σ2
j
‖∞+ n↽k

j+1‖d2
j+1‖∞

for j ≥ 2. Analogously to the proof of Theorem 1, we

prove that the backward MSE vector s↽k
j+1 satisfies ‖

√

s↽k
j+1‖∞ ≤ M/

√

n↽k
j+1. Then, using that

‖
√

s↽k
j+1‖∞ ≤ M/

√

n↽k
j+1, we have that for every component i

(

s⇋k
j

(i)
)−1

=
1

s⇀j
(i)

+
1

s↽k
j+1

(i)
+ d2j+1

(i)
≥

n⇀
j

σ2
j
(i)

+
1

M2

n↽k
j+1

+ d2j+1
(i)

≥ 1

M2

n⇀
j +

1

1
n↽k
j+1

+
d2
j+1

M2

≥ 1

M2

n⇀
j +

1

1
n↽k
j+1

+
‖d2

j+1‖∞

‖σ2
j
‖∞

.

Then, we obtain

‖
√

s⇋k
j ‖∞ ≤ M

√

n⇀
j + 1

1

n↽k
j+1

+
‖d2

j+1
‖∞

‖σ2
j
‖∞

. (21)

The inequality in (11) is obtained because the minimax risk is bounded by the smallest minimax risk
as shown in [24, 25, 30] so that

R(U⇋k
j) ≤ R∞

j +
(

‖τ∞
j − τ⇋k

j ‖∞ + ‖λ⇋k
j ‖∞

)

∥

∥µ∞
j

∥

∥

1

that leads to (11) using (19), (21), and the fact that 1 ≤
√

2 log
(

2m
δ

)

.

G Proof of Theorem 4

Proof. To obtain bound in (12), we use the ESS obtained with forward learning in Theorem 2 and
obtained with backward learning. Analogously to the proof of Theorem 2, we prove that the ESS
obtained at backward learning satisfies

n↽k
j+1 ≥ nj+1 + n↽k

j+2

‖σ2
j+1‖∞

‖σ2
j+1‖∞ + n↽k

j+2‖d2
j+2‖∞

≥ n

(

1 +
(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

)

.

Therefore, the ESS obtained with forward an backward learning satisfies

n⇋k
j ≥ n⇀

j + n

(

1 +
(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

)

1 +
n
(

1 + (1+α)2(k−j)−1−1−α

α(1+α)2(k−j)−1+α

)

nd2

−1

= n⇀
j + n

(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

(

1 +
α2

α+ 1

(

1 +
(1 + α)2(k−j)−1 − 1− α

α(1 + α)2(k−j)−1 + α

))−1

where the second equality follows because nd2 = α2

α+1 since α = nd2

2

(√

1 + 4
nd2 + 1

)

. Then, we

have that

n⇋k
j ≥n⇀

j + n
(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

·
(

((1 + α)2(k−j)−1 + 1)(α+ 1 + α2) + α((1 + α)2(k−j)−1 − 1− α)

(α+ 1)((1 + α)2(k−j)−1 + 1)

)−1

≥n⇀
j + n

(1 + α)2(k−j) − 1

α(1 + α)2(k−j)−1 + α

(α+ 1)((1 + α)2(k−j)−1 + 1)

(1 + α)2(k−j)+1 + 1
.

Now, we obtain bounds for the ESS depending on the value value of nd2. Such bounds are obtained
similarly as in Theorem 2 and we also denote by φ the golden ratio φ = 1.618

19

1. If nd2 < 1
j2 ⇒

√
nd2 ≤ α ≤

√
nd2φ ≤ φ

j ≤ 1 because

α = nd2

√

1 + 4
nd2 + 1

2
=

√
nd2

√
nd2 + 4 +

√
nd2

2

then we have that n⇋k
j satisfies

n⇋k
j ≥ n⇀

j + n
1

α

α(2(k − j))

2 + α2(k − j)
= n⇀

j + n
k − j

1 + α(k − j)
≥ n⇀

j + n
k − j

1 + φ
j (k − j)

where the first inequality follows because (1 + α)2(k−j)−1 ≥ 1 + α(2(k − j)− 1) and the
second inequality is obtained using α ≤ φ

j .

2. If 1
j2 ≤ nd2 < 1 ⇒ 1

j ≤
√
nd2 ≤ α ≤

√
nd2φ because

α = nd2

√

1 + 4
nd2 + 1

2
=

√
nd2

√
nd2 + 4 +

√
nd2

2

then we have that n⇋k
j satisfies

n⇋k
j ≥ n⇀

j

n

α

(1 + α)2(k−j) − 1

(1 + α)2(k−j) + 1
≥ n⇀

j

n

α

(1 +
√
nd2)2(k−j) − 1

(1 +
√
nd2)2(k−j) + 1

where the second inequality follows because the ESS is monotonically increasing for α and
α ≥ nd2. Since (1 +

√
nd2)2(k−j) ≥ 1 + 2

√
nd2(k − j) and k − j ≥ 1, we have that

n⇋k
j ≥ n⇀

j +
n

α

√
nd2

1 +
√
nd2

≥ n⇀
j + n

1

φ

1

1 +
√
nd2

because α ≤
√
nd2φ.

3. If nd2 ≥ 1 ⇒ 1 ≤ nd2 ≤ α ≤ nd2φ because α = nd2
√

1+ 4
nd2

+1

2 , then we have that n⇋k
j

satisfies

n⇋k
j ≥ n⇀

j + n
1

α

22(k−j) − 1

22(k−j) + 1
≥ n⇀

j + n
1

nd2
1

φ

3

5

where the first inequality follows because the ESS is monotonically increasing for α and
α ≥ 1 and the second inequality is obtained using k − j ≥ 1 and α ≤ nd2φ.

H Additional numerical results and implementation details

In this section we describe the datasets used for the numerical results in Section 5, we provide further
details for the numerical experimentations carried out, and include several additional results. Specif-
ically, in the first set of additional results, we evaluate the classification performance of the proposed
method in comparison with state-of-the-art techniques for different sample sizes; in the second set
of additional results, we further show the performance improvement leveraging information from
all the tasks in the sequence with additional datasets; in the third set of additional results, we show
the classification error and the running time of IMRCs for different hyper-parameter values; and
in the fourth set of additional results, we evaluate the assumption of change between tasks being
independent and zero-mean. In addition, in the folder Implementation_IMRC in the supplementary
materials we provide the code of the proposed IMRCs with the setting used in the numerical results.

In Section 5, we use 12 publicly available datasets [1, 37, 36, 39, 10, 40, 41, 2], and http://yann.
lecun.com/exdb/mnist/. The summary of these datasets is provided in Table 3 that shows the
number of classes, the number of samples, and the number of tasks. In the following, we further
describe the tasks and the time-dependency of each dataset used.

20

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

• The “Yearbook” dataset contains portraits’ photographs over time and the goal is to predict
males and females. Each task corresponds to portraits from one year from 1905 to 2013.

• The “ImageNet noise” dataset contains images with increasing noise over tasks and the
goal is to predict if an image is a bird or a snake. The sequence of tasks corresponds to the
noise factors [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6] [35].

• The “DomainNet” dataset contains six different domains with decreasing realism and the
goal is to predict if an image is an airplane, bus, ambulance, or police car. The sequence
of tasks corresponds to the six domains: real, painting, infograph, clipart, sketch, and
quickdraw.

• The “UTKFaces” dataset contains face images in the wild with increasing age and the goal
is to predict males and females. The sequence of tasks corresponds to face images with
different ages from 0 to 116 years.

• The “Rotated MNIST” dataset contains rotated images with increasing angles over tasks
and the goal is to predict if the number in an image is greater than 5 or not. Each j-th task

corresponds to a rotation angle randomly selected from
[

180(j−1)
k , 180jk

]

degrees where

j ∈ {1, 2, . . . , k} and k is the number of tasks.

• The “CLEAR” dataset contains images with a natural temporal evolution of visual concepts
and the goal is to predict if an image is soccer, hockey, or racing. Each task corresponds to
one year from 2004 to 2014.

• The “Power Supply” dataset contains three year power supply records from 1995 to 1998
and the goal is to predict which hour the current power supply belongs to. We relabel into
binary classification according to pm. or am. as in [10].

• The “Usenet” dataset is splitted into Usenet1 and Usenet2 which both contains a stream of
messages from different 20 newsgroups that are sequentially presented to a user and the
goal is to predict the personal interests.

• The “German” dataset contains information about people who take a credit by a bank and
the goal is to classify each person as good or bad credit risks.

• The “Spam” dataset contains emails and the task is to predict if an email is malicious spam
email or legitimate email.

• The “Covertype” dataset contains cartographic variables of a forest area obtained from US
Forest Service (USFS) and the goal is to predict the forest cover type.

The samples in each task are randomly splitted in 100 samples for test and the rest of the samples
for training. The samples used for training in the numerical results are randomly sampled from each
group of training samples in each repetition.

In Section 5, we compare the results of IMRC methods with 7 state-of-the-art-techniques [5, 17, 4,
6, 9, 10, 16]. In the following, we briefly describe each method used.

• GEM method [5] is a technique developed for continual learning. The method provided
by Lopez-Paz & Ranzato learns each new task using a stochastic gradient descent with
inequality constraints given by the losses of preceding tasks. Such constraints avoid the
increase of the loss of each preceding tasks.

• MER method [17] is a technique developed for continual learning. The method provided by
Riemer et al. learns each new task using sample sample sets that include random samples
of preceding tasks. Such samples of preceding tasks are stored in a memory buffer.

• ELLA method [4] is a techniques developed for continual learning. The method provided
by Ruvolo & Eaton learns each new task transferring knowledge from a shared basis of task
models.

• EWC method [6] is a technique developed for continual learning. The method provided by
Kirkpatrick et al. learns each new task regularizing the loss with regularization parameters
given by the Fisher information.

• Condor method [9] is a technique developed for concept drift adaptation. The method
provided by Zhao et al. is an ensemble method that adapts to evolving tasks by learning
weighting the models in the ensemble at each time step.

21

Table 3: Datasets characteristics.
Dataset Classes Samples Tasks

Yearbook [1] 2 37,921 126

ImageNet Noise [35] 2 12,000 10

DomainNet [36] 4 6,256 6

UTKFace [37] 2 23,500 94

Rotated MNIST [38] 2 70,000 60

CLEAR [39] 3 10,490 10

Power Supply [10] 2 29,928 99

Usenet1 [40] 2 1,500 5

Usenet2 [40] 2 1,500 5

German [41] 2 1,000 3

Spam [2] 2 6,213 20

Covertype [10] 2 581,012 1,936

Forward n = 100
Forward and backward n = 10
Forward n = 10

Forward and backward n = 100

C
la

ss
ifi

ca
ti

on
er

ro
r/

si
ng

le
-t

as
k

2 3 4 5

0.9

0.8

1

1 6

Number of tasks k

(a) Classification error per number of tasks using “Do-
mainNet” dataset.

C
la

ss
ifi

ca
ti

on
er

ro
r

Forward k = 2
Single-task

Forward and backward k = 2
Forward k = 3
Forward and backward k = 3

Sample size n
10 30 50 70 90

0.3

0.36

0.42

(b) Classification error per sample size using “Do-
mainNet” dataset.

Figure 5: Forward and backward learning can sharply boost performance and ESS as tasks arrive.

• DriftSurf method [10] is a technique developed for concept drift adaptation. The method
provided by Tahmasbi et al. adapts to evolving tasks by using a drift detection method.
Such method allows to restart a new model when a change in the distribution is detected.

• AUE method [16] is a technique developed for concept drift adaptation. The method pro-
vided by Brzezinski & Stefanowski is an ensemble method that adapts to evolving tasks by
incrementally updating all classifiers in the ensemble and weighting them with non-linear
error functions.

The classifier parameters in the numerical results are obtained using an accelerated subgradient
method based on Nesterov approach [32, 33]. Such subgradient method applied to optimization (3)
obtains at each step classifier parameters µ from the mean and confidence vectors τ ,λ using the
iterations for l = 1, 2, . . . ,K

µ̄(l + 1) = µ(l) + al

(

τ − ∂ϕ(µ(l))− λsign(µ(l))
)

(22)

µ(l + 1) = µ̄(l + 1) + θl+1(θ
−1
l − 1) (µ(l)− µ̄(l))

where sign(·) denotes the sign function, µ(l) is the l-th iterate for µ, θl = 2/(l + 1) and
al = 1/(l + 1)3/2 are the step sizes and ∂ϕ(µ(l)) denotes a subgradient of ϕ(·) at µ(l) with

ϕ(µ) = max
x∈X ,C⊆Y

∑

y∈C Φ(x, y)
Tµ− 1

|C| .

In addition, the above subgradient method is implemented using K = 2000 iterations and a warm-
start that initializes the classifier parameters in (22) with the solution obtained for the closest task.

22

Table 4: Classification error and standard deviation of the proposed IMRC method in comparison with the
existing techniques for n = 50 samples per task.

Method GEM MER ELLA EWC Condor DriftSurf AUE IMRC

Yearbook .16 ± .02 .11 ± .01 .43 ± .10 .38 ± .02 .11 ± .02 .29 ± .02 .29 ± .02 .10 ± .02

I. noise .16 ± .06 .10 ± .01 .47 ± .05 .47 ± .05 .10 ± .02 .48 ± .02 .48 ± .02 .10 ± .02

DomainNet .65 ± .05 .29 ± .02 .67 ± .05 .75 ± .05 .45 ± .01 .32 ± .00 .32 ± .00 .28 ± .03

UTKFaces .12 ± .00 .11 ± .09 .18 ± .11 .12 ± .00 .14 ± .02 .12 ± .00 .12 ± .00 .10 ± .00

R. MNIST .29 ± .04 .41 ± .13 .48 ± .05 .44 ± .01 .43 ± .01 .48 ± .02 .48 ± .02 .25 ± .02

CLEAR .08 ± .01 .09 ± .04 .60 ± .05 .64 ± .03 .35 ± .01 .33 ± .00 .33 ± .00 .05 ± .02

P. Supply .47 ± .03 .47 ± .02 .35 ± .01 .47 ± .02 .36 ± .01 .40 ± .01 .40 ± .01 .28 ± .01

Usenet1 .47 ± .02 .46 ± .02 .32 ± .01 .48 ± .02 .45 ± .02 .39 ± .01 .39 ± .01 .30 ± .01

Usenet2 .35 ± .01 .32 ± .02 .32 ± .01 .42 ± .05 .35 ± .02 .27 ± .01 .30 ± .01 .32 ± .01

German .34 ± .01 .33 ± .01 .31 ± .01 .30 ± .01 .34 ± .01 .30 ± .01 .30 ± .01 .28 ± .01

Spam .07 ± .01 .09 ± .02 .23 ± .03 .23 ± .03 .19 ± .01 .32 ± .01 .33 ± .01 .08 ± .00

Covert. .09 ± .00 .08 ± .00 .11 ± .01 .08 ± .00 .07 ± .02 .09 ± .00 .10 ± .00 .08 ± .00

Table 5: Classification error and standard deviation of the proposed IMRC method in comparison with the
existing techniques for n = 100 samples per task.

Method GEM MER ELLA EWC Condor DriftSurf AUE IMRC

Yearbook .17 ± .03 .10 ± .01 .43 ± .02 .27 ± .06 .09 ± .01 .27 ± .02 .27 ± .01 .08 ± .02

I. noise .13 ± .07 .10 ± .01 .47 ± .04 .46 ± .06 .09 ± .01 .48 ± .02 .48 ± .02 .09 ± .01

DomainNet .53 ± .10 .26 ± .04 .67 ± .05 .74 ± .05 .44 ± .00 .32 ± .00 .32 ± .00 .28 ± .01

UTKFaces .12 ± .00 .11 ± .01 .17 ± .11 .12 ± .00 .11 ± .01 .12 ± .00 .12 ± .00 .10 ± .00

R. MNIST .28 ± .02 .45 ± .10 .47 ± .05 .40 ± .01 .41 ± .01 .48 ± .02 .48 ± .02 .21 ± .00

CLEAR .09 ± .02 .05 ± .02 .60 ± .05 .62 ± .04 .35 ± .01 .33 ± .00 .34 ± .00 .05 ± .02

P. Supply .47 ± .02 .48 ± .03 .37 ± .04 .46 ± .00 .36 ± .00 .37 ± .02 .38 ± .02 .25 ± .00

Usenet1 .46 ± .02 .46 ± .02 .35 ± .05 .47 ± .02 .40 ± .01 .39 ± .01 .39 ± .01 .30 ± .01

Usenet2 .34 ± .00 .29 ± .01 .35 ± .02 .35 ± .02 .32 ± .02 .26 ± .02 .27 ± .02 .30 ± .00

German .34 ± .01 .29 ± .01 .29 ± .01 .30 ± .01 .30 ± .01 .29 ± .00 .32 ± .01 .29 ± .00

Spam .07 ± .01 .08 ± .01 .26 ± .05 .17 ± .02 .10 ± .02 .32 ± .01 .33 ± .01 .08 ± .00

Covert. .08 ± .00 .08 ± .00 .11 ± .00 .08 ± .00 .07 ± .02 .09 ± .00 .09 ± .00 .08 ± .00

Table 6: Classification error and standard deviation of the proposed IMRC method in comparison with the
existing techniques for n = 150 samples per task.

Method GEM MER ELLA EWC Condor DriftSurf AUE IMRC

Yearbook .16 ± .03 .10 ± .01 .43 ± .08 .22 ± .02 .09 ± .01 .23 ± .01 .23 ± .01 .08 ± .01

I. noise .12 ± .03 .07 ± .01 .47 ± .04 .45 ± .07 .09 ± .01 .48 ± .02 .48 ± .02 .08 ± .01

DomainNet .49 ± .10 .28 ± .02 .67 ± .05 .74 ± .05 .43 ± .01 .32 ± .00 .32 ± .00 .27 ± .02

UTKFaces .12 ± .00 .11 ± .01 .17 ± .11 .12 ± .00 .10 ± .01 .12 ± .00 .12 ± .00 .10 ± .00

R. MNIST .27 ± .01 .47 ± .05 .47 ± .05 .38 ± .01 .41 ± .02 .48 ± .02 .48 ± .02 .20 ± .01

CLEAR .08 ± .01 .05 ± .02 .60 ± .04 .60 ± .04 .36 ± .01 .33 ± .00 .33 ± .00 .04 ± .01

P. Supply .47 ± .01 .48 ± .02 .30 ± .01 .47 ± .01 .36 ± .01 .36 ± .00 .36 ± .01 .24 ± .00

Usenet1 .47 ± .02 .41 ± .03 .29 ± .01 .48 ± .01 .43 ± .02 .39 ± .00 .39 ± .01 .29 ± .01

Usenet2 .34 ± .00 .29 ± .00 .26 ± .01 .32 ± .01 .32 ± .02 .26 ± .00 .28 ± .00 .31 ± .00

German .34 ± .01 .30 ± .00 .25 ± .01 .30 ± .02 .31 ± .01 .29 ± .01 .29 ± .01 .28 ± .01

Spam .07 ± .01 .07 ± .01 .23 ± .03 .13 ± .02 .11 ± .02 .32 ± .01 .33 ± .01 .07 ± .00

Covert. .08 ± .00 .08 ± .00 .10 ± .01 .08 ± .00 .07 ± .02 .09 ± .00 .09 ± .00 .08 ± .00

23

Ta
sk

Step
1
1

3

3

5

5

7

7

9

9

11

11

(a) Single task.

Ta
sk

Step
1
1

3

3

5

5

7

7

9

9

11

11

(b) Forward.

Ta
sk

Classification
errorStep

1
1

3

3

5

5

7

7

9

9

11

0.1

0

0.2

0.3

0.4

(c) Forward and backward.

Figure 6: Forward and backward learning can improve performance of preceding tasks.

Table 7: Classification error of the proposed IMRC method varying W and b.
Hyper-parameter W = 2 W = 4 W = 6 b = 1 b = 2 b = 3 b = 4 b = 5

Sample size n 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

Yearbook .13 .08 .13 .09 .13 .09 .14 .10 .09 .14 .13 .08 .13 .08 .13 .08

ImageNet noise .15 .09 .15 .09 .15 .09 .15 .09 .15 .09 .15 .09 .15 .08 .15 .08

DomainNet .34 .28 .32 .27 .33 .28 .36 .29 .35 .28 .34 .28 .34 .28 .34 .28

UTKFaces .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

Rotated MNIST .36 .21 .35 .21 .36 .21 .36 .22 .36 .22 .36 .21 .36 .21 .36 .21

CLEAR .09 .05 .09 .05 .09 .06 .10 .05 .09 .05 .09 .05 .09 .05 .08 .05

Weather .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31 .31

Power Supply .30 .25 .30 .25 .30 .25 .32 .27 .31 .26 .30 .25 .30 .25 .30 .25

Usenet1 .32 .30 .33 .31 .33 .31 .32 .30 .32 .30 .32 .30 .32 .30 .32 .30

Usenet2 .33 .30 .34 .31 .34 .31 .34 .30 .33 .30 .33 .30 .33 .30 .32 .30

German .34 .29 .34 .29 .34 .29 .34 .29 .34 .29 .34 .29 .34 .29 .34 .29

Spam .13 .08 .14 .08 .13 .08 .14 .09 .13 .08 .13 .08 .12 .07 .12 .07

Covertype .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08 .08

In the first set of additional results, we further compare the classification error of IMRCs with
the state-of-the-art techniques. The results in Table 1 in the paper as well as Tables 4, 5, and 6
are obtained computing the classification error 50 times for each sample size. Table 1 in the paper
shows classification errors for n = 10 samples, while Tables 4, 5, and 6 show the classification
error for n = 50, n = 100, and n = 150 samples, respectively. As can be observed in Ta-
ble 4, the performance improvement of IMRCs in comparison with the state-of-the-art techniques
for n = 50, n = 100, and n = 150 is similar to that shown in the paper for n = 10.

In the second set of additional results, we further illustrate the relationship among classification
error, number of tasks, and sample size. Figure 4 in the paper as well as Figure 5 are obtained
computing the classification error over all the sequences of consecutive tasks of length k in the
dataset. Then, we repeat such experiment 10 times with randomly chosen training sets of size n.
Figure 5 extends the results for IMRCs using “DomainNet” dataset completing those in the main
paper that show the results using “Yearbook” dataset. Figure 5a shows the classification error of
IMRC method divided by the classification error of single-task learning for different number of
tasks with n = 10 and n = 100 sample sizes. In addition, Figure 5b shows the classification error of
IMRC method for different sample sizes with k = 10 tasks. Figures 5a and 5b show similar behavior
to Figures 4a and 4b in the paper, respectively. In addition, Figure 6 shows the classification error
of IMRCs per step and task with single-task learning, forward learning, and forward and backward
learning using the “Yearbook” dataset. Such figure shows that forward and backward learning can
improve performance of preceding tasks, while forward learning and single task learning maintain
the same performance over time.

In the third set of additional results, we further assess the change in classification error and the
running time of IMRCs varying the hyper-parameters. Table 7 shows the classification error of
IMRCs varying the values of hyper-parameter for the window size W and the number of backward
steps b, completing those in the paper that show the results for W = 2 and b = 3. As shown in
the table, the proposed IMRCs do not require a careful fine-tuning of hyper-parameters and similar
performances are obtained by using different values. In addition, Table 8 shows the mean running

24

Table 8: Running time of IMRC method in comparison with the state-of-the-art-techniques.
Dataset GEM MER ELLA EWC b = 1 b = 2 b = 3 b = 4 b = 5

Sample size n 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

Yearbook 0.098 0.476 0.166 3.726 0.066 0.070 0.358 3.031 0.094 0.324 0.105 0.397 0.133 0.487 0.167 0.582 0.184 0.664

ImageNet noise 0.010 0.037 0.079 1.052 0.073 0.073 0.032 0.252 0.259 0.490 0.261 0.531 0.284 0.561 0.304 0.585 0.438 0.601

DomainNet 0.005 0.020 0.066 0.900 0.054 0.065 0.018 0.155 0.518 8.463 0.543 8.983 0.542 9.514 0.559 9.699 0.571 9.921

UTKFaces 0.310 0.180 0.127 3.458 0.059 0.062 0.245 2.246 0.108 0.348 0.115 0.401 0.133 0.488 0.156 0.573 0.190 0.664

Rotated MNIST 0.180 1.094 0.211 4.092 0.176 0.198 0.587 5.296 0.135 0.471 0.165 0.599 0.209 0.737 0.249 0.877 0.288 1.010

CLEAR 0.009 0.034 0.074 1.063 0.077 0.073 0.031 0.248 0.235 1.310 0.252 1.406 0.255 1.469 0.271 1.595 0.360 1.693

Power Supply 0.031 0.169 0.025 0.249 0.007 0.006 0.190 1.937 0.241 0.768 0.257 0.840 0.291 1.025 0.351 1.209 0.425 1.404

Usenet1 0.003 0.014 0.012 0.115 0.008 0.009 0.012 0.117 0.320 0.930 0.324 0.934 0.366 0.946 0.368 0.980 0.400 1.472

Usenet2 0.003 0.013 0.012 0.113 0.008 0.009 0.012 0.117 0.272 1.164 0.288 1.194 0.302 1.224 0.306 1.218 0.322 1.772

German 0.002 0.009 0.011 0.114 0.010 0.011 0.010 0.074 0.260 0.770 0.266 0.773 0.303 0.773 0.466 1.110 0.606 1.796

Spam 0.014 0.061 0.020 0.194 0.060 0.062 0.055 0.552 0.235 1.061 0.265 1.090 0.267 1.242 0.295 1.278 0.321 2.020

Covertype 1.094 3.124 2.194 6.431 0.057 0.060 2.201 6.438 0.139 0.586 0.166 0.697 0.211 0.850 0.244 1.003 0.278 1.15

replacements

Sample size

R
un

ni
ng

ti
m

e
pe

r
ta

sk
[s

]

b = 1
b = 2
b = 3
b = 4
b = 5

10 30 50 70 90
0.01

0.015

0.02

0.025

(a) Yearbook dataset

Number of tasks

R
un

ni
ng

ti
m

e
[s

]

b = 1
b = 2
b = 3
b = 4
b = 5

10 30 50 70 90

1

2

0

(b) Yearbook dataset for n = 10

3

Number of tasks

R
un

ni
ng

ti
m

e
[s

]

b = 1
b = 2
b = 3
b = 4
b = 5

10 30 50 70 90

1

2

0

(c) Yearbook dataset for n = 100

Figure 7: Running time per task varying the sample size, the number of tasks, and the number of backward
steps.

time per task in seconds of IMRCs for b = 1, 2, . . . , 5 backward steps in comparison with the state-
of-the-art techniques that learn a sequence of tasks. Such table shows that the methods proposed for
backward learning do not require a significant increase in complexity, and the running time of the
proposed method is similar to that of other state-of-the-art methods. Figure 7 further assesses the
running time of IMRCs for b = 1, 2, . . . , 5 backward steps varying the sample size and the number
of tasks. Such figure shows that the running time of IMRCs increases moderately and linearly with
the number of backward steps and the number of tasks.

In the fourth set of additional results, we evaluate the assumption of change between tasks being
independent and zero-mean by assessing the partial autocorrelation of mean vectors. In particular,
the partial autocorrelation at any lag would be zero if tasks are i.i.d.; while the partial autocorrelation
at lag 1 is larger than zero if tasks satisfy the assumption of Section 2. Figure 8 shows the averaged
partial autocorrelation of the mean vectors components +/- their standard deviations for different
lags using “Yearbook” and “UTKFaces” datasets. Such figure shows a partial autocorrelation clearly
non-zero at lag 1 that reflects dependence between consecutive mean vectors, as described by the
assumption of Section 2.

Lags

Pa
rt

ia
la

ut
oc

or
re

la
ti

on
s

0

−0.2

0.2

0.6

1

1 5 15 20

(a) “Yearbook” dataset

Lags

Pa
rt

ia
la

ut
oc

or
re

la
ti

on
s

0

−0.2

0.2

0.6

1

1 5 15 20

(b) “UTKFaces” dataset

Figure 8: Averaged partial autocorrelation of mean vectors components +/- their standard deviations.

25

	Introduction
	Preliminaries
	Problem formulation
	Minimax risk classifiers

	Forward learning with performance guarantees
	Forward learning
	Performance guarantees and effective sample sizes with forward learning

	Forward and backward learning with performance guarantees
	Forward and backward learning
	Implementation
	Performance guarantees and effective sample sizes with forward and backward learning

	Numerical results
	Conclusion
	Main notations used in the paper.
	Derivation of recursions in (6) for forward learning and recursions in (10) for forward and backward learning
	Proof of Theorem 1
	Proof of Theorem 2
	More efficient recursions for forward and backward learning
	Proof of Theorem 3
	Proof of Theorem 4
	Additional numerical results and implementation details

