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Abstract

In this work, we study the effect of occlusion on video action recognition. To
facilitate this study, we propose three benchmark datasets and experiment with
seven different video action recognition models. These datasets include two syn-
thetic benchmarks, UCF-101-O and K-400-O, which enabled understanding the
effects of fundamental properties of occlusion via controlled experiments. We
also propose a real-world occlusion dataset, UCF-19-Y-OCC, which helps in fur-
ther validating the findings of this study. We find several interesting insights
such as 1) transformers are more robust than CNN counterparts, 2) pretraining
make models robust against occlusions, and 3) augmentation helps, but does
not generalize well to real-world occlusions. In addition, we propose a simple
transformer based compositional model, termed as CTx-Net, which generalizes
well under this distribution shift. We observe that CTx-Net outperforms models
which are trained using occlusions as augmentation, performing significantly better
under natural occlusions. We believe this benchmark will open up interesting
future research in robust video action recognition. Code is publicly available at
https://shroglck.github.io/rev_unseen.

1 Introduction

Video action recognition is a challenging and important task in computer vision with numerous
real-world applications, including security, robotics, sports analysis, and human-computer interaction
[42, 39]. Recent years have witnessed significant progress in this field, facilitated by the availability
of large-scale datasets [20, 8, 40], enabling the learning of increasingly complex models [1, 7, 11,
13, 44, 30], which have demonstrated human-level performance. However, the robustness of such
models for real-world applications, particularly in the presence of occlusion, has not been explored
[38, 6]. Given the dynamic nature of the environment, occlusion is an inherent property of real-world
videos and needs to be studied.

To study this problem, we propose three benchmark datasets for analyzing the robustness of deep
learning models against occlusion, namely UCF-101-O, K-400-O, and UCF-19-Y-OCC. The first
two are derived from UCF-101(license CCLA-BY 4.0) [40] and Kinetics-400 (license CCLA-
BY 4.0)[20, 8] respectively, and are created by synthetically occluding the actions in the videos
using objects from the Pascal VOC dataset [10]. These benchmarks facilitate systematic analysis
of occlusion effects by examining occluder properties such as severity and occluder dynamics.
Additionally, we introduce a benchmark dataset with natural occlusion, UCF-19-Y-OCC, which
comprises real-world videos containing natural occlusion. This dataset, is collected from YouTube,
with categories based on a subset of classes from UCF-101, enables validation of observations made
in the synthetic setting within a real-world environment.

We investigate the effects of occlusion on seven different video action recognition models, encompass-
ing various aspects such as network size and architecture (transformer vs CNN). Through extensive
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Figure 1: Comparison of relative robustness, accuracy, and model parameters for video action
recognition models under occlusion. Left: UCF-101-O and right: K-400-O dataset. Size of circles
indicate number of parameters in the model.

experimentation, we aim to assess the generalization capabilities of these models when confronted
with both synthetic and natural occlusion. Our findings yield several interesting insights. Firstly, we
observe that transformer based models exhibit significantly higher robustness to occlusion compared
to CNN based models (Figure 1). Additionally, all models demonstrate superior resilience to tem-
porally consistent forms of motion compared to more chaotic motion patterns. Natural occlusion
likewise has a more detrimental impact on the robustness of CNN based models than transformer
based models. Similarly, synthetic occlusion appears to disproportionately affect the performance of
CNN-based models compared to transformer-based models. These experiments collectively illustrate
a lack of generalization among current state-of-the-art models when faced with occlusion.

Data augmentation is a widely employed technique to address the issue of distribution shift. We
investigate its impact on robustness of models against occlusion. Our experiments reveal a lack
of generalization in models trained with data augmentations. Furthermore, we observe that such
augmentations are insufficient in achieving generalization to real-world occlusion. We also propose
CTx-Net, a compositional model for robust video action recognition under occlusion. Compositional-
ity, helps captures interdependencies among parts, mimicking the robustness of the human visual
system against distribution shifts [2, 15, 4]. Compositionality has shown good robustness properties
in image-based tasks such as classification and object detection [24, 25, 22, 23, 41, 5], and we extend
this to videos with the help of transformers. To validate its effectiveness, we extensively evaluate it
on the proposed benchmark datasets, demonstrating its robustness in video action recognition under
occlusion across both synthetic and natural scenarios.

We make the following contributions in this work,

• We study the problem of video action recognition under occlusion; this is the first work
focusing on this problem to the best of our knowledge.

• We propose three benchmark datasets, K-400-O UCF-101-O, and UCF-19-Y-OCC, to study
occlusion in video action recognition. K-400-O and UCF-101-O are created with the help
of synthetic occlusions for a systematic study and UCF-19-Y-OCC consists of videos with
real-world occlusions.

• We develop a simple transformer-based compositional model CTx-Net which generalizes
well under occlusion.

2 Related work

Video action recognition Current state-of-the-art video action recognition can be essentially broken
down into two distinct ways. Firstly, CNN based models,[45, 49, 13, 18, 34, 12].Secondly, models
that are based on the vision transformer[1, 31, 11, 28]. The majority of the currently available
CNN-based methods make use of 3D CNNs. However, 3-D filters typically have many parameters
and require the use of large-scale datasets such as Kinetics [20] in order to be trained effectively. As
a result of the restricted receptive field of CNN architectures in general, they are unable to accurately
model motion, which causes their performance to deteriorate as a direct result of this limitation.
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In recent years, transformer architecture [46] has steadily gaining popularity as a direct result of the
successes of vision transformers. Since then, there has been a surge in the amount of work done in
this field, with models such as MViT, MViTv2, Swin [11, 28][31] and Timesformer[3] being able to
give state-of-the-art performance on video-related tasks without significantly increasing the amount
of memory overhead. [33] demonstrates the robustness of vision transformers on related tasks in the
image domain, which inspired us to use transformer-based models in the video domain. Recently,
[44] showed the ability of transformer models to run on relatively fewer data.Recently proposed
[61, 17, 56, 57, 60]show that data augmentation is helpful in increasing robustness and data efficiency
of video action recognition models.

Occlusion reasoning The existing works in image domain focus on occlusion for classification
and image segmentation. In [14], the authors proposed using binary variables to infer visible cells.
Hsiao and Herbert[19] modelled occlusion by using 3D relationship of objects with corresponding
bounding boxes. Recent works on pixel level occlusion model use probabilistic methods as proposed
by George et al. [16]. Another probabilistic approach by Yang et al.[54] introduces occlusion prior
modeled by Markov random field in the domain of object tracking. Tighe et al. [43] introduce an
inter class occlusion prior to parse scenes and refine pixel level labels. OFNET by Lu et al. [32]
considers relevance between occlusion contours and pixel orientation Kortelewski et al. [22, 23]
proposed a deep convolution based compositional network for occlusion reasoning at high level
features. [58] studies the problem of scene de occlusion by obtaining the ordering graph of objects
in the scene.In the context of the video domain, the challenge of occlusion has been investigated
within the realms of pose estimation and video instance segmentation. Addressing this challenge,
Li et al. [27] delve into the realm of action recognition under occlusion by leveraging radio signals
to estimate poses. Meanwhile, Cheng et al. [9] tackle the issue of occlusion-induced ambiguity in
3D pose estimation by employing optical flow to evaluate the status of keypoints. Yang et al. [53]
adopt a self-supervised paradigm to enhance pose estimation. Qi et al. [35] introduce a dedicated
dataset specifically tailored for occluded instance segmentation. Ke et al.[21] introduce BCNet,
which introduces a novel branch for inferring occluder information. In a similar vein, Lazarow et al.
[26] introduce OCFusion, introducing an occlusion-aware module to signify occlusion relationships
among mask proposals. Zhang et al.[60] propose a self-supervised approach that aims to estimate
occlusion by recovering the temporal ordering of objects within videos.

Recently, there have been various efforts to combine compositional models with deep neural networks.
Liao et al. [29] proposed to integrate compositionality into DCNNs by regularizing feature representa-
tions of DCNN’s to cluster during learning. Zhang et al. [59] demonstrated that part detectors emerge
in DCNNS by restricting the activations in feature maps to have localized distributions. However,
these approaches have not been shown to enhance the robustness of deep models to occlusion. In
[24, 22], the authors propose a CNN based compositional model for robustness against occlusion in
images.

3 Benchmarking occlusion

In order to assess the robustness of current state-of-the-art models for video action recognition, we
introduce three benchmarks. These datasets encompass a range of occlusion scenarios, including
both synthetic and natural occlusions. The first two benchmarks, UCF-101-O and K-400-O, are
synthetically curated and enable controlled studies of occlusion and serve as extreme cases for
evaluating the impact of occlusion on action recognition models. Additionally, we introduce UCF-19-
Y-OCC, a dataset comprising real-world videos with natural occlusions. This dataset provides an
opportunity to examine the performance of models under more realistic occlusion conditions.

3.1 Design parameters

We study three key properties of occlusion: the type of occluder (including its shape and object class),
the severity of occlusion (measuring the extent to which each frame is occluded), and the dynamics
of the occluder (capturing its motion characteristics). By analyzing these properties, we aim to gain a
comprehensive understanding of the impact of occlusion on video action recognition.

Type of occluders To ensure diversity among the occluders, we select 50 random objects from the
PASCAL VOC dataset [10]. The objects are then masked out using segmentation masks, resized to
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Figure 2: Samples video frames from proposed occluded benchmark datasets. First row: UCF101-O
(left: ‘Drumming’ and right: ‘Jump Rope’) , second row: K-400-O (left: ‘Air Drumming’ and right:
‘Arm Wrestling’) , and third row UCF-19-Y-OCC (left: ‘Mopping’ and right: ‘Skate Boarding’). Rows:
4,5,6,7,8-: Represent occlusion variations. Row 4: Represents occluder exhibiting linear motion,
Row 5: Represents occluder exhibiting circular motion , Row 6 : Represents occluder exhibiting
random motion , Row 7: Represents static occluder with severity 20-40% , Row 8 : Represents static
occluder with 40-60% occluder severity

the desired dimensions, and finally pasted onto the frame at specific locations. This process allows us
to maintain variability and realism of occlusion in environment.

Severity of occlusions In our study, we consider a range of occlusion severities from 0-60%. The
severity of occlusion is quantified by calculating the average number of pixels occupied by the
occluder throughout the video. For the proposed benchmark datasets, occlusion severities of 40-
60% are employed, while severities of 0-40% are used during the training phase for augmentation
experiments. This approach allows us to assess the impact of varying occlusion levels on video action
recognition performance.

Dynamics of occluders We examine both static and dynamic occluders. For static occluders, the
position of occluder is randomly chosen and remains constant throughout the video. To simulate
dynamic motion, we employ four motion types with varying temporal coherence: linear, circular,
and random. For linear motion, the occluder starts at a randomly selected coordinate and follows
a linear path with a randomly determined slope. In the case of random motion, the occluder’s
position is randomly selected without considering its previous frame position. For circular motion,
the occluder follows a circular path centered around a randomly chosen point. The center point is
selected randomly for each video and remains consistent across all frames. In the benchmark datasets,
we utilize static, random, and circular motions, while linear motion is used for augmentations. This
allows us to assess the impact of different occluder dynamics on action recognition performance.

3.2 Benchmark datasets

We introduce three benchmark datasets to comprehensively investigate the challenge of occlusion in
video action recognition. UCF-101-O consists of 3783 videos distributed across 101 action classes.
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Figure 3: Variation of performance of action recognition models with changing occlusion severity on
the proposed benchmark datasets. Left: UCF-101-O, and right: K-400-O dataset.

This includes all the videos in the test split 1 of UCF-101. The dataset incorporates occlusions that
vary in size between 40-60%. The motion of occluders is randomly chosen from three categories:
random motion, circular motion, and static. The occluders are selected randomly from a pool of
50 objects sourced from PASCAL VOC [10]. K-400-O consists of 40,000 video clips distributed
across 400 action classes. It also includes all the testing videos from Kinetics-400. The selection of
occlusion parameters and properties are same as UCF-101-O.

UCF-19-Y-OCC focuses on real-world occlusions and consists of publicly available videos from
YouTube that feature natural occlusion. The dataset includes a total of 19 classes selected from the
UCF-101 dataset, with each class consisting of 30 video clips of 5 seconds duration. The selection
of classes was based on the likelihood of natural occlusion occurrence, while ensuring a diverse
representation of actions to avoid bias towards specific classes.We conducted targeted searches on
YouTube to curate a collection of videos pertinent to the specified class. From these we kept only
those instances which contained occluded action sequences. We then extracted 5-second clips, within
this duration, clips were incorporated into our dataset only if they encompassed a minimum of 2
seconds during which the action remained occluded. Figure 2 show sample video frames from the
UCF-101-O, K-400-O dataset and UCF-19-Y-OCC.

3.3 Video action recognition models

We study several existing video action recognition methods with a wide range of properties for
this benchmark. We use CNN based R50[50], R2P1D[45], I3D[49] and X3D[12] and transformer
based MViT[11], MViTv2[28] and VideoMAE[44] as our baseline models. This helps in making a
comparison based on transformer and CNN based models. Further usage of lightweight models x3d
allows us to compare the effect of model size to robustness to occlusion. Except for VideoMAE, all
employed models underwent fully supervised training on the training split of the K-400 dataset. For
the evaluation on UCF-101, all models were initialized with weights derived from the preliminary K-
400 training phase. Sequentially, they were fine-tuned, on the training subset of the UCF-101 dataset.
VideoMAE model underwent self-supervised training on K-400 and subsequently transitioning to
fully supervised training on the K-400 training segment. On UCF-101, weights originating from fully
supervised training on the K-400 training subset were employed. Augmented models were initialized
with pre-trained K-400 weights. Following the introduction of synthetic occlusions to each video,
each model was fine-tuned in a fully supervised manner using the UCF-101 training split.

3.4 Evaluation metric

We use accuracy and robustness scores as the metrics for evaluation. The robustness metric is defined
in two ways, relative and absolute [38]. The absolute robustness score is given as γa

p = 1− Ac−Ap

100
where γa

p is the absolute robustness score for severity level p, Ac is the accuracy on the clean dataset,
and Ap is the accuracy on the occluded dataset with severity level p. Relative robustness is defined as
γr
p = 1− Ac−Ap

Ac
, where γa

c is the relative robustness score.
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Figure 4: T-sne feature analysis under occlusion comparing CNN and transformer architecture. Left
two plots: R2P1D features on UCF-101 and UCF-101-O respectively, and right two plots: MViT
features on UCF-101 and UCF-101-O respectively.

3.5 Preliminary benchmark analysis

The evaluation of existing action recognition models on the proposed benchmarks is shown in Figure
3. We use clips of 224x224 for all datasets with 10 clips uniformly sampled across the temporal
dimension, applying center crops to these clips. We observe that all the models show a drop in
performance under occlusion, and the drop increases with the increase in severity. Our findings
indicate a lack of generalization to occlusion in the existing baseline models. We also observe that
transformer based models outperform CNN based models in both accuracy and robustness. This
decline in accuracy with occlusion severity mirrors observations in the image domain [33] and video
domain [38, 55], but the impact is more pronounced in videos.

We find Transformer-based models (MViT, VideoMAE, and MViTv2) exhibiting higher robustness
to occlusion compared to R50, R2P1D, X3D, and I3D, which experience significant accuracy
degradation with increasing occlusion severity. Additionally, in Table 1 we show accuracy results on
real-world benchmark UCF-19-Y-OCC, revealing the lack of robustness in baseline models when
exposed to natural occlusion. We analyze this further with the help of T-SNE plots (see Figure 4) and
visualize the loss of discriminative power caused by occlusion in both CNN and transformers based
models. These findings emphasize the need for future studies in action recognition to incorporate
occlusion as a fundamental consideration.

4 Compositional model for robustness

We propose a simple transformer based compositional model which disentangles the occluder and
activity features. Compositional models have been found effective in image domain [47] [22] and we
extend this to videos. They act as efficient part detectors, where parts contribute to the overall class
score of the region of interest. This enables the network to focus on visible parts and mitigate the
impact of occlusion, resulting in robustness to occlusion in the image domain. The compositional net
comprises three main components: vmf kernels (µ1, µ2, . . . , µn), occluder kernels (β1, β2, . . . , βn),
and class mixture models (A1, A2, . . . , An). The primary objective is to obtain a generative model
p(F |y), where F represents the feature representation for a video and y represents the action label.
The vmf kernels aid in identifying spatially relevant regions for the actions, while the class mixture
model facilitates action classification by categorizing the features into different activities.

4.1 CTx-Net

The proposed CTx-Net takes a video input X ∈ RT×H×W , where H is the height, W is the width,
and T is the number of frames and outputs class probabilities. The model aims to disentangle
occluded features from other features to mitigate their impact on the final class score. We build upon
[22] by i) Employing a transformer backbone for modelling spatio temporal properties inherent to
videos. ii) Usage of a collection of spatial and spatio temporal features for modelling occlusion.

Video level representation To effectively model temporal information, we utilize transformer
architecture [46] as a backbone. The positional encoding preserves spatial information, while
the transformer captures temporal dynamics. The output of the transformer network, denoted as
Ftr ∈ R(H′×W ′×T ′+1)×C′

, represents the video’s feature representation, where H ′, W ′, and T ′ are
the height, width, and temporal dimensions, and C ′ is the number of feature dimensions. We combine
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the feature embedding with the class embedding to integrate both information.We use MViT as the
backbone in our model.

FC = Ftr + clencoding (1)

where FC ∈ R(H
′
W

′
T

′
)×C

′

represents integrated features. Following this, we aggregate the temporal
information by averaging across temporal dimension, thus obtaining a feature representation Fl which
contains both temporal and spatial information.

The feature map obtained from the transformer is then used to train the centers of the vmf cluster
as described in [22]. The actions that are closest to the center of the cluster correspond to similar
rudimentary actions, such as moving hands vertically.The mixture models are also learned in a manner
similar to that presented in [22]. The mixture model learns actions movements which vote to compute
the total class score for the entire action.

Occluder kernel The occluder kernel is obtained by clustering the vmf likelihoods. We explore
occluder kernels for both temporal and spatio-temporal aspects. Temporal kernel: We obtain Fc as
described earlier. Subsequently, mean average pooling across the temporal dimension is applied to
obtain Fl. The similarity between these features and the learned vmf kernels is computed to obtain
Ll. We use features lp from Ll, where Fl and Ll ∈ R(H′×W ′)×C′

, for training the occluder kernels.
Spatial kernel: We compute the similarity between features Fc and the vmf kernels, resulting in
Lc where Fc and Lc ∈ R(H′×W ′×T ′)×C′

. From Lc, we sample the likelihood lc, with dimensions
RC′

. Spatial and temporal kernels are then combined to create spatio-temporal kernels. To train the
occluder kernels, we utilize a set of random images that are unrelated to any specific action.

End to end training To incorporate the compositional model with a transformer, we use it as the
classification head by replacing classical fully connected head. The differentiability of the model
allows it to be fully trained by backpropagation. The trainable parameters are T = {ω,Λ, Ay}. The
loss function is similar to the one used in [22] and is defined as,

L(y, y
′
, F, T ) = Lclass(y, y

′
) + γ1Lweight(ω) + γ2Lvmf (F,Λ) + γ3Lmixt(F,Ay), (2)

where Lclass(y, y
′
) is the cross entropy loss between network output and the target output Lweight(ω)

is the regularization term for the transformer network and Lvmf ,Lvmf regularize the parameters of
the compositional head [48], where

Lvmf (F,Λ) = −
∑
p

max
k

log(p(fp|µk)), (3)

Lmix(F,Ay) = −
∑
p

(1− zp)log[
∑
k

αm
p,k,yp(fp|λk)]. (4)

Here y is the predicted class score by the model y′ is the class label ω are the network weights.Λ =
{λk = {σk, µk}|k = 1 . . .K}. F is the feature map obtained from the transformer network, which
is pooled across the temporal dimension. Λ and Ay are the parameters for the mixture model.

5 Experiments and analysis

Training Setup The parameters for compositional net have been trained in the same way as in [25].
We learn the parameters of n = 5 occluder models β1, ..., βn in an unsupervised manner. We set the
number of mixtures as 2. The mixing weights of the loss are determined empirically and are set to
be γ1 = 0.1, γ2 = 5, γ3 = 1. We train for 15 epochs using stochastic gradient descent [37] with
momentum r = 0.9 and a learning rate of lr = 1e-4.

Augmentation for robustness Data augmentation provides a useful technique to solve distribution
shift in the dataset and has been studied under various contexts [36]. We analyze its effectiveness for
robustness against occlusion. We experimented with two different models, R2P1D and MViT, and
use data augmentation by synthetically occluding video with random objects distinct from the objects
used for benchmarking. We use linear motion with size varying between 20− 40%.

5.1 Discussion and analysis

In Tables 1 and 2 we can observe that all the models suffer a performance drop under occlusion, with
transformer based models performing better than CNN based models. Next, we analyze the effect of
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Table 1: Comparison of performance on UCF101, UCF101-O and UCF-101Y-OCC datasets.

Dataset UCF-101 UCF-101-O UCF-19-Y-OCC
Models Aug Top-1-Acc Top-1-Acc γa γr Top-1-Acc γa γr

R50 × 89.4 39.6 0.50 0.44 50.9 0.61 0.57
R2P1D × 88.3 48.9 0.61 0.55 49.3 0.61 0.55
X3D × 91.2 62.4 0.71 0.68 56.3 0.65 0.62
I3D × 89.1 59.4 0.70 0.67 52.9 0.64 0.59
MViT × 93.5 81.9 0.89 0.88 64.3 0.71 0.69
VideoMAE × 96.0 79.2 0.83 0.82 65.4 0.69 0.68
MViTv2 × 96.5 83.5 0.87 0.86 66.3 0.70 0.69
R2P1D ✓ 83.0 71.4 0.89 0.86 37.5 0.55 0.45
MViT ✓ 92.7 84.3 0.92 0.91 59.7 0.67 0.64
MViTv2 ✓ 95.7 88.3 0.92 0.92 65.3 0.69 0.68
VideoMAE ✓ 95.8 87.1 0.91 0.91 64.2 0.68 0.67
CTx-Net × 93.4 86.4 0.93 0.92 67.4 0.74 0.72

Table 2: Comparison of accuracy and robustness score of studied models on the K-400-O dataset.
CTx-Net2 uses MviTv2 backbone and CTx-Net-mae uses Video MAE as pretrained backbone.

Dataset K-400 K-400-O
Model Top-1-Acc Top-1-Acc γa γr

R2P1D 70.8 24.4 0.57 0.34
R50 70.6 31.2 0.61 0.44
I3D 74.6 33.6 0.59 0.45
X3D 73.1 34.3 0.61 0.45
MViT 76.4 54.4 0.78 0.71
MViTv2 77.6 56.7 0.79 0.73
VideoMAE 78.4 58.1 0.79 0.74
CTx-Net 75.9 58.4 0.79 0.77
CTx-Net2 77.4 59.7 0.82 0.77
CTx-Net-mae 76.8 58.2 0.81 0.76

Table 3: Performance comparison showing accuracy with different severity levels and occluder
motion on UCF-101-O dataset. Here L0 is 0%, L1 is (0-20)%, L2 is 20-40)%, and L3 is (40-60)%
occlusion. S and D denote Static and Dynamic occluders respectively.

Models L0 L1 -S L1-D L2-S L2-D L3-S L3-D Avg Acc
R50 89.4 84.7 52.9 71.3 34.3 46.7 16.5 56.5
R2P1D 88.3 79.3 45.3 55.3 27.2 33.3 19.3 49.7
I3D 89.1 85.2 56.7 71.7 40.2 46.8 23.7 59.1
X3D 90.3 85.3 46.6 73.5 34.4 47.0 21.8 56.9
MViT 93.5 91.8 86.6 87.2 80.3 80.2 70.1 84.2
MViTv2 96.5 94.5 87.2 89.5 82.3 81.3 72.4 86.2
VideoMAE 96.0 94.7 87.8 91.2 80.1 81.5 66.7 85.4
CTx-Net 93.4 92.4 89.7 87.6 82.4 82.2 78.9 86.7

occlusion properties on the performance and also conduct controlled experiments in which we fix
occlusion properties to study their effects.

Effect of occluder dynamics In Table 3 and 4 we show the impact of motion of occluders on
models performance. We can observe most of the models excel with static occluders as compared
with dynamic occluders. Table 4 demonstrates that both CNN-based and transformer-based models
experience performance decline with increasing occluder motion complexity, particularly with random
motion. This highlights the greater sensitivity of models to temporally incoherent motion compared
to temporally coherent motion.
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Table 4: Accuracy of models with occluders exhibiting different motions as well as occluders
belonging to different classes; M1: straight line, M2: Random motion , M3: Circular Motion, M4:
Static Motion, S1: Desktop, S2: Motorcycle, S3: Human, and S4: Cat. AA-S: average accuracy for
shapes, and AA-M: average accuracy for motion variations.

Models S1 S2 S3 S4 AA-S M1 M2 M3 M4 AA-M
R50 47.2 36.9 40.3 40.8 41.1 57.1 6.4 33.7 67.4 41.3
R2P1D 31.2 33.6 40.8 29.3 33.7 42.8 14.6 32.5 59.3 37.3
I3D 41.3 49.1 46.2 44.8 45.3 58.6 16.2 44.6 67.5 46.6
X3D 42.3 41.6 37.4 43.4 41.2 50.9 16.7 34.7 69.3 42.3
MViT 83.8 81.1 72.2 80.4 79.3 80.1 79.3 78.3 84.3 80.5
MViTv2 85.8 83.7 75.2 82.1 82.6 83.9 77.3 81.3 88.3 82.7
VideoMAE 79.8 85.2 73.8 78.2 79.2 84.1 67.3 78.1 89.1 79.6
CTx-Net 87.7 85.2 74.3 83.2 82.6 85.2 81.2 84.3 86.3 84.2
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Figure 5: Class-wise performance analysis. Confusion matrix for (i) MViT, (ii) MViT+data augmen-
tation, and (iii) CTx-Net on UCF-19-Y-OCC dataset.

Effect of occlusion severity To investigate the impact of occlusion severity, we vary the severity of
the occluder from 0% to 60% (Figure 3 and Table 3). Notably, transformer-based models demonstrate
significantly higher robustness to occlusion severity compared to CNN-based models.

Effect of type of occluder We vary the occluder’s shape from spatially primitive (desktop) to spatially
complex (human). We observe that baseline models perform poorly when the occluder is in the form
of a human (Table 4). This pattern is also observed in CTx-Net, which consistently outperforms
CNN-based and transformer based baselines across all occluders. Interestingly, X3D and R50 exhibit
worse performance when the occluder is in the form of a motorcycle (less complex but more area).

Effect of synthetic and natural occlusions Comparing the occluded datasets UCF-101-O, K-400-O,
and UCF-19-Y-OCC in Tables 1 2 and Figure 5, we observe that CNN-based models have low
relative robustness scores for synthetic occlusions. However, for natural occlusions that appear
intermittently in the video, CNN-based models exhibit higher relative robustness scores than in the
case of synthetic occlusion. This suggests that CNN models are less resilient to spatially constant
occluders than to occlusions that dynamically enter and exit the frames. On the other hand, transformer
based models demonstrate a larger decrease in relative robustness scores for natural occlusions that
sporadically appear throughout the video, as opposed to synthetic occlusions that persist throughout.
This indicates that transformer-based models are more susceptible to dynamic natural occlusions
than to spatially constant occlusions. More specifically in UCF-101-O, a dataset with synthetic
augmentation, synthetic occluders cause a distribution shift that is constant across training and test
sets which results in increased robustness for data augmented methods. However, this is not the case
for UCF-19-Y-OCC where augmented models are less robust, indicating a difference in distribution
shift caused by natural and synthetic occlusions.

Effect of pretraining Next, we study the effect of pretraining on robustness. We experiment with both
CNN and transformer based models.To test this we train models from scratch, on UCF-101 dataset
and compare their performance with models finetuned on UCF-101 dataset, these models weights
were initialized with pretrained weights on K-400 dataset. Figure 6 shows that pretraining clearly
helps in increasing the performance of models and making it more robust to occlusion. Furthermore,
pretraining increases relative robustness of transformer based models more than CNN based models.
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Figure 6: Effect of pretrained weights on models performance for UCF-101-O dataset. Left: accuracy,
middle: relative robustness γr, and right: absolute robustness γa.

Table 5: Ablations to study the effect of different components of CTx-Net on UCF101-O dataset.

Dataset UCF-101 UCF-101-O
Models Top-1-Acc Top-1-Acc γa γr

CTx-Net (CNN) 24.2 10.3 0.86 0.43
CTx-Net (spatial occluder kernels) 90.3 84.2 0.94 0.93
CTx-Net (w/o class encoding) 91.2 83.3 0.92 0.91
CTx-Net (pretrained with occluded data) 85.2 75.4 0.89 0.88
CTx-Net 93.4 86.4 0.93 0.92

5.2 Improving robustness against occlusion

We observe that augmentation does help with robustness against occlusion in synthetic benchmarks
for both transformer and CNN based models but fails to generalize to natural occlusion (Table 1). The
proposed CTx-Net, a compositional model, improves upon the performance on synthetic occlusion as
well outperforms all the models on natural occlusion.

Ablations on CTx-Net We perform ablations of the proposed CTx-Net on UCF-101-O dataset
to demonstrate the effects of the chosen components on its robustness to occlusion and report
its results in Table 5. CNN vs transformer backbone: First, we compare the effect of CNN vs
transformer backbones on the network. We observe that CNN based network is not able to model
long dependencies, which are essential. Spatial vs spatio-temporal kernels: We perform experiments
with spatial occluder kernel as opposed to the spatio-temporal occluder kernel. We observe a drop
in performance, demonstrating the importance of spatio-temporal nature of occlusion. Impact of
class token: We also demonstrate the importance of using class encoding during classification using
CTx-Net. As we can see from Table 5 the class encoding captures information from all patches to
determine the class as in [51], [52]. Training on occluded data: We also analyze the performance
of CTx-Net when trained using occluded data. We can clearly see that there is a significant drop in
performance as compared to vanilla CTx-Net. This can be attributed to the presence of occluders
causing the class mixture model to treat occluder as an essential property for action detected.

6 Conclusion and findings

In this work, we focus on video action recognition under occlusion. To the best of our knowledge,
this is the first study focusing on this problem. To study this problem, we propose two synthetic
benchmarks datasets based on UCF-101 and Kinetics-400 datasets and also a dataset containing
naturally occluded videos. We observe several interesting findings such as 1) transformers more
robust than CNNs, 2) pretraining helps all models, and 3) augmentation helps, but does not generalize
to real-world occlusions. We also propose a simple transformers based compositional model which
outperforms existing methods and even augmentation based models on synthetic benchmarks as well
as on the proposed naturally occluded benchmark. All three benchmark datasets and code is publicly
available at this [link].
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A Appendix

A.1 Overview

All three benchmark datasets and code will be made publicly available at this [link]. We include the
following results and details in this supplementary,

1. We provide classwise performance of CTx-Net on UCF-101 and UCF-101-O dataset.
2. We provide additional results for data augmented transformer.
3. We provide a detailed network architecture of the proposed CTx-Net.
4. Qualitative Results for CTx-Net.
5. We provide tsne visualizations for effect of occlusion.
6. We further provide the confusion matrix on UCF-101-Y-OCC dataset for other models as

well.
7. Limitation and Social Impact.
8. Datasheet for the proposed datasets.

A.2 Class wise Performance

In figure 7 we provide the classwise performance for the proposed CTx-Net on UCF-101 and UCF-
101-O dataset. The result shows the relative robustness score for each class. As expected for most of
the classes, the relative robustness score is less than 1 which shows the negative effect of occlusion
on the task of action recognition. Further, a few outlying classes have robustness score more than 1
which shows that the model performs better on occluded frame as compared to clean frames. We
can also notice from the plots that for most of the classes the score is close to 1 which shows the
robustness of the proposed CTx-Net irrespective of classes.

A.3 Additional Results

In Figure 13 performance of MVit+data augmentation on out of distribution occluders is shown.
It is performed by including a specific number of occluders during test time which were present
during training as well. From the Figure we can clearly see that the proposed CTx-Net has minimal
effects on performance while varying the distribution of occluders whereas the performance of data
augmented model falls as the number of out of distribution occluders increase. This shows data
augmentations inability to generalize well.

A.4 UCF-19-Y-OCC dataset

The UCF-19-Y-OCC is composed of 19 classes. The classes included are - Band Marching, Bench-
Press, Biking, Playing Cello, Baby Crawling, Walking with dog, Drumming, Playing Flute, Hand
stand Pushups, Kayaking, Mopping Floor, Nunchucks, Pizza Tossing, Pushups, Skateboarding,
Skiing, Soccer Juggling, Soccer Penalty, Surfing. All of these actions are also present in UCF-101
dataset. Figure 14 shows the distribution of number of clips per class in the dataset. Figure 13 shows
the confidence matrix plot for I3D and X3D on UCF-19-Y-OCC dataset. It can be clearly seen that
these methods do not have enough discriminative properties in case of natural occlusion.

A.5 Effects of Occlusion on feature representation

From Figure 12 we can see that the feature representations learned by X3D and I3D are quite
discriminative in case of clean frames, as they are able to provide distinct cluster in the tsne plot,
whereas for UCF-101-O we can see that the feature representation does not have enough discriminative
power given the lack of distinct clusters.

A.6 Qualitative Results

Figure 15 shows qualitatively the localization of occluders in a video. Each row represents frames
in a video, followed by localization of occluders performed by CTx-Net. We observe that CTx-Net

15

https://shroglck.github.io/rev_unseen/


0 1

ApplyEyeMakeup
ApplyLipstick

Archery
BabyCrawling
BalanceBeam
BandMarching
BaseballPitch

Basketball
BasketballDunk

BenchPress
Biking

Billiards
BlowDryHair

BlowingCandles
BodyWeightSquats

Bowling
BoxingPunchingBag

BoxingSpeedBag
BreastStroke

BrushingTeeth
CleanAndJerk

CliffDiving
CricketBowling

CricketShot
CuttingInKitchen

0.0 0.5 1.0

Diving
Drumming

Fencing
FieldHockeyPenalty

FloorGymnastics
FrisbeeCatch

FrontCrawl
GolfSwing

Haircut
Hammering

HammerThrow
HandstandPushups
HandstandWalking

HeadMassage
HighJump

HorseRace
HorseRiding

HulaHoop
IceDancing

JavelinThrow
JugglingBalls
JumpingJack

JumpRope
Kayaking

Knitting

0.0 0.5 1.0

LongJump
Lunges

MilitaryParade
Mixing

MoppingFloor
Nunchucks

ParallelBars
PizzaTossing
PlayingCello

PlayingDaf
PlayingDhol
PlayingFlute

PlayingGuitar
PlayingPiano
PlayingSitar

PlayingTabla
PlayingViolin

PoleVault
PommelHorse

PullUps
Punch

PushUps
Rafting

RockClimbingIndoor
RopeClimbing

0.0 0.5 1.0

Rowing
SalsaSpin

ShavingBeard
Shotput

SkateBoarding
Skiing
Skijet

SkyDiving
SoccerJuggling
SoccerPenalty

StillRings
SumoWrestling

Surfing
Swing

TableTennisShot
TaiChi

TennisSwing
ThrowDiscus

TrampolineJumping
Typing

UnevenBars
VolleyballSpiking
WalkingWithDog

WallPushups
WritingOnBoard

YoYo

Figure 7: Class wise performance of CTx-Net on UCF-101 dataset using relative robustness as the
metric.

is able to localize occluders exhibiting a variety of shapes and motions effectively.Additionally, we
present qualitative findings pertaining to the CTx-Net model trained on data augmented with synthetic
occlusions, as shown in Figure 16. Notably, we observe an interesting phenomenon: the model
tends to identify certain attributes as occlusions even within video segments that remain unoccluded
throughout. This behavior is rooted in the utilization of augmented data to train a class mixture
model within the CTx-Net architecture. Consequently, this affects the model’s ability to generalize
effectively to non-occluded scenarios. Our study also extends to the comparative analysis detailed in
Table 3 and Table 4. Particularly, we analyze instances where VideoMAE’s performance is lower in
contrast to MViTv2 and MViT. Visualizations of videos that exhibit correct classification by MViT
and MViTv2, yet are misclassified by VideoMAE, are shown in Figure 17. These observations
contribute to a comprehensive understanding of the strengths and limitations exhibited by the models
under study.
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Figure 8: Overview of the CTx-Net architecture. A transformer network used to extract features
.Class token is then aggregated with feature tokens, followed by feature pooling using average pooling,
followed by this a convolution with vMF kernels µn followed by non-linear vMF activation N (.).The
resulting vMF likelihood L is used to compute the occlusion likelihood O using the occluder kernels
β.Furthermore, L is used to compute the mixture likelihoods Em

y using mixture models Am
y . O and

Em
y compete in explaining L the orange box and are combined to obtain the final class score.

c

Figure 9: Visualization for the patches in a video activated by three different vmf kernel. Left column:
represents actions which comprises hand movements closer to upper body, right column: represents
action which comprises hand movements closer to lower body

A.7 Model architecture

Figure 8 shows the model architecture of the proposed CTx-Net which uses a transformer backbone.
To calculate the class score, first the feature and class tokens are obtained for the given video.
Following this, the feature token and class tokens are aggregated. Then vmf likelihood of the obtained
features is then calculated. Class models are used to obtain class likelihood for each part detected,
Similarly the occluder model is then used to obtain likelihood of which fea- tures are occluded.Both

Figure 10: Visualization for the patches in a video activated by different components of mixture
model for two different classes.
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Figure 11: Samples from occluded benchmark datasets. First row: UCF101-O, second row: K-400-O,
and third row UCF-19-Y-OCC.
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Figure 12: T-sne analysis of features under occlusion comparing I3D and X3D. Starting from left, (i)
I3D features on UCF-101, (ii) I3D features on UCF-101-O, (iii), X3D features on UCF-101 and (iv)
X3D features on UCF-101-O.
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Figure 13: Class-wise performance analysis. Confusion matrix for (a) I3d, and (b) X3d.
(c)Performance of the proposed CTx-Net and MViT+data aug on out of distribution occluders.

these scores are then combined to obtain the final class score. We also visualize the patches which
activate the vmf and class mixture models the most. In Figures 9 and 10 we can see that the vmf
kernels learned corresponds to more fundamental movements like moving the hand up, whereas class
mixture model capture same actions being performed from differing points of views.

A.8 Occluders

From Figure 18 we can see some of the images that were used for training the occluder kernel. These
are a randomly selected, out of distribution images in which no action seems to take place. Hence,
this helps in separating out the random occlusion that occur in the video. Figure 11 also shows the
occluded samples from the proposed datasets.UCF-101-O and K-400-O showing different severity of
occlusions used

A.9 Limitations and Societal Impact

Benchmarking computer vision models for occlusion-aware video action recognition can lead to
significant advancements in various application domains like development of enhanced surveillance
systems which take occlusion into account, autonomous driving among others. These enhanced
surveillance systems might cause some privacy concerns. For synthetically occluded datasets since,
we sample objects randomly from the PASCAL VOC dataset the occluder can often present an
unrealistic appearance both since the texture of occluder is significantly different from that of rest
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Figure 14: Class wise distribution of samples in UCF-19-Y-OCC dataset.

of the scene but also, the motion of exhibited by the objects is relatively simple as opposed to the
complicated motions followed real life occluders.

A.10 Datasheet for Dataset

Motivation The core motivation behind this dataset was to study the effect of natural occlusion on
video action recognition models, which could further help in moving the field forward by studying
the performance of models systematically and in a real world setting.

Composition Content and Composition The instances in the dataset consists of videos in which
actions are completely or partially occluded. The UCF-101-Y-OCC dataset consists of 19 classes,
each class consists of 30 clips each lasting 5 second. The UCF-101-O and K-400-O consists of all
the videos in test split of UCF and Kinetics dataset occluded synthetically.

Does the dataset contain all possible instances or is it a sample (not necessarily ran-
dom) of instances from a larger set? Yes for K-400-O and UCF-101-O, No for UCF-101-Y-OCC.

Are relationships between individual instances made explicit (e.g., users’ movie rat-
ings, social network links)? No.

Are there recommended data splits (e.g., training, development/validation, testing)?
No, all the proposed datasets are for evaluation only.

Are there any errors, sources of noise, or redundancies in the dataset? No, The entire
UCF-101-Y-OCC dataset was annotated by the authors.

Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? UCF-101-Y-OCC is composed of YouTube videos.
UCF-101-O and K-400-O are self-contained.

Is there a label or target associated with each instance? Yes, a class label representing
the action is associated with each dataset.

Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms of
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Figure 15: Qualitative results for occlusion localization. Each row represents a video followed by
localization of occlusion in each of the above frames.

government identification, such as social security numbers; criminal history)? No.

Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the content
of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

Does the dataset identify any subpopulations (e.g., by age, gender) No.
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Figure 16: Qualitative results for occlusion localization of CTx-Net (augmented). Each row represents
a video followed by localization of occlusion in each of the above frames.

Figure 17: Examples of videos in which Video MAE is unable to classify correctly whereas MViT
and MViTv2 are able to correctly classify.
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Figure 18: Visualization of images used for training occluder model

Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? Yes, the individual might be
identifiable from YouTube.

Collection process Each instance of UCF-101-Y-OCC was extracted from publically available
videos on YouTube. The entire video was then viewed to ensure the action occurring is relevant as
well as a part of it is occluded. UCF-101-O and K-400-O are composed of test split of UCF-101 and
K-400 datasets.

What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation, software programs, software APIs)? YouTube API
was the only external source of data used for UCF-101-Y-OCC. Annotations for UCF-101-Y-OCC
were performed manually by the authors.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., de-
terministic, probabilistic with specific sampling probabilities)? Not applicable since UCF-101-O
and K-400-O contain entire test split of UCF-101-O and K-400-O.

Over what timeframe was the data collected? 2 Months for UCF-101-Y-OCC.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? YouTube was used for UCF-101-Y-OCC. UCF-101 and K-400
were synthetically occluded to obtain UCF-101-O and K-400-O.

Were the individuals in question notified about the data collection? Data was publi-
cally available on YouTube.

Labelling/Preprocessing/cleaning The video collected from YouTube was the segmented tempo-
rally into 5 seconds segments which contained occlusion. UCF-101-O and K-400-O have annotations
same as UCF-101 and K-400 whereas UCF-101-Y-OCC was annotated manually.

Uses Has the dataset been used for any tasks already? For testing the performance of current
models when exposed to occluded actions.

Is there a repository that links to any or all papers or systems that use the dataset?
NA

What (other) tasks could the dataset be used for? Action Recognition under occlusion
is the only intended task for the proposed dataset.

Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses No.

Are there tasks for which the dataset should not be used? No.

Distribution Will the dataset be distributed to third parties outside the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? No
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How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Will be
available along with the code through download link.

When will the dataset be distributed? During the review process.

Will the dataset be distributed under a copyright or other intellectual property (IP) li-
cense, and/or under applicable terms of use (ToU)? Dataset will be distributed under Creative
Commons License.

Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No

Do any export controls or other regulatory restrictions apply to the dataset or to indi-
vidual instances? No
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