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Abstract

We reconsider the challenge of non-convex optimization under differential privacy1

constraint. Building upon the previous variance-reduced algorithm SpiderBoost,2

we propose a novel framework that employs two types of gradient oracles: one3

that estimates the gradient at a single point and a more cost-effective option4

that calculates the gradient difference between two points. Our framework can5

ensure continuous accuracy of gradient estimations and subsequently enhances6

the rates of identifying second-order stationary points. Additionally, we consider7

a more challenging task by attempting to locate the global minima of a non-8

convex objective via the exponential mechanism without almost any assumptions.9

Our preliminary results suggest that the regularized exponential mechanism can10

effectively emulate previous empirical and population risk bounds, negating the11

need for smoothness assumptions for algorithms with polynomial running time.12

Furthermore, with running time factors excluded, the exponential mechanism13

demonstrates promising population risk bound performance, and we provide a14

nearly matching lower bound.15

1 Introduction16

Differential privacy [18] is a standard privacy guarantee for training machine learning models. Given17

a randomized algorithm A : P ∗ → R, where P is a data domain and R is a range of outputs, we say18

A is (ε, δ)-differentially private (DP) for some ε ≥ 0 and δ ∈ [0, 1] if for any neighboring datasets19

D,D′ ∈ P ∗ that differ in at most one element and anyR ⊆ R, the distribution of the outcome of the20

algorithm, e.g., pair of models trained on the respective datasets, are similar:21

Pr
x∼A(D)

[x ∈ R] ≤ eε Pr
x∼A(D′)

[x ∈ R] + δ.

Smaller ε and δ imply the distributions are closer; hence, an adversary accessing the trained model22

cannot tell with high confidence whether an example x was in the training dateset. Given this measure23

of privacy, we consider the problem of optimizing a non-convex loss while ensuring a desired level of24

privacy. In particular, suppose we are given a dataset D = {z1, . . . , zn} drawn i.i.d. from underlying25

distribution P . Each loss function f(·; z) : K → R is G-Lipschitz over the convex set K ⊂ Rd of26

diameter D. Let the population risk function be FP(x) := Ez∼P [f(x; z)] and the empirical risk27

function be FD(x) := 1
n

∑
z∈D f(x; z). We also denote FS(x) := 1

|S|
∑
z∈S f(x; z) for S ⊆ D.28

Our focus is in minimizing non-convex (empirical and population) risk functions, which may have29

multiple local minima. Since finding the global optimum of a non-convex function can be challenging,30

an alternative goal in the field is to find stationary points: A first-order stationary point is a point31

with a small gradient of the function, and a second-order stationary point is a first-order stationary32
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point where additionally the function has a positive or nearly positive semi-definite Hessian. As first33

order stationary points can be saddle points or even a local maximum, we focus on the problem of34

finding a second order stationary point, i.e., a local minimum, privately. Existing works in finding35

approximate SOSP privately only give guarantees for the empirical function FD. We improve upon36

the state-of-the-art result for empirical risk minimization and give the first guarantee for the population37

function FP . This requires standard assumptions on bounded Lipschitzness, smoothness, and Hessian38

Lipschitzness, which we make precise in Section 2 and in Assumption 3.1.39

Compared to finding a local minimum, finding a global minimum can be extremely challenging. We40

also present two methods, polynomial and exponential time, that outperform existing guarantees41

measured in excess risks for respective computational complexities. Our primary results are succinctly42

summarized in Table 1.43

Related Work. We propose a novel and simple framework based on SpiderBoost [51], and its44

private version [2] that achieves the current best rate for finding the first order stationary point privately.45

We discuss the primary difference between our framework and theirs, that is their algorithms only46

promise small gradient estimation errors on average, but our framework can ensure small estimation47

errors consistently throughout all the iterations, and the motivation behind this briefly.48

In SGD and its variants, the typical approach involves obtaining an estimation ∆t of the gradient49

∇f(xt). In the stochastic variance-reduced algorithm SpiderBoost [51, 2], it queries the gradient50

O1(xt) ≈ ∇f(xt) directly every q steps with some oracle O1, and for the other q − 1 steps51

within each period, it queries the gradient difference between two steps, that is O2(xt, xt−1) ≈52

∇f(xt) − ∇f(xt−1), and maintain ∆t = ∆t−1 + O2(xt, xt−1). The contrast between these two53

types of oracles can be perceived as O1 being more accurate but also more costly, in terms of54

computation or privacy budget, although our framework does not strictly necessitate this assumption.55

As SpiderBoost queries O1 every q steps, the error on the estimation may accumulate and ‖∆t −56

∇f(xt)‖ can become large. Despite this, as demonstrated in [2], these estimations can, on average,57

suffice to find a private FOSP. However, such large deviations pose a challenge when scrutinizing58

behavior near a saddle point. For instance, when the current point is a saddle point, but the current59

estimation is unsatisfactory, it becomes uncertain whether the algorithm can escape the saddle point. It60

could be argued that average good estimations could achieve a SOSP, but to the best of our knowledge,61

there is no existing result addressing this concern.62

A plausible solution to this challenge is to maintain high-quality gradient estimations throughout63

all iterations, a feat accomplished by our framework. We believe this feature holds promise for64

improving the outcomes of various other optimization problems, thus enhancing the overall appeal65

and significance of our work.66

1.1 Main Results67

SOSP. One of our main contributions is a refined optimization framework (Algorithm 1), predi-68

cated on the variance-reduced SpiderBoost [51], which guarantees consistently accurate gradient69

estimations. By integrating this framework with private gradient oracles, we achieve improved error70

rates for privately identifying SOSP of both empirical and population risks.71

Advances in private non-convex optimization have focused on finding a first-order stationary point72

(FOSP), whose performance is measured in (i) the norm of the empirical gradient at the solution x,73

i.e., ‖∇FD(x)‖, and (ii) the norm of the population gradient, i.e., ‖∇FP(x)‖. We survey the recent74

progress in the appendix in detail.75

Definition 1.1 (First-order stationary point). We say x ∈ Rd is a First-Order Stationary Point (FOSP)76

of g : Rd → R iff∇g(x) = 0. x is an α-FOSP of g, if ‖∇g(x)‖2 ≤ α.77

Since FOSP can be a saddle point or a local maxima, finding a second-order stationary point is78

desired. Exact second-order stationary points can be extremely challenging to find [24]. Instead,79

progress is commonly measured in terms of how well the solution approximates an SOSP.80

Definition 1.2 (Second-order stationary point, [1]). We say a point x ∈ Rd is a Second-Order81

Stationary Point (SOSP) of a twice differentiable function g : Rd → R iff ‖∇g(x)‖2 = 0 and82

∇2g(x) � 0. We say x ∈ Rd is an α-SOSP for ρ-Hessian Lipschitz function g, if ‖∇g(x)‖2 ≤83

α
∧
∇2g(x) � −√ραI .84
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Table 1: SOTA refers to the best previously known bounds on α for α-SOSP by [45, 47] and on
the excess population risk by [45]. We introduce algorithm 1 that finds an α-SOSP (columns 2–3)
with an improved rate. We show exponential mechanism can minimize the excess risk in polynomial
time and exponential time, respectively (columns 4 and 5). ♠ requires extra assumption on bounded
smoothness. The lower bounds for SOSP are from [2], and the lower bound on excess population risk
is from Theorem 5.11. We omit logarithmic factors in n and d.

On the empirical risk FD, the SOTA on privately finding α-SOSP is by [45, 47], which achieves α =85

Õ(min{(
√
d/n)1/2, (d/n)4/7}). In Theorem 4.2, we show that applying the proposed Algorithm 186

achieves a rate bounded by α = Õ((
√
d/n)2/3), which improves over the SOTA in all regime.1 There87

remains a factor (
√
d/n)−1/6 gap to a known lower bound of α = Ω(

√
d/n) that holds even if finding88

only an α-FOSP [2]. On the population risk FP , applying Algorithm 1 with appropriate private89

gradient oracles is the first private algorithm to guarantee finding an α-SOSP with α = Õ(n−1/3 +90

(
√
d/n)3/7) in Theorem 4.6. There is a gap to a known lower bound of α = Ω(1/

√
n+
√
d/nε) that91

holds even if finding only an α-FOSP [2].92

Minimizing Excess Risk. In addition to the optimization framework, we present sampling-based93

algorithms designed to identify a private solution xpriv ∈ Rd that minimizes both the excess empirical94

risk: E[FD(xpriv)]−minx∈K FD(x), and the excess population risk: E[FP(xpriv)]−minx∈K FP(x).95

Here, the expectation is over the randomness of the solution xpriv and the drawing of the training96

date over P . Our method is different from [45], which Gradient Langevin Dynamics and achieves97

in polynomial time a bound of O(d
√

log(1/δ)/(ε2 log n)) for both excess empirical and population98

risks with a need for the smoothness assumption. In Table 1 we omit excess empirical risk, as the99

bounds align with those of the population risk. We introduce a sampling-based algorithm from the100

exponential mechanism, which runs in polynomial time and achieves excess empirical and population101

risks bounded by O(d
√

log(1/δ)/(ε log(nd))) with improved dependence on ε (Theorem 5.6).102

Crucially, it achieves these results without the need for the smoothness assumption required by [45].103

In the case of permitting an exponential running time, [22] demonstrated Õ(d/(εn)) upper bound for104

non-convex excess empirical risks alongside a nearly matching lower bound. However, establishing a105

tight bound for the excess population risk remained an unresolved problem. We address this open106

question by providing nearly matching upper and lower bounds of Θ̃(d/(εn) +
√
d/n) for the excess107

population risk (Theorem 5.8).108

1.2 Our Techniques109

Stationary Points. In our framework, we deviate from the traditional approach of querying O1110

once every q steps. Instead, we introduce a novel but simple method of monitoring the total drift we111

make, that is driftt =
∑t
i=τt
‖xi−xi−1‖22, where τt represents the last timestamp when we employed112

O1. As we are considering smooth functions, the maximum error to estimate∇f(xt)−∇f(xt−1)113

is proportional to ‖xt − xt−1‖2. If the value driftt is small, we know the current estimation should114

still be good enough, eliminating the need for an expensive fresh estimation from O1. Conversely,115

when driftt is large, the gradient estimation error may be substantial, necessitating a query to O1 and116

thus obtaining ∆t = O1(xt). To effectively manage the total cost, it is crucial to set an appropriate117

threshold to decide when the drift is significant. A smaller threshold would ensure more accurate118

estimations but might incur higher costs due to more frequent queries to O1.119

1We want α = o(1) and hence can assume d ≤ n2.
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Our aim is to bound the total occurrences of the event that driftt is large, which leads to querying O1.120

A crucial observation is that, if driftt increases rapidly, then the gradient norms are large and hence121

function values decrease quickly, which we know does not happen frequently under the standard122

assumption that the function is bounded.123

In our framework, we assume O1(x) is an unbiased estimation of ∇f(x), and O1(x) −∇f(x) is124

Norm-SubGaussian (Definition 2.2), and similarly O2(x, y) is an unbiased estimation of ∇f(x)−125

∇f(y) whose error is also Norm-SubGaussian. In the empirical case, we can simply add Gaussian126

noises with appropriately chosen variances to the gradients of the empirical function ∇FD for127

simplicity, and one can choose a smaller batch size to reduce the computational complexity. In128

the population case, we draw samples from the dataset without replacement to avoid dependence129

issues, and add the Gaussian noises to the sampled gradients. Hence we only need the gradient oracle130

complexity to be linear in the size of dataset for the population case.131

Minimizing Excess Risk. Our polynomial time approach harnesses the power of the Log-Sobolev132

Inequality (LSI) and the classic Stroock perturbation lemma. The previous work of [38] shows that if133

the density exp
(
− βFD(x)− r(x)

)
satisfies the LSI for some regularizer r, then sampling a model134

x from this density is DP with an appropriate (ε, δ). If r is a µ strongly convex function, then the135

density proportional to exp(−r) satisfies LSI with constant 1/µ, and exp(−βFD(x)− r(x)) satisfies136

LSI with constant exp(maxx,y |FD(x)− FD(y)|)/µ by the Stroock perturbation lemma. Our bound137

on the empirical risk follows from choosing the appropriate inverse temperature β and regularizer r138

to satisfy (ε, δ)-DP. The final bound on the population risk also follows from LSI, which bounds the139

stability of the sample drawn from the respective distribution.140

When running time is not a priority, we employ an exponential mechanism over a discretization of141

K to establish the upper bound. The empirical risk bound derives from [9], and we leverage the142

concentration of sums of bounded random variables to bound the maximum difference over the143

discretizations between the empirical and population risk. We show this is nearly tight by reductions144

from selection to non-convex Lipschitz optimization of [22].145

1.3 Organization146

In Section 2, we present necessary definitions and backgrounds for our work. In Section 3, we147

construct the optimization framework, with guarantees on finding the SOSP with two different148

kinds of SubGaussian gradient oracles. It’s crucial to note that this framework focuses solely on149

optimization and does not pertain to privacy. Section 4 explores the pursuits of finding the SOSP150

privately by constructing private SubGaussian gradient oracles and seamlessly integrating them into151

the existing framework. We bound the private excess bounds in Section 5. For other preliminaries, all152

omitted proofs and some further discussions on related work can be found in the Appendix.153

2 Preliminaries154

Throughout the paper, if not stated explicitly, the norm ‖ · ‖ means the `2 norm.155

Definition 2.1 (Lipschitz, Smoothness and Hessian Lipschitz). Given a function f : K → R, we156

say f is G-Lipschitz, if for all x1, x2 ∈ K, |f(x1)− f(x2)| ≤ G‖x1 − x2‖, we say a function f is157

M -smooth, if for all x1, x2 ∈ K, ‖∇f(x1)−∇f(x2)‖ ≤M‖x1 − x2‖. and we say the function f158

is ρ-Hessian Lipschitz, if for all x1, x2 ∈ K, we have ‖∇2f(x1)−∇2f(x2)‖ ≤ ρ‖x1 − x2‖.159

Definition 2.2 (SubGaussian, and Norm-SubGaussian). A random vector x ∈ Rd is SubGaussian160

(SG(ζ)) if there exists a positive constant ζ such that E e〈v,x−E x〉 ≤ e‖v‖2ζ2/2, ∀v ∈ Rd. x ∈ Rd161

is norm-SubGaussian (nSG(ζ)) if there exists ζ such that Pr[‖x− Ex‖ ≥ t] ≤ 2e
− t2

2ζ2 ,∀t ∈ R.162

Fact 2.3. For a Gaussian θ ∼ N (0, σ2Id), θ is SG(σ) and nSG(σ
√
d).163

Lemma 2.4 (Hoeffding type inequality for norm-subGaussian, [29]). Let x1, · · · , xk ∈ Rd be164

random vectors, and for each i ∈ [k], xi | Fi−1 is zero-mean nSG(ζi) where Fi is the corresponding165

filtration. Then there exists an absolute constant c such that for any δ > 0, with probability at least166

1−ω, ‖
∑k
i=1 xi‖ ≤ c ·

√∑k
i=1 ζ

2
i log(2d/ω), which means

∑k
i=1 xi is nSG(

√
c log(d)

∑k
i=1 ζ

2
i ).167
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3 Convergence to Stationary Points: Framework168

We present the optimization framework for finding SOSP in this section. It’s important to emphasize169

that this framework is dedicated exclusively to optimization concerns, with privacy considerations170

being outside of its purview. The results about SOSP throughout the paper follows the assumptions171

of [45].172

Assumption 3.1. Any function drawn from P is G-Lipschitz, ρ-Hessian Lipschitz, and M -smooth,173

almost surely, and the risk is upper bounded by B.174

As discussed before, we define two different kinds of gradient oracles, one for estimating the gradient175

at one point and the other for estimating the gradient difference at two points.176

Definition 3.2 (SubGaussian gradient oracles). For a G-Lipschitz and M -smooth function F :177

(1) We say O1 is a first kind of ζ1 norm-subGaussian Gradient oracle if given x ∈ Rd, O(x) satisfies178

EO1(x) = ∇F (x) and O1(x)−∇F (x) is nSG(ζ1).179

(2) We say O2 is a second kind of ζ2 norm-subGaussian stochastic Gradient oracle if given x, y ∈180

Rd, O2(x, y) satisfies that EO2(x, y) = ∇F (x) − ∇F (y) and O2(x, y) − (∇F (x) − ∇F (y)) is181

nSG(ζ2‖x− y‖).182

Note that we should assume M ≥ √ρα to make finding a second-order stationary point strictly183

more challenging than finding a first-order stationary point. We use smin(·) to denote the smallest184

eigenvalue of a matrix.185

Algorithm 1 Stochastic Spider
1: Input: Objective function F , Gradient Oracle O1,O2 with SubGaussian parameters ζ1 and ζ2,

parameters of objective function B,M,G, ρ, parameter κ, failure probability ω

2: Set γ =
√

4C(ζ2
2κ+ 4ζ2

1 ) · log(BMd/ρω),Γ =
M log( dMBργω )
√
ργ

3: Set η = 1/M, t = 0, T = BM log4(dMB
ργω )/γ2

4: Set drift0 = κ, frozen = 1,∇−1 = 0
5: while t ≤ T do
6: if ‖∇t−1‖ ≤ γ log3(BMd/ρω)

∧
frozent−1 ≤ 0 then

7: frozent = Γ,driftt = 0

8: ∇t = O1(xt) + gt, where gt ∼ N (0,
ζ21
d Id)

9: else if driftt−1 ≥ κ then
10: ∇t = O1(xt), driftt = 0, frozent = frozent−1 − 1
11: else
12: ∆t = O2(xt, xt−1),∇t = ∇t−1 + ∆t, frozent = frozent−1 − 1
13: end if
14: xt+1 = xt − η∇t,driftt = driftt−1 + η2‖∇t‖22, t = t+ 1
15: end while
16: Return: {x1, · · · , xT }

We demonstrate a framework based on the SpiderBoost in Algorithm 1. Our analysis of Algorithm 1186

hinges on three key properties we establish in this section: (i)∇t remains consistently close to the187

true gradient∇F (xt) with high probability; (ii) the algorithm is capable of escaping the saddle point188

with high probability, and (iii) a large drift implies significant decrease in the function value, which189

enables us to limit the number of queries to the more accurate but costlier first kind of gradient oracle190

O1.191

Lemma 3.3. For any 0 ≤ t ≤ T and letting τt ≤ t be the largest integer such that driftτt is set to192

be 0, with probability at least 1− ω/T , for some universal constant C > 0, we have193

‖∇t −∇F (xt)‖2 ≤
(
ζ2
2 ·

t∑
i=τt+1

‖xi − xi−1‖2 + 4ζ2
1

)
· C · log(Td/ω). (1)

Hence with probability at least 1− ω, we know for each t ≤ T , ‖∇t −∇F (xt)‖2 ≤ γ2/16, where194

γ2 := 16C(ζ2
2κ+ 4ζ2

1 ) · log(Td/ω) and κ is a parameter we can choose in the algorithm.195
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As shown in Lemma 3.3, the error on the gradient estimation for each step is bounded with high196

probability. Then we can show the algorithm can escape the saddle point efficiently based on previous197

results.198

Lemma 3.4 (Essentially from [45]). Under Assumption 3.1, run SGD iterations xt+1 = xt −199

η∇t, with step size η = 1/M . Suppose x0 is a saddle point satisfying ‖∇F (x0)‖ ≤ α and200

smin(∇2F (x0)) ≤ −√ρα, α = γ log3(dBM/ρω). If ∇0 = ∇F (x0) + ζ1 + ζ2 where ‖ζ1‖ ≤ γ,201

ζ2 ∼ N (0, γ2

d log(d/ω)Id), and ‖∇t − ∇F (xt)‖ ≤ γ for all t ∈ [Γ], with probability at least202

1− ω · log(1/ω), one has F (xΓ)− F (x0) ≤ −Ω
(

γ3/2

√
ρ log3( dMBργω )

)
, where Γ =

M log( dMBργω )
√
ργ .203

We discuss this lemma in the Appendix in more details. The next lemma is standard, showing how204

large the function values can decrease in each step.205

Lemma 3.5. By setting η = 1/M , we have F (xt+1) ≤ F (xt)+η‖∇t‖·‖∇F (xt)−∇t‖− η
2‖∇t‖

2.206

Moreover, with probability at least 1− ω, for each t ≤ T such that ‖∇F (xt)‖ ≥ γ, we have207

F (xt+1)− F (xt) ≤ −η‖∇t‖2/6 ≤ −ηγ2/6.

With the algorithm designed to control the drift term, the guarantee for Stochastic Spider to find the208

second order stationary point is stated below:209

Lemma 3.6. Suppose O1 and O2 are ζ1 and ζ2 norm-subGaussian respectively. If one sets γ =210

O(1)
√

(ζ2
2κ+ 4ζ2

1 ) · log(Td/ω), with probability at least 1− ω, at least one point in the output set211

{x1, · · · , xT } of Algorithm 1 is α-SOSP, where212

α = γ log3(BMd/ρωγ) =

√
(ζ2

2κ+ 4ζ2
1 ) · log(

d/ω

ζ2
2κ+ ζ2

1

) · log3(
BMd

ρω(ζ2
2κ+ ζ2

1 )
).

As mentioned before, we can bound the number of occurrences where the drift gets large and hence213

bound the total time we query the oracle of the first kind.214

Lemma 3.7. Under the event that ‖∇t−∇F (xt)‖ ≤ γ/4 for all t ∈ [T ] and our parameter settings,215

letting K = {t ∈ [T ] : driftt ≥ κ} be the set of iterations where the drift is large, we know216

|K| ≤ O
(
Bη
κ + Tγ2η2/κ) = O

(
Bη log4(dMB

ργω )/κ
)
.217

4 Private SOSP218

We adopt the framework before and get our main results on finding SOSP privately by constructing219

private gradient oracles in this section. Finding SOSP for empirical risk function FD and for220

population risk function FP are discussed in Subsection 4.1 and Subsection 4.2 respectively.221

4.1 Convergence to the SOSP of the Empirical Risk222

We use Stochastic Spider to improve the convergence to α-SOSP of the empirical risk, and aim at223

getting α = Õ(d1/3/n2/3). We use the full-batch size for simplicity, and use the gradient oracles224

O1(x) := ∇FD(x) + g1, and O2(x, y) := ∇FD(x)−∇FD(y) + g2, (2)

where g1 ∼ N (0, σ2
1Id) and g2 ∼ N (0, σ2

2‖x − y‖22Id) are added to ensure privacy by Gaussian225

mechanism (in Appendix).226

Before stating the formal results, note that by Lemma 3.6, the framework can only guarantee the227

existence of an α-SOSP in the outputted set. In order to find the SOSP privately from the set, we228

adopt the well-known AboveThreshold algorithm, whose pseudo-code can be found in Algorithm 2229

in the Appendix. Algorithm 2 is a slight modification of the well-known AboveThreshold algorithm230

in [19], and we get the following guarantee immediately.231

Lemma 4.1. Algorithm 2 is (ε, 0)-DP. Given the point set {x1, · · · , xT } and S of size n as the input,232

(i) if it outputs any point xi, then with probability at least 1− ω, we know233

‖∇FS(xi)‖ ≤ α+
32 log(2T/ω)G

nε
, and smin(∇2FS(xi)) ≥ −

√
ρα− 32 log(2T/ω)M

nε
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234

(ii) if there exists a α-SOSP point x ∈ {xi}i∈[T ], then with probability at least 1− ω, Algorithm 2235

will output one point.236

Choosing the appropriate noise scales for the Gaussian added in Equation (2) and running Algorithm 1237

can get a private set of points which contains at least one good SOSP. Then we can run Algorithm 2238

to find the good SOSP in the set privately. The formal guarantee is stated below:239

Theorem 4.2 (Empirical). For ε ≤ 10, δ ∈ (0, 1/2), use Equation (2) as gradient or-240

acles with κ = G4/3B1/3

M5/3 (

√
d log(1/δ)

nε )2/3, σ1 =
G
√
Bη log2(n/δ)/κ log2(ndMB/ω)

nε , σ2 =241

M
√

log2(n/δ)BM/α2
1 log5(ndMB/ω)

nε . Running Algorithm 1, outputting the set {xi}i∈[T ] if the total242

time to query O1 is bounded by O(Bη log4(dMB
ργω )/κ

)
, otherwise outputting a set of T arbitrary243

points is (ε/2, δ)-DP. With probability at least 1− ω, at least one point in the output set is α1-SOSP244

of FD with245

α1 = O



√
dBGM log2(1/δ)

nε

2/3

· log6

(
nBMd

ρω

) .

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T ],D, B,M,G, ρ, α1, with probability at least246

1− ω, we can get an α2-SOSP of FD with α2 = O
(
α1 + G log(n/Gω)

nε + M log(ndBGM/ρω)
nε
√
ρ

√
α1

)
.247

The whole procedure is (ε, δ)-DP.248

Remark 4.3. It’s worth noting that the cost of gradient computation can be reduced by utilizing249

smaller batch sizes. Additionally, the application of Rényi Differential Privacy techniques may250

enhance results by some logarithmic terms. However, our work does not focus on optimizing these251

specific aspects.252

4.2 Convergence to the SOSP of the Population Risk253

This subsection aims at getting an α-SOSP for FP (the population function). Differing from the254

stochastic oracles used for empirical function FD, we do not use full batch in the oracle. As an255

alternative, we draw fresh samples from D without replacement with a smaller batch size:256

O1(x) :=
1

b1

∑
z∈S1

∇f(x; z) + g1, and O2(x, y) :=
1

b2

∑
z∈S2

(∇f(x; z)−∇f(y; z)) + g2, (3)

where S1 and S2 are sets of size of b1 and b2 respectively drawn from D without replacement,257

g1 ∼ N (0, σ2
1Id) and g2 ∼ N (0, σ2

2‖x− y‖22 · Id) are added for privacy guarantee. These gradient258

oracles satisfy the following.259

Claim 4.4. The gradient oracles O1 and O2 constructed in Equation (3) are a first kind of260

O(L
√

log d√
b1

+
√
dσ1) norm-subGaussian gradient oracle and second kind of O(M

√
log d√
b2

+
√
dσ2)261

norm-subGaussian gradient oracle respectively.262

Recall that in the empirical case, we use Algorithm 2 to choose the SOSP for FD. But in the263

population case, we need to find SOSP for FP , and what we have are samples from P . We need264

the following technical results to help us find the SOSP from the set, which follows from Hoeffding265

inequality for norm-subGaussians (Lemma 2.4) and Matrix Bernstein inequality (in the Appendix).266

Lemma 4.5. Fix a point x ∈ Rd. Given a set S of m samples drawn i.i.d. from the distribution P ,267

then we know with probability at least 1− ω, we have268

‖∇FS(x)−∇FP(x)‖2 ≤ O
(G log(d/ω)√

m

)∧
‖∇2FS(x)−∇2FP(x)‖op ≤ O

(M log(d/ω)√
m

)
.

By choosing the appropriate noise scales σ1 and σ2 to ensure the privacy guarantee, we can bound269

the population bound similar to the empirical bound with these tools.270
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Theorem 4.6 (Population). Divide the dataset D into two disjoint datasets D1 and D2 of size271

dn/2e and bn/2c respectively. Set b1 = nκ
Bη , b2 =

nα2
1

BM , σ1 =
3G
√

log(1/δ)

b1ε
, σ2 =

3M
√

log(1/δ)

b2ε
272

and κ = max(G
4/3B1/3 log1/3 d

M5/3 n−1/3, (GB
2/3

M5/3 )6/7(

√
d log(1/δ)

nε )4/7) in Equation (3) and use them as273

gradient oracles. Running Algorithm 1 with D1, and outputting the set {xi}i∈[T ] if the total time to274

query O1 is bounded by O(Bη log4(dMB
ργω )/κ

)
, otherwise outputting a set of T arbitrary points, is275

(ε/2, δ)-DP. is (ε/2, δ)-DP, and with probability at least 1 − ω, at least one point in the output is276

α1-SOSP of FP with277

α1 = O
((

(BGM · log d)1/3 1

n1/3
+ (G1/7B3/7M3/7)(

√
d log(1/δ)

nε
)3/7

)
log3(nBMd/ρω)

)
.

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T ],D2, B,M,G, ρ, α1, with prob-278

ability at least 1 − ω, Algorithm 2 can output an α2-SOSP of FP with α2 =279

O
(
α1 + M log(ndBGM/ρω)√

ρmin(nε,n1/2)

√
α1 +G( log(n/Gω)

nε + log(d/ω)√
n

)
)
. The whole procedure is (ε.δ)-DP.280

5 Bounding the Private Excess Risk281

In this section, we consider the private risk bounds.282

5.1 Polynomial Time Approach283

If we want the algorithm to be efficient and implementable in polynomial time, to our knowledge284

the only known bound is O(d log(1/δ)
ε2 logn ) in [45] for smooth functions. [45] used Gradient Langevin285

Dynamics, a popular variant of SGD to solve this problem, and prove the privacy by advanced286

composition. We generalize the exponential mechanism to the non-convex case and implement it287

without a smoothness assumption.288

First recall the Log-Sobolev inequality: We say a probability distribution π satisfies LSI with constant289

CLSI if for all f : Rd → R, Eπ[f2 log f2]− Eπ[f2] logEπ[f2] ≤ 2CLSI Eπ ‖∇f‖22. A well-known290

result ([39]) says if f is µ-strongly convex, then the distribution proportional to exp(−f) satisfies291

LSI with constant 1/µ. Recall the results from previous results [38] about LSI and DP:292

Theorem 5.1 ([38]). Sampling from exp(−βF (x;D)− r(x)) for some public regularizer r is (ε, δ)-293

DP, where ε ≤ 2Gβn
√
CLSI

√
1 + 2 log(1/δ), and CLSI is the worst LSI constant.294

We can apply the classic perturbation lemma to get the new LSI constant in the non-convex case.295

Suppose we add a regularizer µ2 ‖x‖
2, and try to sample from exp(−β(F (x;D) + µ

2 ‖x‖
2)).296

Lemma 5.2 (Stroock perturbation). Suppose π satisfies LSI with constant CLSI(π). If 0 < c ≤297

dπ′

dπ ≤ C, then CLSI(π
′) ≤ C

c CLSI(π).298

Lemma 5.3 is a more general version of Theorem 3.4 in [22] and can be used to bound the empirical299

risk.300

Lemma 5.3. Let π(x) ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). Then for βGD > d, we know301

E
x∼π

(FD(x) +
µ

2
‖x‖22)− min

x∗∈K
(FD(x∗) +

µ

2
‖x∗‖22) ≤ d

β
log(βGD/d)

We now turn to bound the generalization error, and use the notion of uniform stability:302

Lemma 5.4 (Stability and Generalization [10]). Given a dataset D = {si}i∈[n] drawn i.i.d. from303

some underlying distribution P , and given any algorithm A, suppose we randomly replace a304

sample s in D by an independent fresh one s′ from P and get the neighoring dataset D′, then305

ED,A[FP(A(D))− FD(A(D))] = ED,s′,A[f(A(D); s′))− f(A(D′); s′))], where A(D) is the out-306

put of A with input D.307

As each function f(; s′) is G-Lipschitz, it suffices to bound the W2 distance of A(D) and A(D′).308

If A is sampling from the exponential mechanism, letting πD ∝ exp(−β(FD(x) + µ
2 ‖x‖

2)) and309

πD′ ∝ exp(−β(FD′(x) + µ
2 ‖x‖

2)), it suffices to bound the W2 distance between πD and πD′ . The310

following lemma can bound the generalization risk of the exponential mechanism under LSI:311
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Lemma 5.5 (Generalization error bound). Let πD ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). Then we have312

ED,x∼πD [FP(x)− FD(x)] ≤ O(G
2 exp(βGD)

nµ ).313

We get the following results:314

Theorem 5.6 (Risk bound). We are given ε, δ ∈ (0, 1/2). Sampling from exp(−β(FD(x)+ µ
2 ‖x‖

2
2))315

with β = O( ε log(nd)

GD
√

log(1/δ))
), µ = d

D2β is (ε, δ)-DP. The empirical risk and population risk are316

bounded by O(GD
d·log log(n)

√
log(1/δ)

ε log(nd) ).317

Implementation There are multiple existing algorithms that can sample efficiently from density318

with LSI, under mild assumptions. For example, when the functions are smooth or weakly smooth,319

one can turn to the Langevin Monte Carlo [15], and [35]. The algorithm in [45] also requires mild320

smoothness assumptions. We discuss the implementation of non-smooth functions in bit more details,321

which is more challenging.322

We can adopt the rejection sampler in [25], which is based on the alternating sampling algorithm323

in [34]. Both [34] and [25] are written in the language of log-concave and strongly log-concave324

densities, but their results hold as long as LSI holds. By combining them together, we can get the325

following risk bounds. The details of the implementation can be found in Appendix D.3.326

Theorem 5.7 (Implementation, risk bound). For ε, δ ∈ (0, 1/2), there is an (ε, 2δ)-DP efficient327

sampler that can achieve the empirical and population risks O(GD
d·log log(n)

√
log(1/δ)

ε log(nd) ). Moreover,328

in expectation, the sampler takes Õ
(
nε3 log3(d)

√
log(1/δ)/(GD)

)
function values query and some329

Gaussian random variables restricted to the convex set K in total.330

5.2 Exponential Time Approach331

In [22], it is shown that sampling from exp(− εn
GDFD(x)) is ε-DP, and a nearly tight empirical risk332

bound of Õ(DGdnε ) is achieved for convex functions. It is open what is the bound we can get for333

non-convex DP-SO.334

Upper Bound Given exponential time we can use a discrete exponential mechanism as considered335

in [9]. We recap the argument and extend it to DP-SO. The proof is based on a simple packing336

argument, and can be found in the Appendix.337

Theorem 5.8. There exists an ε-DP differentially private algorithm that achieves a population risk338

of O
(
GD

(
d log(εn/d)/(εn) +

√
d log(εn/d)/(

√
n)
))

.339

Lower Bound Results in [22] imply that the first term of Õ(GDd/εn) is tight, even if we relax340

to approximate DP with δ > 0. A reduction from private selection problem shows the Õ(
√
d/n)341

generalization term is also nearly-tight (Theorem 5.11). In the selection problem, we have k coins,342

each with an unknown probability pi. Each coin is flipped n times such that {xi,j}j∈[n], each xi,j343

i.i.d. sampled from Bern(pi), and we want to choose a coin i with the smallest pi. The risk of344

choosing i is pi −mini∗ pi∗ .345

Theorem 5.9. Any algorithm for the selection problem has excess population risk Ω̃(
√

log k
n ).346

This follows from a folklore result on the selection problem (see e.g. [5]). We can combine this with347

the following reduction from selection to non-convex optimization:348

Theorem 5.10 (Restatement of results in [22]). If any (ε, δ)-DP algorithm for selection has riskR(k),349

then any (ε, δ)-DP algorithm for minimizing 1-Lipschitz losses over Bd(0, 1) (the d-dimensional unit350

ball) has risk R(2Θ(d)).351

From this and the aforementioned lower bounds in empirical non-convex optimization we get the352

following:353

Theorem 5.11. For ε ≤ 1, δ ∈ [2−Ω(n), 1/n1+Ω(1)], any (ε, δ)-DP algorithm for minimizing 1-354

Lipschitz losses over Bd(0, 1) has excess population risk max{Ω(d log(1/δ)/(εn)), Ω̃(
√
d/n)}.355
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A Other Preliminary501

Definition A.1 (Laplace distribution). We say X ∼ Lap(b) if X has density f(X = x) =502

1
2b exp(−|x|b ).503

Theorem A.2 (Basic composition, [19]). If A1 is (ε1, δ1)-DP and A2 is (ε2, δ2)-DP, then their504

combination is (ε1 + ε2, δ1 + δ2)-DP.505

Theorem A.3 (Advanced composition, [30]). For ε ≤ 0.9, an end-to-end guarantee of (ε, δ)-506

differential privacy is satisfied if a database is accessed at most k times, where each time with a507

(ε/(2
√

2k log(2/δ)), δ/(2k))-differentially private mechanism.508

Due to space limit, some other preliminaries and proofs are left in the Appendix.509

Theorem A.4 (Gaussian Mechanism, [19]). Given a randomized algorithm A : P ∗ → Rd, let510

∆2f = maxneighboringD,D′ ‖A(D) − A(D′)‖2, then adding noise scaled to N (0, σ2) with σ ≥511 √
2 log(1.25/δ)∆2f

ε is (ε, δ)-DP.512

Theorem A.5 (Matrix Bernstein inequality, [44]). Consider a sequence {Xi}i∈m of independent,513

mean-zero, symmetric d × d random matrices. If for each matrix Xi, we know ‖Xi‖op ≤ M ,514

then for all t ≥ 0, we have Pr
[
‖
∑
i∈[m]Xi‖op ≥ t

]
≤ d exp

(
−t2

2(σ2+Mt/3)

)
, where σ2 =515

‖
∑
i∈[m] EX2

i ‖op.516

B Omitted Proof of Section 3517

B.1 Proof of Lemma 3.3518

Lemma 3.3. For any 0 ≤ t ≤ T and letting τt ≤ t be the largest integer such that driftτt is set to519

be 0, with probability at least 1− ω/T , for some universal constant C > 0, we have520

‖∇t −∇F (xt)‖2 ≤
(
ζ2
2 ·

t∑
i=τt+1

‖xi − xi−1‖2 + 4ζ2
1

)
· C · log(Td/ω). (1)

Hence with probability at least 1− ω, we know for each t ≤ T , ‖∇t −∇F (xt)‖2 ≤ γ2/16, where521

γ2 := 16C(ζ2
2κ+ 4ζ2

1 ) · log(Td/ω) and κ is a parameter we can choose in the algorithm.522

Proof. If driftτt = 0 happens, we use the first kind oracle to query the gradient, and hence ∇τt −523

∇F (xτt) is zero-mean and nSG(2ζ1). If t = τt, Equation (1) holds by the property of norm-524

subGaussian.525

For each τt + 1 ≤ i ≤ t, conditional on ∇i−1, we know ∆i − (∇F (xi)− F (xi−1)) is zero-mean526

and nSG(ζ2‖xi − xi−1‖). Note that527

∇t −∇F (xt) = ∇τt −∇F (xτt) +

t∑
i=τt+1

[∆i − (∇F (xi)−∇F (xi−1))].

Equation (1) follows from Lemma 2.4.528

We know driftt−1 =
∑t
i=τt+1 ‖xi − xi−1‖2 ≤ κ almost surely by the design of the algorithm. By529

union bound, we know with probability at least 1− ω, for each t ∈ [T ],530

‖∇t −∇F (xt)‖2 ≤ C(ζ2
2κ+ 4ζ2

1 ) · log(Td/ω) = γ2/16.

531

B.2 Discussion of Lemma 3.4532

Lemma 3.4 (Essentially from [45]). Under Assumption 3.1, run SGD iterations xt+1 = xt −533

η∇t, with step size η = 1/M . Suppose x0 is a saddle point satisfying ‖∇F (x0)‖ ≤ α and534

smin(∇2F (x0)) ≤ −√ρα, α = γ log3(dBM/ρω). If ∇0 = ∇F (x0) + ζ1 + ζ2 where ‖ζ1‖ ≤ γ,535
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ζ2 ∼ N (0, γ2

d log(d/ω)Id), and ‖∇t − ∇F (xt)‖ ≤ γ for all t ∈ [Γ], with probability at least536

1− ω · log(1/ω), one has F (xΓ)− F (x0) ≤ −Ω
(

γ3/2

√
ρ log3( dMBργω )

)
, where Γ =

M log( dMBργω )
√
ργ .537

We briefly recap the proof of Lemma 3.4 in [45]. One observation between the decreased function538

value, and the distance solutions moved is stated below:539

Lemma B.1 (Lemma 11, [45]). For each t ∈ [Γ], we know540

‖xt+1 − x0‖22 ≤ 8η(Γ(F (x0)− F (xΓ)) + 50η2Γ
∑
i∈[Γ]

‖∇i −∇F (xt)‖22.

The difference between our algorithm and the DP-GD in [45] is the noise on the gradient. Note that541

with high probability,
∑
i∈[Γ] ‖∇i −∇F (xt)‖22 in our algorithm is controlled and small, and hence542

does not change the other proofs in [45]. Hence if F (x0)− F (xΓ) is small, i.e., the function value543

does not decrease significantly, we know xt is close to x0.544

Let Bx(r) be the unit ball of radius r around point x. Denote the (x)Γ the point xΓ after running545

SGD mentioned in Lemma 3.4 for Γ steps beginning at x. With this observation, denote Bγ(x0) :=546

{x | x ∈ Bx0(ηα),Pr[F ((x)Γ)− F (x) ≥ −Φ] ≥ ω}. [45] demonstrates the following lemma:547

Lemma B.2. If ‖∇F (x0)‖ ≤ α and smin(∇2F (x0)) ≤ −√ργ, then the width of Bγ(x0) along the548

along the minimum eigenvector of∇2F (x0) is at most ωηγ
log(1/ω)

√
2π
d .549

The intuition is that if two different points x1, x2 ∈ Bx0
(ηα), and x1−x2 is large along the minimum550

eigenvector, then with high probability, the distance between ‖(x1)Γ−(x2)Γ‖ will be large, and either551

‖(x1)Γ − x1‖ or ‖(x2)Γ − x2‖ is large, and hence either F (x1)− F ((x1)Γ) or F (x2)− F ((x2)Γ)552

is large. The Lemma 3.4 follows from Lemma B.2 by using the Gaussian ζ2 to kick off the point.553

B.3 Proof of Lemma 3.5554

Lemma 3.5. By setting η = 1/M , we have F (xt+1) ≤ F (xt)+η‖∇t‖·‖∇F (xt)−∇t‖− η
2‖∇t‖

2.555

Moreover, with probability at least 1− ω, for each t ≤ T such that ‖∇F (xt)‖ ≥ γ, we have556

F (xt+1)− F (xt) ≤ −η‖∇t‖2/6 ≤ −ηγ2/6.

Proof. By the assumption on smoothness, we know557

F (xt+1) ≤F (xt) + 〈∇F (xt), xt+1 − xt〉+
M

2
‖xt+1 − xt‖2

=F (xt)− η/2‖∇t‖2 − 〈∇F (xt)−∇t, η∇t〉

≤F (xt) + η‖∇F (xt)−∇t‖ · ‖∇t‖ −
η

2
‖∇t‖2.

By Lemma 3.3, with probability at least 1− ω, for each t ∈ [T ] we have ‖∇F (xt)−∇t‖2 ≤ γ/4.558

Hence we know if∇F (xt) ≥ γ, we have559

F (xt+1)− F (xt) ≤ −η‖∇t‖2/6 ≤ −ηγ2/6.

560

B.4 Proof of Lemma 3.6561

Lemma 3.6. Suppose O1 and O2 are ζ1 and ζ2 norm-subGaussian respectively. If one sets γ =562

O(1)
√

(ζ2
2κ+ 4ζ2

1 ) · log(Td/ω), with probability at least 1− ω, at least one point in the output set563

{x1, · · · , xT } of Algorithm 1 is α-SOSP, where564

α = γ log3(BMd/ρωγ) =

√
(ζ2

2κ+ 4ζ2
1 ) · log(

d/ω

ζ2
2κ+ ζ2

1

) · log3(
BMd

ρω(ζ2
2κ+ ζ2

1 )
).
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Proof. By Lemma 3.5, we know if the gradient ‖∇F (xt)‖ ≥ γ, then with high probability that565

F (xt+1) − F (xt) ≤ −ηγ2/6. By Lemma 3.4, if xt is a saddle point (with small gradient norm566

but the Hessian has a small eigenvalue), then with high probability that F (xΓ+t) − F (xt) ≤567

−Ω( γ3/2

√
ρ log3( dMBργω )

), and the function values decrease Ω
(

γ2

M log4( dMBργω )

)
on average for each step.568

Recall the assumption that the risk is upper bounded by B, by our setting T = Ω
(
BM
γ2 log4(dMB

ργω )
)
,569

the statement is proved.570

B.5 Proof of Lemma 3.7571

Lemma 3.7. Under the event that ‖∇t−∇F (xt)‖ ≤ γ/4 for all t ∈ [T ] and our parameter settings,572

letting K = {t ∈ [T ] : driftt ≥ κ} be the set of iterations where the drift is large, we know573

|K| ≤ O
(
Bη
κ + Tγ2η2/κ) = O

(
Bη log4(dMB

ργω )/κ
)
.574

Proof. By Lemma 3.5, if ‖F (xt)‖ ≥ γ, we know F (xt+1)−F (xt) ≤ −η‖∇t‖2/6, and F (xt+1)−575

F (xt) ≤ ηγ2 otherwise. Index the items in K = {t1, t2, · · · , t|K|} such that ti < ti+1. We know576

F (xti+1
)− F (xti) ≤ −

1

6η
driftti+1

+ (ti+1 − ti)γ2η ≤ − 1

6η
κ+ (ti+1 − ti)γ2η.

Recall by the assumption that maxy F (y)−minx F (x) ≤ B. And hence−B ≤ F (xt|L|)−F (xt1) ≤577

− |K|6η κ+ Tγ2η, and we know578

|K| ≤ O
(Bη
κ

+ Tγ2η2/κ) = O(Bη log4(
dMB

ργω
)/κ
)
.

579

C Appendix for Section 4580

The pseudocode of Algorithm 2 is stated below:

Algorithm 2 AboveThreshold
1: Input: A set of points {xi}Ti=1, dataset S, parameters of objective functionB,M,G, ρ, objective

error α
2: Set T̂1 = α+ Lap( 4G

nε ) + 16 log(2T/ω)G
nε , T̂2 = −√ρα+ Lap( 4M

nε )− 16 log(2T/ω)M
nε

3: for i = 1, · · · , T do
4: if ‖∇FS(xi)‖+ Lap( 8G

nε ) ≤ T̂1

∧
smin(∇2FS(xi)) + Lap( 8M

nε ) ≥ T̂2 then
5: Output: xi
6: Halt
7: end if
8: end for

581

C.1 Proof of Theorem 4.2582

Theorem 4.2 (Empirical). For ε ≤ 10, δ ∈ (0, 1/2), use Equation (2) as gradient or-583

acles with κ = G4/3B1/3

M5/3 (

√
d log(1/δ)

nε )2/3, σ1 =
G
√
Bη log2(n/δ)/κ log2(ndMB/ω)

nε , σ2 =584

M
√

log2(n/δ)BM/α2
1 log5(ndMB/ω)

nε . Running Algorithm 1, outputting the set {xi}i∈[T ] if the total585

time to query O1 is bounded by O(Bη log4(dMB
ργω )/κ

)
, otherwise outputting a set of T arbitrary586

points is (ε/2, δ)-DP. With probability at least 1− ω, at least one point in the output set is α1-SOSP587

of FD with588

α1 = O



√
dBGM log2(1/δ)

nε

2/3

· log6

(
nBMd

ρω

) .
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Moreover, if we run Algorithm 2 with inputs {xi}i∈[T ],D, B,M,G, ρ, α1, with probability at least589

1− ω, we can get an α2-SOSP of FD with α2 = O
(
α1 + G log(n/Gω)

nε + M log(ndBGM/ρω)
nε
√
ρ

√
α1

)
.590

The whole procedure is (ε, δ)-DP.591

Proof. The privacy guarantee can be proved by composition theorems (Theorem A.2 and Theo-592

rem A.3), Gaussian Mechanism (Theorem A.4) and Lemma 3.7. Specifically, by Assumption 3.1 and593

our settings of parameters, we know the sensitivity of O1 and O2 are bounded by G
n and M‖x−y‖

n594

respectively, and querying O1 and O2 each time are ( ε√
Bη log(n/δ) log2(ndMB/ω)

, δ/n2)-DP and595

( ε√
log(n/δ)BM/α2

1 log5(ndMB/ω)
, δ/n2)-DP respectively. We can apply the advanced composition to596

prove the privacy guarantee of the whole algorithm. As the total number of iterations T is determined,597

and the privacy cost to query O2 for T times is controlled. It suffices to bound the total time to598

query O1, which is guaranteed in the statement. That is if the total time to query O1 is bounded by599

O
(
Bη log4(dMB

ργω )/κ
)
, the privacy guarantee follows from the advanced compostition. If the time600

exceeds O
(
Bη log4(dMB

ργω )/κ
)
, then we will output a set of arbitrary points which does not occur601

additional privacy cost.602

As for the utility, we know the O1 and O2 constructed in Equation (2) are first kind of σ1

√
d and603

second kind of σ2

√
d norm-subGaussian gradient oracle by Fact 2.3. Hence by Lemma 3.6, the utility604

α1 satisfies that605

α1 =O(σ1

√
d+ σ2

√
dκ) · log3(BMd/ρω)

=O
(L√dBη log2(1/δ)/κ

nε
+
M log3(ndMB/ω)

√
log2(1/δ)BM

nεα1

√
dκ
)
· log5(nBMd/ρω).

By Lemma 3.7, with probability at least 1− ω, the total time to query O1 is controlled and the final606

output will not be arbitrary points. Choosing the best κ demonstrates the bound on α1. The bound607

for α2 follows from the value of α1 and Lemma 4.1. Combining the two items in Lemma 4.1, we608

know with probability at least 1− ω, the output point x of Algorithm 2 satisfies that609

‖∇FD(x)‖ ≤ α1 +
32 log(2T/ω)G

nε
, and smin(∇2FD(x)) ≥ −√ρα1 −

32 log(2T/ω)M

nε
.

Hence we know x is an α2-SOSP for α2 stated in the statement.610

C.2 Proof of Claim 4.4611

Claim 4.4. The gradient oracles O1 and O2 constructed in Equation (3) are a first kind of612

O(L
√

log d√
b1

+
√
dσ1) norm-subGaussian gradient oracle and second kind of O(M

√
log d√
b2

+
√
dσ2)613

norm-subGaussian gradient oracle respectively.614

Proof. For the oracle O1, we know for each z ∈ S1, Ez∼P [∇f(x, z)] = ∇FP(x) and ∇f(x, z)−615

∇FP(x) is nSG(L) due to the Lipschitzness assumption. The statement follows from Fact 2.3 and616

Lemma 2.4. As for the O2, the statement follows similarly with the smoothness assumption.617

C.3 Proof of Lemma 4.5618

Lemma 4.5. Fix a point x ∈ Rd. Given a set S of m samples drawn i.i.d. from the distribution P ,619

then we know with probability at least 1− ω, we have620

‖∇FS(x)−∇FP(x)‖2 ≤ O
(G log(d/ω)√

m

)∧
‖∇2FS(x)−∇2FP(x)‖op ≤ O

(M log(d/ω)√
m

)
.

Proof. As for any s ∈ S,∇f(x; s)−∇FP(x) is zero-mean nSG(G). Then the Hoeffding inequality621

for norm-subGuassians (Lemma 2.4) demonstrates with probability at least 1 − ω/2, we have622

‖∇FS(x)−∇FP(x)‖2 ≤ O
(G log(d/ω)√

m

)
.623
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As for the other term, we know for any s ∈ S,E[∇2f(x; s) − ∇2FP(x)] = 0, and ‖∇2f(x; s) −624

∇2FP(x)‖op ≤ 2M almost surely. Hence applying Matrix Bernstein inequality (Theorem A.5) with625

σ2 = 4M2m, t = O
(√
mM log(d/ω)

)
, we know with probability at least 1 − ω/2, ‖∇2FS(x) −626

∇2FP(x)‖op ≤ t/m.627

Applying the Union bound completes the proof.628

C.4 Proof of Theorem 4.6629

Theorem 4.6 (Population). Divide the dataset D into two disjoint datasets D1 and D2 of size630

dn/2e and bn/2c respectively. Set b1 = nκ
Bη , b2 =

nα2
1

BM , σ1 =
3G
√

log(1/δ)

b1ε
, σ2 =

3M
√

log(1/δ)

b2ε
631

and κ = max(G
4/3B1/3 log1/3 d

M5/3 n−1/3, (GB
2/3

M5/3 )6/7(

√
d log(1/δ)

nε )4/7) in Equation (3) and use them as632

gradient oracles. Running Algorithm 1 with D1, and outputting the set {xi}i∈[T ] if the total time to633

query O1 is bounded by O(Bη log4(dMB
ργω )/κ

)
, otherwise outputting a set of T arbitrary points, is634

(ε/2, δ)-DP. is (ε/2, δ)-DP, and with probability at least 1 − ω, at least one point in the output is635

α1-SOSP of FP with636

α1 = O
((

(BGM · log d)1/3 1

n1/3
+ (G1/7B3/7M3/7)(

√
d log(1/δ)

nε
)3/7

)
log3(nBMd/ρω)

)
.

Moreover, if we run Algorithm 2 with inputs {xi}i∈[T ],D2, B,M,G, ρ, α1, with prob-637

ability at least 1 − ω, Algorithm 2 can output an α2-SOSP of FP with α2 =638

O
(
α1 + M log(ndBGM/ρω)√

ρmin(nε,n1/2)

√
α1 +G( log(n/Gω)

nε + log(d/ω)√
n

)
)
. The whole procedure is (ε.δ)-DP.639

Proof. Recall that we draw the samples to construct the gradient oracles (Equation 3) without640

replacement, and we should have all samples to be fresh to avoid dependency, and hence we need641

b1 · |K|+ b2 · T ≤ n/2,
which is satisfied by the procedure in the statement, as if the total time to query the O1 exeeds the642

threshold, the algorithm fails and outputs a set of arbitrary points. As we never reuse a sample, the643

privacy guarantee follows directly from the Gaussian Mechanism [19]. Specifically, the sensitivity of644

querying O1 and O2 are bounded by G/b1 and M‖x− y‖/b2 repectively, and querying O1 and O2645

are (ε/3, δ)-DP by Theorem A.4.646

The Norm-subGaussian parameters of the oracles follow from Claim 4.4. By lemma 3.6, we have647

α1

log3(nBMd/ρω)

=O(σ1

√
d+

G
√

log d√
b1

+ σ2

√
dκ+

M
√
κ log d√
b2

)·

=O(
GBη

√
d log(1/δ)

nεκ
+
BM2

√
log(1/δ)

nεα2
1

√
dκ+

G
√
Bη log d√
nκ

+M
√
κ

√
BM log d√
nα1

).

Setting κ = max(G
4/3B1/3 log1/3 d

M5/3 (n)−1/3, (GB
2/3

M5/3 )6/7(

√
d log(1/δ)

nε )4/7), we get648

α1 = O
((

(BGM log d)1/3 1

n1/3
+ (G1/7B3/7M3/7)(

√
d log(1/δ)

nε
)3/7

)
log3(nBMd/ρω)

)
.

Then we use the other half fresh samplesD2 to find the point in the set by Algorithm 2. By Lemma 4.1649

and Lemma 4.5, we know with probability at least 1− ω, for some large enough constant C > 0, the650

output point x of Algorithm 2 satisfies that651

‖∇FP(x)‖2 ≤α1 +G(
32 log(2T/ω)

nε
+
C log(dn/ω)√

n
),

smin(∇2FP(x)) ≥−√ρα1 −M(
32 log(2T/ω)

nε
+
C log(dn/ω)√

n
)

Hence we know x is an α2-SOSP for α2 stated in the statement. The privacy guarantee follows from652

Basic composition and Lemma 4.1.653
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D Omitted proof of Section 5654

D.1 Proof of Lemma 5.5655

Lemma 5.5 (Generalization error bound). Let πD ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). Then we have656

ED,x∼πD [FP(x)− FD(x)] ≤ O(G
2 exp(βGD)

nµ ).657

Proof. We know how to bound the KL divergence by LSI:658

KL(πD, πD′) :=

∫
log

dπD
dπD′

dπD

≤CLSI

2
E
πD

∥∥∥∥∇ log
dπD
dπD′

∥∥∥∥2

2

≤2CLSIG
2β2/n2.

LSI can lead to Talagrand transportation inequality [Theorem 1 in [39]], i.e.,659

W2(πD, πD′) .
√
CLSI ·KL(πD, πD′) = CLSIGβ/n.

The generalization error is bounded by O(CLSIG
2β/n). Using Holley-Stroock perturbation, we660

know CLSI(πD) ≤ exp(βGD)
βµ and hence the W2 distance between πD and πD′ can be bounded by661

O(G exp(βGD)
nµ ). The statement follows the Lipschitzness constant and Lemma 5.4.662

D.2 Proof of Theorem 5.6663

Theorem 5.6 (Risk bound). We are given ε, δ ∈ (0, 1/2). Sampling from exp(−β(FD(x)+ µ
2 ‖x‖

2
2))664

with β = O( ε log(nd)

GD
√

log(1/δ))
), µ = d

D2β is (ε, δ)-DP. The empirical risk and population risk are665

bounded by O(GD
d·log log(n)

√
log(1/δ)

ε log(nd) ).666

Proof. Denote π(x) ∝ exp(−β(FD(x) + µ
2 ‖x‖

2
2)). By Lemma 5.2, we know CLSI(π) ≤ 1

βµ ·667

exp(βGD). Plugging in the parameters and applying Theorem 5.1, we get668

2Gβ

n
·

√
exp(βGD)

βµ

√
3 log(1/δ) = O(1)

GDβ

n
√
d

√
exp(βGD) log(1/δ) ≤ 1

and hence prove the privacy guarantee.669

As for the empirical risk bound, by Lemma 5.3, we know670

E
x∼π

(FD(x) +
µ

2
‖x‖22)− min

x∗∈K
(FD(x∗) +

µ

2
‖x∗‖22) .

d log(βGD/d)

β
,

and we know671

E
x∼π

FD(x)− min
x∗∈K

FD(x∗) .
d log(βGD/d)

β
+ µD2.

Replacing the value of β achieves the empirical risk bound.672

As for the population risk, we have673

E
x∼π

FP(x)− min
y∗∈K

FP(y∗)

= E
x∼π

[FP(x)− FD(x)] + E[FD(x)− min
x∗∈K

FD(x∗)] + E[ min
x∗∈D

FD(x∗)− min
y∗∈K

FP(y∗)]

≤ E
x∼π

[FP(x)− FD(x)] + E[FD(x)− min
x∗∈K

FD(x∗)].

We can bound Ex∼π[FP(x) − FD(x)] ≤ O(G
2 exp(βGD)

nµ ) ≤ O( GDε log(n)

n1−cd
√

log(1/δ)
) by Lemma 5.5674

for an arbitrarily small constant c > 0. Hence the empirical risk is dominated term compared to675

Ex∼π[FP(x)− FD(x)], and we complete the proof.676
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D.3 Implementation677

We rewrite them below: Let F̂ (x) := F (x) + r(x) where r(x) is some regularizer, and F = Ei∈I fi678

is the expectation of a family of G-Lipschitz functions.

Algorithm 3 AlternateSample, [34]

1: Input: Function F̂ , initial point x0 ∼ π0, step size η
2: for t ∈ [T ] do
3: yt ← xt−1 +

√
ηζ where ζ ∼ N (0, Id)

4: Sample xt ← exp(−F̂ (x)− 1
2η‖x− yt‖

2
2)

5: end for
6: Output: xT

679

Theorem D.1 (Guarantee of Algorithm 3, [14]). Let K ⊂ Rd be a convex set of diameter D, and680

F̂ : K → R, and π ∝ exp(−F̂ ) satisfies LSI with constant CLSI. Then set η ≥ 0, we have681

Rq(πt, π) ≤ Rq(π0, π)

(1 + η/CLSI)2t/q
,

where Rq(π′, π) is the q-th order of Renyi divergence between π′ and π.682

To get a sample from exp(−F̂ (x)− 1
2η‖x− yt‖

2
2), we use the rejection sampler from [25], whose683

guarantee is stated below:684

Lemma D.2 (Rejection Sampler, [25]). If the step size η . G−2 log−1(1/δinner) and the inner685

accuracy δinner ∈ (0, 1/2), there is an algorithm that can return a random point x that has δinner686

total variation distance to the distribution proportional to exp(−F̂ (x)− 1
2η‖x− y‖

2
2). Moreover, the687

algorithm accesses O(1) different fi function values and O(1) samples from the density proportional688

to exp(−r(x)− 1
2η‖x− y‖

2
2).689

Combining Theorem 5.6, Theorem D.1 and Lemma D.2, we can get the following implementation of690

the exponential mechanism for non-smooth functions.691

Theorem 5.7 (Implementation, risk bound). For ε, δ ∈ (0, 1/2), there is an (ε, 2δ)-DP efficient692

sampler that can achieve the empirical and population risks O(GD
d·log log(n)

√
log(1/δ)

ε log(nd) ). Moreover,693

in expectation, the sampler takes Õ
(
nε3 log3(d)

√
log(1/δ)/(GD)

)
function values query and some694

Gaussian random variables restricted to the convex set K in total.695

Proof. By Theorem 5.6, it suffices to get a good sample from π with density proportional to696

exp(−β(FD(x) + µ
2 ‖x‖

2
2)) where β = O( ε log(nd)

GD
√

log(1/δ))
), µ = d

D2β . Set q = 1, which gives697

that Rq(·, ·) is the KL-divergence. Suppose we let x0 is drawn from density proportional to698

exp(−β2µ‖x‖
2
2), then the KL divergence between π0 and π is bounded by exp(qβGD).699

Now let π(i)
T be the distribution we get over xT from Algorithm 3 if we use an exact sampler for

i iterations, then the sampler of Lemma D.2 for the remaining T − i iterations. The output of
Algorithm 3 that we actually get is π(0)

T . Note that CLSI ≤ D2n, and η . β−2G−2 log−1(2T/δ).
Setting

T = O

(
CLSI

η
log(exp(qβGD)/δ2)

)
= Õ

(
nε3 log3(d)

√
log(1/δ)

GD

)
we get δinner = δ/2T in Lemma D.2 and that R1(π

(T )
T , π) ≤ δ2/8. This implies the total variation700

distance between π(T )
T and π is at most δ/2 by Pinsker’s inequality. Furthermore, by the post-701

processing inequality, the total variation distance between π(i)
T and π(i+1)

T is at most δ/2T for all i.702

Then by triangle inequality the total variation distance between π(0)
T and π is at most δ.703
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D.4 Proof of Theorem 5.8704

Theorem 5.8. There exists an ε-DP differentially private algorithm that achieves a population risk705

of O
(
GD

(
d log(εn/d)/(εn) +

√
d log(εn/d)/(

√
n)
))

.706

Proof. We pick a maximal packing P of O((D/r)d) points, such that every point in K is distance at707

most r from some point in P . By G-Lipschitzness, the risk of any point in P for the DP-ERM/SCO708

problems over K are at most Gr plus the risk of the same point for DP-ERM/SCO over P . The709

exponential mechanism over P gives a DP-ERM risk bound of O
(
GD
εn log |P |

)
. Next, note that710

the empirical loss of each point in P is the average of n random variables in [0, GD] wlog. So,711

the expected maximum difference between the empirical and population loss of any point in P is712

O

(
GD
√

log |P |√
n

)
. Putting it all together we get a DP-SCO expected risk bound of:713

O

(
Gr +GD

(
d log(D/r)

εn
+

√
d log(D/r)√

n

))
.

This is approximately minimized by setting r = Dd/εn. This gives a bound of:714

O

(
GD

(
d log(εn/d)

εn
+

√
d log(εn/d)√

n

))
.

715

E Conclusion716

We present a novel framework that can improve upon the state-of-the-art rates for locating second-717

order stationary points for both empirical and population risks. We also examine the utilization of the718

exponential mechanism to attain favorable excess risk bounds for both a polynomial time sampling719

approach and an exponential time sampling approach. Despite the progress made, several interesting720

questions remain. There is still a gap between the upper and lower bounds for finding stationary721

points. As noted in [2], it is quite challenging to beat the current (
√
d
n )2/3 empirical upper bound, and722

overcoming this challenge may require the development of new techniques. A potential avenue for723

improving the population rate for SOSP could be combining our drift-controlled framework with the724

tree-based private SpiderBoost algorithm in [2]. Additionally, it is worth exploring if it is possible to725

achieve better excess risk bounds within polynomial time, and what the optimal risk bound could be.726

F Extended related work727

In the convex setting, it is feasible to achieve efficient algorithms with good risk guarantees. In turn,728

differentially private empirical risk minimization (DP-ERM) [12, 13, 16, 27, 32, 9, 42, 40, 41] and729

differentially private stochastic optimization [4, 7, 6, 21, 33, 3, 31, 25, 22, 11, 26] have been two of730

the most extensively studied problems in the DP literature. Most common approaches are variants of731

DP-SGD [13] or the exponential mechanism [37].732

As for the non-convex optimization, due to the intrinsic challenges in minimizing general non-convex733

functions, most of the previous works [48, 49, 46, 45, 55, 41, 43, 53, 2, 50, 23] adopted the gradient734

norm as the accuracy metric rather than risk. Instead of minimizing the gradient norm discussed735

before, [8] tried to minimize the stationarity gap of the population function privately, which is defined736

as GapFP (x) := maxy∈K〈∇FP(x), x− y〉, which requires K to be a bounded domain. There are737

also some different definitions of the second order stationary point. We refer the readers to [36] for738

more details.739

The risk bound achieved by algorithms with polynomial running time is weak and requires n� d740

to be meaningful. Many previous works consider minimizing risks of non-convex functions under741

stronger assumptions, such as, Polyak-Lojasiewicz condition [48, 54], Generalized linear model742

(GLM) [45] and weakly convex functions [8].743

21



In the (non-private) classic stochastic optimization, there is a long line of influential works on finding744

the first and second-order stationary points for non-convex functions, [1, 28, 20, 52, 17].745

First order stationary points. Progress towards privately finding a first-order stationary point is746

measured in (i) the norm of the empirical gradient at the solution x, i.e., ‖∇FD(x)‖, and (ii) the747

norm of the population gradient, i.e., ‖∇FP(x)‖. We summarize compare these first-order guarantees748

achieved by Algorithm 1 with previous algorithms in Table 2:749

References Empirical Population
[48] d1/4√

n
N/A

[46] d1/4√
n

√
d√
n

[49] (
√
d
n )2/3 N/A

[55] d1/4√
n

d1/4√
n

[43] 1√
n

+
(√

d
n

)2/3

N/A

[2]
(√

d
n

)2/3
1

n1/3 + (
√
d
n )1/2

Table 2: Previous work in finding first-order stationary points. We omit logarithmic terms and
dependencies on other parameters such as Lipschitz constant. “N/A” means we do not find an explicit
result in the work.

Second order stationary points. We say a point x is a Second-Order Stationary Point (SOSP),750

or a local minimum of a twice differentiable function g if ‖∇g(x)‖2 = 0 and smin(∇2g(x)) ≥ 0.751

Exact second-order stationary points can be extremely challenging to find [24]. Instead, it is common752

to measure the progress in terms of how well the solution approximates an SOSP.753

Definition F.1 (approximate-SOSP, [1]). We say x ∈ Rd is an α-second order stationary point754

(α-SOSP) for ρ-Hessian Lipschitz function g, if755

‖∇g(x)‖2 ≤ α
∧

smin(∇2g(x)) ≥ −√ρα.

References Empirical Population
[45] d1/4√

n
N/A

[47] ( dn )4/7 N/A
[23] ( dn )1/2 N/A
Ours (

√
d
n )2/3 1

n1/3 + (
√
d
n )3/7

Table 3: Summary of previous results in finding α-SOSP, where α is demonstrated in the Table. Omit
the logarithmic terms and the dependencies on other parameters like Lipschitz constant. “N/A” means
we do not find an explicit result in the work.

Existing works in finding approximate SOSP privately give guarantees for the empirical function FD.756

We improve upon the state-of-the-art result and give the first guarantee for the population function757

FP , which is summarized in Table 3.758
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