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Abstract

This document contains mathematical proof, additional details, comparisons to
baseline methods, and other supporting information accompanying the paper “De-
randomized novelty detection with FDR control via conformal e-values”.

Contents

The supplementary material is organized as follows:

• All algorithmic details are summarized in Section S1.
• Mathematical proofs of theorems presented in the paper can be found in Section S2.
• Section S3 provides details on the training strategy and choice of hyper-parameters for the

models utilized in the paper, along with information about the computational resources
needed to conduct the experiments.

• Additional synthetic experiments involving our derandomization framework in combination
with AdaDetect and OC-Conformal are in Section S4.

• A discussion of alternative approaches for constructing e-values and corresponding compar-
isons to our martingale-based e-value construction are in Section S5.

• Real data experiments using AdaDetect and OC-Conformal, along with their derandom-
ized versions, are in Section S6.
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S1 Algorithmic details

Algorithm S1 Aggregation of conformal e-values with fixed model weights

1: Input: inlier data set D ≡ {Xi}ni=1; test set Dtest; size of calibration-set ncal; number
of iterations K; one-class or binary black-box classification algorithm A; normalized model
weights w(k), for k ∈ [K]; hyper-parameter αbh ∈ (0, 1);

2: for k = 1, ...,K do
3: Randomly split D into D(k)

cal and D(k)
train, with |D(k)

cal | = ncal

4: Train the model: M(k) ← A(D(k)
train) {possibly including additional labeled outlier data if

available}
5: Compute the calibration scores S(k)

i =M(k)(Xi), for all i ∈ D(k)
cal

6: Compute the test scores S(k)
j =M(k)(Xj), for all j ∈ Dtest

7: Compute the threshold t̂(k) according to (4) {this depends on the hyper-parameter αbh }
8: Compute the e-values e(k)j for all j ∈ |Dtest| according to (5)
9: end for

10: Aggregate the e-values ēj =
∑K

k=1 w
(k) · e(k)j

11: Output: e-values ēj for all j ∈ Dtest that can be filtered with Algorithm S2 to control the FDR.

Algorithm S2 eBH filter of Wang and Ramdas (2022)

1: Input: e-values {ej}Nj=1 corresponding to N null hypotheses to be tested; target FDR level
α ∈ (0, 1)

2: Compute the order statistics of the e-values: e(1) ≥ · · · ≥ e(N)

3: Find the rejection threshold imax = max{i ∈ [N ] : e(i) ≥ N/(α · i)}
4: Construct the rejection setR = {j ∈ [N ] : ej ≥ e(imax)}
5: Output: a list of rejected null hypothesesR ⊆ [N ].

Algorithm S3 Aggregation of conformal e-values with data-adaptive model weights

1: Input: inlier data set D ≡ {Xi}ni=1; test set Dtest; size of calibration-set ncal; number of
iterations K; one-class or binary black-box classification algorithm A; a model weighting
function ω; hyper-parameter αbh ∈ (0, 1);

2: for k = 1, ...,K do
3: Randomly split D into D(k)

cal and D(k)
train, with |D(k)

cal | = ncal

4: Train the model: M(k) ← A(D(k)
train) {possibly including additional labeled outlier data if

available}
5: Compute the calibration scores S(k)

i =M(k)(Xi), for all i ∈ D(k)
cal

6: Compute the test scores S(k)
j =M(k)(Xj), for all j ∈ Dtest

7: Compute the weights w̃(k) = ω
(
{S(k)

i }i∈Dtest∪D(k)
cal

)
{invariant un-normalized model

weights}
8: Compute the threshold t̂(k) according to (4) {this depends on the hyper-parameter αbh}
9: Compute the e-values e(k)j for all j ∈ |Dtest| according to (5)

10: end for
11: for k = 1, ...,K do
12: w(k) = w̃(k)/

∑K
k′=1 w̃

(k′) {normalize the model weights}
13: end for
14: Aggregate the e-values ēj =

∑K
k=1 w

(k) · e(k)j

15: Output: e-values ēj for all j ∈ Dtest that can be filtered with Algorithm S2 to control the FDR.
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Algorithm S4 Aggregation of conformal e-values with data-adaptive model weights and AdaDetect
training

1: Input: inlier data set D ≡ {Xi}ni=1; test set Dtest; size of calibration-set ncal; number
of iterations K; black-box binary classification algorithm A; a model weighting function ω;
hyper-parameter αbh ∈ (0, 1);

2: for k = 1, ...,K do
3: Randomly split D into D(k)

cal and D(k)
train, with |D(k)

cal | = ncal

4: Train the binary classifier,M(k) ← A(D(k)
train,D

(k)
cal ∪Dtest) {treating the data in D(k)

cal ∪Dtest

as outliers}
5: Compute the calibration scores S(k)

i =M(k)(Xi), for all i ∈ D(k)
cal

6: Compute the test scores S(k)
j =M(k)(Xj), for all j ∈ Dtest

7: Compute the weights w̃(k) = ω
(
{S(k)

i }i∈Dtest∪D(k)
cal

)
{invariant un-normalized model

weights}
8: Compute the threshold t̂(k) according to (4) {this depends on the hyper-parameter αbh}
9: Compute the e-values e(k)j for all j ∈ |Dtest| according to (5)

10: end for
11: for k = 1, ...,K do
12: w(k) = w̃(k)/

∑K
k′=1 w̃

(k′) {normalize the model weights}
13: end for
14: Aggregate the e-values ēj =

∑K
k=1 w

(k) · e(k)j

15: Output: e-values ēj for all j ∈ Dtest that can be filtered with Algorithm S2 to control the FDR.

Algorithm S5 Adaptive model weighting via t-tests

1: Input: Scores {Si}Ni=1; a guess γ for the proportion of outliers in the data.
2: Compute the order statistics of the scores: S(1) ≤ · · · ≤ S(N)

3: Denote n2 = ⌈γN⌉ and n1 = N − n2

4: Divide the sorted scores into two groups with size n1 and n2: I1 = {S(i)}n1
i=1, I2 =

{S(i)}Ni=n1+1

5: Estimate the means of the two groups: µ1 = (1/n1)
∑

i∈I1
S(i) and µ2 = (1/n2)

∑
i∈I2

S(i)

6: Estimate the pooled variance: z = (1/(n1 + n2 −
2))

[∑
i∈I1

(S(i) − µ1)
2 +

∑
i∈I2

(S(i) − µ2)
2
]

7: Compute the t-statistic: ṽ = (µ1 − µ2)/
√
z · (1/n1 + 1/n2)

8: Output: model weight w̃ = |ṽ|

Algorithm S6 Adaptive model weighting via trimmed mean

1: Input: Scores {Si}Ni=1; a guess γ for the proportion of outliers in the data.
2: Compute the order statistics of the scores: S(1) ≤ · · · ≤ S(N)

3: Denote ñ = N − ⌈γN⌉
4: Compute the mean of the trimmed group: µ̂ =

∑ñ
i=1 S(i)

5: Output: model weight w̃ = e−µ̂
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S2 Mathematical proofs

Proof of Theorem 3.2. This result is implied by Theorem 3.6, to whose proof we refer.

Proof of Theorem 3.6. The proof follows a martingale argument similar to that of Rava et al. (2021).
For each fixed k, define the following two quantities as functions of t ∈ R:

V
(k)
test(t) =

∑
j∈Dnull

test

I
{
S
(k)
j ≥ t

}
, (S1)

and

V
(k)
cal (t) =

∑
i∈D(k)

cal

I
{
S
(k)
i ≥ t

}
. (S2)

For each k ∈ [K], define also the unordered set of conformity scores for non-null test points as:

D̃(k)
test−nn = {Ŝ(k)

i }i∈Dtest\Dnull
test

,

and the unordered set of conformity scores for all calibration and test points as:

D̃(k)
cal−test = {Ŝ

(k)
i }i∈Dtest∪D(k)

cal

.

With this premise, we can write:∑
j∈Dnull

test

E [ēj ] =
∑

j∈Dnull
test

E

[
K∑

k=1

w(k)e
(k)
j

]

=

K∑
k=1

∑
j∈Dnull

test

E
[
w(k)e

(k)
j

]

=

K∑
k=1

∑
j∈Dnull

test

E

w(k) (1 + ncal)
I
{
S
(k)
j ≥ t̂(k)

}
1 + V

(k)
cal (t̂

(k))


=

K∑
k=1

E

[
w(k) (1 + ncal)E

[
V

(k)
test(t̂

(k))

1 + V
(k)
cal (t̂

(k))
| D̃(k)

cal−test, D̃
(k)
test−nn

]]

=

K∑
k=1

E
[
w(k) · nnull

test

]
= nnull

test ≤ ntest.

Above, the third-to-last equality follows from the assumption that w(k) is a deterministic function of
D̃(k)

cal−test, and the second-to-last equality follows from the fact that M (k)(t), defined as

M (k)(t) =
V

(k)
test(t)

1 + V
(k)
cal (t)

,

is a martingale conditional on D̃(k)
cal−test and D̃(k)

test−nn, and therefore it is possible to show that

E
[
M (k)(t̂(k)) | D̃(k)

cal−test, D̃
(k)
test−nn

]
=

nnull
test

1 + ncal

by applying the optional stopping theorem. This last statement is proved below, following the same
strategy as in Rava et al. (2021).

For each l ∈ {1, . . . , nnull
test + ncal}, define tl as the unique discrete threshold belonging to D̃(k)

cal−test
at which exactly l inliers have scores exceeding tl, across all calibration and null test points; i.e.,

t
(k)
l = inf

{
t ∈ D̃(k)

cal−test : V
(k)
test(t) + V

(k)
cal (t) = l

}
.
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Note that this is always well-defined as long as there are no ties between scores (which can always be
achieved by adding a negligible noise).

By convention, define also t
(k)
0 =∞. Consider then a discrete-time filtration indexed by l:

F (k)
l =

{
σ
(
V

(k)
test(t

(k)
l′ ), V

(k)
cal (t

(k)
l′ )

)}
l≤l′≤nnull

test+ncal

.

Note that F (k)
l is a backward-running filtration because F (k)

l2
⊂ F (k)

l1
for any l1 < l2.

It now remains to be proved that M (k)(t) is a martingale. Since we assumed that there are no ties
between scores, we get that for every two consecutive thresholds t(k)l and t

(k)
l−1 the following holds by

definition:

V
(k)
test(t

(k)
l−1) + V

(k)
cal (t

(k)
l−1) = V

(k)
test(t

(k)
l ) + V

(k)
cal (t

(k)
l )− 1.

The discrepancy between these two thresholds corresponds to a singular score whose value is larger
than t

(k)
l but smaller than t

(k)
l−1 > t

(k)
l . This score can either correspond to a calibration or null test

point. Therefore, we should consider the following two mutually exclusive events:

E1 =
{
V

(k)
cal (t

(k)
l−1) = V

(k)
cal (t

(k)
l )

}
∩
{
V

(k)
test(t

(k)
l−1) = V

(k)
test(t

(k)
l )− 1

}
,

E2 =
{
V

(k)
cal (t

(k)
l−1) = V

(k)
cal (t

(k)
l )− 1

}
∩
{
V

(k)
test(t

(k)
l−1) = V

(k)
test(t

(k)
l )

}
.

By Assumption 3.1,

P
(
E1 | F (k)

l , D̃(k)
cal−test, D̃

(k)
test−nn

)
=

V
(k)
test(t

(k)
l )

V
(k)
test(t

(k)
l ) + V

(k)
cal (t

(k)
l )

,

P
(
E2 | F (k)

l , D̃(k)
cal−test, D̃

(k)
test−nn

)
=

V
(k)
cal (t

(k)
l )

V
(k)
test(t

(k)
l ) + V

(k)
cal (t

(k)
l )

.

Then, for any l ∈ {1, . . . , nnull
test + ncal}, it follows from the law of total probability that

E
[
M (k)(t

(k)
l−1) | F

(k)
l , D̃(k)

cal−test, D̃
(k)
test−nn

]
=

V
(k)
test(t

(k)
l )− 1

1 + V
(k)
cal (t

(k)
l )
·

V
(k)
test(t

(k)
l )

V
(k)
cal (t

(k)
l ) + V

(k)
test(t

(k)
l )

+
V

(k)
test(t

(k)
l )

V
(k)
cal (t

(k)
l )
·

V
(k)
cal (t

(k)
l )

V
(k)
cal (t

(k)
l ) + V

(k)
test(t

(k)
l )

=
V

(k)
test(t

(k)
l )− 1

1 + V
(k)
cal (t

(k)
l )
·

V
(k)
test(t

(k)
l )

V
(k)
cal (t

(k)
l ) + V

(k)
test(t

(k)
l )

+
V

(k)
test(t

(k)
l )

V
(k)
cal (t

(k)
l ) + V

(k)
test(t

(k)
l )

=
V

(k)
test(t

(k)
l ) · [V (k)

test(t
(k)
l )− 1] + V

(k)
test(t

(k)
l ) · [1 + V

(k)
cal (t

(k)
l )]

[1 + V
(k)
cal (t

(k)
l )] · [V (k)

cal (t
(k)
l ) + V

(k)
test(t

(k)
l )]

=
V

(k)
test(t

(k)
l )

1 + V
(k)
cal (t

(k)
l )

= M (k)(t
(k)
l ).

By the optional stopping theorem, this implies that

E
[
M (k)(t̂(k)) | D̃(k)

cal−test, D̃
(k)
test−nn

]
= E

[
M (k)(tnnull

test+ncal
) | D̃(k)

cal−test, D̃
(k)
test−nn

]
=

nnull
test

1 + ncal
,

and this completes the proof.
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S3 Implementation details for one-class and binary classifiers

We have applied the following models, from the scikit-learn (Buitinck et al., 2013) Python library,
to compute the scores.

• Synthetic experiments:
– Binary classifer: logistic regression with scikit-learn default ridge regularization

parameter.
– One class classifier: one-class kernel SVM with RBF kernel with scikit-learn

default kernel width parameter.
• Real-data experiments:

– Binary classifier: random forest with 100 estimators with a maximum depth of 10. All
other hyper-parameters are set to scikit-learn default values.

– One class classifier: isolation forest with 100 estimators, each is fitted to a random
subset of min(256, n_samples) training samples. All other hyper-parameters are set to
scikit-learn default values.

Unless specified otherwise, our derandomization method is implemented by setting αbh = 0.1 · α,
where α is the target FDR level. All the experiments were conducted on our local CPU cluster.

S4 Additional synthetic experiments

S4.1 Derandomized AdaDetect

Section 4.2 of the main manuscript studies the performance of the proposed method focusing on the
algorithmic variability for different analyses of the same synthetic data set. Here, we conduct the
following additional experiments.

• Figure S1 confirms the reproducibility of the results presented in Figure 2 of the main
manuscript, showing that the FDR is controlled over 100 independent realizations of the
data. These results are investigated as a function of the signal strength.

• Figure 3 of the main manuscript studies the effect of the number K of derandomized analyses
for strong signal amplitude. We conduct a similar study in Figure S2 but for a lower power
regime. When the number of iterations is relatively high, our method achieves much smaller
algorithmic variably as measured by the selection variance, although at the cost of reduced
power. This drop in power can be explained by noting that, in the low power regime, the
base outlier detection methods tend to make inconsistent selections across multiple analyses
of the same data, which are likely to be filtered out by the derandomization procedure.

• Figure S3 confirms the reproducibility of the results observed in Figure 3 of the main
manuscript and Figure S2 of the Supplementary Material, by evaluating the average FDR
and power over 100 independent realizations of the data. These results are investigated as a
function of the number of analysis repetitions K.

S4.2 Derandomized One-Class Conformal

We now turn to explore the effect of our derandomization method on the performance of
OC-Conformal. Specifically, Figure S4 compares the power, false discovery proportion, and variance
of OC-Conformal to those of E-OC-Conformal as a function of the signal amplitude, on one realiza-
tion of the synthetic data. The results show that the false discovery proportion is controlled for both
methods, but this error metric is lower for E-OC-Conformal. The variance of E-OC-Conformal is
also reduced, but often at the cost of reduced power. Figure S5 reports the corresponding average
FDR and power across 100 realizations, confirming the validity of our method.
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Figure S1: Performance on synthetic data of the proposed derandomized outlier detection method,
E-AdaDetect, applied with K = 10 analysis repetitions. The results are compared to the perfor-
mance of the randomized benchmark, AdaDetect, as a function of the signal strength, averaging over
100 independent realizations of the data. Left: average proportion of true outliers that are discovered
(higher is better). Right: average proportion of false discoveries (lower is better). Other results are as
in Figure 2.
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Figure S2: Performance on synthetic data of E-AdaDetect, as a function of the number K of analysis
repetitions, compared to AdaDetect. Note that the latter can only be applied with a single data split
(or iteration). Low power regime with signal amplitude 2.8. Other details are as in Figure 3.
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Figure S3: Performance on synthetic data of E-AdaDetect, as a function of the number K of analysis
repetitions, compared to that of its randomized benchmark AdaDetect. The results are averaged
over 100 independent realizations of the data. Top: high-power regime with signal amplitude 3.4.
Bottom: low-power regime with signal amplitude 2.8. Other results are as in Figure 3.
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Figure S4: Performance on synthetic data of the proposed derandomized outlier detection method,
E-OC-Conformal, applied with K = 10 analysis repetitions. The results are compared to the
performance of the randomized benchmark, OC-Conformal, as a function of the signal strength.
Both methods leverage a one-class support vector classifier. Left: average proportion of true outliers
that are discovered (higher is better). Center: average proportion of false discoveries (lower is better).
Right: variability of the findings (lower is better). Other details are as in Figure 2. Note that these
results correspond to 100 repeated experiments based on a single realization of the labeled and test
data, hence why the results appear a little noisy.
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Figure S5: Performance on synthetic data of the proposed derandomized outlier detection method,
E-OC-Conformal, applied with K = 10 analysis repetitions. The results are compared to the
performance of the randomized benchmark, OC-Conformal, as a function of the signal strength.
Both methods leverage a one-class support vector classifier. The results are averaged over 100
independent realizations of the data. Left: average proportion of true outliers that are discovered
(higher is better). Right: average proportion of false discoveries (lower is better). Other details are as
in Figure 2.
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S4.3 Hyper-parameter tuning

In all of the experiments presented in the main manuscript, we set αbh to be α/10. We found this to
be a reasonable choice in general, although it may not always be optimal. In this section, we explore
the effect of αbh across four scenarios: low and high power regimes, as well as small and large
proportions of outliers in the test set. Following Figure S7, we can see that the choice αbh = α/10 is
not always ideal for the E-OC-Conformal algorithm. Here, a larger value of αbh = α/2 seems to be
a better choice when the proportion of outliers is large, as it results in more test outlier samples with
non-zero e-values. By contrast, a smaller value of αbh = α/10 is suitable when the proportion of
outliers is small, as it leads to larger e-values for the outliers.

We now repeat the same experiment but with E-AdaDetect, summarizing the results in Figure S6.
In contrast with E-OC-Conformal, a fixed α/10 is an appropriate choice for αbh when applying our
method with AdaDetect for all the scenarios we studied, indicating that this method is more robust
to the choice of αbh. In the remaining supplementary experiments, we will utilize a fixed αbh = α/2
for E-OC-Conformal and a fixed αbh = α/10 for E-AdaDetect.
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(a) high power, 10% outliers
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(c) low power, 10% outliers
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Figure S6: Performance on synthetic data of the proposed derandomized outlier detection method,
E-AdaDetect, applied with K = 10 as a function of αbh. The results are averaged over 100
independent realizations of the data. Top: high-power regime with signal amplitude 3.4 for 10%
outliers and 1.6 for 50% outliers. Bottom: low-power regime with signal amplitude 2.8 for 10%
outliers and 1.1 for 50% outliers. Left: 10% outliers in the test-set. Right: 50% outliers in the test-set.
Other details are as in Figure 2.
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Figure S7: Performance on synthetic data of the proposed derandomized outlier detection method,
E-OC-Confromal, applied with K = 10 as a function of αbh. The method leverages a one-class
support vector classifier. The results are averaged over 100 independent realizations of the data. Top:
high-power regime with signal amplitude 3.6 for 10% outliers and 3.4 for 50% outliers. Bottom:
low-power regime with signal amplitude 2.6 for 10% outliers and 2.3 for 50% outliers. Left: 10%
outliers in the test-set. Right: 50% outliers in the test-set. Other details are as in Figure 2.
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S5 Comparisons to alternative e-values constructions

In this section, we discuss alternative methods for constructing conformal e-values to derandomize
split conformal inferences, comparing their performance to that of our proposed martingale-based
approach. These alternative e-value constructions were proposed in prior works, as detailed below,
but they had not been previously utilized for the purpose of de-randomizing conformal inferences.

S5.1 Review of p-to-e calibrators

One strategy for generating e-values is to utilize p-to-e calibrators, whose goal is to transform valid p-
values into valid e-values (Vovk and Wang, 2021, Section 2). This strategy can be specifically applied
to conformal p-values û. Various types of calibrators are available, including Shafer’s calibrator:

S(û) :=
1√
û
− 1, (S3)

as well as the following family of calibrators,

F (û) = ϵ · ûϵ−1, (S4)

where ϵ ∈ (0, 1) is a hyper-parameter. To bypass the problem of choosing the hyper-parameter ϵ in
(S4), one can use an over-optimistic estimate of the maximum of (S4), known as the VS calibrator
(Vovk and Wang, 2021):

VS(û) := supϵ ϵû
ϵ−1 =

{
−e−1/(û ln û), if û ≤ e−1

1, otherwise . (S5)

The VS calibrator does not produce a valid e-value, but it can still serve as an informative baseline
because it approximates the most powerful possible calibrator within the family of functions (S4)
(Vovk and Wang, 2021). An alternative way to eliminate the influence of ϵ is to integrate over it,
leading to the following calibrator:

F (û) :=

∫ 1

0

ϵûϵ−1dϵ =
1− û+ û ln û

û(− ln û)2
. (S6)

Armed with a p-to-e calibrator, one can then derandomize split conformal inferences by proceeding
similarly to the main manuscript; this approach is summarized for completeness in Algorithm S7.
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Algorithm S7 Aggregation of conformal e-values computed by a p-to-e calibrator with data-adaptive
model weights

1: Input: inlier data set D ≡ {Xi}ni=1; test set Dtest; size of calibration-set ncal; number of
iterations K; p-to-e calibrator function F ; one-class or binary black-box classification algorithm
A; a model weighting function ω;

2: for k = 1, ...,K do
3: Randomly split D into D(k)

cal and D(k)
train, with |D(k)

cal | = ncal

4: Train the model: M(k) ← A(D(k)
train) {possibly including additional labeled outlier data if

available}
5: Compute the calibration scores S(k)

i =M(k)(Xi), for all i ∈ D(k)
cal

6: Compute the test scores S(k)
j =M(k)(Xj), for all j ∈ Dtest

7: Compute the weights w̃(k) = ω
(
{S(k)

i }i∈Dtest∪D(k)
cal

)
{invariant un-normalized model

weights}
8: Compute the p-values for all j ∈ |Dtest| : û(k)

j = (1 +
∑

i∈Dcal
I{S(k)

j ≤ S
(k)
i })/(1 + ncal)

9: Compute the e-values e(k)j for all j ∈ |Dtest| using the p-to-e calibrator: e(k)j = F
(
û
(k)
j

)
10: end for
11: for k = 1, ...,K do
12: w(k) = w̃(k)/

∑K
k′=1 w̃

(k′) {normalize the model weights}
13: end for
14: Aggregate the e-values ēj =

∑K
k=1 w

(k) · e(k)j

15: Output: e-values ēj for all j ∈ Dtest that can be filtered with Algorithm S2 to control the FDR.

S5.1.1 Comparing p-to-e to the martingale-based approach

When implementing the p-to-e derandomization approach in the synthetic experiments described in
Section 4.2, we observed that the power was nearly zero. Increasing the size of the calibration set
can be beneficial to improve the power of this approach. This is because the size of the calibration
set determines the minimum attainable conformal p-value, given by 1/(ncal + 1). Consequently, the
size of this set influences the maximum achievable e-value through p-to-e calibrators: smaller input
p-values result in larger outputs from the calibrator functions (S3), (S5), and (S6).

Following the above discussion, we compare the performance of the p-to-e approach to our martingale-
based method as a function of the size of the calibration set. According to Figure S8, we can see
that the p-to-e approach has lower power than our method, where both derandomization methods are
combined with OC-Conformal. Among the studied p-to-e calibrators, the VS calibrator demonstrates
relatively higher power. However, it should be noted that the VS calibrator generates invalid e-values,
as this calibrator outputs an overly optimistic estimate of the maximum value in (S4). Nevertheless,
even the VS calibrator is considerably less powerful than our proposed method.

Since there is a significant performance gap between our martingale-based e-value construction and
the p-to-e approaches, we do not provide any further comparisons between these methods. We also
do not repeat this experiment with AdaDetect, since the p-to-e approach requires a large calibration
set to yield meaningful power, which is far from an ideal setup for AdaDetect. The latter approach
suggests fitting a binary classifier on the observed data, treating both the calibration and test points as
outliers. A large amount of inlier calibration points can lower AdaDetect’s power since the wrong
labeling of the calibration points as outliers is likely to reduce the classifier’s ability to provide large
scores for test outliers.
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Figure S8: Performance on synthetic data of the proposed derandomized outlier detection method,
E-OC-Conformal, applied with K = 10, compared to that of its randomized benchmark,
OC-Conformal. We also compare the performance of these methods to p-to-e calibrators, ap-
plied with K = 10, as a function of the number of inlier calibration points. The number of training
inliers is fixed and equals 1000. All methods leverage a one-class support vector classifier. Top:
high-power regime with signal amplitude 3.6. Bottom: low-power regime with signal amplitude 3.2.
The dashed horizontal line indicates the nominal false discovery rate level α = 0.1. The results are
averaged over 100 independent realizations of the data.

S5.2 Review of soft-rank permutation e-test

The soft-rank e-values introduced by Ignatiadis et al. (2023) is another approach to construct e-values
for permutation tests, including split conformal. This method constructs an e-value for each test
point by comparing its relative rank to the calibration samples, employing a similar methodology to
the construction of conformal p-values described in Bates et al. (2023). Here, we present a slightly
modified version that begins with normalizing the conformity score for each test point as well as the
calibration scores. Consider a single hypothesis corresponding to a single test point. Let S0 be the
corresponding test conformity score, and S1, . . . , Sncal

be the ncal conformity scores correspond to
the calibration set. With this in place, denote by Smax and Smin the maximum and minimum scores
among S0, . . . , Sncal

. Then, for each b ∈ [0, ncal] we define the normalized score as

Lb =
Sb − Smin

Smax − Smin
. (S7)

Having defined the normalized score, we construct an e-value for each test point by following the set
of steps described in Ignatiadis et al. (2023). Define L∗ = minb=0,...,ncal

Lb. For b = 0, . . . , ncal,
compute the transformed statistic as

Rb =
erLb − erL∗

r
, (S8)

where r > 0 is a hyper-parameter. In the case where r = 0, the transformed statistic simplifies to
Rb = Lb−L∗. Overall, the soft-ranking transformation presented above preserves the ordering of the
test statistics while ensuring that the random variable Rb is non-negative. Leveraging the transformed
non-negative variables, we can construct a valid e-value for the test point by computing (Ignatiadis
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et al., 2023)

e0 := (ncal + 1)
R0∑ncal

i=0 Ri
. (S9)

Similarly to p-to-e calibrators, we can combine the soft-rank e-value approach with our novel
derandomization procedure, as outlined in Algorithm S8, and further compare the performance of
this method to our martingale-based e-values.

Before doing so, we pause to discuss the choice of the hyper-parameter r. Since there is no simple
rule on how to set this parameter, we repeat the same analysis from Section S4.3 and study the
effect of r across four scenarios: low/high power regimes and small/large proportions of test outliers.
The results, presented in Figures S9 and S10, suggest that a suitable choice for r could be 500 for
AdaDetect and r = 75 for OC-Conformal. The latter choice takes into account the trade-off in
power across Figures S10b and S10c. We use these choices for all the soft-rank experiments provided
in this Supplementary Material.

Algorithm S8 Aggregation of soft-rank e-values with data-adaptive model weights

1: Input: inlier data set D ≡ {Xi}ni=1; test set Dtest; size of calibration-set ncal; number of
iterations K; one-class or binary black-box classification algorithm A; a model weighting
function ω; hyper-parameter r ∈ [0,∞);

2: for k = 1, ...,K do
3: Randomly split D into D(k)

cal and D(k)
train, with |D(k)

cal | = ncal

4: Train the model: M(k) ← A(D(k)
train) {possibly including additional labeled outlier data if

available}
5: Compute the calibration scores S(k)

i =M(k)(Xi), for all i ∈ D(k)
cal

6: Compute the test scores S(k)
j =M(k)(Xj), for all j ∈ Dtest

7: Compute the weights w̃(k) = ω
(
{S(k)

i }i∈Dtest∪D(k)
cal

)
{invariant un-normalized model

weights}
8: Normalize the scores according to (S7)
9: Compute the transformed score for all j ∈ |Dtest| according to (S8) {this depends on the

hyper-parameter r}
10: Compute the e-values e(k)j for all j ∈ |Dtest| according to (S9)
11: end for
12: for k = 1, ...,K do
13: w(k) = w̃(k)/

∑K
k′=1 w̃

(k′) {normalize the model weights}
14: end for
15: Aggregate the e-values ēj =

∑K
k=1 w

(k) · e(k)j

16: Output: e-values ēj for all j ∈ Dtest that can be filtered with Algorithm S2 to control the FDR.
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Figure S9: Performance on synthetic data of the proposed derandomized outlier detection method
applied with soft-rank e-values, soft-rank OC-Conformal, applied with K = 10 as a function
of r hyper-parameter. The results are averaged over 100 independent realizations of the data. Top:
high-power regime with signal amplitude 3.4 for 10% outliers and 1.6 for 50% outliers. Bottom:
low-power regime with signal amplitude 2.8 for 10% outliers and 1.1 for 50% outliers. Left: 10%
outliers in the test-set. Right: 50% outliers in the test-set. Other details are as in Figure 2.
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Figure S10: Performance on synthetic data of the proposed derandomized outlier detection method
applied with soft-rank e-values, soft-rank OC-Conformal, applied with K = 10 as a function of r
hyper-parameter. The method leverages a one-class support vector classifier. The results are averaged
over 100 independent realizations of the data. Top: high-power regime with signal amplitude 3.6 for
10% outliers and 3.4 for 50% outliers. Bottom: low-power regime with signal amplitude 2.6 for 10%
outliers and 2.3 for 50% outliers. Left: 10% outliers in the test set. Right: 50% outliers in the test set.
Other details are as in Figure 2.

S5.2.1 Comparing soft-rank e-values to the martingale-based e-values

In striking contrast with the soft-rank e-values that are constructed separately for each test point,
our martingale-based e-values are constructed jointly by looking at all test scores. Intuitively, by
leveraging the additional information present in the test set, the martingale-based e-values may
achieve higher power. Mathematically, recall that the soft-rank e-value is valid by construction,
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implying that E[e] ≤ 1 under the null hypothesis. By contrast, our martingale-based e-values satisfy
a more relaxed property for which

∑
j∈Dnull

test
E [ej ] ≤ ntest. Consequently, in settings where the

proportion of test outliers is large, each of the inlier e-values can exceed the value 1 as long as their
sum is bounded by ntest, in expectation. This can be attractive since we anticipate the non-null e-
values that correspond to outlier points to have larger values than the null ones. Indeed, the following
experiments indicate that the martingale-based approach tends to be more powerful than the soft-rank
e-values when the proportion of outliers in the test set is relatively large.

In more detail, we compare in Figure S11 the soft-rank approach with our martingale-based method
by varying the proportion of outliers present in the test set. That figure is obtained by adjusting the
signal amplitude level such that the power of the randomized method (AdaDetect/OC-Conformal)
is fixed at around 80% for all the range of outlier proportions we studied. It is evident from that
figure that the gap between the soft-rank e-value and our martingale-based e-value increases as the
proportion of outliers increases, and that our proposal is more powerful than the soft-rank approach.
For completeness, a comprehensive comparison considering various proportions of outliers as a
function of the signal amplitude can be found in Figure S12 and Figure S13.

We also investigate the impact of the target FDR level on the performance of the soft-rank and our
martingale-based methods. The performance metrics, shown in Figures S14 and S15, reveal that
our method is more powerful, displaying greater adaptability to the FDR level. This aligns with our
expectations, as our hyper-parameter αbh is set proportionally to the target FDR level α. By contrast,
the soft-rank hyper-parameter r remains fixed across different target FDR levels; it is unclear how to
refine the choice of this parameter in this setting, or even to conclude whether the best choice of r is
affected by the target FDR level.
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Figure S11: Performance on synthetic data of the proposed derandomized outlier detection method,
E-AdaDetect (E-OC-Conformal), applied with K = 10, compared to that of its randomized
benchmark, AdaDetect (OC-Conformal). We also compare these methods to the soft-rank method,
applied with K = 10, soft-rank AdaDetect (soft-rank OC-Conformal), as a function of the
proportion of outliers in the test set with the corresponding signal strength that results in a stable
strength of the randomized benchmarks.

S6 Experiments with real data

S6.1 Derandomized AdaDetect

In this section, we evaluate the performance of our method on several benchmark data sets for outlier
detection, also studied in Bates et al. (2023) and Marandon et al. (2022): musk (mus), shuttle (shu),
KDDCup99 (KDD), and credit card (cre). We refer to Bates et al. (2023) and Marandon et al. (2022)
for more details about these data sets. Similarly to Section 4.2, we construct a reference set and
a test set through random sub-sampling. The reference set contains 3000 inliers, and the test set
contains 1000 samples, of which we control the proportion of outliers. We apply our derandomization
procedure using the proposed martingale-based e-values and soft-rank e-values implemented in
combination with AdaDetect, using K = 10 independent splits of the reference set into training and
calibration subsets of size 2000 and 1000, respectively. All the methods are repeatedly applied to carry
out 100 independent analyses of the same data. In the regime that the test set contains 10% outliers,
we can see from Figure S16a that all methods control the average proportion of false discoveries
below α = 0.1 and achieve similar power, but the findings obtained with the derandomized methods
are far more stable. By contrast, when increasing the proportion of outliers to 40% (Figure S16b)
we can see that the martingale-based approach tends to be more powerful than the soft-rank method.
Finally, Figure S18 confirms the reproducibility of these results by reporting the average FDR and
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Figure S12: Performance on synthetic data of the proposed derandomized outlier detection method,
E-AdaDetect, applied with K = 10, compared to that of its randomized benchmark, AdaDetect.
We compare these methods to the soft-rank method, applied with K = 10, soft-rank AdaDetect,
as a function of the signal strength for varying proportions of outliers in the test set. The results are
averaged over 100 independent realizations of the data. Other results are as in Figure 2.
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Figure S13: Performance on synthetic data of the proposed derandomized outlier detection
method, E-OC-Conformal, applied with K = 10, compared to that of its randomized benchmark,
OC-Conformal. These methods are also compared to the soft-rank method, applied with K = 10,
soft-rank OC-Conformal, as a function of the signal strength for varying proportion of outliers in
the test set. The results are averaged over 100 independent realizations of the data. Other results are
as in Figure S5.

power over 100 independent realizations of the sub-sampled data considered in Figure S16; these
performance metrics are presented as a function of the outlier proportion.

S6.2 Derandomized One-Class Conformal

We turn to study the effect of our approach on OC-Conformal on the same real data sets, by following
the experimental protocol from Section S6.1. In general, we observe that OC-Conformal is less
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Figure S14: Performance on synthetic data of the proposed derandomized outlier detection method,
E-AdaDetect, applied with K = 10, compared to that of its randomized benchmark, AdaDetect.
These methods are also compared to the soft-rank method, applied with K = 10, soft-rank
AdaDetect, as a function of the target FDR level. All methods leverage a logistic regression binary
classifier. S14a presents the performance in high-power regime with signal amplitude 3.4 when there
are 10% outliers. S14b presents the performance in high-power regime with signal amplitude 1.6
when there are 50% outliers. The dashed line indicates the nominal false discovery rate level. Note
that these results correspond to 100 repeated experiments based on a single realization of the labeled
and test data, hence why the results appear a little noisy.
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Figure S15: Performance on synthetic data of the proposed derandomized outlier detection
method, E-OC-Conformal, applied with K = 10, compared to that of its randomized benchmark,
OC-Conformal. These methods are also compared to the soft-rank method, applied with K = 10,
soft-rank OC-Conformal, as a function of the target FDR level. All methods leverage a one-class
support vector classifier. S15a presents the performance in high-power regime with signal amplitude
3.6 when there are 10% outliers. S15b presents the performance in high-power regime with signal
amplitude 3.4 when there are 50% outliers. The dashed line indicates the nominal false discovery rate
level. Note that these results correspond to 100 repeated experiments based on a single realization of
the labeled and test data, hence why the results appear a little noisy.
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powerful and less stable than AdaDetect on the studied data sets, and therefore we increase the
number of analyses of our randomization procedure to K = 70.

Figure S17 indicates our martingale-based derandomization procedure indeed reduces the algorithmic
variability while controlling the false discovery proportion. These results also demonstrate the trade-
off between stability and power: the selections of E-OC-Conformal are more stable at the cost of
having lower power compared to the base OC-Conformal. Focusing on the derandomization methods,
when the test set contains 10% outliers (Figure S17a), the soft-rank method has a comparable and
possibly slightly higher power compared to our martingale-based method. On the other hand, our
method exhibits greater power for a larger proportion of outliers (Figure S17b). One explanation
for this behavior is in our choice of αbh = 0.05, which may not be optimal for situations with low
proportions of outliers when using the one-class conformal algorithm. Observe also that for the
KDDCup99 data set, when the test set contains 40% outliers, the selection variance of the soft-rank
approach is the highest among the methods we study. One way to reduce this variance is to further
increase the number of analyses K. We conclude this experiment with Figure S19, which provides a
comprehensive comparison of the FDR and power for varying proportions of outliers in the test set.
This figure confirms the reproducibility of our method—observe how the FDR, evaluated over 100
random sub-samples of the data, is controlled.
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Figure S16: Performance on real data of E-AdaDetect, its randomized version, AdaDetect, and
soft-rank AdaDetect. S16a and S16b present the performance of all methods for 10% and 40%
outliers in the test-set, respectively. All methods leverage a random forest binary classifier. Left:
average proportion of true outliers that are discovered (higher is better). Right: variability of the
findings (lower is better).
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Figure S17: Performance on real data of E-OC-Conformal, its randomized version, OC-Conformal,
and soft-rank OC-Conformal. S17a and S17b present the performance of all methods for 10%
and 40% outliers in the test-set, respectively. All methods leverage an isolation forest classifier. Left:
average proportion of true outliers that are discovered (higher is better). Right: variability of the
findings (lower is better).

20



0.05 0.1 0.2 0.3 0.4
Outliers' proportion

0.00

0.25

0.50

0.75

1.00

Po
we

r

0.05 0.1 0.2 0.3 0.4
Outliers' proportion

0.0

0.2

0.4

0.6

0.8

1.0

FD
R

(a) creditcard

0.05 0.1 0.2 0.3 0.4 0.5
Outliers' proportion

0.900

0.925

0.950

0.975

1.000

Po
we

r

0.05 0.1 0.2 0.3 0.4 0.5
Outliers' proportion

0.0

0.2

0.4

0.6

0.8

1.0

FD
R

(b) KDDCup99

0.05 0.1 0.2 0.3 0.4 0.5
Outliers' proportion

0.4

0.6

0.8

1.0

Po
we

r

0.05 0.1 0.2 0.3 0.4 0.5
Outliers' proportion

0.0

0.2

0.4

0.6

0.8

1.0

FD
R

(c) shuttle

0.05 0.1 0.2 0.3 0.4 0.5
Outliers' proportion

0.00

0.25

0.50

0.75

1.00

Po
we

r

0.05 0.1 0.2 0.3 0.4 0.5
Outliers' proportion

0.0

0.2

0.4

0.6

0.8

1.0

FD
R

AdaDetect
E-AdaDetect
soft-rank AdaDetect

(d) musk

Figure S18: Performance on real data of E-AdaDetect, its randomized version, AdaDetect, and
soft-rank AdaDetect as a function of the outliers proportion in the test-set. Each sub-figure
corresponds to a different dataset. All methods leverage a random forest binary classifier. The results
are averaged over 100 independent realizations of the data, which are randomly subsampled from the
raw data sources. Other details are as in Figure S16.
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Figure S19: Performance on real data of E-OC-Conformal, its randomized version, OC-Conformal,
and soft-rank OC-Conformal as a function of the outliers proportion in the test-set. Each sub-
figure corresponds to a different dataset. The power obtained for musk dataset is zero for all methods
and thus is not shown. All methods leverage an isolation forest classifier. The results are averaged
over 100 independent realizations of the data, which are randomly subsampled from the raw data
sources. Other details are as in Figure S16.
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