
Supplementary
Fairness Continual Learning Approach to Semantic
Scene Understanding in Open-World Environments

Thanh-Dat Truong1, Hoang-Quan Nguyen1, Bhiksha Raj2,3, and Khoa Luu1

1CVIU Lab, University of Arkansas, Fayetteville, AR, 72701
2Carnegie Mellon University, Pittsburgh, PA, 15213

3Mohammed bin Zayed University of AI, Abu Dhabi, UAE
{tt032, hn016, khoaluu}@uark.edu, bhiksha@cs.cmu.edu

1 Proof of Eqn. (6)

θ∗ =

∫
L(y, ŷ)q(y)q(ŷ)dydŷ

=

∫
L(y, ŷ) q(y)

p(y)

q(ŷ)

p(ŷ)
p(y)p(ŷ)dydŷ

(1)

It should be noted that the fraction q(ŷ)
p(ŷ) could be considered as constants as q(ŷ) and p(ŷ) are

distriuted over the ground-truth segmentation. Thus, it would be ignored during the optimization
process. Then, the formula can be further derived as follows:

θ∗ ≃
∫

L(y, ŷ)q(y)
p(y)

p(y)p(ŷ)dydŷ

= argmin
θ

[
Ex∼p(y),ŷ∼p(ŷ)L(y, ŷ)

q(y)

p(y)

]

= argmin
θ

Ex∼p(y),ŷ∼p(ŷ)

∑
i,j

L(yi,j , ŷi,j)
q(yi,j)q(y\(i,j)|yi,j)
p(yi,j)p(y\(i,j)|yi,j)


(2)

2 Proof of Eqn. (7)

By taking the logarithm, the optimization process can be rewritten as follows:

θ∗ = argmin
θ

Ex∼p(x),ŷ∼p(ŷ)L(y, ŷ)
q(y)

p(y)

≃ argmin
θ

Ex∼p(x),ŷ∼p(ŷ) log

(
L(y, ŷ) q(y)

p(y)

)
= argmin

θ
Ex∼p(x),ŷ∼p(ŷ)

(
logL(y, ŷ) + log

q(y)

p(y)

)
= argmin

θ
Ex∼p(x),ŷ∼p(ŷ)

[
logL(y, ŷ) + 1

N

∑
i,j

log

(
q(yi,j)q(y\(i,j)|yi,j)
p(yi,j)p(y\(i,j)|yi,j)

)]

= argmin
θ

Ex∼p(x),ŷ∼p(ŷ)

{
logL(y, ŷ) + 1

N

∑
i,j

[
log

(
q(yi,j)

p(yi,j)

)
+ log

(
q(y\(i,j)|yi,j)
p(y\(i,j)|yi,j)

)]}

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



where N is the total number of pixels. In addition, minimizing logL(y, ŷ) is equivalent to minimizing
L(y, ŷ). Therefore, the formula can be further derived as follows:

θ∗ = argmin
θ

Ex∼p(x),ŷ∼p(ŷ)

{
L(y, ŷ) + 1

N

∑
i,j

[
log

(
q(yi,j)

p(yi,j)

)
+ log

(
q(y\(i,j)|yi,j)
p(y\(i,j)|yi,j)

)]}

3 Protypical Contrastive Clustering Algorithm

Inspired by [7, 6], we develop the algorithm to compute the Prototypical Contrastive Clustering loss
and update prototypical vectors. Algorithm 1 illustrates the procedure to compute the Prototypical
Contrastive Clustering loss and update the prototypical vectors.

Algorithm 1: Prototypical Constrative Clustering Loss

Input: Current iteration i of step t; A set of prototypical vectors {pc}|C
1..t|

c=0 ; A set of features fi,j ; Momentum

parameter: η; A set of storing features {Sc}|C
1..t|

c=0

1: Initialize pc where c ∈ Ct in the first iteration.
2: Lcluster ← 0
3: if i == M then
4: For each c ∈ {0} ∪ Ct
5: pc ← Ef∈Sc f .
6: Lcluster ← Compute Prototypical Constrative Clustering Loss based on Eqn. (9).
7: else if i > M then
8: if i%M == 0 then
9: For each c ∈ {0} ∪ Ct

10: pc ← ηpc + (1− η)Ef∈Sc f .
11: Lcluster ← Compute Prototypical Constrative Clustering Loss based on Eqn. (9).
12: return Lcluster

4 Implementation

Two segmentation network architectures have been used in our experiments, i.e., (1) DeepLab-V3
[2] with the ResNet-101 backbone, and (2) SegFormer [10] with MiT-B3 backbone. Our framework
is implemented in PyTorch and trained on four 40GB-VRAM NVIDIA A100 GPUs. The model is
optimized by the SGD optimizer [1] with momentum 0.9, weight decay 10−4, and batch size of 6 per
GPU. The learning rate is set individually for each step and dataset. In particular, the learning rate for
the initial step and the continual steps of the ADE20K dataset is 10−2 and 10−3 respectively, while
the learning rate for the Cityscapes experiment is 2× 10−2 and 2× 10−3. The feature vectors from
the last layer of the decoder are used for the prototypical clustering loss. For each class, the number
of feature vectors in each set Sc for computing the prototypes is 500 features. Following common
practices in contrastive learning [7, 6], we adopt the Euclidean distance for our ℓ in the Prototypical
Contrastive Clustering loss Lcluster and the margin ∇ between features of different classes is set
to 10. The momentum η to update the prototypical vectors is set to 0.99. Following [2, 9], in the
conditional structural consistency loss, the number of neighbor pixels is within a window size of
3× 3.

5 Additional Experiments

5.1 Performance Improvement of Major and Minor Groups

To illustrate the performance improvement of our proposed method in major and minor classes, we
include the results of the mIoU (all) and the STD among IoUs of the major group and the minor
group on the ADE20K 100-50 (Table 1) and Cityscapes 11-5 (Table 2) benchmarks. As shown in the
table below, our proposed approach has improved the performance of both major and minor groups.
Thus, these results illustrated that the performance improvement in mIoU is also coming from the
minority classes. It helps to enhance the mIoU performance and reduce the STD in both major and
minor classes, thus, improving the fairness of the model predictions.

2



Backbone Lcluster Lclass Lcons
Major Group Minor Group

mIoU STD mIoU STD

✓ 48.78 18.12 25.13 21.12
DeepLab-V3 ✓ ✓ 48.89 17.87 27.24 20.76

✓ ✓ ✓ 50.11 17.46 30.52 20.43

Table 1: ADE20K 150-50 Benchmark

Backbone Lcluster Lclass Lcons
Major Group Minor Group
mIoU STD mIoU STD

✓ 87.44 9.25 53.37 16.72
DeepLab-V3 ✓ ✓ 88.29 8.85 55.72 13.39

✓ ✓ ✓ 89.20 8.41 56.70 11.96

Table 2: Cityscapes 11-5 Benchmark

Similarly, to illustrate the effectiveness and robustness of our method in the non-incremental setting.
We report our results after the first learning step on the ADE20K 100-50 (Table 3) and Cityscapes
11-5 (Table 4) benchmarks. Our proposed fairness approach has also contributed to the performance
improvement of both major and minor classes in non-incremental settings. The comparison table of
major and minor groups in the first step is illustrated below.

Backbone Lcluster Lclass Lcons
Major Group Minor Group

mIoU STD mIoU STD

✓ 49.07 18.35 35.45 19.08
DeepLab-V3 ✓ ✓ 49.17 18.31 35.57 18.24

✓ ✓ ✓ 50.04 17.92 37.88 18.19

Table 3: ADE20K 150-50 Benchmark (Non-incremental Setting)

Backbone Lcluster Lclass Lcons
Major Group Minor Group
mIoU STD mIoU STD

✓ 87.64 8.96 53.78 17.16
DeepLab-V3 ✓ ✓ 88.56 8.70 56.45 13.46

✓ ✓ ✓ 89.52 8.08 57.87 12.08

Table 4: Cityscapes 11-5 Benchmark (Non-incremental Setting)

5.2 The Role of Conditional Structural Consistency

The goal of conditional structural consistency is to improve the prediction gap among neighbor pixels,
thus, enhancing the smoothness of the predictions. In addition, it helps to increase fairness among
classes. It is because this loss helps to clean up the spurious or ambiguous predictions produced by
the major classes around minor classes. Therefore, the loss alleviates the dominance of the major
groups and improves the accuracy of the minor groups, thus, resulting in fairness that has also been
further improved (as illustrated in Table 1 in the main paper).

5.3 The Choice of Margin ∆

We also perform an additional ablation study on the ADE20K (100-50) benchmark to investigate the
impact of the delta. As shown in Table 5, the impact of ∆ does not significantly influence the results
due to the minor performance drop.

3



∆ 0-100 101-150 all avg

∆ = 5 43.04 23.84 36.68 40.23
∆ = 10 43.40 24.04 36.99 40.45
∆ = 15 42.89 23.92 36.61 40.26

Table 5: The effectiveness of ∆

5.4 The Performance Analysis of ADE20K, Cityscapes, and Pascal VOC

We have observed the performance improvement of our approach on Pascal VOC is less significant
than the ADE20K and Cityscapes because of the minor bias in Pascal VOC. In particular, the data
distributions of these datasets are visualized in Figure 1 in the rebuttal file (the PDF file of the
rebuttal is attached in Global Response). We calculated the entropy value of the data distributions
that illustrate the balance level of the datasets (the higher value of entropy, the more balance the
dataset as the data distribution tends to be more uniform). Then, based on the data distributions and
entropy values, we observe the data distributions of ADE20K and Cityscapes suffer more bias than
the Pascal VOC since the entropy value of Pascal VOC (H = 0.81) is higher than ADE20K (H = 0.69)
and Cityscapes (H = 0.62). Thus, ADE20K and Cityscapes suffer severe fairness issues compared to
Pascal VOC. Our approach aims to improve the fairness of the model. Therefore, on the more severe
bias datasets (ADE20K and Cityscapes), our approach performs more significantly.

Figure 1: Data Distribution of ADE20K, Cityscapes, and Pascal VOC. The data distributions of
ADE20K and Cityscapes suffer a more severe imbalance compared to Pascal VOC.

5.5 Memory Efficiency

We would like to highlight that storing prototypical vectors requires significantly less memory
than using the additional teacher model as used in distillation approaches [5]. For example, in the
ADE20K benchmark, storing DeepLab-V3 (151 classes) requires 58.664M parameters, while storing
152 prototypical 2048-D vectors (including the unknown cluster) only uses 0.311M parameters.
In addition, the computation of loss is cheaper than a forward pass of the entire network used in
distillation. Therefore, in terms of computational cost and memory, our approach remains more
efficient compared to knowledge distillation approaches.

6 Discussion of Limitations

In our paper, we have specified a set of learning hyper-parameters and network designs to support our
hypothesis. However, the impact of these learning hyper-parameters on fairness should be investigated.
In particular, as aforementioned, the balanced weights among losses should be studied in future work
to analyze the impact of each module when these are combined. In our experiments, we have used
ResNet 101 and MiB-B3 as the backbone of our segmentation networks. The subsequent work should
investigate the effectiveness of different networks, e.g., Swin [8], SegFormer [10], Mask2Former
[4, 3], to fairness in continual semantic segmentation. Also, the training batch size, learning schedule,
and optimizer could affect the fairness of the model and should be investigated in future research. In
addition, the different forms of conditional structure modeling (i.e., Lcons [2, 9] or the number of
neighbors pixels in the Markovian formula could impact the fairness predictions of the segmentation
model. Future studies should conduct a deep analysis of different forms of conditional structural
modeling Lcons. These potential limitations will motivate future research to continue improving the
contrastive learning approach to fairness continual learning in semantic segmentation.

4



References
[1] L. Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT,

2010.

[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.
TPAMI, 2018.

[3] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1290–1299, 2022.

[4] B. Cheng, A. G. Schwing, and A. Kirillov. Per-pixel classification is not all you need for
semantic segmentation. 2021.

[5] A. Douillard, Y. Chen, A. Dapogny, and M. Cord. Plop: Learning without forgetting for
continual semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4040–4050, 2021.

[6] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9729–9738, 2020.

[7] K. Joseph, S. Khan, F. S. Khan, and V. N. Balasubramanian. Towards open world object detec-
tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 5830–5840, 2021.

[8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012–10022, 2021.

[9] T.-D. Truong, C. N. Duong, N. Le, S. L. Phung, C. Rainwater, and K. Luu. Bimal: Bijective
maximum likelihood approach to domain adaptation in semantic scene segmentation. In
International Conference on Computer Vision, 2021.

[10] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers. In NeurIPS, 2021.

5


