
Meta-AdaM: A Meta-Learned Adaptive Optimizer
with Momentum for Few-Shot Learning

Siyuan Sun
Department of Computer Science

Iowa State University
Ames, IA 50011

sxs14473@iastate.edu

Hongyang Gao
Department of Computer Science

Iowa State University
Ames, IA 50011

hygao@iastate.edu

Abstract

We introduce Meta-AdaM, a meta-learned adaptive optimizer with momentum, de-
signed for few-shot learning tasks that pose significant challenges to deep learning
models due to the limited number of labeled examples. Meta-learning has been
successfully employed to address these challenges by transferring meta-learned
prior knowledge to new tasks. Most existing works focus on meta-learning an opti-
mal model initialization or an adaptive learning rate learner for rapid convergence.
However, these approaches either neglect to consider weight-update history for
the adaptive learning rate learner or fail to effectively integrate momentum for fast
convergence, as seen in many-shot learning settings. To tackle these limitations,
we propose a meta-learned learning rate learner that utilizes weight-update history
as input to predict more appropriate learning rates for rapid convergence. Further-
more, for the first time, our approach incorporates momentum into the optimization
process of few-shot learning via a double look-ahead mechanism, enabling rapid
convergence similar to many-shot settings. Extensive experimental results on
benchmark datasets demonstrate the effectiveness of the proposed Meta-AdaM.

1 Introduction

Deep learning has demonstrated its capability in solving various challenging tasks in many-shot-
learning settings, where each classification class contains sufficient training examples [12]. However,
its performance is hindered on small datasets or under few-shot-learning (FSL) settings [37]. In FSL,
unseen tasks with limited training examples pose significant challenges for optimizing deep learning
models [45]. With limited training data, deep learning models may suffer from severe underfitting
or overfitting problems [28]. Numerous meta-learning methods have been proposed to address this
challenge by identifying and encoding shared knowledge among different data distributions within
the model. With prior generalized knowledge, a meta-learning model can be rapidly transferred to a
new task by fine-tuning it with limited unseen data [13].

Existing optimization-based meta-learning methods for FSL facilitate this transfer process by fine-
tuning a meta-learned model on new few-shot tasks. There are two primary directions for using
meta-learning in FSL tasks: learning an optimal initialization and generating high-quality gradient
updates for rapid convergence. In the first direction, most methods [7, 8, 29, 24, 17, 18] employ an
inner loop to fine-tune the meta-model on specific tasks and iteratively optimize the meta-model in
an outer loop based on the adapted model from the inner loop. The resulting initial model weights
enable the adapted model to converge more quickly to an optimal solution for a new task. In the
second direction, some works [38, 2, 46] focus on generating high-quality and task-adaptive gradient
updates, allowing the optimizer to rapidly converge to an appropriate solution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Our work focuses on the second direction. Most existing works in this direction aim to use adaptive
learning rates by considering weights and gradients [18, 30, 3]. However, it has been shown that the
weight-update history is more important than the weights themselves for determining an appropriate
learning rate. Additionally, existing works often fail to incorporate momentum in FSL, which has
been shown to be effective in accelerating the optimization process in many-shot settings. This is due
to the fact that momentum typically exhibits high fluctuations during the initial updates [19]. Another
challenge for the meta-trained base model is the incorporation of prior knowledge. Certain classes
exhibit features that align more closely with prior knowledge than others, leading to an imbalance in
predictions generated by the model.

To address these challenges, we propose a meta-learned adaptive optimizer with momentum (Meta-
AdaM). To learn a more accurate adaptive learning rate, our approach meta-learns a learning rate
learner based on gradient update history instead of weights. The learned learning rate learner, along
with the meta-learned model initialization, is applied when adapting to new tasks. Moreover, we
introduce a dynamic class weight scheme for classification tasks, aimed at effectively balancing the
loss distribution among various classes, which can help the model generate unbiased results.

2 Related Works

In this section, we introduce related works to our proposed approach.

2.1 Few-Shot Learning and Meta Learning

A formal definition of machine learning can be described as follows: a computer program can
learn some experience E from a set of classes that belongs to task T with performance metric
P if P increases with E on T measured by P [22]. Few-shot-learning problems are a subset of
machine learning problems in which E only contains a limited number of samples [45]. Under this
setting, training deep neural networks can be challenging. The empirical risk R generated from the
limited experience E can differ greatly from the expected empirical risk. Meta-learning enhances the
performance P by learning shared features from other data. The metric-based [36] and model-based
meta-learning methods [35, 23, 21] rely on extra features or models to improve the few-shot learning
capabilities. Recently, optimization-based meta-learning methods have obtained more attention
for their strong generalization ability. The optimization-based methods reduce the meta-Learning
problem into a bi-level optimization problem. The inner loop optimizes the base model on a certain
task, and the outer loop optimizes the base model across several tasks to adjust the initial weight
for quick adaption. Without introducing new elements, such a structure has the potential to adapt
better to unseen data. The most representative optimization-based method is the MAML method [7].
Subsequent MAML variants [8, 29, 24, 17, 18, 34, 9] focus on optimizing the optimization process.

2.2 Gradient-Descent Based Optimizer

The optimizer plays a crucial role in enhancing the efficiency of the training process in deep learning.
Most popular optimizers are based on the gradient descent algorithm [1]. To further improve training
efficiency and increase convergence speed, existing optimizers, such as AdaM [14], often utilize the
first and second orders of momentum. The first order of momentum, also known as momentum, is the
accumulated sum of historical gradients during the training process, which can be considered a more
effective update direction compared to gradients. The second order of momentum is used to control
the step size for each parameter by estimating the update velocity for each parameter. Moreover,
based on AdaM, other optimizers [14, 6, 19] introduce additional elements to better estimate the
update direction and step size. Learned optimizers [2, 1, 43] utilize a trainable model to estimate the
update direction and step size, which can better adapt to new tasks.

2.2.1 Optimizer for Few-Shot Learning

Meta-learning has shown a strong ability to solve few-shot learning problems. So, researchers also
use meta-learning methods to train optimizers for few-shot learning problems. [18] propose an
optimizer that works as the stochastic gradient descent. [30, 3] propose to use linear models to
carefully estimate the learning rate for each parameter. [25] consider estimating curvature instead
of gradients. However, these works only consider the gradient change in one step and ignore the

2

<latexit sha1_base64="KduSQkF0bo1KeVnqXCww/r0sdaE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRTZcV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Pvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ92runddbzw0as27oo4yOkPn6BJ56AY1UQu1UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHfd+RZw==</latexit>

H
<latexit sha1_base64="KduSQkF0bo1KeVnqXCww/r0sdaE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRTZcV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Pvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ92runddbzw0as27oo4yOkPn6BJ56AY1UQu1UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHfd+RZw==</latexit>

H
<latexit sha1_base64="KduSQkF0bo1KeVnqXCww/r0sdaE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS1GXRTZcV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Pvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ92runddbzw0as27oo4yOkPn6BJ56AY1UQu1UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHfd+RZw==</latexit>

H
<latexit sha1_base64="mawzg3kM1pCXi3tI+/ZGuOE3pEo=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJVEirosunFZwT6gCWEymbRDJw9mboQSsvFX3LhQxK2f4c6/cdJmoa0Hhjmccy/33uOngiuwrG9jZXVtfWOztlXf3tnd2zcPDnsqySRlXZqIRA58opjgMesCB8EGqWQk8gXr+5Pb0u8/Mql4Ej/ANGVuREYxDzkloCXPPHb8RARqGukvd2DMgHi5KgrPbFhNawa8TOyKNFCFjmd+OUFCs4jFQAVRamhbKbg5kcCpYEXdyRRLCZ2QERtqGpOIKTefHVDgM60EOEykfjHgmfq7IyeRKnfUlRGBsVr0SvE/b5hBeO3mPE4zYDGdDwozgSHBZRo44JJREFNNCJVc74rpmEhCQWdW1yHYiycvk95F075stu5bjfZNFUcNnaBTdI5sdIXa6A51UBdRVKBn9IrejCfjxXg3PualK0bVc4T+wPj8ARVHl2E=</latexit>

✓s

<latexit sha1_base64="I5MRCLZvAJKJoNxkCALPAbQxy6c=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSyiq5JIUZdFNy4r2Ac0IUwmk3bo5MHMjVBiF/6KGxeKuPU33Pk3TtostPXAMIdz7mXOHD8VXIFlfRtLyyura+uVjerm1vbOrrm331FJJilr00QksucTxQSPWRs4CNZLJSORL1jXH90UfveBScWT+B7GKXMjMoh5yCkBLXnmoeMnIlDjSF+5A0MG5NRTE8+sWXVrCrxI7JLUUImWZ345QUKziMVABVGqb1spuDmRwKlgk6qTKZYSOiID1tc0JhFTbj7NP8EnWglwmEh9YsBT9fdGTiJVRNSTEYGhmvcK8T+vn0F45eY8TjNgMZ09FGYCQ4KLMnDAJaMgxpoQKrnOiumQSEJBV1bVJdjzX14knfO6fVFv3DVqzeuyjgo6QsfoDNnoEjXRLWqhNqLoET2jV/RmPBkvxrvxMRtdMsqdA/QHxucPqQ6Whg==</latexit>

✓0
s

<latexit sha1_base64="I5MRCLZvAJKJoNxkCALPAbQxy6c=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSyiq5JIUZdFNy4r2Ac0IUwmk3bo5MHMjVBiF/6KGxeKuPU33Pk3TtostPXAMIdz7mXOHD8VXIFlfRtLyyura+uVjerm1vbOrrm331FJJilr00QksucTxQSPWRs4CNZLJSORL1jXH90UfveBScWT+B7GKXMjMoh5yCkBLXnmoeMnIlDjSF+5A0MG5NRTE8+sWXVrCrxI7JLUUImWZ345QUKziMVABVGqb1spuDmRwKlgk6qTKZYSOiID1tc0JhFTbj7NP8EnWglwmEh9YsBT9fdGTiJVRNSTEYGhmvcK8T+vn0F45eY8TjNgMZ09FGYCQ4KLMnDAJaMgxpoQKrnOiumQSEJBV1bVJdjzX14knfO6fVFv3DVqzeuyjgo6QsfoDNnoEjXRLWqhNqLoET2jV/RmPBkvxrvxMRtdMsqdA/QHxucPqQ6Whg==</latexit>

✓0
s

<latexit sha1_base64="NTQ9ui4S2y/jPrYMnDnqX4+891o=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi6rblxWsA9oQphMJu3QyYOZG6GEgr/ixoUibv0Od/6NkzYLbT0wzOGce5kzx08FV2BZ30ZlZXVtfaO6Wdva3tndM/cPuirJJGUdmohE9n2imOAx6wAHwfqpZCTyBev549vC7z0yqXgSP8AkZW5EhjEPOSWgJc88cvxEBGoS6St3YMSAeNdTz6xbDWsGvEzsktRRibZnfjlBQrOIxUAFUWpgWym4OZHAqWDTmpMplhI6JkM20DQmEVNuPos/xadaCXCYSH1iwDP190ZOIlUk1JMRgZFa9ArxP2+QQXjl5jxOM2AxnT8UZgJDgosucMAloyAmmhAquc6K6YhIQkE3VtMl2ItfXibd84Z90WjeN+utm7KOKjpGJ+gM2egStdAdaqMOoihHz+gVvRlPxovxbnzMRytGuXOI/sD4/AH0yZYj</latexit>

✓A

<latexit sha1_base64="hOmqCic5fbR/Am+LEVU9HUsqa3E=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi5L3bisYB/QhDCZTNqhkwczN0IJBX/FjQtF3Pod7vwbJ20W2npgmMM59zJnjp8KrsCyvo3K2vrG5lZ1u7azu7d/YB4e9VSSScq6NBGJHPhEMcFj1gUOgg1SyUjkC9b3J7eF339kUvEkfoBpytyIjGIeckpAS5554viJCNQ00lfuwJgB8dozz6xbDWsOvErsktRRiY5nfjlBQrOIxUAFUWpoWym4OZHAqWCzmpMplhI6ISM21DQmEVNuPo8/w+daCXCYSH1iwHP190ZOIlUk1JMRgbFa9grxP2+YQXjj5jxOM2AxXTwUZgJDgosucMAloyCmmhAquc6K6ZhIQkE3VtMl2MtfXiW9y4Z91WjeN+utdllHFZ2iM3SBbHSNWugOdVAXUZSjZ/SK3own48V4Nz4WoxWj3DlGf2B8/gD2TpYk</latexit>

✓B
<latexit sha1_base64="G7uZy1Ai083Tl2WsZgL2AvXnUxQ=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi6L3bisYB/QhDCZTNqhkwczN0IJBX/FjQtF3Pod7vwbJ20W2npgmMM59zJnjp8KrsCyvo3K2vrG5lZ1u7azu7d/YB4e9VSSScq6NBGJHPhEMcFj1gUOgg1SyUjkC9b3J+3C7z8yqXgSP8A0ZW5ERjEPOSWgJc88cfxEBGoa6St3YMyAeO2ZZ9athjUHXiV2SeqoRMczv5wgoVnEYqCCKDW0rRTcnEjgVLBZzckUSwmdkBEbahqTiCk3n8ef4XOtBDhMpD4x4Ln6eyMnkSoS6smIwFgte4X4nzfMILxxcx6nGbCYLh4KM4EhwUUXOOCSURBTTQiVXGfFdEwkoaAbq+kS7OUvr5LeZcO+ajTvm/XWbVlHFZ2iM3SBbHSNWugOdVAXUZSjZ/SK3own48V4Nz4WoxWj3DlGf2B8/gD305Yl</latexit>

✓C

<latexit sha1_base64="0clwRIFqjnfGOVHntL8MtrXzxG4=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCq5JIUZdFNy4r2Ac0oUwmk3boJBNmboQSght/xY0LRdz6Fe78GydtFtp6YJjDOfdy7z1+wpkC2/42Kiura+sb1c3a1vbO7p65f9BVIpWEdojgQvZ9rChnMe0AA077iaQ48jnt+ZObwu89UKmYiO9hmlAvwqOYhYxg0NLQPHJ9wQM1jfSXuWMMmQtjCjjPh2bdbtgzWMvEKUkdlWgPzS83ECSNaAyEY6UGjp2Al2EJjHCa19xU0QSTCR7RgaYxjqjystkJuXWqlcAKhdQvBmum/u7IcKSKLXVlhGGsFr1C/M8bpBBeeRmLkxRoTOaDwpRbIKwiDytgkhLgU00wkUzvapExlpiATq2mQ3AWT14m3fOGc9Fo3jXrresyjio6RifoDDnoErXQLWqjDiLoET2jV/RmPBkvxrvxMS+tGGXPIfoD4/MHoMOYPA==</latexit>

✓̂
<latexit sha1_base64="0clwRIFqjnfGOVHntL8MtrXzxG4=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCq5JIUZdFNy4r2Ac0oUwmk3boJBNmboQSght/xY0LRdz6Fe78GydtFtp6YJjDOfdy7z1+wpkC2/42Kiura+sb1c3a1vbO7p65f9BVIpWEdojgQvZ9rChnMe0AA077iaQ48jnt+ZObwu89UKmYiO9hmlAvwqOYhYxg0NLQPHJ9wQM1jfSXuWMMmQtjCjjPh2bdbtgzWMvEKUkdlWgPzS83ECSNaAyEY6UGjp2Al2EJjHCa19xU0QSTCR7RgaYxjqjystkJuXWqlcAKhdQvBmum/u7IcKSKLXVlhGGsFr1C/M8bpBBeeRmLkxRoTOaDwpRbIKwiDytgkhLgU00wkUzvapExlpiATq2mQ3AWT14m3fOGc9Fo3jXrresyjio6RifoDDnoErXQLWqjDiLoET2jV/RmPBkvxrvxMS+tGGXPIfoD4/MHoMOYPA==</latexit>

✓̂
<latexit sha1_base64="0clwRIFqjnfGOVHntL8MtrXzxG4=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCq5JIUZdFNy4r2Ac0oUwmk3boJBNmboQSght/xY0LRdz6Fe78GydtFtp6YJjDOfdy7z1+wpkC2/42Kiura+sb1c3a1vbO7p65f9BVIpWEdojgQvZ9rChnMe0AA077iaQ48jnt+ZObwu89UKmYiO9hmlAvwqOYhYxg0NLQPHJ9wQM1jfSXuWMMmQtjCjjPh2bdbtgzWMvEKUkdlWgPzS83ECSNaAyEY6UGjp2Al2EJjHCa19xU0QSTCR7RgaYxjqjystkJuXWqlcAKhdQvBmum/u7IcKSKLXVlhGGsFr1C/M8bpBBeeRmLkxRoTOaDwpRbIKwiDytgkhLgU00wkUzvapExlpiATq2mQ3AWT14m3fOGc9Fo3jXrresyjio6RifoDDnoErXQLWqjDiLoET2jV/RmPBkvxrvxMS+tGGXPIfoD4/MHoMOYPA==</latexit>

✓̂
<latexit sha1_base64="kmATZ766HWYGSYS64BkQ2vXLXxA=">AAAB/nicbVDLSgMxFM34rPU1Kq7cDBZBXJQZKeqy6MZlBfuAzlgymUwbmkmG5I5QhoK/4saFIm79Dnf+jZm2C209EHI4515ycsKUMw2u+20tLa+srq2XNsqbW9s7u/befkvLTBHaJJJL1QmxppwJ2gQGnHZSRXESctoOhzeF336kSjMp7mGU0iDBfcFiRjAYqWcf+qHkkR4l5sp9GFDAD2fjnl1xq+4EziLxZqSCZmj07C8/kiRLqADCsdZdz00hyLECRjgdl/1M0xSTIe7TrqECJ1QH+ST+2DkxSuTEUpkjwJmovzdynOgioZlMMAz0vFeI/3ndDOKrIGcizYAKMn0ozrgD0im6cCKmKAE+MgQTxUxWhwywwgRMY2VTgjf/5UXSOq96F9XaXa1Sv57VUUJH6BidIg9dojq6RQ3URATl6Bm9ojfryXqx3q2P6eiSNds5QH9gff4A0FCWCw==</latexit>

✓⇤
<latexit sha1_base64="kmATZ766HWYGSYS64BkQ2vXLXxA=">AAAB/nicbVDLSgMxFM34rPU1Kq7cDBZBXJQZKeqy6MZlBfuAzlgymUwbmkmG5I5QhoK/4saFIm79Dnf+jZm2C209EHI4515ycsKUMw2u+20tLa+srq2XNsqbW9s7u/befkvLTBHaJJJL1QmxppwJ2gQGnHZSRXESctoOhzeF336kSjMp7mGU0iDBfcFiRjAYqWcf+qHkkR4l5sp9GFDAD2fjnl1xq+4EziLxZqSCZmj07C8/kiRLqADCsdZdz00hyLECRjgdl/1M0xSTIe7TrqECJ1QH+ST+2DkxSuTEUpkjwJmovzdynOgioZlMMAz0vFeI/3ndDOKrIGcizYAKMn0ozrgD0im6cCKmKAE+MgQTxUxWhwywwgRMY2VTgjf/5UXSOq96F9XaXa1Sv57VUUJH6BidIg9dojq6RQ3URATl6Bm9ojfryXqx3q2P6eiSNds5QH9gff4A0FCWCw==</latexit>

✓⇤ <latexit sha1_base64="kmATZ766HWYGSYS64BkQ2vXLXxA=">AAAB/nicbVDLSgMxFM34rPU1Kq7cDBZBXJQZKeqy6MZlBfuAzlgymUwbmkmG5I5QhoK/4saFIm79Dnf+jZm2C209EHI4515ycsKUMw2u+20tLa+srq2XNsqbW9s7u/befkvLTBHaJJJL1QmxppwJ2gQGnHZSRXESctoOhzeF336kSjMp7mGU0iDBfcFiRjAYqWcf+qHkkR4l5sp9GFDAD2fjnl1xq+4EziLxZqSCZmj07C8/kiRLqADCsdZdz00hyLECRjgdl/1M0xSTIe7TrqECJ1QH+ST+2DkxSuTEUpkjwJmovzdynOgioZlMMAz0vFeI/3ndDOKrIGcizYAKMn0ozrgD0im6cCKmKAE+MgQTxUxWhwywwgRMY2VTgjf/5UXSOq96F9XaXa1Sv57VUUJH6BidIg9dojq6RQ3URATl6Bm9ojfryXqx3q2P6eiSNds5QH9gff4A0FCWCw==</latexit>

✓⇤

<latexit sha1_base64="FxD2ypIW3JXRUw31W1Z33B1uE8g=">AAACJnicbVDJSgNBFOxxd9yiHr00BsFTmFFRL4LLxaOKUSEJoafzkjT2MnS/UeKQr/Hir3jxoIh481PsxDm4FTQUVfV4/SpJpXAYRe/ByOjY+MTk1HQ4Mzs3v1BaXLpwJrMcqtxIY68S5kAKDVUUKOEqtcBUIuEyuT4a+Jc3YJ0w+hx7KTQU62jRFpyhl5qlvXrXpYxDvqlU/6ByBp1MMkuFFiikuBumwvBWYJdapltGUZOiUIXTLJWjSjQE/UvigpRJgZNm6bneMjxToJFL5lwtjlJs5Myi4BL6YT1z4L9zzTpQ81QzBa6RD8/s0zWvtGjbWP800qH6fSJnyrmeSnxSMey6395A/M+rZdjebeRCpxmC5l+L2pmkaOigM9oSFjjKnieMW98Mp7zLLOPomw19CfHvk/+Si41KvF3ZOt0o7x8WdUyRFbJK1klMdsg+OSYnpEo4uSeP5Jm8BA/BU/AavH1FR4JiZpn8QPDxCavppok=</latexit>

A.Regular initilization
with random optimization

<latexit sha1_base64="IL9lFCCJZqfxQ9x4mCs99wtDdTQ=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAbBi2E3iHoMevEiRDAqJCH0TjrJkNnZZaZXiMGbF3/FiwdFvPoL3vwbJ3EPvgoaiqpqmq4wUdKS7394uanpmdm5/HxhYXFpeaW4unZh49QIrItYxeYqBItKaqyTJIVXiUGIQoWX4eB47F9eo7Ey1uc0TLAVQU/LrhRATmoXN4/K/BQJdhWC0djhUkuSoORNFij5ZX8C/pcEGSmxDLV28b3ZiUUaoSahwNpG4CfUGoEhKRTeFpqpxQTEAHrYcFRDhLY1mvxxy7ed0uHd2LjRxCfq940RRNYOo9AlI6C+/e2Nxf+8Rkrdw9ZI6iQl1OLrUDdVnGI+LoV3pEFBaugICOMKEFz0wYAgV13BlRD8fvkvuaiUg/3y3lmlVD3K6sizDbbFdljADliVnbAaqzPB7tgDe2LP3r336L14r1/RnJftrLMf8N4+AVn4mQU=</latexit>

B. Meta-learned initialization
<latexit sha1_base64="HhHONgyNxqkjRmbZCdpt85BRwRg=">AAACMHicbVBNbxMxEPWmfJSl0FCOXCwiJC6NdqOo5VjRQ+GAGiSSVEqiaNaZJFZs78qeRUpX+Ulc+lPgAhKo6rW/AifZA0l40khP783YMy/JlHQURb+Cyt6Dh48e7z8Jnx48e35YfXHUcWluBbZFqlJ7lYBDJQ22SZLCq8wi6ERhN5mdL/3uV7ROpuYLzTMcaJgYOZYCyEvD6kV/6jIQWDS1XpzX+SckOFYI1uCIX2YktbxGG4ZdSdNN86ORJEHJ6/KlWlSPVuC7JC5JjZVoDavf+6NU5BoNCQXO9eIoo0EBlqRQuAj7uUO/2Awm2PPUgEY3KFYHL/gbr4z4OLW+DPGV+u9EAdq5uU58pwaaum1vKf7P6+U0fjcopMlyQiPWH41zxSnly/T4SFoUpOaegLA+AMHFFCwI8hmHPoR4++Rd0mnU45N683Ojdva+jGOfvWKv2VsWs1N2xj6wFmszwb6xH+w3+xPcBD+D2+Bu3VoJypmXbAPB/V/6zqmY</latexit>

C. Meta-learned Optimizer

With Meta-learned Initialization

Figure 1: Illustration of different few-shot-learning optimizing strategies. θ̂ is the global optimum
solution. θ∗ is the best approximation in the hypothesis space H determined by the FSL model.
(A) shows the optimization trajectory of naive optimizer with random initialization θs and regular
weights updates, leading to a poor solution θA. (B) illustrates using a regular weights update with
meta-learned initialization θ′

s, resulting in a better approximation θB than θA. In (C), a meta-learned
optimizer is used with the meta-learned initialization θ′

s, leading to the best approximation θC .

gradient change history in the fine-tuning process, which is not optimal. In this work, we propose
an optimizer called Meta-AdaM, specially designed for the inner loop in meta-learning. We design
an LSTM-based meta-learner to adaptively estimate the learning rate. Also, we make wiser use of
momentum to dynamically determine the optimal updating direction. This can help the base model to
converge to the optimum in fewer steps.

3 Meta-AdaM: A Meta-Learned Adaptive Optimizer with Momentum

We propose a Meta-learned Adaptive optimizer with Momentum (Meta-AdaM) for FSL.

3.1 Motivations and Challenges

Few-shot learning (FSL) is a formidable problem in machine learning, where models are expected
to generalize effectively to new tasks with only a handful of labeled examples. The limited amount
of training data, however, poses a significant challenge for traditional optimizers, as they tend to
overfit and yield subpar solutions [28]. As demonstrated in [45], the empirical risk minimizer or
optimizer in FSL is unreliable due to its propensity to overfit a limited number of training examples,
resulting in unsatisfactory solutions, as illustrated in Figure 1 (A). Consequently, optimization steps
are often restricted to prevent overfitting, which makes it difficult for an optimizer to discover suitable
solutions for FSL tasks. Generally, two primary strategies exist to tackle this issue. One involves
identifying an optimal initialization for model parameters, as depicted in Figure 1 (B). The other
focuses on generating high-quality gradient updates for rapid convergence to an appropriate solution,
as displayed in Figure 1 (C). These strategies are orthogonal and can be combined. The objective of
this work is to develop an optimizer capable of producing high-quality gradient updates, allowing the
model to achieve a satisfactory optimum with a limited number of updates.

The most commonly used optimization algorithms for training deep learning models are variants of
gradient descent, which utilize the following update formula:

θti = θt−1
i − ηti × (αt

i × gti + βt
i ×mt−1

i), (1)

mt
i = αt

i × gti + βt
i ×mt−1

i . (2)

In the update formula, θti represents the value of a trainable parameter θi of the model after undergoing
t updates. The variables ηti , g

t
i , and mt

i refer to the learning rate, gradient, and first-order momentum
for θi at the tth update, respectively. Additionally, αt

i and βt
i are coefficients to balance the gradients

and momentum, where momentum is an exponentially weighted moving average of the gradients.

In many-shot learning scenarios, where each learning task has abundant labeled data, several optimiz-
ers [41, 14, 32], such as Adam [14] and SGD with momentum [27], have been developed to speed up

3

the convergence speed by incorporating adaptive learning rates [5] and momentum. However, these
optimization algorithms cannot be directly applied to FSL tasks as the variance of momentum in
the initial optimization steps tends to be high [19], leading to unstable gradient updates with limited
optimization steps and resulting in poor local optima.

Meta-learning has recently demonstrated a robust capacity to address FSL problems. Specifically, a
meta-learner is trained on similar tasks and employed to learn a learner for any new task [38, 2, 46].
While several approaches [18, 30, 3] have been proposed to meta-learn adaptive learning rates in FSL
by incorporating gradients and weights, the relationship between learning rates and weight-changing
history, rather than just weight values, has been shown to be crucial [11, 15]. Furthermore, effectively
utilizing momentum has been challenging due to its high variance in the initial updates [19]. In
light of these challenges, we propose a novel approach, called Meta-AdaM, which meta-learns an
adaptive optimizer with momentum. Our approach leverages the power of meta-learning to learn a
model that predicts adaptive learning rates based on gradient update history, and effectively integrates
momentum to speed up the convergence speed. By doing so, Meta-AdaM enables a learner to quickly
adapt to new few-shot learning tasks with only a limited number of update steps.

3.2 Update History-Based Adaptive Learning Rates through Meta-Learning

Algorithm 1 MetaMomentumInner
1: Input: θ: meta model, learning rate learner:

LSTM, ST : data of a task.
2: Require: η: base step size, K: number of

inner loops, f(·): loss function.
3: Set θ0 = θ, m0 = 0
4: for all t = 1 to K do
5: gt = ∇θt−1f(ST ,θt−1)
6: θt

m = θt−1 − ηmt−1

7: θt
g = θt−1 − ηgt

8: ∆Lt
m = f

(
ST ,θt

m

)
− f

(
ST ,θt−1

)
9: ∆Lt

g = f
(
ST ,θt

g

)
− f

(
ST ,θt−1

)
10: αt, βt = σ(∆Lt

m,∆Lt
g)

11: ηt = LSTM(αtgt, βtmt−1)
12: mt = αtgt + βtmt−1

13: θt = θt−1 − ηt ×mt

14: end for
15: return θK

In this section, we propose utilizing meta-learning
to develop a learner that generates adaptive learn-
ing rates based on gradient update history. Existing
methods, such as [30, 3], depend on a meta-trained
multi-layer perceptron to predict learning rates us-
ing model parameter values and gradients. However,
recent studies indicate that the relationship between
learning rates and weight-changing history is more
critical than between learning rates and weight val-
ues [11, 15]. As a result, it is essential to predict
adaptive learning rates based on weight-changing his-
tory, specifically gradient gti and momentum mt−1i.
To achieve this, we treat the trajectory of gti and mt

i
as sequence data and employ a long short-term mem-
ory network (LSTM) [39]. The LSTM accepts mo-
mentum and new gradients as inputs and outputs an
adaptive learning rate for each trainable parameter θi.
Formally, the update formula for θi with the proposed
meta-learner is defined as follows:

ηti = LSTM(αt
i × gti , β

t
i ×mt−1

i), (3)

θti = θt−1
i − ηti × (αt

i × gti + βt
i ×mt−1

i), (4)

where ηti is the predicted learning rate for the trainable parameter θi in the tth update. Compared to
previous methods that primarily employ multi-layer perceptrons to predict learning rates based on
model parameter values and gradients, our approach naturally considers weight-changing history,
leading to more accurate learning rate predictions. For now, we set αt

i = 1 and βt
i = 0 temporarily

to exclude momentum from the update. This is because the variance of momentum is exceptionally
high in the initial update steps, rendering it unsuitable for direct application in FSL tasks. In the next
section, we propose an effective method to incorporate momentum, accelerating convergence.

It is crucial to emphasize that our approach fundamentally differs from Meta-LSTM [30]. Meta-
LSTM primarily employs a multi-layer perceptron to predict learning rates and weight decay, taking
current weights and gradients as input without considering the weight-update history.

3.3 Double Lookahead for Effective Momentum Integration

In this section, we propose to effectively integrate momentum in the FSL optimizer to accelerate
the convergence speed by using double lookahead. To generate more effective gradients updates
during the training process for few-shot-learning tasks, we compute the adaptive model updates
by applying lookahead to both momentum and new gradients, leading to a more stable learning

4

trajectory and better generalization. Lookahead is an effective optimization strategy by looking ahead
at a sequence of fast weights [47] for fast converge and a corresponding slow gradient to smooth
oscillating. However, in few-shot-learning context, the fast weight will easily trigger the overfitting
problem. And the limited update steps number make the slow gradient hard to smooth the oscillating.

Algorithm 2 Meta-AdaM
1: Input: Task distribution p(T)
2: Require: α, β: step size hyper-parameters
3: Randomly initialize meta model θ
4: Randomly initialize weights in LSTM: θl

5: while not done do
6: Sample a batch of tasks Ti ∼ p(T)
7: for all Ti do
8: Finetune θ with K examples:
9: θ′

i = MetaMomentumInner(θ,LSTM, Ti)
10: end for
11: Update meta model and LSTM:
12: θ ← θ − α∇θ

∑
Ti
LTi(fθ′

i
)

13: θl ← θl − β∇θl

∑
Ti
LTi

(fθ′
i
)

14: end while

We propose addressing this challenge by judi-
ciously selecting the coefficients of the mo-
mentum and new gradients using one-step
lookahead. Specifically, before performing
the accumulation process in Eq. (2), we apply
lookahead to both the momentum and the new
gradients, resulting in two losses. In this con-
text, the aggregation of weight updates should
prioritize the update direction with lower loss.
To achieve this, we employ a softmax opera-
tor to obtain the coefficients by normalizing
the loss decreases. Formally, the proposed ap-
proach is defined as in Algorithm 1. In this
algorithm, ST is a batch of support data, η is a
fixed learning rate, σ(·) is a softmax operator,
and f(·) is a loss function that computes loss
for a batch data ST with a given model θ. We
first generate two lookahead models by updating the current model parameters θt−1 using momentum
mt−1 and new gradients gt separately in line (6) and line (7), which results in θt−1

m and θt
g. Then

f(·) is applied to both models with ST , yielding loss changes for both lookahead models: ∆Lt−1
m and

∆Lt
g . In line (10), the softmax operator is used to normalize two loss changes so that the aggregation

coefficients sum to 1. The resulting coefficients are used to predict adaptive learning rates in line (11),
and aggregate the momentum and new gradients in line (12). Finally, line (13) updates the model
parameters using accumulated momentum mt.

With dynamic coefficients generated through lookahead, if either the momentum or new gradients
lead to an ineffective optimization direction, the small coefficient in line (12) can mitigate the
negative impact and place greater emphasis on more effective optimization directions. As a result, the
double-lookahead strategy can stabilize the momentum update and accelerate the convergence speed.

3.4 Dynamic Class Weighting Scheme for Classification Tasks

In FSL classification tasks employing meta-learning, the meta-trained base model is significantly
influenced by prior knowledge. As a result, certain classes with features closer to prior knowledge
become easier to classify, leading to an imbalance that compromises the model’s performance.
To address this issue, we introduce a dynamic class weighting schema, which emphasizes classes
contributing more to model optimization. We estimate a class’s contribution by observing the changes
in its loss. If a class has been well-learned, the loss will be stable, and minor loss changes will be
observed. In contrast, if there is a substantial loss drop for a particular class, it may contribute more
to future updates. Based on the loss changes for each class, we use a softmax operator to obtain
aggregation weights for every class. The accumulated loss is the weighted summation of all class
losses. This process is defined as follows:

Lt
1, . . . ,Lt

C = f2(ST ,θ
t−1), (5)

w1, ..., wC = σ((L1
t , . . . ,LC

t)/T), (6)

Lt =

C∑
k=1

wkLt
k, (7)

where f2(·) is a loss function that computes losses for each class based on support data ST , C is
the number of classes in task T , and T is the temperature used in the softmax operator σ(·). In the
above schema, if the class k has a larger loss Lt

k, its corresponding aggregation weight wk will be
larger, leading to a stronger optimization signal from class k. Thus, the class that needs to be more
well-trained will obtain more attention, leading to more effective optimization.

5

Table 1: Comparison results using Convnet4 on Mini-ImageNet, TieredImageNet, and Cifar100
datasets. We report performances in terms of accuracy (%) with standard deviation.∗Baseline MC
uses a larger Convnet4 backbone network, and uses extra data regularization method.

Dataset Method 5-way-1-shot 5-way-5-shot

Mini-ImageNet

Meta-LSTM [30] 43.44 ± 0.77 60.60 ± 0.71
MAML [7] 48.70 ± 1.75 63.11 ± 0.92
Meta-SGD [18] 50.47 ± 1.87 64.03 ± 0.94
MAML+ALFA [3] 50.58 ± 0.51 69.12 ± 0.47
e3bm [20] 53.2 65.1
Sparse-MAML [44] 51.04 ± 0.59 68.05 ± 0.84
MAML+SiMT [42] 51.49 ± 0.18 68.74 ± 0.12
MeTAL [40] 52.63 ± 0.37 70.52 ± 0.29
Meta-AdaM (ours) 52.00 ± 0.49 70.70 ± 0.49
MC∗ [25] 55.73 ± 0.94 70.33 ± 0.72

TieredImageNet

MAML [7] 49.06 ± 0.50 67.48 ± 0.47
MAML+ALFA [3] 53.16 ± 0.51 70.54 ± 0.46
e3bm [20] 52.1 70.2
MAML+SiMT [42] 52.51 ± 0.21 69.58 ± 0.11
MeTAL [40] 54.34 ± 0.31 70.40 ± 0.21
Meta-AdaM (ours) 53.93 ± 0.49 72.66 ± 0.49

Cifar100

e3bm [20] 39.9 52.6
MAML [7] 38.20 ± 0.48 49.94 ± 0.49
MAML+ALFA [3] 39.77 ± 0.48 53.39 ± 0.49
Meta-AdaM (ours) 41.11 ± 0.49 56.32 ± 0.49

3.5 Meta-AdaM

We present our proposed Meta-AdaM in Algorithm 2. Given a task distribution p(T), our goal is to
meta-learn an optimal model initialization θ and an adaptive learning learner θl. In each iteration, we
sample a batch of tasks from p(T). For each sampled task, we fine-tune an adapted model θ′ and
update θ and θl using Algorithm 1. During testing, we directly utilize θ and θl for a new task.

4 Experiments

We conduct experiments to evaluate the proposed Meta-AdaM using three benchmark datasets.

4.1 Experimental Settings

Table 2: Hyperparameters for experiment.
Hyperpameter Value
tasks batch size 2
inner learning rate η 0.01
outer learning rate α, β 0.001
inner fine-tune step 5
training epochs 100
outer steps in each epoch 500

This section describes datasets and backbone models
used to evaluate our Meta-AdaM.

Datasets. We evaluate the proposed methods us-
ing three datasets: Mini-ImageNet [10], Tiered-
ImageNet [33], and Cifar100 [16] datasets. Mini-
ImageNet dataset contains 100 classes with 600 sam-
ples per class. Each data sample is an 84× 84 colored
image. Following previous works [30], we split 100
classes into 64, 16, and 20 class groups for training, validation, and testing. The image size of
Tiered-ImageNet is also 84 × 84. This dataset consists of 608 classes with 779,165 images. These
608 classes are further combined into 34 high-level classes. These high-level classes are divided into
20, 6, and 8 class groups for training, validation, and testing [31], respectively. Tiered-ImageNet
considers the class similarity when divide the datatset to ensure that the distribution of train and test
data is very different. Cifar100 dataset for few-shot learning contains 60,000 images with 100 classes.
The image size is 32 × 32. The 100 classes are divided into 60, 20, and 20 groups for training,
validation, and testing. These datasets are bench-marking datasets in the FSL domain.

Backbone models. We evaluate the proposed Meta-AdaM using two backbone models: Convnet4
and Resnet12 [12]. Convnet4 is a 4-layer Convolutional Neural Network with 32.9 thousand trainable

6

Table 3: Comparison results using ResNet12 on Mini-ImageNet, TieredImageNet, and Cifar100
datasets. We report accuracy (%) with standard deviation. ∗Baseline MC uses WRN-28-10 as
backbone and extra data regularization method.

Dataset Method 5-way-1-shot 5-way-5-shot

Mini-ImageNet

MAML [7] 58.37 ± 0.49 69.76 ± 0.46
MAML+ALFA [3] 59.74 ± 0.49 77.96 ± 0.47
MAML+SiMT [42] 56.28 ± 0.63 72.01 ± 0.26
Sparse-MAML [44] 56.39 ± 0.38 73.01 ± 0.24
MeTAL[40] 59.64 ± 0.38 76.20 ± 0.19
Meta-AdaM (ours) 59.89 ± 0.49 77.92 ± 0.43
MC∗ [25] 64.40 ± 0.10 80.21 ± 0.10

Tiered-ImageNet

MAML [7] 58.58 ± 0.49 71.24 ± 0.43
MAML+ALFA [3] 64.62 ± 0.49 82.48 ± 0.39
MAML+SiMT [42] 59.72 ± 0.22 74.40 ± 0.90
MeTAL[40] 63.89 ± 0.43 80.14 ± 0.40
Meta-AdaM(ours) 65.31 ± 0.48 85.24 ± 0.35
MC∗ [25] 67.21 ± 0.10 82.61 ± 0.10

Cifar100
MAML [7] 38.79 ± 0.48 51.65 ± 0.49
MAML+ALFA [3] 40.88 ± 0.48 54.54 ± 0.49
Meta-AdaM (ours) 41.12 ± 0.49 56.14 ± 0.49

parameters, while Resnet12 is an 18-layer Convolutional Neural Network featuring 4 million trainable
parameters. By employing these two models, we demonstrate that our proposed optimizer is effective
on both small and large networks.

Hyperparameters. We show the hyperparamters in Table 2, which applies to each dataset and each
backbone. To ensure a fair comparison, we follow the setting of [3] and report the test performance
of the ensemble of top-5 performing models on the validation set.

4.2 Results Using A Small Network

We first evaluate our Meta-AdaM using the Convnet4 network on three datasets. The experiments are
conducted under two settings: 5-way-1-shot and 5-way-5-shot, where a-way-b-shot means each task
contains a classes and there are b training examples for each class. We compare our Meta-AdaM
with Meta-LSTM [30], MAML [7], Meta-SGD [18], and MAML+ALFA [3] as main baseline. A
summary of the comparison results can be found in Table 1. From the results, we can observe that
our method achieves promising results on all three datasets under two settings. Under the 5-way-
1-shot setting, our Meta-adaM outperforms MAML and MAML+ALFA by margins of 3.30% and
1.42% on Mini-ImageNet, 4.87% and 0.77% on TieredImageNet, and 2.91% and 1.34% on Cifar100,
respectively. Under the 5-way-5-shot setting, our method outperforms MAML and MAML+ALFA by
margins of 7.59% and 1.58% on Mini-ImageNet, 5.18% and 2.12% on TieredImageNet, and 6.38%
and 2.93% on Cifar100, respectively.

These promising results demonstrate that our Meta-AdaM can consistently yield more effective
optimization results on various benchmark datasets. Notably, the performance gains are even larger
in the 5-way-5-shot setting. Given that both the momentum and the new gradients estimated from
a few training examples could be noisy with only one training example per class, it is difficult to
produce effective gradient updates from them. The power of Meta-AdaM is better reflected by slightly
increasing the number of training examples. We also compare our methods with other recent research
works, including e3bm [20], Sparse-MAML [44], MAML+SiMT [42] and MeTAL [40]. We can
observe that our methods outperform the other methods in most of the settings.

4.3 Results Using A Large Network

In the previous section, we evaluated our Meta-AdaM using a small network, Convnet4, as the
backbone model. However, optimizing a large model is more challenging due to the risk of overfitting.
In this section, we conduct experiments on a larger backbone model, Resnet12, to further demonstrate
the effectiveness of our Meta-AdaM. The evaluation is conducted under 5-way-1-shot and 5-way-5-

7

Table 4: Abalation study results using the Mini-ImageNet dataset on the Convnet4 backbone network.

Momentum Look-ahead Adaptive lr 5-way-1-shot 5-way-5-shot
✓ ✓ ✓ 51.64±0.49 68.80±0.46
✓ ✓ ✗ 49.30±0.49 64.09±0.47
✗ ✗ ✓ 49.02±0.50 67.98±0.46
✓ ✗ ✗ 48.28±0.49 63.27±0.48
✗ ✗ ✗ 48.70±1.75 63.11±0.92

Table 5: Comparison result LSTM and MLP using Convnet4 on Mini-ImageNet, TieredImageNet,
and Cifar100 datasets. We report performances in terms of accuracy (%) with standard deviation.

Dataset Method 5-way-1-shot 5-way-5-shot

Mini-ImageNet Meta-Adam with MLP 52.27± 0.49 70.48 ± 0.49
Meta-AdaM with LSTM 52.00 ± 0.49 70.70 ± 0.49

TieredImageNet Meta-Adam with MLP 53.48 ± 0.49 72.60 ± 0.49
Meta-AdaM with LSTM 53.93 ± 0.49 72.66 ± 0.49

Cifar100 Meta-Adam with MLP 40.28 ± 0.49 54.96 ± 0.49
Meta-AdaM with LSTM 41.11 ± 0.49 56.32 ± 0.49

shot settings using the Mini-ImageNet, Tiered-ImageNet, and Cifar100 datasets. The comparison
results with MAML and MAML+ALFA are summarized in Table 3.

Under the 5-way-1-shot setting, we observe margins of 0.15%, 0.69%, and 0.24% improvements
compared to previous state-of-the-art models on the Mini-ImageNet, TieredImageNet, and Cifar100
datasets, respectively. Under the 5-way-5-shot setting, our Meta-AdaM outperforms ALFA by margins
of 2.76%, and 1.60% on TieredImageNet, and Cifar100 datasets respectively. On Mini-ImageNet,
our method gives a equal performance compared to MAML+ALFA. Our method also outperforms
other methods, including MAML+SiMT [42] and MeTAL [40]. The consistently promising results
on the three benchmark datasets demonstrate that our Meta-AdaM is effective when used to optimize
a larger backbone model.

4.4 Ablation Study

In this study, we introduce three novel components in our Meta-AdaM: momentum, double lookahead
and an adaptive learning rate via a meta-learned learner. Also, we introduce a dynamic class-weighting
scheme for loss functions specially designed for classification tasks. In this section, we evaluate
the individual contributions of each component. To accomplish this, we conduct experiments in
both 5-way-1-shot and 5-way-5-shot settings, utilizing Convnet4 as the backbone model on the
Mini-ImageNet dataset.

4.4.1 Momentum, Double lookahead and Adaptive learning rate

Specifically, we test varying combinations of the first three components and assess the performance
of the resulting optimizers. These comparative results can be summarized in Table 4. The results
in Table 4 demonstrate that each component contributes to the overall performance. Specifically,
heuristic aggregation of momentum does not significantly enhance the performance, with a 0.42%
decrease observed in the 1-shot and a modest 0.16% increase in the 5-shot setting compared to the
original MAML. However, incorporating momentum with a double look-ahead strategy leads to
superior results over those from the momentum-only setting. This enhanced optimizer surpasses the
original MAML by 0.6% in the 1-shot and 0.98% in the 5-shot settings.The adaptive learning rate
also plays a crucial role. By solely applying this adaptive learning rate in the inner loop, the resultant
optimizer outperforms the original MAML by 0.32% in the 1-shot and 4.87% in the 5-shot settings.
When these three components are combined, the performance improvement is even more significant.
The momentum with look-ahead results in a more stable and efficient training optimization process,
thereby aiding the meta-learner in better estimating the adaptive learning rates. From these results,
we see a performance boost of 2.94% in the 1-shot and 5.69% in the 5-shot settings. To further
evaluate the effect of weight update history, we conduct additional experiments that substitute the
LSTM network with a MLP network with same inputs. The results are summarized in Table 5. From

8

Table 6: Ablation Study for class dynamic weight using Convnet4 on Mini-ImageNet, TieredIma-
geNet, and Cifar100 datasets

Dataset Method 5-way-1-shot 5-way-5-shot

Mini-ImageNet

ALFA 50.58 ± 0.51 69.12 ± 0.47
ALFA+DW 50.65 ± 0.49 70.02 ± 0.45
Meta-AdaM w/o DW 51.64 ± 0.49 68.80 ± 0.46
Meta-AdaM (ours) 52.00 ± 0.49 70.70 ± 0.49

TieredImageNet

ALFA 53.16 ± 0.51 70.54 ± 0.46
ALFA+DW 53.54 ± 0.49 72.36± 0.19
Meta-AdaM w/o DW 53.62 ± 0.50 71.57 ± 0.49
Meta-AdaM (ours) 53.93 ± 0.49 72.66 ± 0.49

Cifar100

ALFA 39.77 ± 0.48 53.39 ± 0.49
ALFA+DW 40.79 ± 0.19 54.34 ± 0.48
Meta-AdaM w/o DW 40.14 ± 0.49 54.36 ± 0.50
Meta-AdaM (ours) 41.11 ± 0.49 56.32 ± 0.49

Figure 2: Visualization of loss changes for each step. The left, middle, and right figures are the
average loss changes and 95% confidence interval for each step on Mini-ImageNet, Tiered-ImageNet,
and Cifar100, respectively.

the result, LSTM outperform MLP network in 5 out of 6 experiment setting, which indicates that the
weight update history is important.

4.4.2 dynamic class-weighting scheme

To demonstrate the effect of dynamic class, we conduct additional experiments on four configurations:
ALFA, ALFA with Dynamic Class Weighting, Meta-AdaM excluding class weighting, and full
Meta-AdaM and summarize in result in Table 6. The result shows that Meta-AdaM without Dynamic
Class Weighting outperforms ALFA in 5 out of 6 evaluated settings. Noticeably, Dynamic Class
Weighting provides a tangible enhancement when integrated with ALFA.

4.5 Visualization of Optimization Process

In this section, we visualize the optimization process of our Meta-AdaM and compare it with ALFA.
We randomly select 900 testing tasks from three datasets: Mini-ImageNet, Tiered-ImageNet, and
Cifar100. The experiment setting is 5-way-1-shot using Convnet4 as the backbone model. We use
the checkpoints with the highest validation accuracy for Meta-AdaM and ALFA. We calculate the
average loss change for all 900 tasks in each update step and plot the results in Figure 2. From the
plot, our Meta-AdaM helps the model find a better optimum than ALFA.

Additionally, We conducted experiments on 300 5-way-1-shot test tasks on Cifar100 with Convnet4
as the backbone model. We include the change of inner learning rate η and α and β in the "Double
look ahead strategy." in Figure 3. As illustrated in Figure 3 on the left, our optimizer tends to initially
predict smaller learning rates due to the substantial conflict between momentum and gradient. A
smaller learning rate will lead to a slow convergence rate in the first few steps, providing spaces for
accumulating high-quality momentum. Therefore, from Figure 2, the loss from our method decreases
slower than ALFA. Once the momentum quality is good after several steps, the predicted learning

9

Figure 3: Left: Visualization of predicted learning rates in 5 steps with variance bonds. The predicted
learning rates tend to increase along with the optimization process. Right: Visualization of computed
coefficients α and β of 5 steps with variance bonds in the fine-tuning process. The coefficients for
momentum are small at the beginning due to their high variances.

rates become larger, leading to a better optimum than ALFA. This also highlights our contribution to
using double-look-ahead to handle highly variable momentum.

Figure 3 on the right shows that the gradients give lower losses until the first three steps, so the
gradient α coefficient is larger than for momentum β. However, after accumulating for a few steps,
the accumulated momentum can generate a lower loss and a larger coefficient. Such results support
the intuition that the momentum quality improves over the trajectory.

4.6 Efficiency Study of Meta-AdaM

Table 7: Average running time of one epoch.

Method Running time (s)
MAML 252.04
MAML+ALFA 560.63
Meta-AdaM 595.91

In this section, we assess the efficiency of our Meta-
AdaM. In Meta-AdaM, we employ a double looka-
head strategy to evaluate the momentum and new gra-
dients, which may introduce additional computational
costs. To evaluate these added costs, we compare the
total training time of MAML, MAML+ALFA, and
Meta-AdaM. We use the experimental setting of 5-
way-1-shot on the Mini-ImageNet dataset and record
the running time on an NVIDIA RTX A4000 GPU. The results are summarized in Table 7. The results
indicate that our Meta-AdaM takes slightly longer running time than ALFA. However, considering the
performance improvements brought by Meta-AdaM, the additional computational resources required
by Meta-AdaM are justifiable.

4.7 Predicted Negative Learning Rate

During our experiments, the predicted learning rate in our adaptive learning rate component could
occasionally be negative. This phenomenon has been described in [4] and observed in ALFA [3],
which employs a two-layer network to predict learning rates. Interestingly, applying negative learning
rates to trainable parameters in some update steps can lead to better optimization results. However,
determining which parameters are suitable for a negative learning rate and when to apply the negative
learning rate remains to be clarified. Further research exploring the role of negative learning rates in
meta-learning may contribute to improving the optimization of meta-learning models.

5 Conclusion

In this work, we propose a meta-learning-specific optimizer, Meta-AdaM, which incorporates three
novel optimization components that can better utilize update signals: momentum and new gradients.
Specifically, we propose to meta-learn an adaptive learning rate learner using an LSTM network
by looking back at the weight update history. We also introduce a double lookahead algorithm to
dynamically accumulate momentum, leading to a more stable and effective momentum update and
gradient update. Moreover, we propose a dynamic class weighting scheme to balance the losses across
different classes. Experimental results demonstrate the effectiveness of our proposed Meta-AdaM.

10

6 Acknowledgement

This work has been supported in part by National Science Foundation grant III-2104797.

References
[1] S.-i. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):

185–196, 1993.

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. De Freitas. Learning to learn by gradient descent by gradient descent. Advances in
neural information processing systems, 29, 2016.

[3] S. Baik, M. Choi, J. Choi, H. Kim, and K. M. Lee. Meta-learning with adaptive hyperparameters.
Advances in neural information processing systems, 33:20755–20765, 2020.

[4] A. Bernacchia. Meta-learning with negative learning rates. arXiv preprint arXiv:2102.00940,
2021.

[5] M. Donini, L. Franceschi, O. Majumder, M. Pontil, and P. Frasconi. Marthe: scheduling the
learning rate via online hypergradients. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pages 2119–2125,
2021.

[6] T. Dozat. Incorporating nesterov momentum into adam. The Eleventh International Conference
on Learning Representations, 2016.

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

[8] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. Advances in neural
information processing systems, 31, 2018.

[9] S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. Meta-learning with
warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

[10] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4367–
4375, 2018.

[11] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[13] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey, 2020.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] M. J. Kochenderfer and T. A. Wheeler. Algorithms for optimization. Mit Press, 2019.

[16] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Master’s
thesis, University of Tront, 2009.

[17] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex
optimization. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10657–10665, 2019.

[18] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few-shot learning.
arXiv preprint arXiv:1707.09835, 2017.

11

[19] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the adaptive
learning rate and beyond. arXiv preprint arXiv:1908.03265, 2019.

[20] Y. Liu, B. Schiele, and Q. Sun. An ensemble of epoch-wise empirical bayes for few-shot
learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XVI 16, pages 404–421. Springer, 2020.

[21] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner.
arXiv preprint arXiv:1707.03141, 2017.

[22] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,
2018.

[23] T. Munkhdalai and H. Yu. Meta networks. In International conference on machine learning,
pages 2554–2563. PMLR, 2017.

[24] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[25] E. Park and J. B. Oliva. Meta-curvature. Advances in Neural Information Processing Systems,
32, 2019.

[26] A. Phaphuangwittayakul, Y. Guo, and F. Ying. Fast adaptive meta-learning for few-shot image
generation. IEEE Transactions on Multimedia, 24:2205–2217, 2021.

[27] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17, 1964.

[28] J. Rajendran, A. Irpan, and E. Jang. Meta-learning requires meta-augmentation. Advances in
Neural Information Processing Systems, 33:5705–5715, 2020.

[29] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients.
Advances in neural information processing systems, 32, 2019.

[30] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2017.

[31] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle,
and R. S. Zemel. Meta-learning for semi-supervised few-shot classification. arXiv preprint
arXiv:1803.00676, 2018.

[32] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[34] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell.
Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960, 2018.

[35] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International conference on machine learning, pages
1842–1850. PMLR, 2016.

[36] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. Advances in
neural information processing systems, 30, 2017.

[37] Y. Song, T. Wang, S. K. Mondal, and J. P. Sahoo. A comprehensive survey of few-shot learning:
Evolution, applications, challenges, and opportunities. arXiv preprint arXiv:2205.06743, 2022.

[38] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer learning for few-shot learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
403–412, 2019.

12

[39] M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for language modeling. In
Thirteenth annual conference of the international speech communication association, 2012.

[40] H. K. D. C. J. M. K. M. L. Sungyong Baik, Janghoon Choi. Meta-learning with task-adaptive
loss function for few-shot learning. In International Conference on Computer Vision (ICCV),
2021.

[41] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pages 1139–
1147. PMLR, 2013.

[42] J. Tack, J. Park, H. Lee, J. Lee, and J. Shin. Meta-learning with self-improving momentum
target. In Advances in Neural Information Processing Systems, 2022.

[43] P. Vicol, L. Metz, and J. Sohl-Dickstein. Unbiased gradient estimation in unrolled computation
graphs with persistent evolution strategies. In International Conference on Machine Learning,
pages 10553–10563. PMLR, 2021.

[44] J. von Oswald, D. Zhao, S. Kobayashi, S. Schug, M. Caccia, N. Zucchet, and J. Sacramento.
Learning where to learn: Gradient sparsity in meta and continual learning, 2021.

[45] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey on
few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

[46] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil, N. Freitas,
and J. Sohl-Dickstein. Learned optimizers that scale and generalize. In International conference
on machine learning, pages 3751–3760. PMLR, 2017.

[47] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton. Lookahead optimizer: k steps forward, 1 step back.
Advances in neural information processing systems, 32, 2019.

13

Table 8: Comparison results on few-shot regression tasks. The target function for regression is a sine
curve y(x) = A sin(ωx). We report MSE error with a 95% confidence interval.

Method Training 5-shot Testing 10-shot Testing 20-shot Testing
MAML[7] 5-shot 1.13 ± 0.08 0.85 ± 0.14 0.71 ± 0.12
Meta-SGD[18] 5-shot 0.90 ± 0.16 0.63 ± 0.12 0.50 ± 0.10
ALFA[3] 5-shot 0.60 ± 0.04 0.41 ± 0.02 0.25 ± 0.22
Meta-AdaM 5-shot 0.52 ± 0.04 0.35 ± 0.04 0.23 ± 0.01
MAML[7] 10-shot 1.17 ± 0.16 0.77 ± 0.11 0.56 ± 0.08
Meta-SGD[18] 10-shot 0.88 ± 0.14 0.53 ± 0.09 0.35 ± 0.06
ALFA[3] 10-shot 0.72 ± 0.16 0.45± 0.03 0.26 ± 0.02
Meta-AdaM 10-shot 0.66 ± 0.22 0.34 ± 0.05 0.23 ± 0.01
MAML[7] 20-shot 1.29 ± 0.20 0.76 ± 0.12 0.48 ± 0.08
Meta-SGD[18] 20-shot 1.01 ± 0.17 0.54 ± 0.08 0.31 ± 0.05
ALFA[3] 20-shot 1.01± 0.18 0.48± 0.09 0.25 ± 0.03
Meta-AdaM 20-shot 0.95 ± 0.11 0.43 ± 0.06 0.23 ± 0.03

1 2 3 4 5

Step

0

1

2

3

4

5

6

7

L
os

s

Loss for each class--No dynamic class weight

class1
class2
class3
class4
class5

1 2 3 4 5

Step

0

0.5

1

1.5

2

2.5

3

3.5

L
os

s

Loss for each class--dynamic class weight

class1
class2
class3
class4
class5

Figure 4: Visualization of dynamic class weighting scheme. The left and right figures show the
optimization process without and with the dynamic class weighting scheme, respectively.

7 Appendix

7.1 Result on regression task

To further prove the efficiency of our method, we conduct additional experiments on few-shot
regression tasks and show the result in Table 8. We follow the experiment setting of the Meta-
SGD[18]. The regression task is to map the underlying function based on the input. The target
function is y(x) = A sin(ωx), where amplitude A, frequency ω, and phase b all follow a uniform
distribution with the interval [0.1, 5.0], [0.8, 1.2], and [0, π]. We train three few-shot regression
learners on 5-shot, 10-shot, and 20-shot tasks separately. Each learner will test on 100 5-shot, 10-shot,
and 20-shot testing tasks. We report MSE errors with a 95% confidence interval.

We compare our approach with MAML[7], Meta-SGD[18], Meta-SGD+ALFA[3], and Meta-SGD
+ META-AadM. The result has shown that our method outperforms the baselines, Meta-SGD and
Meta-SGD+ALFA, in all settings. The promising results indicate that our proposed method is also
effective on few-shot regression tasks.

7.2 Study of the Dynamic Class Weighting Scheme

In previous section, we present quantitative results to demonstrate the effectiveness of the dynamic
class weighting scheme. In this section, we visualize the loss changes for each class when using
this scheme. We compare the loss function using our scheme and the one without a class weighting
scheme. Each optimization process consists of five update steps. The left figure in Figure 4 displays

14

the loss changes of each class without employing a class weighting scheme. Class 2 has a significantly
lower loss than the other classes. For the last four steps, only the loss of class 2 is optimized, while
the other four classes remain under-optimized. Such situations can lead to model collapse problems
in meta-learning [26], which means the model tends to classify all testing examples into one or
two classes. The right figure in Figure 4 illustrates the loss changes when using the dynamic class
weighting scheme. Class 4 has a lower loss in the first step compared to the other classes. The
optimizer focuses more on the other four classes by emphasizing those with larger losses. Ultimately,
all class losses converge towards the optimization endpoint, effectively mitigating the risk of model
collapse problems.

15

	Introduction
	Related Works
	Few-Shot Learning and Meta Learning
	Gradient-Descent Based Optimizer
	Optimizer for Few-Shot Learning

	Meta-AdaM: A Meta-Learned Adaptive Optimizer with Momentum
	Motivations and Challenges
	Update History-Based Adaptive Learning Rates through Meta-Learning
	Double Lookahead for Effective Momentum Integration
	Dynamic Class Weighting Scheme for Classification Tasks
	Meta-AdaM

	Experiments
	Experimental Settings
	Results Using A Small Network
	Results Using A Large Network
	Ablation Study
	Momentum, Double lookahead and Adaptive learning rate
	dynamic class-weighting scheme

	Visualization of Optimization Process
	Efficiency Study of Meta-AdaM
	Predicted Negative Learning Rate

	Conclusion
	Acknowledgement
	Appendix
	Result on regression task
	Study of the Dynamic Class Weighting Scheme

