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Abstract

Offline Reinforcement Learning (RL) has demonstrated promising results in various
applications by learning policies from previously collected datasets, reducing the
need for online exploration and interactions. However, real-world scenarios usually
involve partial observability, which brings crucial challenges of the deployment
of offline RL methods: i) the policy trained on data with full observability is not
robust against the masked observations during execution, and ii) the information
of which parts of observations are masked is usually unknown during training. In
order to address these challenges, we present Offline RL with DiscrEte pRoxy
representations (ORDER), a probabilistic framework which leverages novel state
representations to improve the robustness against diverse masked observabilities.
Specifically, we propose a discrete representation of the states and use a proxy
representation to recover the states from masked partial observable trajectories.
The training of ORDER can be compactly described as the following three steps. i)
Learning the discrete state representations on data with full observations, ii) Train-
ing the decision module based on the discrete representations, and iii) Training the
proxy discrete representations on the data with various partial observations, align-
ing with the discrete representations. We conduct extensive experiments to evaluate
ORDER, showcasing its effectiveness in offline RL for diverse partially observable
scenarios and highlighting the significance of discrete proxy representations in
generalization performance. ORDER is a flexible framework to employ any offline
RL algorithms and we hope that ORDER can pave the way for the deployment of
RL policy against various partial observabilities in the real world.

1 Introduction

The past decade witnesses the remarkable success of Reinforcement Learning (RL) in various domains,
such as Atari games [38], Go [43], and even nuclear fusion [10]. Offline RL, a particularly promising
approach, focuses on learning effective policies from previously collected datasets, reducing the need
for online exploration and interactions [34]. However, the various partial observabilities in the real
world pose challenges when deploying the learned policy in practice. Examples include autonomous
cars facing blocked or perturbed observations [11], drones navigating through cluttered environments
with occlusions [51], and robotic manipulators handling objects with varying degrees of visibility [5].
As a result, agents trained on offline datasets must adapt their learned policies to cope with dynamic,
uncertain, and partially observable environments, ensuring generalizability in real-world applications.

1† Equal contribution.
2‡ Corresponding authors.
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Our research targets the situations where agents, trained on offline datasets with full state information,
encounter various partial observations in real-world deployments. For instance, a robot trained in
a lab with complete data on obstacles and victims might face limited visibility due to occlusions,
sensor noise, or environmental factors like smoke or varying light in real scenarios. This contrast
between training and real-world conditions can hinder the system’s generalizability and effectiveness.

There are two main challenges for the generalization against partial observabilities. i) During testing,
the partial observability may differ substantially from the data on which the RL policy was trained,
leading to significantly reduced performance. ii) The specific forms of partial observability remain
unidentified during training, preventing the tailored training of agents for these observabilities. These
challenges can be understood as the generalization issues within POMDPs. In this paper, our focus
narrows to the generalization of a collection of POMDPs arising from an inherent MDP via diverse
masked observation functions, which we refer to as a POMDP family.

Existing offline RL methods primarily target fully observable environments with comprehensive state
data, causing difficulties in handling real-world scenarios involving partial observability and uncertain
observation functions [30, 31, 29, 13, 28, 8, 15, 26, 7, 35]. While POMDP methods excel in online
RL, they rely on continuous environment interactions for policy adaptation, making them unsuitable
for offline RL [14, 47, 9, 21, 36, 20, 22, 32, 40]. Furthermore, most of these methods are developed
for specific POMDPs and thus lack the ability to generalize across different and unknown partial
observation functions. Although some attempts have been made to address partial observability
in offline RL [17], their effectiveness is constrained by restrictive assumptions, such as a known
observation function or a focus on theoretical analysis.

To bridge the research gap, we unveil Offline RL with DiscrEte pRoxy representation (ORDER),
a framework that leverages discrete proxy state representations for diverse observation functions.
Drawing an analogy, consider mapping a vast terrain: A detailed map is challenging to recall, but
broadly categorizing into zones simplifies navigation. Similarly, the discrete representation in ORDER
categorizes states, aiding RL algorithms. Moreover, even when part of the terrain (state) is obscured,
a knowledgeable guide (proxy representation) can infer the underlying area. Our contributions are
three-fold. Firstly, we propose a discrete representation of states to improve the robustness against
the partial observability and a proxy representation to recover the discrete representation of the state
from partial observable trajectory. Secondly, we propose a three-stage training of ORDER: i) we first
train the discrete representation on data with full observation through Vector Quantized AutoEncoder
(VQ-VAE [45]), ii) we train the decision module based on the discrete state, and iii) we train the
proxy discrete representation on the data with various partial observations, aligning with the discrete
representation. Finally, we present a thorough evaluation of ORDER, showcasing its effectiveness
in enhancing offline RL algorithms for various partially observable scenarios. Our experiments
highlight the importance of discrete proxy representations in maintaining alignment under partial
observability, leading to improved generalization performance. ORDER is a flexible framework to
employ any state-of-the-art (SoTA) offline RL algorithms and we hope ORDER can pave the way for
the deployment of RL policy against various partial observabilities in the real world.

2 Related Works

Offline RL. Offline RL aims to learn policies from pre-collected transition data, eliminating the
need for active data collection [34]. In recent years, this area has seen significant growth in research
[30, 31, 29, 13, 28, 8]. Both empirical and theoretical studies have identified overestimation error,
caused by out-of-distribution states and actions, as a critical challenge in offline RL [13]. As a result,
numerous behavioral regularizations have been proposed to keep the learned policy within the bounds
of the offline data during RL training [15, 26, 7, 35]. However, the majority of existing methods focus
on fully observable environments, limiting their applicability in real-world situations that often involve
partial observability and uncertain observation functions [31, 13, 28, 8, 26]. In such cases, the partial
observability encountered during execution can greatly differ from the data on which the RL policy
is trained, leading to a significant decline in performance. A noteworthy attempt to tackle partial
observability in offline RL is the work by [17]. However, this effort mainly centers on theoretical
analysis and assumes a known observation function, which restricts its practical application. Our
work sets itself apart from this previous effort by assuming access to full observations in the offline
dataset, while the observation functions in the testing environment are unknown, potentially diverse,
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and subject to change. Our approach is designed to generalize to uncertain observation functions,
thus improving generalization performance across a range of partially observable scenarios.

Online RL for POMDPs. Existing work addressing POMDPs generally falls into two main
categories: i) belief state methods [27, 14, 47, 9, 21], which aim to deduce the distribution of
hidden (belief) states from partial observation histories and then apply standard RL techniques
to these inferred states; and ii) memory-based policies that use memory-based architectures, like
recurrent neural networks (RNNs), to store observation trajectories and summarize past experiences
[42, 3, 50, 24, 23, 37, 36, 49, 19]. However, most of these methods are developed for specific
POMDPs and lack the ability to generalize across different and unknown partial observation functions.
Furthermore, these online techniques hinge on the agent’s capacity to interact with the environment
and adjust its policy online, which is unsuitable for the offline RL setting. Another relevant area is
asymmetric reinforcement learning, where existing works assume that agents can access privileged
information (e.g., full observations) during training, but need to function in testing environments
with partial observations [39, 1, 48, 2, 16, 33]. Nonetheless, they also assume a specific partial
observation and depend on data collection through environment interaction. In contrast, our method
presumes that we can access full observation information from a fixed dataset without interacting
with the environment. Additionally, our method does not focus on a single, fixed partial observation
function; it is designed to effectively generalize across a variety of masked observation functions.
This adaptability allows our approach to address real-world situations characterized by diverse and
uncertain observation functions.

Sim-to-Real RL. Sim-to-real RL is a notable direction in related works. This approach leverages
simulation training for real-world applications, adapting policies based on transferred knowledge
[52]. A prevalent strategy in this realm is domain randomization [44]. Rather than meticulously
replicating real-world parameters, the environment is extensively randomized to encapsulate the
genuine data distribution, regardless of simulation-reality bias. Additionally, many researchers
adopt domain adaptation, which capitalizes on source domain data to enhance model performance
in a target domain, typically data-scarce [6, 18, 25]. A key challenge here lies in unifying the
often-divergent feature spaces between source and target domains to facilitate knowledge transfer
effectively. Our work shares a thematic connection with the sim-to-real paradigm, as both address the
transition from controlled conditions to real-world unpredictability. In our framework, agents, trained
comprehensively on offline datasets, must adapt to partial real-world observations. While sim-to-real
focuses on bridging the gap between simulation and reality, our emphasis is on transitioning from
thorough training data to fragmented real-world observations. Both aim for real-world proficiency,
but the challenges and remedies they explore differ substantially.

3 Preliminary

POMDPs. A Partially Observable Markov Decision Process (POMDP) is a mathematical frame-
work used to model decision-making problems in uncertain environments [41]. Formally, a POMDP
is defined as a tuple (S,A,O, T, S0, O,O0, R,H, γ), where the underlying process is a Markov
Decision Process (MDP) (S,A, T, S0, R,H, γ). Concretely, S represents the set of states, A denotes
the set of actions, T : S × A × S → [0, 1] is the transition function (dynamics), S0 : S → [0, 1]
specifies the initial state distribution, R : S ×A×S → R is the reward function, H ∈ N refers to the
time horizon, and γ ∈ [0, 1) is the discount factor. Additionally, in the POMDP setting, O denotes
the set of observations, and O : S × O → [0, 1] represents the observation function. At the initial
time step t = 0, a starting state s0 ∼ S0(·) and an initial observation o0 ∼ O0(·|s0) are sampled.
At any time step t ∈ 0, . . . ,H − 1, the policy takes an action at ∈ A in the environment, which
updates the state according to the dynamics st+1 ∼ T (·|st, at). The next observation is then sampled
as ot+1 ∼ O(·|st+1), and the reward is computed as rt+1 = R(st, at, st+1). Let the observable
trajectory up to time step t be denoted as τ0:t = (o0, a0, o1, . . . , at−1, ot, at), then the memory-based
policy, in its most general form, is defined as π(at|τ0:t−1, ot), conditioned on the entire history.

In this paper, we focus on the masked partially observable setting, where state factors are obscured
or "masked" in a dynamic manner, such as when sensors of a robot are occluded or signals are
perturbed. In this context, any state can be represented as a collection of random variables st =
[s1t , s

2
t , . . . , s

M
t ]. This implies that the state consists of various factors collected from multiple sources.
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Figure 1: In general POMDP problem, the
policy is trained on samples which contain
state information and expected to perform
well across various POMDPs with distinct
observation functions.

Each factor si can differ in type and size, ranging
from high-dimensional (e.g., multimedia data) to low-
dimensional (e.g., tabular data). We introduce an
M -dimensional binary mask variable m ∈ M =
{0, 1}M×H to signify the observability of each factor:
for the t-th time step and the i-th factor, mi

t = 1 if it is
observed, and 0 otherwise. Consequently, we redefine
O as the masked observation function: Given the mask
value m, the current observation ot can be get from
O(·|st) = [sit|mi

t = 1]. In this context, different mask
variables result in distinct POMDPs due to variations
in their observation functions. And the mask variable
mt may change with the time step t. An MDP can be
considered as a special case of a POMDP when the
observation o is always identical to the state s, i.e., for
any time step t and factor i, mi

t = 1.

Generalization over a POMDP Family. Prior works generally aim to address a specific POMDP,
where the policy is trained and tested within the same POMDP. In this paper, we aim to tackle a
more general POMDP problem as depicted in Figure 1. In particular, during the training period,
the policy has access to samples which include state information. During the testing period, the
policy is expected to perform well in various POMDPs that share the same underlying MDP but have
distinct observation functions. The objective for such a problem in the masked POMDP setting can
be regarded as finding an optimal policy π(at|τ0:t) to maximize the expected discounted return under
different masked observation functions: maxπ Es0∼S0,m∼M[Eτ [

∑H−1
t=0 γtrt+1|s0]].

Offline RL. Our work focuses on the offline setting, where the agent learns a policy from a static
dataset D = (s, a, s′, r) without collecting new experience data. The dataset is generated by another
policy, referred to as the behavioral policy and denoted by πβ(a|s). We allow full access to state
information during the training phase by relaxing partial observability constraints. However, during
execution, the trained policy must handle diverse partial observation functions. Our method separates
representation learning and policy learning, enabling the use of state-of-the-art offline RL algorithms
to train a decision head that can make decisions based on the learned representation (see Section 4).
In our paper, we employ Implicit Q-learning (IQL) [28] (see details of IQL in Appendix.) as the
offline RL algorithm for training our decision module.

4 Offline RL with Discrete Proxy Representations

We introduce ORDER, a framework designed to tackle challenges in partially observable settings for
offline RL. Our approach uses two main strategies: i) We learn discrete proxy state representations to
handle out-of-distribution states and uncertainties in observation functions. The choice of discrete
state representation is deliberate, as it ensures that our policy maintains its generalizability even in
situations characterized by uncertainty. By converting unseen partial observations into discrete forms
akin to those present in the training data, ORDER could adapt to a variety of uncertain, partially
observable situations. ii) We use an estimated proxy representation to connect partial observations
with learned discrete state representations. This allows our model to understand the state information
even with limited observations, improving accuracy and making the optimization process easier. In
the following subsections, we first give an overview of the training process, then explain how we
learn discrete state representations and discrete proxy representations for partial observations.

Overview. As illustrated in Figure 2, ORDER is a three-phase paradigm for developing a policy
capable of addressing the general POMDP problem, In the first phase, we train a state encoder Φ for
generating discrete state representations and then convert the original dataset D = {(s, a, s′, r)} to a
new dataset Dz = {(z, a, z′, r)}, where z = Φ(s) ∈ Z is the concatenation of representations from
different state factors. We will introduce the details of Φ in the following subsection. In the second
phase, an arbitrary offline RL algorithm is applied to learn an decision head h(a|z) from Dz . This
head could provide an action for a given state representation z. Combined with Φ, the oracle policy
π(a|s), which can be executed on the state space, can be written as π(a|s) = h

(
a|Φ(s)

)
. However,
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Phase 2: Training decision head
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Training

Constructing data

Figure 2: The three-phase training paradigm of ORDER, encompassing (1) training a state encoder
Φ, (2) training a decision head h(a|z), and (3) training a proxy state encoder Φ̃.

the full state information is only available during training. During execution, the overall policy cannot
be directly used, since some state factors will be missed. To address this issue, in the third phase,
we train a proxy state encoder Φ̃ to predict the discrete state representation z from the past history
of partial observations instead of the full state information: z̃t ∼ Φ̃(·|τ0:t−1, ot) . Here, z̃t is the
predicted state representation which is conditioned on the past history of observations. Combining the
decision head h(a|z) with the proxy state encoder Φ̃(·|τ0:t−1, ot), we obtain a proxy policy, which
could address different partially observable scenarios, as π̃(at|τ0:t−1, ot) = h

(
a|Φ̃(·|τ0:t−1, ot))

)
.

We summarize the oracle policy and proxy policy in Figure 3 (c-d).

4.1 Learning Discrete Representations over States

In this subsection, we present a method for learning discrete state representations, drawing inspiration
from the VQ-VAE approach [45]. Recall that in our setting, we consider the state as a collection
of M heterogeneous state factors: s = [s1, s2, · · · , sM ] (refer to Section 3). For each factor, we
define a codebook ei ∈ RK×D, i ∈ {1, 2, · · · ,M}, where K represents the size of the discrete latent
space (i.e., a K-way categorical), and D denotes the dimensionality of each latent embedding vector
eij ∈ RD, j ∈ {1, 2, · · · ,K}. As shown in Figure 3 (a), the factor encoder ϕi takes the state factor si

as input and outputs an embedding êi. The discrete latent variable zi is then calculated by the nearest
neighbor look-up g using the codebook ei as follows:

zi = g(êi, ei) = eij where j = argmin
j

∥êi − eij∥2. (1)

Next, we obtain the discrete compositional representation z by concatenating the discrete representa-
tions of all state factors:

z = Φ(s) = CONCAT(z1, z2, · · · , zM ). (2)

Here, we summarize the entire process of mapping s to z as z = Φ(s). For simplicity, we refer
to Φ as the state encoder, which actually comprises the set of all codebooks and factor encoders:
Φ = {ei, ϕi|i ∈ 1, 2, · · · ,M}. And its architecture is illustrated in Figure 3 (a).

Learning Objective for Φ. The representation learning objective is based on the Vector Quantized
AutoEncoder (VQ-VAE) approach [45] and can be expressed as follows:

L(Φ,Σ) = Es∼D

(∣∣∣Σ(z)− s
∣∣∣2
2
+

1

M

M∑
i

∣∣∣sg(êi)− zi
∣∣∣2
2
+

β

M

M∑
i

∣∣∣êi − sg(zi)
∣∣∣2
2

)
. (3)

Here, Φ represents the set of all codebooks and factor encoders, while Σ denotes the state decoder
and Σ(z) is the state reconstruction. The function sg(·) performs a stop-gradient operation to block
gradients from entering its argument. The hyperparameter β controls the degree to which the code can
change. The first term is the reconstruction loss, which ensures that the encoder captures sufficient
state information. Note that for the nearest lookup operation in Equation (1), there is no actual
gradient, so we use the straight-through estimator [4] to copy gradients from the decoder input zi
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to the encoder output ẑi. The second term is the codebook loss, which only applies to the discrete
latent vector and encourages the chosen zi to be close to the encoder output ẑi. The third term is the
commitment loss, which only applies to the factor encoders and encourages ẑi to remain close to the
selected discrete latent vector zi. We set the value of β to 0.25, as in the original VQ-VAE paper [45].
The training paradigm of state encoder is summarized in Appendix.

4.2 Learning Discrete Proxy Representations over Partial Observations

Masked state encoder 

Φ[89:;] (/%)
/%

5%

7%7%#&

-̃%

Mask token  
![&'()]

1 5 7 2 4

Trajectory encoder
"($#, &#$!, '#$!)

Prediction head set
Ω(,̃!|3!)

6%#&

1 5 7 2 42 5

1
5
7
2
3
4
5
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Factor encoder
4& (0&)

1
Codebook !!
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2 K
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46 (06)

1
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2 K
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0

a b Decision head
ℎ(*|,)

t
Trajectory of partial observations

Proxy policy !"($|&=:"#$, (")

Proxy state encoder
*Φ(-̃|.?:%#&, /%)

Current full observation 

State encoder
Φ(0)

Decision head
ℎ(*|,)

Oracle policy "($|1)

(̃~*+ (- |/$:!"#, 1!)( = +(4)

c d

State encoder 8 (1)
Proxy state encoder    

*8 (9:"|&=:"#$, (")

Figure 3: The architectures of (a) the state encoder Φ(s) and (b) the proxy state encoder
Φ̃(z̃|τ0:t−1, ot). And the constructions of (c) the oracle policy π(a|s) and (d) the proxy policy
π̃(at|τ0:t−1, at).

In this section, we focus on the alignment of partial observations with the learned discrete state
representations derived from full state information. To achieve this, we propose a method that
employs a recurrent architecture and a learnable mask token, allowing the model to handle partial
observability and estimate the underlying state of the environment. By aligning the estimation process
with the learned representations mentioned in the previous subsection, our model can effectively
generate proxy state representations from incomplete observations, enabling efficient decision-
making in partially observable settings. Overall, our aim is to obtain an inference model named
proxy state encoder, denoted as Φ̃(z̃|τ0:t−1, ot), which approximates the true posterior distribution
p(zt|τ0:t−1, ot). Its architecture is illustrated in Figure 3 (b).

4.2.1 Construction of Partial Observable Training Data

Trajectory of full states Trajectory masked by ), Trajectory masked by )-

t t t

Figure 4: Illustration of Both Missing Scenarios. The figure showcases trajectories spanning
various time steps (horizontal axis) and state factors (vertical axis). Colorful grids represent observable
state factors, while grey grids signify masked state factors. The left panel presents the trajectory of
the full states. In contrast, the middle and right panels display trajectories following masking by the
dynamical missing scenario M1 and the factor reduction scenario M2, respectively.

The first step to training Φ̃ is to get a good training dataset. However, one challenge is that we
cannot directly collect partial observations from the environment in the offline RL setting. We only
have the original offline dataset D = {(s, a, s′, r)} and the converted representaion dataset Dz =
{(z, a, z′, r)} that contains full state information. To address this issue, we construct trajectories of
partial observations by utilizing the converted dataset as the training data for Φ̃. And we introduce
partial observability by randomly setting a portion of mask variables mi

t to be 0, simulating real-world
partially observable scenarios. Specifically, we adopt two scenarios :

• Dynamical Missing Scenario M1: For each time step t, we set the mask variable mi
t = 0

at the probability of η, and otherwise at the probability of 1− η. In this case, the missing
factors dynamically change over time with a certain missing ratio.
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• Factor Reduction Scenario M2 : Given a trajectory of data whose time length is T , we
set the mask variables mi

0:T = 0 at the probability of η, and otherwise at the probability of
1 − η. This scenario arises when part of the sensors are removed, and the corresponding
components of the observations are consistently missing over time.

We give examples of trajectories masked by both missing scenarios in Figure 4. And we adopted
both scenarios in our training paradigm by using them iteratively, and denoted the process generating
random masking variables as m0:t ∼ Mη , which is summarized in Appendix.

4.2.2 Learning Discrete Proxy Representations

After generating training data, the next step to training Φ̃ is to aggregate information in partial
observable trajectory. Concretely, given the partial observation o = [si|mi = 1],

x = Φ[mask](o) = CONCAT(x1, x2, · · · , xM ) where xi =

{
zi = gi

(
ϕi(si)

)
if mi = 1 ,

e[mask] if mi = 0 .
(4)

Here, we denote Φ[mask] the masked state encoder, which contains the trained state encoder mentioned
in the previous subsection and an additional learnable mask token e[mask] ∈ R1×D. It directly
converts the observable state factor into the learned discrete factor representation, and represents
the unobservable state factor as the mask token. Next, we use a trajectory encoder ξ to capture the
temporal information in the trajectory of partial observations. Concretely, it takes current observation
representations and previous actions as input and output a continuous vector νt = ξ(xt, at−1, νt−1).

Discrete State Representation Distribution Estimation. Now, we want to predict the cat-
egorical distribution of p(zt|τ0:t−1, ot) . For each factor i, we build a set of prediction head
Ω = {ωi|i = 1, 2, · · · ,M} which takes the trajectory representation νt as input, and output the
categorical probalility over the discrete embeddings of the unobserved factors in the form of softmax
output. And we only estimate the unobservable factor.

During the execution, we predict the proxy state representations as follow:

z̃ = CONCAT(z̃1, z̃2, · · · , z̃M ) where
{
z̃i = zi if mi = 1

z̃i ∼ ωi(·|νt) if mi = 0
(5)

Learning Objective for Φ̃. The overall learning objective for the distribution estimation can be
summarized as minimizing the Cross-Entropy loss between the predicted probability distribution and
the true discrete embedding associated with the input sample:

L(e[mask], ξ,Ω) = − E
t∼U(0,H−1),z0:t,a0:t−1∼Dz,m0:t∼Mη

[ 1

M

M∑
i

(1−mi
t) logω

i(z̃i = zi|νt)
]
. (6)

The training paradigm of proxy state encoder is summarized in Appendix.

5 Experiments

In this section, we present a thorough empirical evaluation of ORDER, highlighting its effectiveness
in improving offline RL algorithms for a variety of partially observable scenarios. We integrate
ORDER with the IQL algorithm [28] and assess its performance across an array of environments in
the D4RL benchmark [12] under different partial observation situations. Our results clearly indicate
that ORDER substantially enhances the generalization performance of policies trained on offline
datasets in diverse partially observable conditions. To ensure the robustness of our findings, we
conduct all experiments with five distinct random seeds, each consisting of ten separate runs. For
detailed information on the architectures and hyperparameters, please refer to Appendix. In the
following subsections, we first evaluate the generalization performance of our model and other
baselines under varying degrees of partial observability. Subsequently, we carry out an empirical
study to analyze the significance of our learned discrete proxy representations.
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Figure 5: Generalization performance of different models under dynamic missing scenarios.

5.1 Evaluating Generalization Performance under Diverse Partial Observation Functions

In this subsection, our primary objective is to assess the generalization performance of policies,
which are trained on offline datasets containing full observations, under various partial observation
scenarios. We evaluate ORDER and other baseline algorithms on gym locomotion tasks and maze
navigation tasks in the D4RL benchmark [12]. In our experimental setup, we treat each dimension of
the observation space as an independent state factor.

Our proposed model employs the IQL algorithm [28] to train the decision head on the representation
space. By combining the trained proxy state encoder with the decision head, our model can make
decisions under partial observations. We denote it as IQL_ORDER and compare it with the following
baselines: i) IQL with the recurrent architecture (IQL_R): We integrate IQL with a state-of-the-art
method for online RL in POMDPs [40] to create this baseline. This method utilizes a specialized
recurrent neural network architecture to tackle partial observability and can be combined with arbitrary
actor-critic algorithms. During training, we employ the same mask strategy (see Section 4.2.1) to
construct partial observable training data for it. Furthernore, to indicate which state factors are
missing, we use 0 to replace with the value of unobserved factors and concatenate the mask variable
mt with the observation vector ot as the extended input. ii) IQL with the strategy of filling zero
(IQL_FZ): This baseline is trained directly using the IQL algorithm with the original offline dataset.
During testing, 0 are used to represent unobservable factors. iii) IQL with the strategy of filling
adjacent elements (IQL_FA): This baseline is also trained directly using the IQL algorithm with the
original offline dataset. During testing, if there is a latest observed value of an unobserved factor, it is
used to represent the current unobservable factors; otherwise, 0 is used.

Generalization Performance under Dynamical Missing Scenarios. We first evaluate policy
performance under dynamically missing scenarios, where certain state factors may intermittently
and randomly be absent over time. We conduct this evaluation across various missing ratios to
gauge the models’ adaptability. An intrinsic characteristic of a policy with strong generalization
ability is its ability to maintain performance as the missing ratio increases. The results are illustrated
in Figure 5. IQL_ORDER outperforms other baselines in most cases, demonstrating its superior
generalization performance over dynamic missing scenarios. On the other hand, the performance
of IQL_ORDER slightly decreases with increasing missing ratios in most cases. However, even
in extreme missing scenarios (missing ratio greater than 70%), it still maintains good performance.
Additionally, IQL_FZ and IQL_FA exhibit similar performance, with IQL_FA slightly outperforming
IQL_FZ. Their performance is worse than IQL_ORDER, indicating that simply padding zeros or the
latest values into unobservable values cannot effectively address this task. Filling adjacent elements
proves to be a better strategy than filling zeros. Finally, IQL_R performs the worst in all cases under
dynamic missing scenarios. However, it is worth noting that IQL_R performs well in settings where
observation functions are single and fixed (see Appendix). This suggests that it struggles to develop
effective policies under diverse and dynamic partial observation settings. One possible reason is that
the diverse partial observation function leads to enhanced non-stationarity of dynamics, making it
challenging to directly train policies on these cases and resulting in highly unstable training.

Generalization Performance under Factor Reduction Scenarios. Next, we evaluate policy
performance under factor reduction scenarios, where in each test episode, some state factors are
randomly removed throughout the entire episode. Notably, we exclude the IQL_FA model in this task
since we cannot obtain the latest values of the missing factors.
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Figure 6: Generalization performance of different models under factor reduction scenarios.

The results are depicted in of Figure 6. IQL_ORDER outperforms other baselines in most cases.
However, when the missing ratio is high, its performance decreases more significantly than in dynamic
changing scenarios. This might be attributed to the increased difficulty of factor reduction scenarios
compared to dynamic changing scenarios. In this setting, models cannot infer the current missing
factors from their latest observed values; instead, they must rely on other observable factors for
inference. Both IQL_FZ and IQL_R continue to perform poorly, indicating that padding zeros is not
an effective strategy and that IQL_R cannot achieve stable training under such challenging scenarios.

5.2 Empirical Analysis of Discrete Proxy Representations

In this subsection, we aim to underscore the significance of discrete proxy representations in our
framework. We conduct experiments on the Hopper-medium-v2 dataset. For these experiments,
we set up two comparison models—Continuous Reps. and Raw States—both of which employ
our three-phase paradigm to develop policies. The Continuous Reps. model uses a Variational
Autoencoder (VAE) in the first phase to generate continuous representations, and in the third phase, it
predicts Gaussian distributions over these continuous representations. On the other hand, the Raw
States model applies an identity function as its state encoder in the first phase and predicts Gaussian
distributions of the missing factors in the third phase.
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Figure 7: Empirical Analysis of discrete proxy representations. (a) T-SNE visualization showing
alignment of discrete, continuous, and raw state representations with original representations under
varying missing ratios in Factor Reduction Scenarios. (b-c) Generalization performance under
dynamic missing and factor reduction scenarios. (d) Performance evaluation with varying numbers
of learned discrete representations.

One challenge we would like to address is the potential misalignment between the partial observability
encountered during testing and the data on which the RL policy is trained. To examine this, we
first sample 10 trajectories generated by different models under various missing ratios in the Factor
Reduction Scenarios. We then use t-SNE [46] to visualize their generated proxy representations (or
states) and the original representations (or states), which can be regarded as the ground truth under full
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observability. The proxy representations are intended to prevent policies from encountering unseen
observations, which could lead to severe performance degradation in the offline RL setting. Therefore,
a suitable proxy representation should align well with the original representation, even when the
missing ratio is high. As shown in Figure 7 (a), we observe that discrete proxy representations
align well with the original representations when the missing ratio is below 70%. In contrast,
continuous proxy representations begin to mismatch with the original representations when the
missing ratio exceeds 10%. Meanwhile, the proxy raw states show a mismatch at a missing ratio
of 10%. Furthermore, Figure 7 (b-c) illustrates the generalization performance under both missing
scenarios. We find a positive correlation between alignment ability and generalization performance:
discrete representations outperform continuous representations, which in turn perform better than
raw states. Additionally, discrete representations maintain good performance when the missing ratio
is below 70%, but decrease when the missing ratio exceeds 70% in the Factor Reduction Scenario,
consistent with the results in Figure 7 (a). These findings emphasize the importance of utilizing
discrete proxy representations in our framework for maintaining a strong alignment between proxy
and original representations under partial observability. This alignment allows the policy to make
better decisions and exhibit improved generalization performance in partially observable settings. We
also evaluate the performance of models with different numbers of learned discrete representations,
as shown in Figure 7 (d). We find that increasing the number of discrete representations can improve
model performance, likely because a higher number of discrete codes enhance the model’s expressive
ability. However, when the number exceeds 40, the performance improvement is marginal, indicating
that a trade-off between the number of discrete codes and model performance can be achieved.

6 Conclusion

We present ORDER, a novel probabilistic offline RL framework that addresses the challenges of partial
observability in real-world scenarios. By leveraging discrete proxy state representations, ORDER
significantly improves robustness and generalization performance across diverse observation functions.
Our three-stage training approach effectively harnesses the power of discrete state representations
and proxy discrete representation alignment. Extensive experiments demonstrate the effectiveness
of ORDER in various partially observable settings. However, some limitations still exist. ORDER
currently focuses on masked partial observation functions, leaving other forms like perturbations
and noises unaddressed. Moreover, its applicability to more complex real-world tasks, such as
autonomous driving, remains to be explored. Despite these limitations, we hope ORDER can pave
the way for the deployment of RL policy against various partial observabilities in the real world.
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