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Abstract

Deep learning practice is increasingly driven by powerful foundation models (FM),
pre-trained at scale and then fine-tuned for specific tasks of interest. A key property
of this workflow is the efficacy of performing sparse or parameter-efficient fine-
tuning, meaning that by updating only a tiny fraction of the whole FM parameters
on a downstream task can lead to surprisingly good performance, often even
superior to a full model update. However, it is not clear what is the optimal and
principled way to select which parameters to update. Although a growing number
of sparse fine-tuning ideas have been proposed, they are mostly not satisfactory,
relying on hand-crafted heuristics or heavy approximation. In this paper we propose
a novel Bayesian sparse fine-tuning algorithm: we place a (sparse) Laplace prior
for each parameter of the FM, with the mean equal to the initial value and the scale
parameter having a hyper-prior that encourages small scale. Roughly speaking, the
posterior means of the scale parameters indicate how important it is to update the
corresponding parameter away from its initial value when solving the downstream
task. Given the sparse prior, most scale parameters are small a posteriori, and
the few large-valued scale parameters identify those FM parameters that crucially
need to be updated away from their initial values. Based on this, we can threshold
the scale parameters to decide which parameters to update or freeze, leading to a
principled sparse fine-tuning strategy. To efficiently infer the posterior distribution
of the scale parameters, we adopt the Langevin MCMC sampler, requiring only two
times the complexity of the vanilla SGD. Tested on popular NLP benchmarks as
well as the VTAB vision tasks, our approach shows significant improvement over
the state-of-the-arts (e.g., 1% point higher than the best SOTA when fine-tuning
RoBERTa for GLUE and SuperGLUE benchmarks).

1 Introduction

Practical deep learning increasingly relies on a workflow of fine-tuning pre-trained foundation models
for the specific task of interest to be solved. The foundation models (FM)s are often pre-trained at
scale using large architectures and self-supervised objectives on large scale unlabelled data, allowing
them to encode a great deal of general prior knowledge. Fine-tuning then specialises these general
purpose FMs to the specific task of interest. The key challenge then becomes how to conduct
fine-tuning so as to balance the conflicting goals of adapting to the task at hand; while retaining
the knowledge obtained during foundational pre-training and avoiding overfitting on the (typically
smaller) downstream training set. This is addressed from a variety of perspectives from careful
learning rate scheduling to regularised fine-tuning [26, 12]. However, the mainstream approach in
practice is largely based on some instantiation of sparse fine-tuning.

Sparse fine-tuning, also known as parameter efficient fine-tuning (PEFT) [23, 43, 14, 24, 22, 15, 16,
18, 45, 13, 10], manages the adaptation/forgetting trade-off by selectively updating a specific subset
of parameters in the FM while keeping others frozen. These approaches also benefit from good
parameter scalability with respect to the number of downstream tasks to solve since each downstream
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task only requires storing a small number of parameters compared to the full FM. A large number of
sparse/PEFT approaches have now been proposed, based on either additive or mask-based principles.
Additive approaches [16, 15] inject a hand-chosen set of additional small modules to be learned,
while keeping the original FM entirely frozen; while mask based approaches [43, 18] manually select
a sparse subset of original FM parameters to consider as learnable – such as the prompt parameters in
transformers [18]. Despite substantial engineering effort, prior sparse fine-tuning work mainly relies
on human intuition and ad-hoc heuristics to specify additive modules and sparse fine-tuning masks.
This raises the question how can we automatically select which parameters to insert or update in a
principled and effective way?

In this paper, we address this issue by proposing an automated sparse fine-tuning method. Our
BayesTune framework automatically discovers the parameters to update, with minimal human
intervention. In contrast to some early concurrent attempts that rely on heuristics and/or heavy
approximations [45, 13, 10], BayesTune is highly principled, underpinned theoretically by Bayesian
marginalization of parameter uncertainty. Specifically, we place a sparse Laplace prior on the FM
parameters, and the posterior inference of the sparse scale parameters reveals which parameters
are most important to update from their initial values. BayesTune is efficiently implemented with
Langevin MCMC, which only requires twice the cost of vanilla SGD. We demonstrate BayesTune
with both RoBERTa transformer on (Super)GLUE benchmark suite and Vision Transformer on VTAB
benchmark suite. BayesTune can achieve a specified sparsity level, and provides a reasonable way
to identify a good sparsity/performance trade-off if a sparsity constraint is not pre-defined. Finally,
we show that BayesTune can work with both mask-based search spaces to identify existing FM
parameters to update by fine-tuning, as well as additive search spaces to identify which new modules
to add where for additive adaptation.

2 Problem Setup and Motivation

First we introduce some key notations as follows:
θ = (Variable) Parameters (i.e., weights and biases) of the FM

θ = (Constant) Parameters (i.e., weights and biases) of the pre-trained FM
D = Training data for the downstream task

We denote by θi (∈ R) the i-th element of θ by considering θ as a whole vector of concatenated
parameters, i.e., θ = [θ1, . . . , θd]

⊤ where d is the number of parameters (so, θi is scalar). Before we
start, we clarify the goal of the sparse fine-tuning formally as follows.

Desiderata. We aim to find θ which performs well on the downstream task, and at the same time
remains close to θ sparsely in L0 sense (i.e., ||θ−θ||0 =

∑d
i=1 I(θi ̸=θi) is small). Roughly speaking,

θi = θi for many i’s. Oftentimes we define and set the sparsity level p ∈ [0, 1], meaning that the
proportion of the FM parameters updatable from the pre-trained values is no greater than (100×p)%
(i.e., ||θ − θ||0≤⌊d · p⌋).
About the sparsity level p. We remark here that the sparsity level p is often given by the users,
for instance, in case we have a strict pre-specified memory constraint (e.g., embedded platforms),
where the allowable extra space for saving the updated new parameters from θ for the downstream
task is only (100 × p)% of the original FM storage. In other situations, it would be ideal if the
sparse fine-tuning algorithm can estimate optimal p that trades off the downstream accuracy against
memory overhead (e.g., find the smallest p that enables a certain level of accuracy guarantee).
Unfortunately most existing sparse fine-tuning methods are not capable of this feature, and rather
resort to time-consuming cross-validation-type search. Although this latter case opens up a new
interesting research problem to pursue further, our proposed approach offers reasonable and principled
criteria for estimating the optimal p (See Sec. 3 for details).

How about layer-wise selection? We also note that our approach is not tied to the layer-wise
parameter treatment, namely selecting a few layers to be updated with the rest layers frozen, which is
a popular strategy adopted in many sparse fine-tuning methods. The layer-wise treatment is based
on the conjecture that whether the parameters important to the downstream task are deviated from
the pre-trained ones or not, is determined in a layer-wise all-or-nothing manner. Although this is a
reasonable assumption, our approach does not rely on the assumption, and is able to discover optimal
sparse updates automatically by inspecting individual parameters over all layers.

2



Back to our notations, the downstream task must be associated with the relevant loss function l(θ; z)
with z ∈ D for fine-tuning. Here the task could be either supervised (i.e., z = (x, y) for a pair of input
x and its target label y) or unsupervised (z = x with input x alone). In our model the loss function
is turned into a likelihood model by the conventional trick, p(z|θ) ∝ exp(−l(θ; z)). Although our
approach can deal with both supervised and unsupervised cases seamlessly, we predominantly focus
on the supervised classfication case, that is, we define the data likelihood p(y|x, θ) ∝ exp(−l(θ;x, y))
for (x, y) ∈ D, where l(θ;x, y) is typically the cross-entropy loss.

3 (Proposed) Bayesian Sparse Fine-tuning Model

We propose a (hierarchical) Bayesian model to tackle the downstream prediction task of interest.
Specifically, we treat the FM parameters θ as random variables and the downstream training data D
as evidence. To encourage parameter sparsity, namely most parameters θi remain at the pre-trained
θi, we impose the Laplace prior p(θ|λ),

p(θ|λ) =
∏d

i=1
p(θi|λi) =

∏d

i=1
L(θi; θi, λi) =

∏d

i=1

1

2λi
exp(−|θi − θi|/λi) (1)

where L(x;µ, b)= 1
2b exp(−|x−µ|/b) is the (univariate) Laplace distribution with mean µ and scale

b. Thus we fix the prior means as the pre-trained values θ, and only model the scale parameters
which are newly introduced random variates denoted by λ (> 0). Note that every single parameter θi
(scalar) is associated with its own prior scale λi (thus d scale variables in total). Another thing to
note is that the final layer (also known as the readout head) of the FM is often completely replaced by
a random one for the downstream task. Since this final layer needs to be learned from the scratch
with the downstream data, we do not place the Laplace prior on the parameters of the readout head.

Through the scale variables λ of the Laplace distributions, we can express our (prior) preference to the
degree of parameter deviation from the pre-trained values: small λi leads to a peaky Laplace around
its mean, penalizing even small deviation of θi from θi; on the other hand, large λi makes it flat, being
less sensitive to deviation, allowing θi to take values freely away from θi. By carefully choosing λi

values, we can balance effectively between overfitting (too much deviation) and underfitting (too
little deviation). Instead of choosing λi’s manually, our idea is to learn them automatically from data,
through the principled Bayesian inference: given the evidence (i.e., the downstream data D) we infer
the most probable values of λi’s that best explain the evidence, while being small enough to lead to
sparse updates overall.

To this end, we regard λ as random variables and impose hyper-prior on λ (hierarchical Bayes). As
we prefer sparse updates in the end, the hyper-prior needs to put higher mass/density on small λ
values. We adopt the Gamma distribution for this purpose, more specifically,

p(λ|α, β) =
∏d

i=1
p(λi|α, β) =

∏d

i=1
G(λi;α, β) (2)

where G(x;α, β) ∝ xα−1 exp(−βx) for α, β > 0. Note that although we can introduce individual
λi-specific parameters (i.e., (αi, βi)), we instead use a single (α, β) shared over all λi’s for simplicity.
Since the mode of Gamma is 0 if α < 1 and the variance is α/β2, we use small α < 1 and large β to
enforce a priori small λ values. In our experiments we choose1 (α=0.01, β=100) for both the NLP
and VTAB vision benchmarks.

Our full model can be written as the following joint distribution:

p(D, θ, λ|α, β) =

=
∏

i G(λi;α,β)︷ ︸︸ ︷
p(λ|α, β) × p(θ|λ)︸ ︷︷ ︸

=
∏

i L(θi;θi,λi)

×

=
∏

(x,y)∈D p(y|x,θ)︷ ︸︸ ︷
p(D|θ) (3)

With this model, our ultimate goal is to infer the posterior distribution of the network weights and
scales p(θ, λ|D), namely

p(θ, λ|D,α, β) =
p(D, θ, λ|α, β)∫∫

p(D, θ, λ|α, β) dθdλ
(4)

1We also tested with models with further hierarchy by placing priors on α and β, however, there was no
significant advantage over the manually chosen ones.

3



We adopt the stochastic-gradient MCMC approach [40, 7, 4] to obtain samples from the posterior,
especially the Langevin dynamic method (SGLD) [40], which amounts to running the following
recurrence to collect posterior samples (after some burn-in steps):

[θ, λ] ← [θ, λ] +
η

2
∇
(
log p(λ|α, β) + log p(θ|λ) + N̂

|B|
log p(B|θ)

)
+ γϵ
√
η (5)

where B (⊂D) is a minibatch, η is small step size, and ϵ∼N (0, I). In standard SGLD, N̂ = |D|
(training data size) and γ = 1. However, we allow them to take values different from these default
ones: N̂ is the effective training data size to account for data augmentation2 (e.g., if there are 5
different augmentation strategies and each allows 10 different variations, the effective data size can
be N̂ =105×|D|); the other hyperparameter γ can be used to discount the noise effect3, which is
validated in the range 10−4:0 in our experiments. See Sec. 5.1 for more details. Note that in the
parentheses subject to derivatives, the first two terms admit closed-form gradients while the gradient
of the last term can be computed by the conventional SGD backprop. Thus each step in (5) is efficient,
requiring at most only two times the complexity of the vanilla SGD step.

After a burn-in period, we can maintain those samples (θ, λ) to approximate p(θ, λ|D). For instance,
the running average of the λ samples, denoted by λ̂, is a good estimate of the mean of the marginal
posterior p(λ|D). Since we imposed the hyper-prior that encourages small λ, ideally the majority
of the scale parameters tend to remain small a posteriori, whereas there will be only a few large-
valued λ̂i’s corresponding to those FM parameters that crucially need to be updated away from their
pre-trained values to explain the data D. Roughly speaking, λ̂is indicates how important it is for
the corresponding FM parameters θis to be updated away from their pre-trained values θi on the
downstream data. Importantly, this λ̂ can be used in the next stage (described in the next paragraph)
to decide which network weights θi need to be frozen (those with small λ̂is) and which need to be
updated from the pre-trained (those with large λ̂is).

Thresholding scales and the second stage. Although we adopted the sparsity-inducing Laplace
prior, it is not necessarily the case that the majority of posterior θ values are sharply staying at the
pre-trained values θ. We may need some thresholding: If p is given, then we can directly take the
top (100× p)% of them. Otherwise we examine for cut-off point – Those i’s with small posterior
means λ̂i are considered as frozen weights (i.e., θi=θi), while those i’s with large λ̂is can be treated
as updatable parameters. In practice, we sort and plot the λ̂is to eyeball and find a reasonable cut-off
point. One can also use this λ̂-plot to decide a reasonable sparsity level p for good accuracy-memory
trade-off (See Fig. 1 for illustration). Once we have decided which parameters are updated and frozen,
we can run vanilla SGD to train the updatable parameters of the FM, which forms our second stage.

Our overall algorithmm dubbed BayesTune, is summarized as pseudocodes in Alg. 1.

4 Related Work

4.1 Comparison to Existing Sparse Fine-tuning Methods

The recent sparse/PEFT fine-tuning approaches broadly fall into the following three categories: 1)
Heuristic search criteria, 2) Attaching small extra modules to the FM (e.g., adapter-based [15]), and
3) Directly formulating the sparse fine-tuning problem as an optimization problem.

1) Heuristic search criteria.
• Random selection – Randomly select (100× p)% parameters to update.

2Similar discussions of how to quantify dataset size when using Data Augmentation as well as data size
inflation, were made in several prior Bayesian deep learning studies, for instance, [33, 34, 17].

3The rationale for noise discounting is as follows. Purely finding the posterior mean (i.e., SGLD without
noise discount) risks performing poorly if the posterior is truly multi-modal, because it may converge to a low
probability parameter. Also, purely searching for the posterior mode (i.e., MAP instead of SGLD) may be
sensitive to data noise, because no stochasticity is taken into account properly. So for combining principle and
practice it is reasonable to prefer a discounted noise procedure that balances between identifying a particular
mode, but gets a mean estimate in the vicinity of that mode.
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Figure 1: (Left) The λ̂-plot in our BayesTune after stage-1 training. This is with EfficientNet-B0
on the Oxford-Pets dataset. After sorting the posterior mean λ̂i values, we plot several sparsity
levels p and the corresponding λ̂ values. To decide a reasonable sparsity level p for good accuracy-
memory trade-off, we illustrate two candidates: Cand-1 with more sparse updates (p = 0.05) but
many parameters with large λ̂i’s (e.g., 0.1∼0.3) are forced frozen; Cand-2 with less sparse updates
(p = 0.1) but ensures that those fixed parameters have indeed small λ̂i’s (e.g., < 0.1). (Right) Test
errors in stage-2 at different cutoff points in our BayesTune (red curve). Those two candidate points
(Cand-1 and Cand-2) are highlighted and superimposed, consistent with the left figure. The more
sparse Cand-1 has slightly higher error than the full-update, while less sparse Cand-2 achives the
best test performance among all other choices. It exhibits nice accuracy-memory trade-off. Further
increasing p (being far more dense) incurs overfitting.

Algorithm 1 BayesTune (two-stage) sparse fine-tuning algorithm.
Input: Pre-trained model θ, downstream data D.
Initialise: θ = θ, λi = 0.0001 for all i.
I. Stage-1 (Select (100× p)% parameters to update)

For t = 0, 1, 2, . . . , Tmax:
0. Sample a minibatch B = {(x, y)} from D.
1. Run the SGLD step (5) to get a sample (θ, λ).
2. If t > burn-in, accumulate λ̂← (1− ζ)λ̂+ ζλ where ζ = 1/(#-accumulated-samples+1).

End-For
(If p not given) Decide the cut-off point λth and the corresponding sparsity level p using the λ̂-plot.
Select those i’s with λ̂i > λth as updatable parameters.

II. Stage-2 (Update the selected parameters)
Do vanilla SGD with data D while updating only those updatable parameters from Stage-1.

• MixOut [23] – After training the FM model with full update, a random (100× (1− p))%
parameters are reset to the pre-trained values.

• BitFit [43] – Update only the bias parameters with the rest frozen.

• MagPruning [14, 24, 22] – Take the largest (100× p)% in magnitude as updatable parame-
ters.

Compared to our proposed “BayesTune”, these heuristic search methods are less principled, unable
to explain why the resulting models should perform well on the downstream tasks

2) Approaches that attach small extra modules to FM. They do not search for a subset of FM
parameters to update, but attach some small extra modules to the FM (e.g., insert a small MLP module
after each layer). All of the FM parameters are frozen, and they only train those attached modules.
So it can be seen as sparse fine-tuning considering that the size of the new modules is relatively small
compared to that of the FM.

• Adapter [15] – A small bottleneck MLP is inserted at the end of each layer of the FM.

• LoRA [16] – A low-rank projection weight matrix is inserted before the query/key/value
embeddings in each layer.

• Prompt learning (VPT) [18] – A set of learnable tokens is inserted in the input of a
Transformer attention block in each layer.
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• Neural Prompt Search [45] – A NAS-based approach (e.g., learning a supernet followed
by evolutionary search for a downstream tasks specific subnet) that aims to search for the
optimal combination of the above three methods.

Compared to our “BayesTune”, these adapter-based models involve the difficult problem of where to
place the extra modules and what would be the optimal module dimensions/sizes, which is essentially
a very difficult combinatorial search problem, often requiring heuristic search methods like the
evolutionary search.

3) Directly optimizing the sparse optimization problem. One can formulate the sparse fine-tuning
as an optimization problem, for instance,

min
θ

E(x,y)∼D[l(θ;x, y)] s.t. ||θ − θ||0 ≤ ⌊d · p⌋. (6)

Unfortunately this problem becomes a discrete optimization due to the L0 cardinality constraints,
thus difficult to solve in general. Some recent approaches aimed to relax the problem to continuous
optimization, but relying on heavy approximation.

• DiffPruning [13] – They relax the discrete problem into a continuous one by introducing
Bernoulli variables indicating update or freeze, while the reparametrized sampling is further
approximated by the Gumbel-softmax treatment.

• ChildPruning [41, 31] – They iteratively train the full model parameters and calculate the
projected mask to find the child network.

• Second-order approximation method (SAM) [10] – They adopt several steps of second-
order Taylor approximation of the loss function, leading to a very succinct parameter
selection strategy: after computing the gradients of θ on the data D, take the (100× p)%
parameters with the largest gradient magnitudes.

Compared to our “BayesTune”, these direct optimization strategies rely on strong assumptions and
heavy approximation to relax the difficult discrete optimization.

4.2 Relation to Existing (Hierarchical) Bayesian Sparse Model Learning

(Hierarchical) Bayesian models are well known in statistical machine learning, and there were some
prior works that adopt the Bayesian approaches for sparse deep learning [21, 32, 35, 29]. However,
as far as we know, our approach has several key differences from these previous works.

First, most prior works are all about sparse training, instead of sparse fine-tuning. Thus they focus
on zeroing out many parameters, instead of retaining the pre-trained weights. To the best of our
knowledge, our BayesTune is the first to tackle the sparse fine-tuning at the Foundation Model scale
using the hierarchical Bayesian framework.

More importantly, the neural networks used in those previous studies are rather small/toy scale
(mostly focusing on MLPs and LeNet-sized architectures up to ResNet-18 at the largest) while our
method can obtain the state-of-the-art results on large-scale foundation models (ViT, RoBERTa). For
example the largest model considered in those prior works, ResNet-18 contains ∼ 11M parameters
vs. RoBERTa’s ∼ 123M parameters, a 10× scale difference. The reason is that they adopt methods
that entail extra memory cost like variational inference (VI), which impedes applicability to big
networks. We have also done some experiments that compare the computational resources required
by VI and SGLD: On ViT networks, the training time is increased by 1.7 times if we replace SGLD
by VI; the GPU memory footprint is increased by 2.1 times.

5 Experiments

We test our BayesTune on two popular benchmark datasets from NLP and vision for the downstream
fine-tuning tasks: (language) fine-tuning the pre-trained RoBERTa-base model [28] on the GLUE [37]
and SuperGLUE [38] tasks; (vision) fine-tuning the ImageNet-22K [6] pre-trained ViT-B/16 model [9]
on VTAB-1K [44] image classification/prediction tasks. The details of the experimental settings are
discussed in the subsequent sections, Sec. 5.2 and Sec. 5.3.

5.1 Implementation of BayesTune

For the SGLD sampling in Stage-1 of our BayesTune algorithm (re: Alg. 1), we have three different
training regimes: the warm-up phase that only runs vanilla SGD steps without considering the scale
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Method CoLA STS-B MRPC RTE CB COPA WSC AVG

Full update 58.361.74 89.800.52 89.550.81[2] 76.032.14 88.93
2.37[3]

[3]
67.704.41 53.106.18 74.782.60

Random 58.351.05[3] 89.81
0.110.110.11[1] 88.730.80 72.713.23 90.543.39[2] 68.802.64 52.885.97 74.552.46

MixOut 58.661.96 90.150.17[4] 88.69
0.60[4] 77.55

1.64[2]

[2]
86.514.13 71.304.84 52.986.78 75.122.88[4]

Bitfit 56.671.45 90.12
0.14[3] 87.35

0.58[3] 72.742.47 86.963.20 71.203.79 55.105.39 74.312.43

MagPruning 56.572.47 90.30
0.14[3]

[3]
88.090.79 73.53

1.84[4] 81.253.50 71.50
2.46[2]

[4]
55.67

2.73[2] 73.85
1.99[3]

Adapter 62.1162.1162.11
1.22[4]

[1]
90.05

0.13[2] 89.29
0.60[4]

[4]
76.932.05[4] 87.324.62 69.50

2.54[4] 57.025.27[3] 76.032.35[3]

LoRA 60.881.48[3] 87.190.51 89.530.62[3] 76.971.92[3] 84.643.76 69.702.83 56.844.52[4] 75.11
2.24[4]

DiffPruning 58.531.49 89.590.34 78.796.09 69.937.87 86.25
2.65[4] 72.102.91[3] 53.37

3.60[4] 72.653.57

ChildPruning 60.001.29 89.971.51 87.193.86 75.764.38 86.613.22 69.404.00 55.593.81 74.933.15

SAM 60.89
0.96[2]

[2]
90.5990.5990.59

0.14[3]

[1]
88.84

0.490.490.49[1] 76.79
1.72[3] 88.93

1.75[2]

[3]
74.30

2.452.452.45[1]

[2]
59.52

3.08[3]

[2]
77.12

1.51[2]

[2]

BayesTuneBayesTuneBayesTune 60.85
0.470.470.47[1]

[4]
90.40

0.14[3]

[2]
90.6190.6190.61

0.56[2]

[1]
77.8777.8777.87

0.640.640.64[1]

[1]
91.2591.2591.25

1.251.251.25[1]

[1]
75.0075.0075.00

2.49[3]

[1]
60.8760.8760.87

2.622.622.62[1]

[1]
78.1278.1278.12

1.171.171.17[1]

[1]

Table 1: Results on NLP benchmarks. For each dataset/task (column), the average accuracy and the
standard deviation (in superscript) shown over 10 runs with different random seeds are reported. The
ranks (up to the fourth) among the competing methods are also shown in the brackets and in red. The
figures of the competing methods are excerpted from [10].

variables λ and random noise; followed by the burn-in phase where the SGLD steps are performed as
(5) but no (θ,λ) samples are collected; followed by the normal phase in which we do collect samples.
Following the conventional practice, we also perform the thinning steps [27] (i.e., collecting samples
at a certain frequency) to mitigate undesired temporal correlation effects.

Another important implementation tip is the use of reweighed cost terms in Langevin dynamics – As
shown in (5), the cost function is involved with the training data size N = |D|. Even though N is
known, the data augmentation would considerably increase the effective data size by several orders
of magnitudes (e.g., if there are 5 different augmentation strategies and each allows 10 different
variations, the effective data size can be 105×N ). To account for it, we regard the effective data
size as a hyperparameter denoted by N̂ that can be chosen from validation4. Replacing |D| by N̂

and taking it out of the parentheses in (5), we have the gradient (normalized by N̂ ) multiplied by
the step size (η/2)N̂ . First we choose η to match the learning rate in the neural net optimizer (e.g.,
Adam5 [20]), that is, η = lr × 2/N̂ . Accordingly the noise term becomes ϵ · (2/(N̂ × lr))1/2. We
also find it effective oftentimes to discount the noise effect: we introduce the noise discount factor γ
(another hyperparameter) by which the noise term is multiplied. We validate γ in the range 10−4:0

(e.g., γ = 1 corresponds to the default no-discount case).

Throughout all experiments we use the Gamma prior parameters (α = 0.01, β = 100), the scale
variables λi’s are all initialized to 0.0001, and the learning rate for λ is 0.01 without scheduling. Other
task-specific implementation details can be found in the subsequent sections. The Python/PyTorch
code to reproduce the results is available at https: // github. com/ SamsungLabs/ BayesTune 6.

5.2 NLP Benchmarks

We consider fine-tuning the pre-trained RoBERTa-base model [28], the large-scale foundation
language model comprised of 125 million parameters, on several downstream tasks in GLUE [37] and
SuperGLUE [38] benchmarks. We follow the experimental settings from [10], in which the original
development sets serve as test sets, and the validation sets are formed by holding out random 10% of

4For instance, in the VTAB-1K, although N = 1000 or 800, we let N̂ have a range 107:12.
5We used the Adam optimiser for updating the model parameters, thus there may exist some internal gradient

adaptation and momentum effect under the hood in our SGLD steps. This effect may be related to that of the
adaptive drift and momentum in SGLD that were analysed in some previous works, e.g., [19]. However, we
believe that our SGLD update scheme with Adam would not result in significantly different solution compared
to the original SGLD formulation at least in practice.

6Alternatively, https://github.com/minyoungkim21/BayesTune
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Figure 2: (NLP benchmarks) Posterior mean λ̂ vs. sparsity level p. The default sparsity level
p = 0.005 is depicted as red dotted vertical lines. For each dataset, we plot the original p ∈ [0, 1]
range (lower-left), which is magnified for the smaller range p ∈ [0, 0.1] (upper-right).

the training sets. Instead of having a fixed number of training epochs, the development sets are used
for an early stopping with the no-improvement tolerance of 40 epochs. We implement our BayesTune
on top of the codebase of [10] which is based on the jiant framework (https://jiant.info/).
Similarly as [10], we consider 7 tasks: Corpus of Linguistic Acceptability (CoLA) [39], Semantic
Textual Similarity Benchmark (STS-B) [2], Microsoft Research Paraphrase Corpus (MRPC) [8],
Recognizing Textual Entailment (RTE) [5, 11, 1], Commitment Bank (CB) [30], Choice of Plausible
Alternatives (COPA) [36], and Winograd Schema Challenge (WSC) [25].

Our BayesTune is compared against strong baselines and the state-of-the-arts, including: Random,
Mixout [23], BitFit [43], MagPruning [24, 22], Adapter [15], LoRA [16], DiffPruning, Child-
Pruning [41, 31], and SAM [10], as discussed in Sec. 4. For all methods, we use the sparsity level
p = 0.005 as suggested in [13]. For the competing methods, we follow the hyperparameter settings
from [10]; In BayeTune, we use 10K warm-up steps, 2K burn-in steps, and thinning at every 100
steps for all tasks. The batch size is 16, and the learning rate for the model parameters is 10−4 for
Stage-1 and 10−3 for Stage-2. For the (dataset-dependent) evaluation metrics, we adopt the protocols
in [37, 38]. We run all models on a single NVIDIA V100 GPU with 32GB memory. The results are
summarized in Table 1 where means and standard deviations over 10 random seeds are reported.

First, it is quite surprising that the random selection strategies (Random and Mixout) are as effective
as many sparse fine-tuning methods. This may be attributed to the massive over-parametrization
of the deep foundation model. However, more careful and sophisticated selection is important as
those three methods, our BayesTune, SAM, and Adapter, outperform the random strategies by large
margin. Overall our BayesTune performs the best among the competing methods, about 1% point
higher on average than the runner-up SAM [10]. We achieve the first place on 5 out of 7 tasks, and
also attain the smallest standard deviations, implying that the resulting sparse fine-tuned models are
more robust and reliable. This result signifies the effectiveness of our sparse Laplace scale-based
parameter selection strategy that is underpinned by the principled Bayesian posterior inference with
efficient7 stochastic gradient Langevin sampling.

In Fig. 2, we also show the posterior mean scale λ̂ vs. sparsity level p. The cut-off threshold points
corresponding to the sparsity level p=0.005 are around λth ∈ [0.25, 0.30] for all tasks except for
MRPC. This cut-off scale range might be considered as reasonable choice as most of the parameters
would have Laplace scales smaller than this range, exhibiting no pronounced indication of crucial
deviation from the pre-trained values, although this is only conjecture based on our empirical results.
Further rigorous theoretical analysis on the relation between the scale threshold and the generalization
performance is beyond the scope of the current paper, and is left as future work.

5.3 Vision Benchmarks

Next we test our BayesTune on the VTAB-1K [44], an image classification/prediction task adaptation
benchmark suite comprised of 19 different image datasets. It contains images/tasks that exhibit

7The SGLD steps (5) require at most only two times the complexity of the vanilla SGD steps.
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Full update 85.8 68.9 87.7 64.3 87.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
Linear 0.04 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2

VPT [18] 0.64 78.878.878.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.196.196.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.932.932.9 37.8 4.16 3
Adapter [15] 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.354.354.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 3.68 1
LoRA [16] 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.984.984.9 95.3 84.484.484.4 73.6 82.982.982.9 69.269.269.2 49.8 78.5 75.7 47.1 31.0 44.0 2.68 4
NOAH [45] 0.43 69.6 92.792.792.7 70.270.270.2 99.199.199.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.949.949.9 81.7 81.8 48.3 32.8 44.244.244.2 1.951.951.95 5

BayesTuneBayesTuneBayesTune Avg 68.9 92.6 69.5 99.199.199.1 90.890.890.8 88.188.188.1 50.0 84.6 95.8 82.8 76.076.076.0 82.6 67.4 49.6 82.382.382.3 81.981.981.9 49.949.949.9 22.6 39.3 2.37 777
0.37 (.07) (.37) (.04) (.37) (.15) (.67) (.04) (.60) (.60) (.37) (.07) (.30) (.22) (.52) (.60) (.60) (.30) (.52) (.67)

Table 2: VTAB-1K results. The accuracies at the optimal sparsity levels are reported for our
BayesTune. For BayesTune, the optimal number of the updated parameters is dataset-dependent, and
these optimal numbers are depicted in the parentheses. The figures of the competing methods are
exerpted from [18, 15, 16, 45].

highly diverse aspects/conditions such as: different image acquisition (by standard cameras or
special-purpose ones for remote sensing or medical imaging), different objects/concepts (generic,
fine-grained, or abstract), and tasks (object recognition, counting, or pose estimation). Each dataset
in VTAB-1K consists of 1K training examples, and we use the splits officially provided (train 80%
and validation 20%).

We aim to fine-tune the ImageNet-22K [6] pre-trained ViT-B/16 model [9] on each dataset. We imple-
ment our BayesTune using the codebase from [45] while employing most of their hyperparameters
without changes (e.g., the number of training epochs 100 and batch size 64). In our BayesTune, we
use 50 warm-up epochs, 10 burn-in epochs, and thinning at every 5 batch steps for all datasets. The
learning rate for the model parameters is 10−3 and weight decay 10−3 for both stages.

We first attempted the proposed method with our original setting, i.e., place the λ variables to the
backbone (ViT) parameters, and let the Bayesian inference figure out the most critical parameters
to update, namely those with large λi’s. Unfortunately the result was significantly worse than the
adapter-based methods: VPT [18], Adapter [15], LoRA [16], and NOAH [45], for most datasets. As
reported in several works in the literature, adapter-based models perform significantly better than the
full backbone update for this benchmark (e.g., Table 1 in [45]). Along this line, we conjecture that
this trend also holds for other sparse fine-tuning methods, namely the superiority of the adapter-based
approaches to sparse backbone update strategies, particularly for this VTAB benchmark.

To fairly take the advantage of extra attachable modules as the adapter-based approaches, we attach
extra modules to ViT for all three popular strategies: visual prompts in VPT [18], adapter modules
in Adapter [15], and low-rank matrices in LoRA [16]. This design idea is similar to (and motivated
from) the neural prompt search in NOAH [45], but they formed a grid search problem to determine
which layers to attach the adapter modules and how many module dimensions to attach – solved
by the neural architecture search (NAS) technique with the super-net training, specifically adopting
Autoformer [3], followed by running Evolutionary algorithms for optimal architecture search.

On the other hand, we add 10-dim full parameters for each module/layer, and they are all initialized
to 0. We let the posterior inference in our BayesTune automatically figure out which of these extra
modules parameters to be updated away from 0 and which to be frozen at 0. We used the zero-
initialization because having all-0 extra modules can be considered to be identical to the original
pre-trained ViT without extra modules, thus serving as pre-trained extra modules. We only place
λ variables to the extra modules (ViT parameters frozen)8. In summary, our setup is similar to
NOAH [45] in that we take all three adapter strategies into account, but the main difference is: NOAH
does a difficult super-net training and Evolutionary search to determine the optimal module-wise
dimensions. On the other hand we do sparse selection of the module parameters to be updated from 0
across all 10-dim full modules.

8We initially attempted to place λ to ViT parameters as well, but unfortunately it did not perform well. The
reason being probably is that most of the selected parameters for update come from the ViT backbone, essentially
reducing to the original sparse backbone update strategy that failed.
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(a) Sparse update is better: Sun397, CIFAR100, DTD, and Retinopathy

(b) Dense update is better: DMLab, Camelyon, SVHN, and dSpr-Loc

(c) Optimal in-between: Clevr-Dist, sNORB-Ele, KITTI, and dSpr-Ori

(d) Sparsity Independent: Flower-102, EuroSAT, Caltech101, and Pets

Figure 3: VTAB datasets grouped by the sparse/dense adapter update effects. E.g., the datasets in
group-(a) exhibit higher accuracy when the adapter modules are updated more sparsely than densely.
In groub-(c), neither extreme sparse nor dense updates are optimal, but the sparsity levels in between
perform the best. In group-(d), we have no clear correlation between update sparsity and test accuracy.
Individual plots show test accuracies vs. sparsity levels, where the rightmost plot in each group shows
the mean and 95% confidence interval of the members within the group in normalized accuracy scale.

The results are summarized in Table 2. We report the performance of the best sparsity levels found
from p ∈ {0.05, 0.1, 0.2, . . . , 0.9, 1.0}. Although the final accuracies of our BayesTune are not
always the best, we achieve Rank 1 on 7 out of 19 datasets and the second place on average over all
datasets. The performance of BayesTune is comparable to other adapter-based methods, within the
same range as those. That is, our main message is that the adapter-based enhanced architecture fine-
tuning can be done almost comparably well by the proposed Bayesian method, instead of relying on
the heuristic search such as the Evolutionary Search or costly human expert design effort. Compared
to NOAH, our BayesTune results in more sparse adapter updates on average (0.38M vs. 0.43M). In
Fig. 3 we also visualize the clustering of VTAB-1K datasets according to the sparse/dense adapter
update effects: we assign each dataset into either of sparse, dense, and in-between clusters according
to the optimal sparse update level p: small, large, medium, respectively. Such a grouping of the
VTAB datasets based on fine-tuning sparsity characteristics has not been explored in the community,
and we can easily obtain this finding using our BayesTune.

6 Conclusion

We introduced BayesTune, a framework for automated fine-tuning that provides a principled yet
efficient approach to identifying which parameters to update in sparse fine-tuning by posterior
inference of parameter-wise scale in a hierarchical Bayesian model. We demonstrated BayesTune to
be effective for parameter efficient fine-tuning in both NLP and vision tasks, using both mask-based
and additive search spaces.
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Appendix
A Chosen Hyperparameters

We grid-search hyperparameters on validation, where the two key hyperparameters are: the effective
training data size N̂ and the noise discount factor γ (re: Sec. 5.1). The candidate sets are formed
as: N̂ ∈ {108, 109, · · · , 1012}, γ ∈ {10−4, 10−2, 100} for NLP, and N̂ ∈ {106, 107, · · · , 1012},
γ ∈ {10−4, 10−3, · · · , 100} for VTAB. The chosen hyperparameters are as follows (N̂ , γ): (NLP) cola
= (11, 10−4), stsb = (12, 10−4), mrpc = (12, 100), rte = (8, 10−4), cb = (10, 10−4), copa = (8, 10−2),
wsc = (10, 10−4); (VTAB) cifar100 = (7, 10−1), caltech101 = (9, 10−2), dtd = (12, 100), flower102
= (12, 10−2), pets = (12, 100), svhn = (10, 100), sun397 = (7, 10−1), camelyon = (6, 100), eu-
rosat = (7, 10−1), resisc45 = (12, 10−2), retinopathy = (7, 10−2), clevr-count = (7, 10−3), clevr-dist
= (7, 10−3), dmlab = (8, 100), kitti = (7, 100), dsprite-loc = (12, 10−4), dsprite-ori = (12, 10−3), snorb-
azim = (7, 10−2), snorb-ele = (6, 10−1).

B More Analysis

(NLP) Test accuracies at other sparsity levels. Although p = 0.005 is recognized as the optimal sparsity level
overall for the GLUE and SuperGLUE tasks, we evaluate the test performance of our BayesTune for different
sparsity levels: p ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. The average test accuracies are shown in Fig. 4. We see that
overall there is less significant change in test performance so long as the sparsity level p is small enough, and the
resulting sparse updates selected by our BayesTune lead to equally good performance as those with the default
value. However, increasing p further (e.g., p = 0.5) considerably degrades the performance, which signifies the
importance of sparse fine-tuning to avoid potential overfitting.

(VTAB) Scale posterior mean λ̂ vs. sparsity level p. We visualize the plots that relate the sorted scale posterior
means λ̂ to the sparsity levels p in Fig. 5. The plots are aligned with the the test accuracy plots analyzed in the
main paper. As the plots are grouped along the optimal sparsity values, we see certain trends: for the sparse
group (sun397 and cifar100), the scale λ̂ values are overall small scaled (in the range of [0, 0.2]) with sharp
drops at small λ̂; for the dense group: (camelyon and dmlab), λ̂ scale is even larger (in the range of [0, 0.5])
with relatively smooth decaying at small values; lastly for the in-between group (clever-dist, dspr-ori,
kitti, and snorb-ele), we have much narrower λ̂ ranges in between 0 and 0.1 except for kitti.

C Some Ablation Study

MAP vs. SGLD. The Maximum-A-Posterior (MAP) aims to find a mode of the posterior distribution p(λ|D),
and might be considered as an alternative solution to our SGLD posterior samples. In particular, MAP might be
attained by turning off the noise term in (5), that is, by setting γ = 0. However, MAP can be more sensitive to
data noise than the mean of the posterior. We have some empirical comparison between MAP and SGLD on the
NLP tasks in Table 3, and it shows that this distinction does lead to empirical benefit. Another benefit of SGLD

Figure 4: (NLP benchmarks) Test accuracies at sparsity levels other than the default p = 0.005. We
evaluate the BayesTune sparse update models with p ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}, where the
default ones p = 0.005 are shown as red square markers.
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(a) Sparse group (cifar100 and sun397) (b) Dense group (camelyon and dmlab)

(c) In-between group (clever-dist, dspr-ori, kitti, and snorb-ele)

Figure 5: (VTAB benchmarks) The plots of the sorted scale posterior means λ̂ vs. sparsity levels p,
each of which is aligned with the the corresponding test accuracy plot. The plots are grouped along
the optimal sparsity values where each group exhibits similar trends.

Method CoLA STS-B MRPC RTE CB COPA WSC AVG

MAP 58.55 90.13 90.54 76.72 86.71 71.09 60.34 76.30

SGLD (Ours) 60.85 90.40 90.61 77.87 91.25 75.00 60.87 78.12

Table 3: MAP vs. SGLD results on NLP benchmarks. Averaged over 10 random runs.

is that we can also exploit the variance of the posterior in parameter selection (e.g., for two parameters with
similar posterior mean values, we prefer to select the one with smaller posterior variance). In future algorithms,
we can also exploit this idea of variance-based weight pruning.

Comparison to L1 regulariser. The recent L1-regularised sparse model learning (L1-SP) [42] used the L1
regularisation term to encourage the updated weights to stay close to the original pre-trained weights. Thus this
model might have a similar effect as our BayesTune. The L1-SP can provide an alternative regularisation-based
approach to fine-tuning, however, is designed without the principled Bayesian modeling solution, which is the
main difference from the proposed BayesTune. We have conducted some extra comparison experiments between
the two approaches. Note that L1-SP does not necessarily lead to exactly sparse solutions. Therefore we offer a
two-stage extension of L1-SP. in the first stage, we run the L1-SP training, and in the second stage those weights
to be updated are selected based on the relative L1 distances from the pre-trained weights (i,e., taking those

Method CoLA STS-B MRPC RTE CB COPA WSC AVG

L1-SP (stage I) 50.50 88.07 84.54 50.00 62.44 60.40 52.88 64.12

L1-SP (stage II, (100 × p)%) 54.59 88.11 89.25 68.85 81.55 70.75 55.38 72.64

BayesTune (stage II, (100 × p)%) 60.85 90.40 90.61 77.87 91.25 75.00 60.87 78.12

Table 4: L1-SP [42] vs. BayesTune results on NLP benchmarks. Averaged over 10 random runs.
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(100 × p)% weights with the largest relative changes from the pre-trained weights). The results on the NLP
tasks are shown in Table 4.

For the L1 penalty balancing constant hyperparameter, we choose optimal values by grid search from
{10−3, 10−4, 10−5, 10−6}. We can see that L1-SP considerably lags behind our BayesTune, which is mainly
attributed to its failure to capture uncertainty in L1 regularisation, thus being potentially sensitive to noise in data
(a similar reason as the MAP estimate). Moreover, only penalising the parameters deviation from the pre-trained
weights as in Stage 1 significantly underperforms the sparse cut-off strategy in Stage 2, signifying that sparse
update is critical.

D Layer-wise and Module-wise Sparsity Patterns of BayesTuned Networks

Sparsity patterns of RoBERTa-base on NLP tasks. We visualize the module-wise and layer-wise sparsity
patterns of the BayesTuned RoBERTa-base networks on 7 NLP tasks in Fig. 6–19. First, for the layer-wise
sparsity pattern: (Except for mrpc) The proportions of the selected updatable parameters are more or less
uniformly distributed across the 12 layers of the Transformer, while the first word embedding layer and the last
classification layer are significantly less and more selected, respectively. This is intuitively appealing as the
task-specific features may tend to be determined at the higher, more global levels in texts/sentences, to account
for longer-range dependency. Next, looking at the module-wise sparsity patterns, the proportions are highly
non-uniform, layer-specific, and also task/dataset-dependent. For instance, the bias modules in some layers are
very densely selected, while they are very sparsely selected in other layers. This shows clear discrepancy to the
heuristic strategies like BitFit [43] in which the bias modules are selected 100% for all layers.

Sparsity patterns of ViT-B/16 on VTAB vision tasks. The module-wise and layer-wise sparsity patterns of the
BayesTuned ViT-B/16 networks on VTAB benchmark datasets are shown in Fig. 20–38. We also superimpose
the optimal p values (dataset dependent). The resulting patterns are quite similar to the NLP case: Except for a
few cases, the lowest level visual prompt layers are selected far less, sometimes ignored, compared to the later
layers. The last linear classification head, although not shown here in the sparsity diagrams, is selected 100%.
Overall the layer-wise selection patterns are nearly uniform while the module-wise selection patterns are highly
non-uniform and dataset dependent.
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cola (Module-wise sparsity pattern)

Figure 6: Sparsity pattern of the modules in RoBERTa-base on cola. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.

17



cola (Layer-wise sparsity pattern)

Figure 7: Sparsity pattern of the layers in RoBERTa-base on cola. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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stsb (Module-wise sparsity pattern)

Figure 8: Sparsity pattern of the modules in RoBERTa-base on stsb. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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stsb (Layer-wise sparsity pattern)

Figure 9: Sparsity pattern of the layers in RoBERTa-base on stsb. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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mrpc (Module-wise sparsity pattern)

Figure 10: Sparsity pattern of the modules in RoBERTa-base on mrpc. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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mrpc (Layer-wise sparsity pattern)

Figure 11: Sparsity pattern of the layers in RoBERTa-base on mrpc. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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rte (Module-wise sparsity pattern)

Figure 12: Sparsity pattern of the modules in RoBERTa-base on rte. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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rte (Layer-wise sparsity pattern)

Figure 13: Sparsity pattern of the layers in RoBERTa-base on rte. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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cb (Module-wise sparsity pattern)

Figure 14: Sparsity pattern of the modules in RoBERTa-base on cb. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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cb (Layer-wise sparsity pattern)

Figure 15: Sparsity pattern of the layers in RoBERTa-base on cb. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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copa (Module-wise sparsity pattern)

Figure 16: Sparsity pattern of the modules in RoBERTa-base on copa. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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copa (Layer-wise sparsity pattern)

Figure 17: Sparsity pattern of the layers in RoBERTa-base on copa. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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wsc (Module-wise sparsity pattern)

Figure 18: Sparsity pattern of the modules in RoBERTa-base on wsc. Module-wise updatable
parameters (%). (Left) The first half of the network and (Right) the second half. The default sparsity
level p∗=0.5% is shown as vertical line.
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wsc (Layer-wise sparsity pattern)

Figure 19: Sparsity pattern of the layers in RoBERTa-base on wsc. Layer-wise updatable parameters
(%). (Left) The first half of the network and (Right) the second half. The default sparsity level
p∗=0.5% is shown as vertical line.
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cifar100

Figure 20: Sparsity pattern of attached modules to ViT-B/16 on cifar100. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=10% is shown as vertical line.
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caltech101

Figure 21: Sparsity pattern of attached modules to ViT-B/16 on caltech101. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=20% is shown as vertical line.
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dtd

Figure 22: Sparsity pattern of attached modules to ViT-B/16 on dtd. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=5% is shown as vertical line.
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flower102

Figure 23: Sparsity pattern of attached modules to ViT-B/16 on flower102. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=50% is shown as vertical line.
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pets

Figure 24: Sparsity pattern of attached modules to ViT-B/16 on pets. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=20% is shown as vertical line.
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svhn

Figure 25: Sparsity pattern of attached modules to ViT-B/16 on svhn. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=80% is shown as vertical line.
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sun397

Figure 26: Sparsity pattern of attached modules to ViT-B/16 on sun397. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=5% is shown as vertical line.
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camelyon

Figure 27: Sparsity pattern of attached modules to ViT-B/16 on camelyon. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=80% is shown as vertical line.
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eurosat

Figure 28: Sparsity pattern of attached modules to ViT-B/16 on eurosat. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=80% is shown as vertical line.
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resisc45

Figure 29: Sparsity pattern of attached modules to ViT-B/16 on resisc45. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=50% is shown as vertical line.
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retinopathy

Figure 30: Sparsity pattern of attached modules to ViT-B/16 on retinopathy. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=10% is shown as vertical line.
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clevr-count

Figure 31: Sparsity pattern of attached modules to ViT-B/16 on clevr-count. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=40% is shown as vertical line.
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clevr-dist

Figure 32: Sparsity pattern of attached modules to ViT-B/16 on clevr-dist. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=30% is shown as vertical line.
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dmlab

Figure 33: Sparsity pattern of attached modules to ViT-B/16 on dmlab. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=80% is shown as vertical line.
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kitti

Figure 34: Sparsity pattern of attached modules to ViT-B/16 on kitti. (Left) Module-wise updatable
parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s optimal sparsity
level p∗=80% is shown as vertical line.
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dsprite-loc

Figure 35: Sparsity pattern of attached modules to ViT-B/16 on dsprite-loc. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=90% is shown as vertical line.
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dsprite-ori

Figure 36: Sparsity pattern of attached modules to ViT-B/16 on dsprite-ori. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=70% is shown as vertical line.
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snorb-azim

Figure 37: Sparsity pattern of attached modules to ViT-B/16 on snorb-azim. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=70% is shown as vertical line.
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snorb-ele

Figure 38: Sparsity pattern of attached modules to ViT-B/16 on snorb-ele. (Left) Module-wise
updatable parameters (%) and (Right) Layer-wise updatable parameters (%). The BayesTune’s
optimal sparsity level p∗=90% is shown as vertical line.
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