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Abstract

The representation gap between teacher and student is an emerging topic in knowl-
edge distillation (KD). To reduce the gap and improve the performance, current
methods often resort to complicated training schemes, loss functions, and feature
alignments, which are task-specific and feature-specific. In this paper, we state that
the essence of these methods is to discard the noisy information and distill the valu-
able information in the feature, and propose a novel KD method dubbed DiffKD,
to explicitly denoise and match features using diffusion models. Our approach is
based on the observation that student features typically contain more noises than
teacher features due to the smaller capacity of student model. To address this, we
propose to denoise student features using a diffusion model trained by teacher fea-
tures. This allows us to perform better distillation between the refined clean feature
and teacher feature. Additionally, we introduce a light-weight diffusion model with
a linear autoencoder to reduce the computation cost and an adaptive noise matching
module to improve the denoising performance. Extensive experiments demonstrate
that DiffKD is effective across various types of features and achieves state-of-the-
art performance consistently on image classification, object detection, and semantic
segmentation tasks. Code is available at https://github.com/hunto/DiffKD.

1 Introduction

The success of deep neural networks is generally accomplished with the requirements of large
computation and memory, which restricts their applications on resource-limited devices. One widely-
used solution is knowledge distillation (KD) [14], which aims to boost the performance of efficient
model (student) by transferring the knowledge of a larger model (teacher).

The key to knowledge distillation lies in how to transfer the knowledge from teacher to student by
matching the output features (e.g., representations and logits). Recently, some studies [17, 29] have
shown that the discrepancy between student feature and teacher feature can be significantly large due
to the capacity gap between the two models. Directly aligning those mismatched features would even
disturb the optimization of student and weaken the performance. As a result, the essence of most
state-of-the-art KD methods is to shrink this discrepancy and only select the valuable information
for distillation. For example, TAKD [29] introduces multiple middle-sized teach assistant models
to bridge the gap; SFTN [30] learns a student-friendly teacher by regularizing the teacher training
with student; DIST [17] relaxes the exact matching of teacher and student features of Kullback-
Leibler (KL) divergence loss by proposing a correlation-based loss; MasKD [18] distills the valuable
information in the features and ignores the noisy regions by learning to identify receptive regions that
contribute to the task precision. However, these methods need to resort to either complicated training
schemes or task-specific priors, making them challenging to apply to various tasks and feature types.
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Figure 1: Diffusion model in DiffKD. The diffusion model is trained with teacher feature in diffusion
process q (red-dashed arrow), while we feed the student feature to the reverse denoising process pθ
(blue arrows) to obtain a denoised feature for distillation. We find that due to capacity limitation,
student feature contains more noises and its semantic information is not as salient as the teacher’s.
Therefore, we treat student feature as a noisy version of teacher feature, and propose to denoise
student feature using a diffusion model trained with teacher feature.

In this paper, we proceed from a different perspective and argue that the devil of knowledge distillation
is in the noise within the distillation features. Intuitively, we regard the student as a noisy version of
the teacher due to its limited capacity or training recipe to learn truly valuable and decent features.
However, distilling knowledge with this noise can be detrimental for the student, and may even
lead to undesired degradation. Therefore, we propose to eliminate the noisy information within
student and distill only the valuable information accordingly. Concretely, inspired by the success of
generative tasks, we leverage diffusion models [15, 40], a class of probabilistic generative models
that can gradually remove the noise from an image or a feature, to perform the denoising module.
An overview of our DiffKD is illustrated in Fig. 1. We empirically show that this simple denoising
process can generate a denoised student feature that is very similar to the corresponding teacher
feature, ensuring that our distillation can be performed in a more consistent manner.

Nevertheless, directly leveraging diffusion models in knowledge distillation has two major issues.
(1) Expensive computation cost. The conventional diffusion models use a UNet-based architecture
to predict the noise, and take a large amount of computations to generate high-quality images2. In
DiffKD, a lighter diffusion model would suffice since we only need to denoise the student feature. We
therefore propose a light-weight diffusion model consisting of two bottleneck blocks in ResNet [11].
Besides, inspired by Latent Diffusion [35], we also adopt a linear autoencoder to compress the teacher
feature, which further reduces the computation cost. (2) Inexact noisy level of student feature. The
reverse denoising process in diffusion requires to start from a certain initial timestep, but in DiffKD,
the student feature is used as the initial noisy feature and we cannot directly get its corresponding
noisy level (timestep); therefore, the inexact noisy level would weaken the denoising performance.
To solve this problem, we propose an adaptive noise matching module, which measures the noisy
level of each student feature adaptively and specifies a corresponding Gaussian noise to the feature to
match the correct noisy level in initialization. With these two improvements, our resulting method
DiffKD is efficient and effective, and can be easily implemented on various tasks.

It is worth noting that one of the merits of our method DiffKD is feature-agnostic, and the knowledge
diffusion can be applied to different types of features including intermediate feature, classification
output, and regression output. Extensive experimental results show our DiffKD surpasses current state-
of-the-art methods consistently on standard model settings of image classification, object detection,
and semantic segmentation tasks. For instance, DiffKD obtains 73.62% accuracy with MobileNetV1
student and ResNet-50 teacher on ImageNet, surpassing DKD [53] by 1.57%; while on semantic
segmentation, DiffKD outperforms MasKD [18] by 1% with PSPNet-R18 student on Cityscapes test
set. Moreover, to demonstrate our efficacy in eliminating discrepancy between teacher and student
features, we also implement DiffKD on stronger teacher settings that have much more advanced
teacher models, and our method significantly outperforms existing methods. For example, with
Swin-T student and Swin-L teacher, our DiffKD achieves remarkable 82.5% accuracy on ImageNet,
improving KD baseline with a large margin of 1%.

2For example, the diffusion model in Stable Diffusion [35] takes 104 GFLOPs on an input resolution of 256
× 256 [33].
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Figure 2: Visualization of student features, denoised student features and teacher features on
COCO dataset. Details and more visualizations can be found in Appendix F.

2 Preliminaries

2.1 Knowledge distillation

Conventional knowledge distillation methods transfer the knowledge of a pretrained and fixed teacher
model to a student model by minimizing the discrepancies between teacher and student outputs.
Typically, the outputs can be the predictions (e.g., logits in classification task) and intermediate
features of model. Given the student outputs F (s) and teacher outputs F (t), the knowledge distillation
loss is defined as

Lkd := d(F (s),F (t)), (1)
where d denotes distance function that measures the discrepancy of two outputs. For example, we
can use Kullback–Leibler (KL) divergence for probabilistic outputs, and mean square error (MSE)
for intermediate features and regression outputs.

2.2 Diffusion models

Diffusion models are a class of probabilistic generative models that progressively add noise to the
sample data, and then learn to reverse this process by predicting and removing the noise. Formally,
given the sample data z0 ∈ RC×H×W , the forward noise process iteratively adds Gaussian noise to
it, i.e.,

q(zt|z0) := N (zt|
√
ᾱtz0, (1− ᾱt)I), (2)

where zt is the transformed noisy data at timestep t ∈ {0, 1, ..., T}, ᾱt := Πt
s=0αs = Πt

s=0(1− βs)
is a notation for directly sampling zt at arbitrary timestep with noise variance schedule β [15].
Therefore, we can express zt as a linear combination of z0 and noise variable ϵt:

zt =
√
ᾱtz0 +

√
1− ᾱtϵt, (3)

where ϵt ∈ N (0, I). During training, a neural network Φθ(zt, t) is trained to predict the noise in zt
w.r.t. z0 by minimizing the L2 loss between them, i.e.,

Ldiff := ||ϵt − Φθ(zt, t)||22. (4)

During inference, with the initial noise zt, the data sample z0 is reconstructed with an iterative
denoising process using the trained network Φθ:

pθ(zt−1|zt) := N (zt−1; Φθ(zt, t), σ
2
t I), (5)

where σ2
t denotes the transition variance in DDIM [40], which accelerates denoising process by

sampling with a small number of score function evaluations (NFEs), i.e., zT → zT−∆ → ... → z0,
where ∆ is the sampling interval.

In this paper, we leverage a diffusion model to eliminate the noises in student feature in our knowledge
distillation method DiffKD, which will be introduced in the next section.

3 Method

In this section, we formulate our proposed knowledge distillation method DiffKD. We first convert
the feature alignment task in KD to the denoising procedure in diffusion models, this enables us to
use diffusion models to match student and teacher outputs for more accurate and effective distillation.
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Figure 3: Architecture of DiffKD. Bottleneck denotes the Bottneck block in ResNet [11].

To further improve the computation efficiency, we introduce a feature autoencoder to reduce the
dimensions of feature maps, thereby streamlining the diffusion process. Additionally, we propose
an adaptive noise matching module to enhance the denoising performance of student feature. The
architecture of DiffKD is illustrated in Fig. 3.

3.1 Knowledge diffusion for distillation

Generally, models with different capacities and architectures produce varying preferences on feature
representations, even when trained on the same dataset. This discrepancy between teacher and
student is crucial to the success of knowledge distillation. Previous studies [19, 21] have investigated
the differences between teacher and student features. Kundu et al. [19] observes that the predicted
probabilistic distribution of teacher is more sharp and confident than the student’s. Similarly, ATS [21]
discovers that the variance of wrong class probabilities of teacher is smaller than that of student,
indicating that the teacher output is cleaner and more salient. In summary, both studies find that
the student has larger values and variances on wrong classes than the teacher, suggesting that the
predictions of student contains more noises than the teacher’s.

In this paper, we demonstrate that the same trend holds for intermediate features. We visualize the
first feature map of FPN in RetinaNet [23] on COCO dataset [24] in Fig. 2 and find that the semantic
information in teacher feature is much more salient than the student feature. Therefore, we can
conclude that both predictions and intermediate features of student model contain more noises than
the teacher’s, and these noises are difficult to eliminate through simple imitation of the teacher model
in KD due to the capacity gap [17]. As a result, a proper solution is to disregard the noises and only
imitate the valuable information from both teacher and student. Inspired by the success of eliminating
noises in diffusion models [15, 35, 40], we propose to treat the student feature as a noisy version of
teacher feature, and train a diffusion model with teacher feature, then use it to denoise the student
feature. With the denoised feature that contains only valuable information as teacher feature, we can
perform noiseless distillation on them.

Formally, with teacher feature F (tea) and student feature F (stu) used in distillation, we use F (tea) in
the forward noise process q(F (tea)

t |F (tea)) (Eq. (2)) to train the diffusion model with Ldiff (Eq. (4)).
Then the student feature is fed into the iterative denoising process of the learned diffusion model,
i.e., pθ(F

(stu)
t−1 |F (stu)

t ) in Eq. (5), where F (stu) is the initial noisy feature of the process. After this
denoising process, we obtain a denoised student feature F̂ (stu), which is used to compute the KD
loss with the original teacher feature F (tea) in Eq. (1).

3.2 Efficient diffusion model with linear autoencoder

However, we find that the denoising process in DiffKD can be computationally expensive due to the
large dimensions of the teacher feature. During training, DiffKD needs to forward the noise prediction
network Φθ for T times (we use T = 5 in our method) for denoising the student feature and 1 time for
training the noise prediction network with teacher feature. This T + 1 times of forwarding can result
in a high computation cost when the dimension of teacher feature is large. To reduce the computation
cost of diffusion model, we propose a light diffusion model which is stacked with two bottleneck
block in ResNet [11]. Then we follow Latent Diffusion Models [35] and propose to compress the
number of channels using a linear autoencoder module. The compressed latent feature is used as the
input of diffusion model. As shown in Fig. 3, our linear autoencoder module is composed of two
convolutions only, one is the encoder for reducing the number of channels, another one is the decoder

4



Table 1: Training strategies on image classification tasks. BS: batch size; LR: learning rate; WD:
weight decay; LS: label smoothing; EMA: model exponential moving average; RA: RandAugment [7];
RE: random erasing; CJ: color jitter.

Strategy Dataset Epochs Total
BS

Initial
LR Optimizer WD LS EMA LR scheduler Data augmentation

A1 CIFAR-100 240 64 0.05 SGD 5 × 10−4 - - ×0.1 at 150,180,210 epochs crop + flip

B1 ImageNet 100 256 0.1 SGD 1 × 10−4 - - ×0.1 every 30 epochs crop + flip
B2 ImageNet 450 768 0.048 RMSProp 1 × 10−5 0.1 0.9999 ×0.97 every 2.4 epochs {B1} + RA + RE
B3 ImageNet 300 1024 5e-4 AdamW 5 × 10−2 0.1 - cosine {B2} + CJ + Mixup + CutMix

for reconstruct the teacher features. The output feature of encoder is used to train the diffusion models
(Eq. (2)) and supervise the student.

The autoencoder is trained with a reconstruction loss only, which is the mean square error between
the original teacher teacher F (tea) and reconstructed teacher feature F̃

(tea)
ae , i.e.,

Lae := ||F̃ (tea) − F (tea)||22. (6)

Note that the latent teacher feature Z(tea) used to train diffusion model is detached and has no
gradient backward from the diffusion model.

We also use a convolution layer to project the student feature to the same dimension as teacher
latent feature Z(tea), denoted as Z(stu). It is then passed to the diffusion model to perform a reverse
denoising process (Eq. (5)) and generate the denoised student feature Ẑ(stu). Now we have the latent
representation Z(tea) of teacher and the denoised representation of student Ẑ(stu), they are then used
to compute the KD loss and supervise the student, i.e.,

Ldiffkd := d(Ẑ(stu),Z(tea)). (7)

Note that our DiffKD is generic and applies to various tasks (e.g., classification, object detection,
and semantic segmentaion) and feature types (e.g., intermediate feature, classification output, and
regression output). We use simple MSE loss and KL divergence loss as the distance function d to
compute the discrepancy of denoised student feature and teacher feature as a baseline implementation
of DiffKD, while it is possible to achieve better performance with more advanced distillation losses.

3.3 Adaptive noise matching

As previously discussed, we treat student feature as a noisy version of teacher feature. However, the
noisy level, which represents the gap between the teacher and student features, is unknown and may
vary depending on different training samples. Therefore, we cannot directly determine which initial
timestep we should start the diffusion process. To address this issue, we introduce an adaptive noise
matching module to match the noise level of student feature to a pre-defined noise level.

As shown in Fig. 3, we construct a simple convolutional module to learn a weight γ that fuses student
output and Gaussian noise, which helps us match the student output to the same noisy level of noisy
feature at initial time step T . Therefore, the initial noisy feature in the denoising process becomes

Z
(stu)
T = γZ(stu) + (1− γ)ϵT . (8)

This noise adaptation can be naturally optimized with the KD loss Lkd, since the optimal denoised
student feature that has minimal discrepancy to the teacher feature is obtained when the student
feature matches the appropriate noise level in the denoising process.

Overall loss function. The overall loss function of DiffKD is composed of the original task loss, a
diffusion loss that optimize the diffusion model, a reconstruction loss to learn the autoencoder, and a
KD loss for distillation on teacher features and denoised student features, i.e.,

Ltrain = Ltask + λ1Ldiff + λ2Lae + λ3Ldiffkd, (9)

where λ1, λ2, and λ3 are loss weights to balance the losses. We simply set λ1 = λ2 = 1 in all
experiments.
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Table 2: Evaluation results of baseline settings on ImageNet. We use ResNet-34 and ResNet-50
released by Torchvision [28] as our teacher networks, and follow the standard training strategy (B1).
MSE: we implement our baseline for comparisons. †: we replace KL divergence loss with more
advanced DIST loss in DiffKD.

Student (teacher) Tea. Stu. KD [14] Review [6] DKD [53] DIST [17] MSE DiffKD DiffKD†

R18 (R34)
Top-1 73.31 69.76 70.66 71.61 71.70 72.07 70.58 72.22 72.49
Top-5 91.42 89.08 89.88 90.51 90.41 90.42 89.95 90.64 90.71

MBV1 (R50)
Top-1 76.16 70.13 70.68 72.56 72.05 73.24 72.39 73.62 73.78
Top-5 92.86 89.49 90.30 91.00 91.05 91.12 90.74 91.34 91.48

Table 3: Performance of students trained with strong strategies on ImageNet. The Swin-T
is trained with strategy B3 in Table 1, others are trained with B2. The ResNet-50 is trained by
TIMM [44], and Swin-L is pretrained on ImageNet-22K.

Teacher Student
Top-1 ACC (%)

Tea. Stu. KD [14] RKD [31] SRRL [47] DIST [17] DiffKD

ResNet-50
ResNet-34

80.1
76.8 77.2 76.6 76.7 77.8 78.1

MobileNetV2 73.6 71.7 73.1 69.2 74.4 74.9
EfficientNet-B0 78.0 77.4 77.5 77.3 78.6 78.8

Swin-L
ResNet-50

86.3
78.5 80.0 78.9 78.6 80.2 80.5

Swin-T 81.3 81.5 81.2 81.5 82.3 82.5

4 Experiments

In this paper, to sufficiently validate the generalization of our DiffKD, we conduct extensive experi-
ments on image classification, object detection, and semantic segmentation tasks.

4.1 ImageNet classification

Settings. Following DIST [17], we conduct experiments on baseline settings and stronger teacher
settings. The training strategies for CIFAR-100 and ImageNet datasets are summarized in Tab. 1. On
baseline settings, we use ResNet-18 [11] and MobileNet V1 [16] as student models, and ResNet-34
and ResNet-50 as teachers, respectively; and the training strategy (B1) is the most common one in
previous methods [6, 17, 53]. While for the stronger teacher settings, we train students with much
stronger teacher models (ResNet-50 and Swin-L [26]) and strategies (B2 and B3).

We implement our DiffKD on the output feature of backbone before average pooling, and the
output logits of classification head, and the distance functions are MSE and KL divergence (with a
temperature factor of 1), respectively. We set λ1 = λ2 = λ3 = 1.

Results on baseline settings. We summarized the results on baseline settings in Tab. 2. Our methods
outperforms existing KD methods with a large margin, especially on the MobileNet and ResNet-
50 setting, DiffKD significantly surpasses previous state-of-the-art DIST [17] by 0.38% on top-1
accuracy. For comparisons with our baseline one feature distillation, we also report the MSE results
with the same distillation location as DiffKD. We can see that, by only adding our diffusion model for
feature alignment, DiffKD obviously improves the MSE results by 1.74% on ResNet-18 and 1.23%
on MobileNet V1. Moreover, we replace the KL divergence loss in the output logits of DiffKD with
the advanced loss function DIST, which achieves further improvements. For instance, DiffKD with
DIST loss improves DIST by 0.42% on ResNet-18. This indicates that our feature alignment in
DiffKD is generic to different KD losses and can be further improved by changing the losses.

Results on stronger teacher settings. To fully investigate the efficacy of DiffKD on reducing the
distillation gap between teacher feature and student feature, we further conduct experiments on much
stronger teachers and training strategies following DIST. From the results summarized in Tab. 3, we
can see that DiffKD outperforms DIST on all model settings, especially for the most light-weight
MobileNetV2 in the table, DiffKD surpasses DIST by 0.5%. It is worth to remind that our DiffKD
only uses the simple KL divergence loss and MSE loss on the stronger settings, the performance
could be further improved if we use more advanced loss functions such as DKD [53] and DIST [17].
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Table 4: Object detection performance with
baseline settings on COCO val set. T: teacher.
S: student. †: we replace MSE with an attention-
based MSE loss.
Method AP AP50 AP75 APS APM APL

Two-stage detectors
T: Faster RCNN-R101 39.8 60.1 43.3 22.5 43.6 52.8
S: Faster RCNN-R50 38.4 59.0 42.0 21.5 42.1 50.3
Fitnet [36] 38.9 59.5 42.4 21.9 42.2 51.6
FRS [9] 39.5 60.1 43.3 22.3 43.6 51.7
FGD [48] 40.4 - - 22.8 44.5 53.5
DiffKD 40.6 60.9 43.9 23.0 44.5 54.0
DiffKD† 40.7 61.0 44.3 22.6 44.6 53.7

One-stage detectors
T: RetinaNet-R101 38.9 58.0 41.5 21.0 42.8 52.4
S: RetinaNet-R50 37.4 56.7 39.6 20.0 40.7 49.7
Fitnet [36] 37.4 57.1 40.0 20.8 40.8 50.9
FRS [9] 39.3 58.8 42.0 21.5 43.3 52.6
FGD [48] 39.6 - - 22.9 43.7 53.6
DiffKD 39.7 58.6 42.1 21.6 43.8 53.3
DiffKD† 39.8 58.7 42.5 21.5 43.6 53.2

Anchor-free detectors
T: FCOS-R101 40.8 60.0 44.0 24.2 44.3 52.4
S: FCOS-R50 38.5 57.7 41.0 21.9 42.8 48.6
FRS [9] 40.9 60.3 43.6 25.7 45.2 51.2
FGD [48] 42.1 - - 27.0 46.0 54.6
DiffKD 42.4 61.0 45.8 26.6 45.9 54.8
DiffKD† 42.5 61.1 45.6 25.2 46.8 55.1

Table 5: Object detection performance with
stronger teachers on COCO val set. CM
RCNN: Cascade Mask RCNN. †: we replace
MSE with an attention-based MSE loss.
Method AP AP50 AP75 APS APM APL

Two-stage detectors
T: CM RCNN-X101 45.6 64.1 49.7 26.2 49.6 60.0
S: Faster RCNN-R50 38.4 59.0 42.0 21.5 42.1 50.3
COFD [13] 38.9 60.1 42.6 21.8 42.7 50.7
FKD [50] 41.5 62.2 45.1 23.5 45.0 55.3
FGD [48] 42.0 - - 23.7 46.4 55.5
DiffKD 42.2 62.8 46.0 24.2 46.6 55.3
DiffKD† 42.4 62.9 46.4 24.0 46.7 55.2

One-stage detectors
T: RetinaNet-X101 41.2 62.1 45.1 24.0 45.5 53.5
S: RetinaNet-R50 37.4 56.7 39.6 20.0 40.7 49.7
COFD [13] 37.8 58.3 41.1 21.6 41.2 48.3
FKD [50] 39.6 58.8 42.1 22.7 43.3 52.5
FGD [48] 40.4 - - 23.4 44.7 54.1
DiffKD 40.7 60.0 43.2 22.2 45.0 55.2
DiffKD† 41.4 60.7 44.0 23.0 45.4 55.8

Anchor-free detectors
T: RepPoints-X101 44.2 65.5 47.8 26.2 48.4 58.5
S: RepPoints-R50 38.6 59.6 41.6 22.5 42.2 50.4
FKD [50] 40.6 61.7 43.8 23.4 44.6 53.0
FGD [48] 41.3 - - 24.5 45.2 54.0
DiffKD 41.7 62.6 44.9 23.6 45.4 55.9
DiffKD† 41.9 62.8 45.0 24.4 45.7 55.3

Results for CIFAR-100 dataset are summarized in Appendix C.

4.2 Object detection

Settings. Following FGD [48], we conduct experiments on baseline settings and stronger teacher
settings. On baseline settings, we adopt various network architectures, including two-stage detector
Faster-RCNN [34], one-stage detector RetinaNet [23], and anchor-free detector FCOS [42], and use
ResNet-50 [11] as student models, and ResNet-101 as teachers, respectively. The training strategy
is the most common one in previous methods [9, 18, 48]. While for the stronger teacher settings,
we train students with much stronger teacher models, including two-stage detector Cascade Mask
RCNN [2], one-stage detector RetinaNet [23], and anchor-free detector RepPoints [49], and stronger
backbone ResNeXt-101 (X101) [45].

We conduct feature distillation on the predicted feature maps, and train the student with our DiffKD
loss Ldiffkd, regression KD loss, and task loss. Note that we do not use linear autoencoder in DiffKD
since the number of channels in FPN is only 256. We set λ1 = λ2 = 1. Besides using MSE loss in
feature distillation, we also adopted a simple attention-based MSE loss (marked with † in Tab. 4)
inspired by FGD [48] to balance the foreground and background distillations, which is acknowledged
important for detection KD [10, 18, 48]. Details can be found in Appendix B.

Results on baseline settings. Our results compared with previous methods are summarized in Table
4. Our DiffKD can significantly improve the performance of student models over their teachers on
various network architectures. For instance, DiffKD improve FCOS-R50 by 4.0 AP and surpasses
FGD [48] by 0.4 AP. Besides, the attention-based MSE loss affords consistent improvements on
vanilla DiffKD by ∼ 0.1 AP.

Results on stronger teacher settings. We further investigate our efficacy on stronger teachers
whose backbones are replaced by stronger ResNeXts [45]. As in Table 5, student detectors achieve
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Table 6: Semantic segmentation results on Cityscapes dataset. †: trained from scratch. Other
models are pretrained on ImageNet. FLOPs is measured based on an input size of 1024× 2048.

Method
Params FLOPs mIoU (%)

(M) (G) Val Test

T: DeepLabV3-R101 61.1 2371.7 78.07 77.46
S: DeepLabV3-R18 13.6 572.0 74.21 73.45
CWD [38] 13.6 572.0 75.55 74.07
CIRKD [46] 13.6 572.0 76.38 75.05
MasKD [18] 13.6 572.0 77.00 75.59
DiffKD 13.6 572.0 77.78 76.24
S: DeepLabV3-R18† 13.6 572.0 65.17 65.47
CWD [38] 13.6 572.0 67.74 67.35
CIRKD [46] 13.6 572.0 68.18 68.22
MasKD [18] 13.6 572.0 73.95 73.74
DiffKD 13.6 572.0 74.45 74.52

Method
Params FLOPs mIoU (%)

(M) (G) Val Test

T: DeepLabV3-R101 61.1 2371.7 78.07 77.46
S: PSPNet-R18 12.9 507.4 72.55 72.29
CWD [38] 12.9 507.4 74.36 73.57
CIRKD [46] 12.9 507.4 74.73 74.05
MasKD [18] 12.9 507.4 75.34 74.61
DiffKD 12.9 507.4 75.83 75.61
S: DeepLabV3-MBV2 3.2 128.9 73.12 72.36
CWD [38] 3.2 128.9 74.66 73.25
CIRKD [46] 3.2 128.9 75.42 74.03
MasKD [18] 3.2 128.9 75.26 74.23
DiffKD 3.2 128.9 75.71 74.96

more enhancements with our DiffKD, especially when with a Retina-X101 teacher, DiffKD gains
a substantial improvement of 4.0 AP over the Retina-R50. Additionally, our methods outperforms
existing KD methods with a large margin, and significantly surpasses FGD [48] when distilling
on RetinaNet and RepPoints, by 1.0 and 0.6 AP, respectively. Moreover, comparing Table 4 with
5, we can infer that when the teacher is stronger, the benefit of DiffKD is more significant, as the
discrepancy between the student and a stronger teacher is larger.

4.3 Semantic segmentation

Settings. Following CIRKD [46], we use DeepLabV3 [5] framework with ResNet-101 (R101) [11]
backbone as the teacher network. While for the students, we use various frameworks (DeepLabV3
and PSPNet [54]) and backbones (ResNet-18 [11] and MobileNetV2 [37]) to valid our efficacy.

We conduct feature distillation on the predicted segmentation maps, and train the student with our
DiffKD loss and task loss, as formulated in Eq. (9). Note that we do not use linear autoencoder in
DiffKD since the number of channels in segmentation map is only 19. Detailed training strategies are
summarized in Appendix B.

Results. The experimental results are summarized in Tab. 6. Our DiffKD significantly outperforms
the state-of-the-art MasKD on all settings. For example, on DeepLabV3-R18 student, DiffKD
improves MasKD by 0.78% on val set and 0.65 on test set.

4.4 Ablation study

Table 7: Comparisons of different distilla-
tion features in DiffKD.

Method Top-1 (%)

w/o KD 70.13
MSE 72.39
KL div. 70.68
DiffKD (feature) 73.16
DiffKD (logits) 72.89
DiffKD (feature + logits) 73.62

Effects of adopting DiffKD on different types of
features. On image classification, we distill both
intermediate feature (the output feature of back-
bone before average pooling) and output logits with
DiffKD. Here we conduct experiments to compare
the effects of distillations on different features of
MobileNetV1 student and ResNet-50 teacher in
Tab. 7. We can see that, by adopting DiffKD to
align the student features, both feature-level Dif-
fKD and logits-level DiffKD can obtain obvious
improvements without changing the loss functions.
Meanwhile, combining feature and logits distilla-
tions together in our final method achieves the optimal 73.62% top-1 accuracy.

Effects of linear autoencoder. We compare different dimensions of linear autoencoder in Tab. 8. We
can see that, the linear autoencoder can significantly reduces the FLOPs of diffusion model, but if we
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Table 8: Comparisons of different dimensions of linear autoencoder in DiffKD. We report the
top-1 accuracy and FLOPs of diffusion models with MobileNetV1 student and ResNet-50 teacher on
ImageNet.

w/o AE 128 256 512 1024 2048

Top-1 (%) 73.47 72.84 73.22 73.53 73.62 73.58
FLOPs (G) 1.41 0.04 0.09 0.21 0.58 1.82

conduct high compression ratios like 128 and 256 dimensions, the distillation performance will be
severely weakened. Interestingly, AE with 512, 1024, and 2048 dimensions can outperform the one
without AE, a possible reason is that the AE encodes common and valuable information in the original
feature for reconstruction and would have better feature representations than the original feature.
As a result, we use AE with 1024 dimension in our experiments for better performance-efficiency
trade-off.

Effects of adaptive noise matching. We propose adaptive noise matching (ANM) to match the
noisy level of student feature to the correct initial level in the denoising process. Here we conduct
experiments to validate its efficacy. We train MobileNetV1 student with the only removal of ANM
in our final method, and the DiffKD without ANM obtains 73.34% top-1 accuracy, which has a
decrease of 0.28 on our DiffKD with ANM. This indicates that ANM can improve the performance
by generating better denoised student feature.

73.36

73.44

73.62

73.58

73.65

A
C

C
 (%

)

73.3

73.4

73.5

73.6

73.7

NFEs
1 3 5 10 20

Figure 4: Results of DiffKD with different
NFEs. We use MobileNetV1 student and
ResNet-50 teacher on ImageNet.

Ablation on numbers of score function evalua-
tions (NFEs). In diffusion models, the number of
score function evaluations (NFEs) is a important
factor for controlling the generation quality and ef-
ficiency. The early method such as DDPM [15]
requires to run a complete timesteps in the re-
verse denoising process as training, which leads
to a heavy computational budget. Recently, some
works [27, 40] have been proposed to accelerate
the denoising process by sampling a small number
of timesteps. In this paper, we use DDIM [40] for
speedup. Here, we conduct experiments to show
the influence of different NFEs. As shown in Fig. 4,
compared to the 72.39% accuracy of MSE baseline
without denoising on student feature, only one-step
denoising also achieves a significant improvement.
However, its performance is weaker than that of
those larger NFEs due to the limitation of denoising
quality. A NFEs of 5 would suffice in our KD setting to achieve promising performance, and we use
it in all experiments for a better efficiency-accuracy trade-off.

5 Conclusion

In this paper, we investigate the discrepancy between teacher and student in knowledge distillation. To
reduce the discrepancy and improve the distillation performance, we proceed from a new perspective
and propose to explicitly eliminate the noises in student feature with a diffusion model. Based on
this idea, we further introduce a light-weight diffusion model with a linear autoencoder to reduce the
computation cost of our method, and an adaptive noise matching module to align the student feature
with the correct noisy level, thus improving the denoising performance. Extensive experiments on
image classification, object detection, and semantic segmentation tasks validate our efficacy and
generalization.
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A Related Work

A.1 Representation gap in knowledge distillation

An emerging topic in knowledge distillation is the representation gap between teacher and student.
Recently, the models have been designed larger and more complicated, with remarkable performance
improvements compared to the traditional models. As a result, an intuitive idea to improve efficient
models is to distill them from a stronger teacher model. However, recent studies [29, 39] find that
KD performance with a stronger teacher is poor and even worse than the normal teacher. TAKD [29]
states that the student can only learn the knowledge effectively from a teacher model up to a fixed
capacity, and proposes training multiple teaching assistants that have moderate capacities compared to
the narrow student and a huge teacher. The teach assistants are trained sequentially with their former
larger teach assistants, and the final smallest teach assistant is used to train the student. DAKD [39]
further improves TAKD by densely connecting all models (teacher, assistant teachers, and student)
together and letting the student choose the optimal teacher for each sample. SFTN [30] proposes
to learn the teacher model with the supervision of student model, which obtains a student-friendly
teacher with smaller representation gap to the student. However, such methods suffer from complex
distillation algorithms and heavy computational cost for training the teacher model, therefore, they
are not applicable in practice. More recently, DIST [17] proposes an efficient and simple approach,
which aims at relaxing the exact matching in previous KL divergence loss with a correlation-based
loss, which performs better when the discrepancy between teacher and student is large. However,
such heuristic loss in DIST only adapts to classification outputs, and thus for dense prediction tasks
such as object detection, which requires detailed semantic information in intermediate features, the
efficacy is limited. Moreover, the Pearson correlation in DIST only has shift and scale invariances,
whereas for the complex situation of dicrepancy in features, it cannot ignore all noises for a clean
distillation.

As a result, we present DiffKD, which adapts well to multiple types of features and tasks, and handles
better in eliminating the discrepancy in distillation features.

A.2 KD in dense prediction tasks

Different from the image classification task that only needs to recognize the overall classification
of the image, object detection and semantic segmentation are referred as dense prediction tasks that
have to predict the bounding boxes and classes for all the objects inside the image, or the pixel-level
segments of image. As a result, effectively distilling the knowledge of the teacher in these tasks is
more challenging than classification.

Various methods [3, 10, 20, 38, 48, 51] are proposed to improve KD performance in object detection.
Chen et al. [3] first proposes performing KD on the classification logits and regressions of the RoI
head. Mimicking [20] states that the feature maps in detection model contains richer semantic
information than the responses, and proposes to distill the FPN [22] features of teacher. However,
distilling from the features suffers from severe imbalance of the foreground and background pixels
in object detection. To address this issue, recent methods focus on selecting valuable features and
propose various loss functions based on this [10, 18, 38, 48, 52].

In semantic segmentation, knowledge distillation techniques typically prioritize maintaining the
structural semantic connections between the teacher and student models. To address the inconsistency
between teacher and student features, He et al. [12] employ a pretrained autoencoder to optimize
feature similarity in a transferred latent space. They also transfer non-local pairwise affinity maps to
minimize feature discrepancies. SKD [25] conducts pairwise distillation among pixels to preserve
pixel relationships and adversarial distillation on score maps to distill holistic knowledge. IFVD
[43] transfers intra-class feature variation from teacher to student to establish more robust relations
with class-wise prototypes. CWD [38] proposes channel-wise distillation to better mimic spatial
scores along the channel dimension. CIRKD [46] proposes intra-image and cross-image relational
distillations to learn better semantic relations from the teacher.

However, existing state-of-the-art KD approaches in dense prediction tasks are designed specifically
for the tasks, which are difficult to be applied to various tasks, resulting in a large experiment cost in
evaluating and adapting those methods. As a result, an interesting direction in KD is to generalize
and unify KD methods in different tasks.
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B Implementation Details

B.1 Diffusion model

In all experiments, we use DDIM [40] as the noise scheduler in reverse denoising process. The total
range of timesteps for training is 1000, and the initial time step for denoising is 500.

B.2 Image classification

On ImageNet classification task, we simply set λ1 = λ2 = λ3 = 1 in all experiments. (1) Feature
distillation. For experiments that use ResNet-50 or ResNet-34 as the teacher model, we set the
number of latent channels in our autoencoder to 1024; while for Swin-L teacher, its feature for
distillation has 1536 channels, so we compress it to 768 with autoencoder. (2) Logits distillation. We
also add a DiffKD loss on the predicted classification logits. Different from the Bottleneck block
used in feature distillation, we use MLP (two linear layers associated with an activation function)
as an alternate of Bottleneck since the logits have only two dimensions (no spatial dimensions).
Besides, the autoencoder is not used in logits distillation. On CIFAR-100 dataset, we also implement
DiffKD on the output feature before average pooling layer and classification logits, but remove the
autoencoder since the computation cost on CIFAR model is small.

B.3 Object detection

For object detection task, we conduct feature distillation on the predicted feature maps, and train
the student with our DiffKD loss Ldiffkd, regression KD loss, and task loss. Note that we do not use
linear autoencoder in DiffKD since the number of channels in FPN is only 256. We set λ1 = λ3 = 1.
We adopt ImageNet pre-trained backbones during training following previous KD works [18]. All
the models are trained with the official strategies (SGD, weight decay of 1e-4) of 2× schedule in
MMDetection [4]. We run all the models on 8 V100 GPUs.

Loss weights: We set DiffKD loss weight to 5 and regression loss weight to 1 on Faster RCNN
students. For other detection frameworks, we simply adjust the loss weight of DiffKD to keep a
similar amount of loss value as Faster RCNN. Concretely, the loss weights of LDiffKD on RetinaNet,
FCOS, and RepPoints are 5, 5, and 15, respectively.

B.4 Semantic segmentation

Following CIRKD [46] and MasKD [18], we train the models with standard data augmentations
including random flipping, random scaling in the range of [0.5, 2], and a crop with size 512×1024. An
SGD optimizer with momentum 0.9 is adopted, and the learning rate is annealed using a polynomial
scheduler with an initial value of 0.02. For DiffKD, we distill the knowledge of the segmentation
predictions of teacher. Since these predictions are probabilistic distributions, we use DIST [17] as the
distance function d in KD loss. We do not involve autoencoder since the segmentation prediction has
only 19 channels on Cityscapes dataset, and set λ1 = λ3 = 1.

C More Experiments

C.1 Results on CIFAR-100 dataset

We summarize the CIFAR-100 results in Tab. 9. Our DiffKD surpasses previous methods in most
cases. Moreover, comparing homogeneous architecture settings and heterogeneous architecture
settings, DiffKD gains more significant improvements on heterogeneous settings compared to the
standalone training results, which indicates that our method can deal better with the discrepancy
between teacher and student models.

C.2 Effect of efficient diffusion model

We train RetinaNet R50 student with R101 teacher with 1× schedule in COCO, and compare our
Effieicnt DM with original UNet in DDPM using DiffKD. As shown in Tab. 10, with feature shape
(256, 80, 124), the original UNet has much larger parameters and GFLOPs, and thus leads to 3×
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Table 9: Evaluation results on CIFAR-100 dataset. The upper and lower models denote teacher
and student, respectively.

Method
Homogeneous architecture style Heterogeneous architecture style

WRN-40-2
WRN-40-1

ResNet-56
ResNet-20

ResNet-32x4
ResNet-8x4

ResNet-50
MobileNetV2

ResNet-32x4
ShuffleNetV1

ResNet-32x4
ShuffleNetV2

Teacher 75.61 72.34 79.42 79.34 79.42 79.42
Student 71.98 69.06 72.50 64.6 70.5 71.82
FitNet [36] 72.24±0.24 69.21±0.36 73.50±0.28 63.16±0.47 73.59±0.15 73.54±0.22
VID [1] 73.30±0.13 70.38±0.14 73.09±0.21 67.57±0.28 73.38±0.09 73.40±0.17
RKD [31] 72.22±0.20 69.61±0.06 71.90±0.11 64.43±0.42 72.28±0.39 73.21±0.28
PKT [32] 73.45±0.19 70.34±0.04 73.64±0.18 66.52±0.33 74.10±0.25 74.69±0.34
CRD [41] 74.14±0.22 71.16±0.17 75.51±0.18 69.11±0.28 75.11±0.32 75.65±0.10
KD [14] 73.54±0.20 70.66±0.24 73.33±0.25 67.35±0.32 74.07±0.19 74.45±0.27
DIST [17] 74.73±0.24 71.75±0.30 76.31±0.19 68.66±0.23 76.34±0.18 77.35±0.25
DiffKD 74.09±0.09 71.92±0.14 76.72±0.15 69.21±0.27 76.57±0.13 77.52±0.21

Table 10: Comparisons of different dimensions of linear autoencoder in DiffKD. We report the
top-1 accuracy and FLOPs of diffusion models with MobileNetV1 student and ResNet-50 teacher on
ImageNet.

w/o AE 128 256 512 1024 2048

Top-1 (%) 73.47 72.84 73.22 73.53 73.62 73.58
FLOPs (G) 1.41 0.04 0.09 0.21 0.58 1.82

training time. The original UNet only achieves similar performance as our Efficient DM, as the
generation of features is easier than images, and a small model would suffice.

C.3 Effect of adaptive noise matching (ANM)

To validate the efficacy of ANM more thoroughly, we conducted further experiments in more model
settings and training strategies, as summarized in Tab. 11. We can see that, when with stronger strategy
and teacher, the improvement of ANM is more significant (1.2% improvement on MobileNetV2
compared to 0.3% and 0.5% improvements on MobileNetV1 and ResNet-18). One possible reason is
that, when the augmentations and teacher become stronger, the noisy gaps between predicted features
of teacher and student become more various, and therefore ANM is more effective in matching the
noisy levels.

C.4 Statistics of the learned noise weight γ

To analyze the effectiveness of ANM, we first show the distribution of noise weight γ in Fig. 5 (a) of
the rebuttal PDF. Revealing that the student feature is noised with Z

(stu)
T = γZ(stu) + (1− γ)ϵT ,

the larger γ denotes smaller additional noise added.

We can see that a large amount of values is in the range of γ > 0.9, indicating that the student feature
itself contains nonnegligible noises and only requires small noises to match the initial noise level,
while there also exist some cleaner samples that require large noises.

We also plot the curves of average γ in each epoch during training. Fig. 5 (b) indicates that, at the
beginning of training, the student feature contains more noises, so only small weights of noises should
be added. When the model gets converged, the noise in student feature becomes smaller and γ goes
smaller to match the noise level accordingly.
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Table 11: Effects of adaptive noise matching (ANM) on various model settings.

Student Teacher Strategy w/ ANM w/o ANM

MobileNetV1 ResNet-50 B1 73.6 73.3
ResNet-18 ResNet-34 B1 72.2 71.7

MobileNetV2 ResNet-50-SB B2 74.9 73.7
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Figure 5: Statistics of learned noise weight γ on MobileNetV1 student. (a) Histogram of learned γ
during training. (b) curves of average γ in each epoch during training.

C.5 Effects of different feature types of distillations on object detection

We conduct experiments on COCO dataset to compare the effects of performing distillations on FPN
features, classification outputs, and regression outputs. As the results shown in Tab. 12, compared
with the original KD without feature denoise in DiffKD, our method obtains significant improvements
on all the feature types. Besides, comparing these features, distillation on FPN feature obtains relative
high performance, which demonstrates that the semantic information in intermediate features is more
valuable than the responses. We also conduct experiment to combine all the feature distillations in
DiffKD together, while it achieves similar performance of FPN feature, this infers that the distillation
on FPN feature is sufficient to obtain a good performance.

Table 12: Comparison of original diffusion model (DM) and our efficient DM on COCO dataset.
DM Params GFLOPs Training time AP AP AP

UNet (DDPM) 13.62 M 650.77 1.80×8 GPU Days 39.1 58.0 41.9
Efficient DM (ours) 0.21 M 132.76 0.59×8 GPU Days 39.2 58.1 42.0

C.6 Efficiency analysis

In DiffKD, we use a light-weight diffusion model to denoise the student feature. Here we analyze the
computation efficiency with comparisons to other methods. Compared to the vanilla KD, DiffKD
has additional computations to denoise the intermediate feature and output logits on ImageNet.
Specifically, for ResNet-18 student and ResNet-34 teacher, the additional FLOPs is 800M. However,
compared to other feature-based KD methods, the cost is acceptable. For example, CRD [41] uses
extra 260M FLOPs, ReviewKD has an addtional computation cost of 1900M.

D Discussion

D.1 Limitation

In this paper, we only implement our diffusion model with simple convolutions and DDIM inference
algorithm, while there exists recent advances of diffusion models that propose better transformer-
based models and more efficient inference algorithm. Besides, we only use the traditional mean
square error and KL divergence as our KD loss functions, while many novel losses could be leveraged
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to further improve the distillation performance. The computational cost is larger than the simple
logits distillation methods such as KD [14] and DIST [17], but the cost is comparable to existing
feature distillation methods and does not affect the computation cost in inference.

D.2 Societal impacts

Investigating the efficacy of the proposed method would consume considerable computing resources.
These efforts can contribute to increased carbon emissions, which could raise environmental concerns.
However, the proposed knowledge distillation method can improve the performance of light-weight
compact models, where replacing the heavy models with light models in production could save more
energy consumption, and it is necessary to validate the efficacy of DiffKD adequately.

E Visualization of Predicted Classification Scores

We visualize the predicted classification scores in Fig. 6. The original predictions of student, have
different sharpness compared to the teacher’s, while the denoised predictions align better to the
predictions of teacher.

0.74

0.25

0.01

0.74

0.24

0.01

0.89

0.11
0.00

Denoised
student

Student

Teacher

Sh
et

la
nd

 sh
ee

pd
og

co
lli

e
pa

pi
llo

n

0.61

0.22

0.04

0.58

0.25

0.03

0.44
0.30

0.02

Denoised
student

Student

Teacher

ot
te

r
se

a 
lio

n

m
in

k

Figure 6: Visualization of predicted scores of MobileNetV1 student on ImageNet validation set.
DiffKD has an effect of matching the sharpness of the probabilistic distributions of teacher and
student.

F Visualization of Features

F.1 Visualization details

We visualize the features of student and teacher models in the first output (stride 4) of FPN. The
models used to extract the feature are RetinaNet-R50 (student) and RetinaNet-X101 (teacher) trained
on COCO dataset. Following FGD [48], we average the feature map along channel axis and perform
softmax on the spatial axis to measure the saliency of each pixel. Formally, with a given feature map
X ∈ RC×HW , we first average the channels and get X ′ ∈ RHW , where X ′

i =
1

HW

∑HW
i=1 (X:,i).

Then we generate the attention map for visualization as
V = H ·W · softmax(X ′/τ), (10)

where τ is the temperature factor for controlling the softness of distribution, and we set τ = 0.5.

F.2 More visualizations

We visualize the student features, denoised student features, and teacher features in Fig. 7. First, by
comparing the original student and teacher features, we can conclude that the discrepancy between
student and teacher features is fairly large, and the student feature contains more noises and is not
as salient as the teacher feature. While for the denoised feature generated by our DiffKD, it is very
similar to the teacher feature, this infers that distillation on the denoised student feature and teacher
feature can get rid of the noises that disturb the optimization.
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Figure 7: Visualizations of student features, denoised student features and teacher features on
COCO dataset.
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