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Abstract

Test-time adaptation (TTA) is a special and practical setting in unsupervised do-
main adaptation, which allows a pre-trained model in a source domain to adapt to
unlabeled test data in another target domain. To avoid the computation-intensive
backbone fine-tuning process, the zero-shot generalization potentials of the emerg-
ing pre-trained vision-language models (e.g., CLIP, CoOp) are leveraged to only
tune the run-time prompt for unseen test domains. However, existing solutions
have yet to fully exploit the representation capabilities of pre-trained models as
they only focus on the entropy-based optimization and the performance is far below
the supervised prompt adaptation methods, e.g., CoOp. In this paper, we propose
SwapPrompt, a novel framework that can effectively leverage the self-supervised
contrastive learning to facilitate the test-time prompt adaptation. SwapPrompt
employs a dual prompts paradigm, i.e., an online prompt and a target prompt
that averaged from the online prompt to retain historical information. In addition,
SwapPrompt applies a swapped prediction mechanism, which takes advantage of
the representation capabilities of pre-trained models to enhance the online prompt
via contrastive learning. Specifically, we use the online prompt together with an
augmented view of the input image to predict the class assignment generated by the
target prompt together with an alternative augmented view of the same image. The
proposed SwapPrompt can be easily deployed on vision-language models without
additional requirement, and experimental results show that it achieves state-of-
the-art test-time adaptation performance on ImageNet and nine other datasets. It
is also shown that SwapPrompt can even achieve comparable performance with
supervised prompt adaptation methods.

1 Introduction

When there is a discrepancy between the distribution of the training data and the testing data, the
generalization performance of deep neural networks can be compromised [1, 2, 3]. The focus
of domain adaptation is to construct models that can adapt to variations in data distribution by
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Figure 1: Comparison on V-L model architectures. (a) CoOp adapts prompt on labeled data.
(b) TPT optimizes prompt by minimizing marginal entropy. (c) Ours SwapPrompt leverages self-
supervised contrastive learning to facilitate test-time prompt adaptation.

transferring knowledge from a source domain to a new related target domain, which usually requires
both the source and target domain data during the training phase [4, 5]. However, in practical
scenarios, it is common to have only the model after it has been trained in the source domain, while
without the access to the source data, or the authorization to alter the original training procedure
[6, 7, 8]. To address this problem, Test-time adaptation (TTA) [9, 10] has been proposed and shown
its potential to adapt models to target/unseen domains by only leveraging the unlabeled test data
streams. Existing works have developed techniques such as entropy minimization [7, 11], class
prototypes [12, 13], image generation [14, 15], and self-supervised training [10], which have already
demonstrated superior performance.

Although traditional model-based TTA methods are shown effective, they typically rely on computa-
tionally intensive tuning to the parameters of the model backbone. The situation would be even worse
with the advent of vision-language pre-trained models (e.g., CLIP [16], CoOp [17] and CoCoOp [18]),
that have a massive number of parameters and are difficult to optimize. Therefore, it is promising to
explore efficient techniques to fine-tune only a small set of parameters for adapting models to novel
domains during testing while keeping the backbone fixed. Pre-trained vision-language models, which
are trained on a significant amount of image-text pairs, have introduced a powerful paradigm that
provides fresh insights for tackling this issue. A straightforward way is to utilize the strong zero-shot
capabilities of the pre-trained vision-language models to discriminate various domains of test data via
the fine-tuning over the labeled data of downstream tasks, however such way may not be feasible in
TTA scenarios where the labeled downstream data is unavailable. Shu et al. [19] propose the test-time
prompt tuning (TPT) to address the label scarcity problem in test-time. Nevertheless, it may lead to
a risk of over-trust in the model (i.e., generating high confidence for a wrong result) from directly
minimizing the entropy to tuning instance-specific prompts. The prediction confidence of TPT and
proposed SwapPrompt can be found in appendix.

To this end, we propose SwapPrompt, a novel test-time prompt adaptation method as illustrated in
Figure 1. Unlike previous approaches, SwapPrompt leverages a self-supervised contrastive learning
strategy in the test domain, which consists of two key components: exponential moving average
(EMA) prompt and prompt swapped prediction mechanism. The EMA mechanism employs a dual
prompts paradigm: the target prompt and the online prompt. We optimize the online prompt while
the target prompt is gradually updated through a slow-moving average process, which incorporates
past information to increase stability and effectiveness. The prompt swapped prediction mechanism
is inspired by the unsupervised learning method SwAV [20]. Based on an augmented view of image
and the online prompt, SwapPrompt predicts the class assignment of an augmented view of the same
image. This enables the online prompt to learn more representation knowledge. The rationale behind
the swapped prediction strategy is that two different augmentations of the same image should have
similar class assignments. The contrastive representation learning approach is leveraged to generate
better decision boundaries [21].

In addition to the loss function of self-supervised contrastive learning, we employ the conventional
cross-entropy loss as in CLIP and CoOp, which tune the prompt with high-confidence pseudo labels
generated by the zero-shot CLIP. Our approach can also be employed for online test-time scenarios,
where test data arrive in a flow of mini-batches. We break down the operation performed on all
test data into multiple mini-batches, which is discussed in detail in the experimental section. We
evaluate our method on various test-time adaptation benchmarks, including ImageNet and four natural
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distribution shift datasets based on it, as well as nine fine-grained classification datasets. Experiment
results show that our method achieves state-of-the-art test-time adaptation performance. We present
our main contributions as follows:

• We propose SwapPrompt, a novel test-time prompt adaptation method that employs a self-
supervised contrastive learning strategy, enabling prompts to better adapt to downstream
image classification tasks.

• To the best of our knowledge, we are the first to apply unsupervised representation learning
in prompt adaptation for pre-trained vision-language models. We introduce EMA prompt
and prompt swapped prediction strategies, which enable the prompt to learn more knowledge
from the powerful representation capabilities of pre-trained models.

• We conduct extensive experiments on ImageNet and its four variants, as well as nine other
image classification datasets The empirical evaluation shows that our approach significantly
outperforms current TPT methods and can even compete with supervised prompt adaptation
methods on most datasets.

2 Related Work

Test-Time Adaptation. Test-time adaptation refers to reducing the performance gap when a source
model is deployed on a different target domain of test data. The challenge of this issue is that only
the source model and unlabeled test data are available, the training process and source data should
not be accessed. Many solutions have been proposed to solve this problem, i.e., minimizing the
entropy of the model’s predictions [7, 11], maintaining a set of dynamically prototypes and measuring
the similarity between test samples to each prototype [12, 13], generating new data similar to the
target domain to assist model adaptation [14, 15] and utilizing the idea of self-supervised training to
improve the generalization capability [10]. However, test-time adaptation in vision-language model
is under-explored. Recently, Shu et al. [19] propose test-time prompt tuning (TPT) to extend the
old entropy minimization method to vision-language model, but it is limited in practice due to the
potential obvious over-confidence risk on predictions.

Prompt Learning in Vision-Language Models. Prompt learning first emerged in the field of
natural language processing (NLP), aiming to enhance the performance of pre-trained models by
utilizing different prompts. With the advent of vision-language models that integrate both visual
and textual modalities, inspired by prompt learning in NLP, CoOp [16] is proposed for prompt
learning, which transforms hand-crafted prompts into learnable continuous prompts and tunes them
to adapt to downstream tasks. CoCoOp [17], an improvement upon CoOp, employs a meta-net and
image features to generate individual prompts for each image. Additionally, there are also some
other methods such as CLIP-adapter [22] and Tip-adapter [23] that do not modify the prompts but
instead add additional classification layers after the backbone models. What they have in common is
that all of them heavily rely on a set of labeled data, making them unsuitable for test-time settings.
Another line of work focuses on enabling prompt learning in an unsupervised manner during training
process, i.e., unsupervised prompt learning (UPL) [24]. However, it simply extends pseudo-labeling
methods to vision-language models without fully leveraging the powerful representation capabilities
of pre-trained models.

3 Methodology

In this section, we first introduce the preliminary and problem definition of test-time prompt adapta-
tion, then elaborate the proposed SwapPrompt framework that leverages self-supervised contrastive
learning to facilitate prompt adaptation, which is shown in Figure 2. Finally, we present the workflow
in Section 3.3.

3.1 Preliminary and Problem Definition

We focus on test-time prompt adaptation for pre-trained vision-language models (e.g. CLIP), where
the model is trained on the source domain, but the test data belongs to the target domain. In this
scenario, zero-shot CLIP with a general prompt (e.g., “a photo of a [CLS]”) has shown barely
acceptable zero-shot generalization ability. However, these hand-crafted prompts cannot fully extract
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Figure 2: Framework of the proposed SwapPrompt. We use the text features generated by the
target prompt as prototypes and assign the image feature of an augmented view of an image to
these prototypes to obtain a soft class assignment. The online prompt is trained to predict this class
assignment with a different augmented view of the same image. The EMA of online prompt is used
to update the target prompt.

the rich knowledge learned by CLIP from large-scale and diverse pre-training datasets. Optimized
prompts can further improve CLIP’s ability to retrieve knowledge about the target domain. There have
been some related works on supervised target domain data, including the well-known and effective
CoOp method, part of our approach also incorporates the ideas of CoOp. Then we will briefly review
CoOp as well as define the notation used in this paper.

Context Optimization (CoOp). CoOp is a prompt adaptation method based on CLIP. Similar
to CLIP, CoOp includes an image encoder and a text encoder, which are denoted as f(·) and g(·),
respectively. Let Dtarget = {(xi, yi)}Ni=1 be the dataset on the target domain, where xi is the i-th
input data sample, yi is the corresponding label and yi ∈ {1, 2, . . . , C} for a C-class classification
problem, N is the size of the dataset. Let t represent the learnable continuous prompt and {t; c} be
the input of c-th class for the text encoder. We then define zi = f(xi) and wc = g({t; c}) as the
output features embedding of image encoder and text encoder, respectively. The probability of c-th
class for xi is computed as:

p(c|xi) =
exp(sim(zi,wc)/τ)∑C
j=1 exp(sim(zi,wj)/τ)

, (1)

where τ denotes the temperature parameter, sim(·) denotes the cosine similarity. For all training data,
CoOp calculates the probabilities of all classes by Eq. 1 and minimizes the cross-entropy loss to tune
the prompt.

Test-Time Prompt Adaptation. In the test-time scenario, labeled data from the target domain
is not available, thereby the prompt cannot be optimized as in CoOp. Consider a test dataset
Dtest = {xi}Ni=1 without label information. The objective of test-time prompt adaptation can be
formulated as:

t∗ = argmin
t

L(f, g, t,Dtest), (2)

where L is the cross-entropy loss function, our purpose is to design an unsupervised prompt adaptation
method, facilitating prompt t compatibility with the target domain of Dtest, eliciting more target
domain knowledge for CLIP.

3.2 Overview of SwapPrompt

In this section, we present our proposed test-time adaptation method SwapPrompt, which contains
two key insights: Exponential Moving Average (EMA) Prompt and Prompt Swapped Prediction. As
illustrated in Figure 2, SwapPrompt employs a dual prompts paradigm: the online and target prompts.
These two types of prompts will be interacted and learnt from each other to adapt to the target domain
by applying an EMA update strategy. Moreover, unlike most previous frameworks that only match
one prompt to one image, SwapPrompt adopts a prompt swapped prediction mechanism to establish
self-supervised representation learning in prompt adaptation with the goal of assigning similar classes
for two different augmentations of the same image.
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3.2.1 Exponential Moving Average Prompt

SwapPrompt’s goal is to learn an online prompt to which can be used on the test dataset. As
described previously, SwapPrompt has a target prompt tt to guide the update of online prompt to.
The main motivation behind this design is: from a given target prompt tt, we can train a new and
potentially improved prompt to through predicting the representation knowledge generated by the tt.
By repeatedly using subsequent online prompts as new target prompts for further training, we can
create a sequence of prompts that improves in quality over time. Practically, SwapPrompt uses a
slowly moving exponential average of the online prompt as the target prompt, and we perform the
following update after each training step:

tt = ϵtt + (1− ϵ)to, (3)
where ϵ ∈ [0, 1] is the decay rate of target prompt.

3.2.2 Prompt Swapped Prediction

In the field of self-supervised learning, cross-view prediction has been widely used in many existing
works. These methods usually cast the prediction problem into a representation space, and then learn
representations by predicting different augmented views generated from the same image. It is assumed
that the different augmented views of an image should be relatively close in the representation space.

Among these methods, SwAV [20] proposes a different approach. Instead of directly enforcing
consistent mapping between the image features in the representation space, SwAV clusters a set of
image features, uses the cluster centroids as prototypes, and matches different augmentations of an
image to these prototypes to compute its cluster assignment. By comparing their cluster assignments
rather than their features, SwAV performs contrastive learning across multiple image views.

Inspired by SwAV, we assign an image’s augmented view with prototypes to obtain its soft class
assignment and predict this class assignment with another augmented view of the same image. This
approach is well-suited for CLIP, as it has natural prototypes: text features outputted by the text
encoder. Specifically, for all classes Y ∈ {1, 2, . . . , C} in the test dataset Dtest, target prompt tt
will form C inputs {tt; c}Cc=1 for text encoder, which will generate C text features wt

c = g({tt;c}) of
different classes. Due to the supervised contrastive pre-training on large-scale image-text pairs, the
text features generated by the CLIP have high similarity with the image features of the same class and
low similarity with the text features of different classes. Therefore, these C text features {wt

c}Cc=1
can serve as a set of high-quality prototypes.

For an image xi, we use two different data augmentation methods A1 and A2 to obtain two augmented
views A1(xi) and A2(xi). The image features generated by the image encoder are z1i = f(A1(xi))
and z2i = f(A2(xi)), respectively. By applying Eq. 1 on prototypes {wt

c}Cc=1, we can acquire the
corresponding class assignments of two augmented image views:

q1
i = {pt(c|A1(xi))}Cc=1 and q2

i = {pt(c|A2(xi))}Cc=1, (4)
where the pt(c|A1(xi)) and pt(c|A2(xi)) can be expressed as:

pt(c|A1(xi)) =
exp(sim(z1i ,wt

c)/τ)∑C
j=1 exp(sim(z1i ,wt

j)/τ)
and pt(c|A2(xi)) =

exp(sim(z2i ,wt
c)/τ)∑C

j=1 exp(sim(z2i ,wt
j)/τ)

.

(5)

Similarly, the predictions generated by online prompt are defined as:

p1
i = {po(c|A1(xi))}Cc=1 and p2

i = {po(c|A2(xi))}Cc=1. (6)

We establish the prompt swapped prediction loss function for image xi as:
Lswap(xi) = ℓ(p1

i ,q2
i ) + ℓ(p2

i ,q1
i ), (7)

where ℓ is the function that measures the difference between the predictions and the class assignments.
In this paper, we utilize the cross-entropy loss function. i.e.,

ℓ(p1
i ,q2

i ) = −
C∑

c=1

pt(c|A2(xi)) log po(c|A1(xi)). (8)

The online prompt to will be optimized by Eq. 7 while the target prompt tt will not be updated by
this loss function.
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3.2.3 Prompt Optimization by Pseudo Label

In addition to utilizing self-supervised representation learning methods to optimize prompts, we also
employ a set of labeled data, similar to CoOp, to optimize online prompts. However, unlike CoOp
where the labels are available for target domain, the test data is unlabeled in the test-time scenario.
Therefore, we first perform inference on the test data with hand-crafted prompts (e.g., “a photo of a
[CLS]”), obtaining their pseudo-labels Ŷtest = {ŷi}Ni=1, and then employ Eq. 6 and cross-entropy
loss as:

Lpseudo(xi) = ℓce(p1
i , ŷi) + ℓce(p2

i , ŷi). (9)

It should be noted that the pseudo-labels obtained through this approach may contain noise. Therefore,
we cannot apply Eq. 9 to all test data. The process of data selection is discussed in Section 3.3.

3.3 Algorithm Workflow

In this subsection, we illustrate the overall prompt adaptation process of SwapPrompt and the training
method when facing online test samples.

Before training with Eq. 7, Eq. 9 and pseudo labels Ŷtest, we need to perform data selection to
filter out potential noisy pseudo labels. Specifically, we first employ the zero-shot CLIP and a
hand-crafted prompt to obtain pseudo labels and classification confidences for the test data. Then,
for each class, we only select the top K test data with the highest confidence. These selected test
data form the adaptation set Dadapt, which is a subset of Dtest. For all xi ∈ Dadapt, given trade-off
hyper-parameters α and β, the following loss function will be used to do prompt adaptation:

Ladapt(xi) = αLswap(xi) + βLpseudo(xi). (10)

When target images arrive in a flow of mini-batches, i.e., the test data is online, we cannot sort the
confidences of the entire test dataset. However, we can still perform confidence-based sorting on
mini-batches to select the top k (k < K) test data with the highest confidence, while keeping the rest
of the training process unchanged. When new mini-batch test data arrives, the available test data are
sorted by confidence again to obtain new Dadapt for prompt adaptation.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate the proposed SwapPrompt over fourteen datasets, including ImageNet [25]
and its four variants: ImageNet-V2 [26], ImageNet-A [27], ImageNet-R [28] and ImageNet-
Sketch [29], and nine other publicly available image classification datasets used in CLIP: Cal-
tech101 [30], DTD [31], Flowers102 [32], Oxford-Pets [33], UCF101 [34], StanfordCars [35],
Food101 [36], EuroSAT [37] and SUN397 [38]. These datasets encompass a diverse range of visual
classification tasks, including general objects, fine-grained categories, and even texture classification,
forming a comprehensive benchmark. We only use the test data to do adaptation and also evaluate
models with them.

Baselines. We compare the performance of SwapPrompt with the state-of-the-art methods. In
addition to zero-shot CLIP [16], we also include TPT [19], a test-time prompt tuning method that
minimizes the marginal entropy of test data; UPL [24], an unsupervised prompt learning approach
and we make some modifications on it to suit the test-time setting; CoOp [17], a supervised few-shot
prompt tuning method. We use some labeled data from the same domain as the test data during
training this baseline, in order to use it as an upper bound performance of test-time prompt adaptation.

Implementation Details. In all experiments, we use the publicly available CLIP model with the
ResNet-50 [39] visual encoder as the backbone model. Unless otherwise specified, the prompt is
initialized randomly with 4 learnable tokens in SwapPrompt, UPL and CoOp. As for TPT, the prompt
is initialized as the default one “a photo of a”. When comparing the performance with baselines, we
select the top 16 test data with the highest confidence to train SwapPrompt and UPL. For SwapPrompt,
the decay rate of target prompt is 0.99, both α and β are 1. We use the same image augmentation
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Table 1: Comparison of test-time adaptation methods on 14 datasets. ∆ denotes SwapPrompt’s gain
over the better one of UPL and TPT. ‘+ Online’ denotes SwapPrompt with online test data.
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CoOp [17] 88.76 54.62 83.98 87.44 66.71 61.83 73.79 61.68 64.33 61.23 55.29 23.41 56.96 35.64

CLIP [16] 85.13 42.16 65.40 83.05 61.15 55.65 74.23 37.60 58.55 58.18 51.36 21.69 55.98 33.33
UPL [24] 86.37 45.04 67.11 88.53 63.63 58.46 74.38 41.40 61.07 61.19 52.07 23.59 57.09 36.40
TPT [19] 87.22 42.17 65.42 84.60 61.18 58.49 74.88 43.82 61.46 60.74 54.35 26.24 58.72 35.02

SwapPrompt 89.90 47.34 70.22 89.14 65.66 59.60 75.08 46.64 63.93 61.80 53.94 24.46 60.88 38.21
∆ +2.68 +2.30 +3.11 +0.61 +2.03 +1.11 +0.20 +2.82 +2.47 +0.61 -0.41 -1.78 +2.16 +1.81
+ Online 89.69 46.40 68.12 88.97 64.52 58.88 75.66 42.45 63.36 61.41 52.93 24.42 60.25 38.13

method as SimCLR [40] to generate two different augmented images for an image. We optimize the
prompts for 50 epochs with SGD optimizer and a cosine decay learning rate scheduler, the initial
learning rate is 0.002. The batch size of images is 32 on all datasets.

We do all experiments on a workstation with an RTX 3090 GPU, a 3.5-GHZ Intel Core i9-11900K
CPU and 64GB of RAM.

4.2 Performance Comparison

First, we compare our SwapPrompt with the baseline methods over fourteen benchmark datasets.
The classification accuracy is listed in Table 1. It should be noted that CoOp is trained with labeled
target domain data, and we use 4-shot data per category. From the results, it can be observed that
our proposed SwapPrompt provides superior test-time adaptation performance than baselines on
most datasets. We not only outperform the better baseline in UPL and TPT, but also very close even
outperform CoOp on many datasets (e.g., Caltech101, Oxford-Pets, Food101, ImageNet, ImageNet-R
and ImageNet-Sketch). Figure 3(a) shows that the average accuracy over 14 datasets for all baselines.
SwapPrompt outperforms TPT and UPL by 2.31% and 2.17% accuracy, respectively.

Strong performance in online test-time adaptation setting. We also add results of SwapPrompt
with online test data. Under this setting, we received mini-batches which only have a small part of
data. For example, in DTD, a mini-batch has only 64 test data samples, less than 4% of the entire
dataset. On most datasets, there is a slight decrease in accuracy because we cannot hold enough test
data at the beginning of training to learn an appropriate prompt to classify the test data that come
first. However, online SwapPrompt still outperforms UPL and TPT on most of datasets, as well as
the average accuracy on all datasets in Figure 3(a). It should be noted that on Food101, the accuracy
of online SwapPrompt is better. It is because the prompt in the intermediate stage is better than the
one in the final stage. This could be attributed to the presence of high-confidence noise in pseudo
labels during the final stage, which is discussed in section 4.3.

4.3 Ablation Study

In this subsection, detailed analyses are shown to help understand the superiority of our SwapPrompt
method, including the trade-off between accuracy and efficiency, analysis on objective functions
Lswap and Lpseudo, the decay rate ϵ of target prompt, the effect of K value in data selection, and the
effect of prompt’s context length and initialization.

The Trade-Off between Accuracy and Efficiency. The main factor which affects the efficiency of
SwapPrompt is the prompt adaptation epoch. Figure 3(b) shows the relationship between the epoch
and the average acuuracy of SwapPrompt on 5 datasets (Caltech101, DTD, Flowers102, Oxford-Pets
and UCF101). It can be seen that SwapPrompt’s accuracy increases quickly in the first 3 epoch, then
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Figure 3: (a) The average accuracy on all 14 datasets, CoOp is compared as an upper bound. (b) The
average accuracy of SwapPrompt on 5 datasets with different adpatation epochs, the accuracy of UPL
and TPT is the final epoch average accuracy.

reaches its highest value around epoch 20 and stabilizes there. Thus, when the test time is limited,
SwapPrompt can do a trade-off between the accuracy and adaptation epochs, e.g., only train 3 epochs
for a quick inference. Noteworthy, SwapPrompt outperforms the final epoch accuracy of UPL at only
epoch 2, and the accuracy of TPT at epoch 1.

Analysis on Objective Functions. We evaluate the two objective functions Lswap and Lpseudo

of SwapPrompt on 5 datasets. Results in Table 2 gives a clear ablation study to demonstrate the
effectiveness of our proposed objective functions. First, We use the UPL as the basic baseline, which
has the confident test data selection and objective function Lpseudo. Then, UPL+AUG means that only
adds image augmentation to the baseline, so that the Lpseudo applies on 2 augmented image views. It
can be observed that the accuracy has improved on all datasets, which demonstrates the benefits of
data augmentation. Compare with SwapPrompt, UPL+Aug do not has the Lswap function, and the
performance is poor than SwapPrompt. Finally, the case of using all two objective functions, i.e., the
complete SwapPrompt, has the best performance, which demonstrates that the loss function Lswap for
the swapped prediction mechanism can further improve prompt.

Table 2: Analysis of objective functions.
ImageNet Caltech101 DTD Flowers102 Oxford-Pets UCF101 Average

UPL [24] 61.19 86.37 45.04 67.11 88.53 63.63 68.65
UPL+AUG 61.30 87.75 46.04 68.43 87.67 65.15 69.39
SwapPrompt 61.80 89.90 47.34 70.22 89.14 65.66 70.68

It should be noted that we do not include the result of using only Lswap. Because considering the
inherent generalization ability of CLIP, it is unfair to directly compare the performance of only
Lswap with Lpseudo. The standalone application of Lswap does not sufficiently leverage the rich pre-
trained knowledge embedded within CLIP. This can be seen as disregarding the pseudo-labels, which
encapsulate the most pre-trained knowledge. Our proposed method, SwapPrompt, combines Lswap

and Lpseudo resulting in improved performance compared to using Lpseudo alone.

Analysis on the Decay Rate of Target Prompt. SwapPrompt updates the target prompt by a slow-
moving average of online prompt, thus the target prompt represents a delay and more stable version
of the online prompt, a higher decay rate indicates the retention of a greater amount of historical
information. As is shown in Eq. 3, when the decay rate ϵ is 0, the target prompt is instantaneously
updated to the online prompt at each step. It should be noted that using only one online prompt on
Lswap loss (i.e., Lswap(xi) = ℓ(p1

i ,q2
i ) + ℓ(p2

i ,q1
i )) cannot work because the gradient will collapse,

the alternative is to maintain a target prompt that remains identical to the online prompt. (i.e., ϵ = 0).
When the decay rate ϵ is 1, the target prompt is never updated, and remains at a constant value
corresponding to its initialization. In this case we initialize the target prompt as “a photo of a”, thus it
still has basic zero-shot generalization ability. There is a trade-off between updating the targets too
often and updating them too slowly.
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Table 3 shows the results of different decay rates on 6 datasets. When ϵ = 0 and ϵ = 1, the
performance is poor than the other three eclectic values. All values of the decay rate between 0.9
and 0.999 yield have its best applicable datasets and 0.99 decay rate has a highest average accuracy.
Besides that, compared with maintaining a fixed target prompt (ϵ = 1), the EMA strategy can increase
the average accuracy by 1.35%.

Table 3: Results for different decay rates ϵ.

ϵ value ImageNet Caltech101 DTD Flowers102 Oxford-Pets UCF101 Average

1 60.87 88.49 45.21 68.57 87.01 65.85 69.33
0.999 61.88 89.71 47.58 68.70 88.74 66.93 70.59
0.99 61.80 89.90 47.34 70.22 89.14 65.66 70.68
0.9 61.76 87.99 47.64 70.65 87.47 65.00 70.09
0 61.29 87.38 47.22 69.63 87.71 64.68 69.65

Analysis on the swapped prediction mechanism. Inspiring from the idea of self-supervised
contrastive learning, SwapPrompt uses both image augmentation and EMA update strategies on target
prompt. Both methods are effective and indispensable, and the combination of the two methods
naturally leads to "swap prediction" (i.e., Lswap).

There are two other loss functions which are similar to Lswap: L1(xi) = ℓ(p1
i ,p2

i ) + ℓ(q2
i ,q1

i ) and
L2(xi) = ℓ(p1

i ,q1
i )+ℓ(p2

i ,q2
i ). However, compared with Lswap, both L1 and L2 lost one of advantage.

For L1, the two prompts will adapt independently without any interaction so the online prompt cannot
be updated under the guidance of target prompt. The advantage of historical information will be
lost. For L2, the contrastive phase is removed due to the lack of the approaching process between
two augmented images. The advantage of image augmentation will diminish. Table 4 provides the
performance of using those three loss functions on 5 datasets. The experimental setting is the same as
Table 1 except for the part of Lswap. The results indicate that Lswap outperforms L1 and L2.

Table 4: Results for using different loss function.

Caltech101 DTD Flowers102 Oxford-Pets UCF101 Average

L1 87.38 47.22 69.63 87.71 64.68 71.32
L2 88.45 46.69 69.28 87.30 64.46 71.24
Lswap 89.90 47.34 70.22 89.14 65.66 72.45

Analysis on the Top-K Confident Data Selection. We have a data selection before the prompt
adaptation to filter out potential noise pseudo labels. Only top K confident test data will be used
in test-time adaptation. Too much data not only will decrease model performance, but also slightly
increased training time. Table 5 provides the performance of SwapPrompt with different K values
on 5 datasets, the result without data selection is also included. In general, larger values of K show
better performance, the highest accuracy across all 5 datasets is achieved when K is set to 8 or 16,
with K = 16 having the best average accuracy. On the other hand, the performance using the entire
test data does not surpass the performance when data selection is employed. Data selection can
increase the average accuracy by 2.5%. This indicates that the negative impact of noisy pseudo labels
outweighs the positive effects.

Analysis on the Context Length and Initialization of Prompt. To explore whether our Swap-
Prompt works equally well on prompts in different context lengths and initialization, we repeat
experiments on 5 datasets by varying the context length from 4 to 8 to 16, and initializing with three
different type.

The results of different context lengths are shown in Table 6(a), which indicates that having more
context tokens sometimes leads to slightly decrease on accuracy. This is probably due to shorter
prompt learned less overfitting from selected samples. SwapPrompt only uses a part of test data to
do adaptation, too much parameters in prompts may cause overfitting on those data. Nevertheless,
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Table 5: Results for different K in data selection. ‘None’ denotes no data selection.

K value Caltech101 DTD Flowers102 Oxford-Pets UCF101 Average

1 87.51 41.13 65.04 87.83 62.20 68.74
2 88.72 43.50 64.66 87.42 62.97 69.45
4 89.49 44.15 66.63 88.98 62.76 70.40
8 90.14 47.70 66.30 88.43 63.96 71.31
16 89.90 47.34 70.22 89.14 65.66 72.45
None 88.03 43.97 68.41 86.68 62.64 69.95

SwapPrompt still maintains advanced performance on different context lengths. In Table 6(b), the
three different initialization are hand-craft: “a photo of a [CLS]”, Pre-ImageNet: the prompt which is
trained on 16-shot ImageNet with CoOp, and random initialization. We find that different initialization
only slightly affects the final accuracy. Because of the effective adaptation on prompt, SwapPrompt
demonstrates robust performance, which indicates that our method does not rely on any prior source
domain prompt.

Table 6: Analysis on the context length and initialization of prompt.

(a) Results for different context lengths.
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4 89.90 47.34 70.22 89.14 65.66 72.45
8 88.24 47.46 70.77 88.79 65.62 72.18
16 87.71 46.39 70.12 88.43 66.48 71.83

(b) Results for different initialization.
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Hand-craft 89.53 46.92 70.32 88.92 65.98 72.33
Pre-ImagNet 89.65 47.15 70.44 89.03 65.34 72.36
Random 89.90 47.34 70.22 89.14 65.66 72.45

Analysis on the sensitivity of hyper-parameters α and β. To explore the sensitivity of Swap-
Prompt about hyper-parameters α and β, we conduct experiments with different values of α and β
on 5 datasets, other experimental settings are the same as Table 1. The results are shown in Table 7.
It can be seen that SwapPrompt is not sensitive to the choice of hyperparameters α and β in most
cases. Results of SwapPrompt with different hyper-parameters settings in Table 7 still outperforms
baselines in Table 1.

Table 7: Analysis on the sensitivity of hyper-parameters α and β.

Caltech101 DTD Flowers102 Oxford-Pets UCF101 Average

α = 0.6, β = 1.4 88.56 46.80 70.04 88.24 65.21 71.77
α = 1.0, β = 1.0 89.90 47.34 70.22 89.14 65.66 72.45
α = 1.4, β = 0.6 89.45 47.10 70.32 87.97 65.77 72.12

5 Conclusion

In this paper, we have investigated a novel test-time prompt adaptation method, SwapPrompt, to
learn the prompt adapted to the test domain for pre-trained vision-language models. Specifically, we
maintain an online prompt and an EMA updated target prompt which interact and learn from each
other. A swapped prediction mechanism is designed to train the online prompt, enabling it to predict
the target prompt’s class assignment of the same image under a different augmented view. Without
any other requirement, SwapPrompt can be easily deployed on the test-time of vision-language
models. Extensive empirical experiments have been conducted over various datasets to verify the
effectiveness and superior performance of SwapPrompt.
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