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Abstract

This paper outlines an end-to-end optimized lossy image compression framework
using diffusion generative models. The approach relies on the transform coding
paradigm, where an image is mapped into a latent space for entropy coding and,
from there, mapped back to the data space for reconstruction. In contrast to VAE-
based neural compression, where the (mean) decoder is a deterministic neural
network, our decoder is a conditional diffusion model. Our approach thus intro-
duces an additional “content” latent variable on which the reverse diffusion process
is conditioned and uses this variable to store information about the image. The
remaining “texture” variables characterizing the diffusion process are synthesized
at decoding time. We show that the model’s performance can be tuned toward per-
ceptual metrics of interest. Our extensive experiments involving multiple datasets
and image quality assessment metrics show that our approach yields stronger re-
ported FID scores than the GAN-based model, while also yielding competitive
performance with VAE-based models in several distortion metrics. Furthermore,
training the diffusion with X -parameterization enables high-quality reconstructions
in only a handful of decoding steps, greatly affecting the model’s practicality. Our
code is available at: https://github.com/buggyyang/CDC_compression

1 Introduction

Figure 1: Overview of our proposed compression
architecture. A discrete “content” latent variable
ẑ contains information about the image. Upon de-
coding, this variable is used for conditioning a de-
noising diffusion process. The involved "texture"
variables x̄1:N are synthesized on the fly.

With visual media vastly dominating consumer
internet traffic, developing new efficient codecs
for images and videos has become evermore
crucial (Cisco, 2017). The past few years have
shown considerable progress in deep learning-
based image codecs that have outperformed clas-
sical codecs in terms of the inherent tradeoff
between rate (expected file size) and distortion
(quality loss) (Ballé et al., 2018; Minnen et al.,
2018; Minnen & Singh, 2020; Zhu et al., 2021;
Yang et al., 2020; Cheng et al., 2020; Yang et al.,
2023). Recent research promises even more
compression gains upon optimizing for percep-
tual quality, i.e., increasing the tolerance for
imperceivable distortion for the benefit of lower
rates (Blau & Michaeli, 2019). For example, adding adversarial losses (Agustsson et al., 2019;
Mentzer et al., 2020) showed good perceptual quality at low bitrates.

Most state-of-the-art learned codecs currently rely on transform coding and involve hierarchical
“compressive” variational autoencoders (Ballé et al., 2018; Minnen et al., 2018; Cheng et al., 2020).
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These models simultaneously transform the data into a lower dimensional latent space and use
a learned prior model for entropy-coding the latent representations into short bit strings. Using
either Gaussian or Laplacian decoders, these models directly optimize for low MSE/MAE distortion
performance. Given the increasing focus on perceptual performance over distortion, and the fact
that VAEs suffer from mode averaging behavior inducing blurriness (Zhao et al., 2017) suggest
expected performance gains when replacing the Gaussian decoder with a more expressive conditional
generative model.

This paper proposes to relax the typical requirement of Gaussian (or Laplacian) decoders in compres-
sion setups and presents a more expressive generative model instead: a conditional diffusion model.
Diffusion models have achieved remarkable results on high-quality image generation tasks (Ho et al.,
2020; Song et al., 2021b,a). By hybridizing hierarchical compressive VAEs (Ballé et al., 2018) with
conditional diffusion models, we create a novel deep generative model with promising properties for
perceptual image compression. This approach is related to but distinct from the recently proposed
Diff-AEs (Preechakul et al., 2022), which are neither variational (as needed for entropy coding) nor
tailored to the demands of image compression.

We evaluate our new compression model on four datasets and investigate a total of 16 different
metrics, ranging from distortion metrics, perceptual reference metrics, and no-reference perceptual
metrics. We find that the approach yields the best reported performance in FID and is otherwise
comparable with the best available compression models while showing more consistent behavior
across the different tasks. We also show that making the decoder more stochastic vs. deterministic
offers a new possibility to steer the tradeoff between distortion and perceptual quality (Blau &
Michaeli, 2019). Crucially, we find that a certain parameterization–X -prediction (Salimans & Ho,
2022)–can yield high-quality reconstructions in only a handfull of diffusion steps.

In sum, our contributions are as follows:

• We propose a novel transform-coding-based lossy compression scheme using diffusion
models. The approach uses an encoder to map images onto a contextual latent variable; this
latent variable is then fed as context into a diffusion model for reconstructing the data. The
approach can be modified to enhance several perceptual metrics of interest.

• We derive our model’s loss function from a variational upper bound to the diffusion model’s
implicit rate-distortion function. The resulting distortion term is distinct from traditional
VAEs in capturing a richer decoding distribution. Moreover, it achieves high-quality recon-
structions in only a handful of denoising steps.

• We provide substantial empirical evidence that a variant of our approach is, in many cases,
better than the GAN-based models in terms of perceptual quality, such as FID. Our base
model also shows comparable rate-distortion performance with MSE-optimized baselines.
To this end, we considered four test sets, three baseline models (Wang et al., 2022; Mentzer
et al., 2020; Cheng et al., 2020), and up to sixteen image quality assessment metrics.

2 Related Work

Transform-coding Lossy Image Compression The widely-established classical codecs such as
JPEG (Wallace, 1991), BPG (Bellard, 2018), WEBP (Google, 2022) have recently been challenged
by end-to-end learned codecs (Ballé et al., 2018; Minnen et al., 2018; Minnen & Singh, 2020; Yang
et al., 2020; Cheng et al., 2020; Zhu et al., 2021; Wang et al., 2022; He et al., 2022a). These methods
typically draw on the non-linear transform coding paradigm as realized by hierarchical VAEs. Usually,
neural codecs are optimized to simultaneously minimize rate and distortion metrics, such as mean
squared error or structural similarity.

In contrast to neural compression approaches targeting traditional metrics, some recent works have
explored compression models to enhance realism (Agustsson et al., 2019; Mentzer et al., 2020;
Tschannen et al., 2018; Agustsson et al., 2022; He et al., 2022b). A theoretical background for these
approaches was provided by Blau & Michaeli (2019); Zhang et al. (2021); in particular Blau &
Michaeli (2019) discussed the existence of a fundamental tradeoff between distortion and realism,
i.e., both goals can not be achieved at the same time in a given architecture. To realize this tradeoff
in compression, Mentzer et al. (2020); Agustsson et al. (2022) optimized the autoencoder-based
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compression model with an additional adversarial loss, while GAN training in this context can be
unstable and requires a variety of design choices.

Diffusion Models Probabilistic diffusion models showed impressive performance on image genera-
tion tasks, with perceptual qualities comparable to those of highly-tuned GANs while maintaining
stable training (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b; Song & Ermon, 2019;
Kingma et al., 2021; Yang et al., 2022; Ho et al., 2022; Saharia et al., 2022; Preechakul et al., 2022).
Popular recent diffusion models include Dall-E2 (Ramesh et al., 2022) and Stable-Diffusion (Rom-
bach et al., 2022). Some works also proposed diffusion models for compression. Hoogeboom et al.
(2021) evaluated an autoregressive diffusion model (ADM) on a lossless compression task. Besides
the difference between lossy and lossless compression, the model is only tested on low-resolution
CIFAR-10 (Krizhevsky et al., 2009) dataset. Theis et al. (2022) used a generic unconditional diffusion
model to lossily communicate Gaussian samples. Their method leverages “reverse channel coding”,
which is orthogonal to the usual transform-coding paradigm. While it’s under active research, there
is currently no practical method that can reduce its extensive computational cost without restrictive
limitation (Li & El Gamal, 2018; Flamich et al., 2020, 2022; Theis & Ahmed, 2022).

3 Method

3.1 Background

Denoising diffusion models are hierarchical latent variable models that generate data by a sequence
of iterative stochastic denoising steps (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;
Song & Ermon, 2019). These models describe a joint distribution over data x0 and latent variables
x1:N such that pθ(x0) =

∫
pθ(x0:N )dx1:N . While a diffusion process (denoted by q) incrementally

destroys structure, its reverse process pθ generates structure. Both processes involve Markovian
dynamics between a sequence of transitional steps (denoted by n), where

q(xn|xn−1) = N (xn|
√
1− βnxn−1, βnI);

pθ(xn−1|xn) = N (xn−1|Mθ(xn, n), βnI).
(1)

The variance schedule βn ∈ (0, 1) can be either fixed or learned; besides it, the diffusion process is
parameter-free. The denoising process predicts the posterior mean from the diffusion process and is
parameterized by a neural network Mθ(xn, n).

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) showed a tractable objective
function for training the reverse process. A simplified version of their objective resulted in the
following noise parameterization, where one seeks to predict the noise ϵ used to perturb a particular
image x0 from the noisy image xn at noise level n:

L(θ,x0) = En,ϵ||ϵ− ϵθ(xn(x0), n)||2. (2)

Above, n ∼ Unif{1, ..., N}, ϵ ∼ N (0, I), xn(x0) =
√
αnx0+

√
1− αnϵ, and αn =

∏n
i=1(1− βi).

At test time, data can be generated by ancestral sampling using Langevin dynamics. Alternatively,
Song et al. (2021a) proposed the Denoising Diffusion Implicit Model (DDIM) that follows a de-
terministic generation procedure after an initial stochastic draw from the prior. Our paper uses the
DDIM scheme at test time, see Section 3.2 for details.

Neural image compression seeks to outperform traditional image codecs by machine-learned
models. Our approach draws on the transform-coding-based neural image compression approach
(Theis et al., 2017; Ballé et al., 2018; Minnen et al., 2018), where the data are non-linearly transformed
into a latent space, and subsequently discretized and entropy-coded under a learned "prior". The
approach shows a strong formal resemblance to VAEs and shall be reviewed in this terminology.

Let z be a continuous latent variable and ẑ = ⌊z⌉ the corresponding rounded, integer vector. The
VAE-based compression approach consists of a stochastic encoder e(z|x), a prior p(z), and a decoder
p(x|z). The model is trained using the negative modified ELBO,

L(λ,x) = D + λR = Ez∼e(z|x)[− log p(x|z)− λ log p(z)]. (3)

The first term measures the average reconstruction of the data (distortion D, usually measured by
MSE), while the second term measures the costs of entropy coding the latent variables under the prior
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Algorithm 1 Training the model (left); Encoding/Decoding data x0 (right). X -prediction model.
Sample x0 ∼ dataset
repeat
n ∼ U(0, 1, 2, .., Ntrain)
ϵ ∼ N (0, I)
x̄n =

√
αnx0 +

√
1− αnϵ

ẑ = Encϕ(x0) + U(−0.5, 0.5)
x̄0 = Xθ(x̄n, n/Ntrain, ẑ)
LD = αn

1−αn
|x0 − x̄0|2

L = (1− ρ)LD + ρd(x̄0,x0)−λ log2 P (ẑ)

(θ, ϕ) = (θ, ϕ)− ε∇θ,ϕL (learning rate: ε)
until converge

Given Ntest
ẑ = ⌊Encϕ(x0)⌉
ẑ

P (ẑ)←−→ binary file (entropy code using P (ẑ))
x̄N = 0 (or xN ∼ N (0, γ2I) for stochastic
decoding)
for n=Ntest to 1 do

ϵθ =
xn−

√
αnXθ(xn(x0),z,

n
N )√

1−αn

x̄0 = Xθ(x̄n, n/Ntest, ẑ)
x̄n−1 =

√
αn−1x̄0 +

√
1− αn−1ϵθ

end for return x̄0

(bitrate R). The encoder e(z|x) = U(Encϕ(x) − 1
2 ,Encϕ(x) + 1

2 ) is a boxed-shaped distribution
that simulates rounding at training time through noise injection due to the reparameterization trick.
Note its differential entropy equals zero.

Once the VAE is trained, we en/decode data using the deterministic components as ẑ = ⌊Enc(x)⌉
and x̂ = Dec(ẑ). We convert the continuous p(z) into a discrete P (ẑ) using P (ẑ) = CDFp(ẑ +
0.5)− CDFp(ẑ− 0.5), where CDFp is the cumulative distribution function of p(z); see (Yang et al.,
2023) [Sec. 2.1.6] for details. The discrete prior is used for entropy coding ẑ (Ballé et al., 2018).

While VAE-based approaches have used simplistic (e.g., Gaussian) decoders, we show that can get
significantly better results when defining the decoder p(x|z) as a conditional diffusion model.

3.2 Conditional Diffusion Model for Compression

The basis of our compression approach is a new latent variable model: the diffusion variational
autoencoder. This model has a “semantic” latent variable z for encoding the image content, and a set
of “texture” variables x1:N describing residual information,

p(x0:N , z) = p(x0:N |z)p(z). (4)

As detailed below, the decoder will follow a denoising process conditioned on z. Drawing on methods
described in Section 3.1, we use a neural encoder e(z|x0) to encode the image. The prior p(z) is a
two-level hierarchical prior (commonly used in learned image compression) and is used for entropy
coding z after quantization (Ballé et al., 2018). Next, we discuss the novel decoder model.

Decoder and training objective We construct the conditional denoising diffusion model in a
similar way to the non-variational diffusion autoencoder of Preechakul et al. (2022); Wang et al.
(2023). In analogy to Eq. 1, we introduce a conditional denoising diffusion process for decoding the
latent z,

pθ(x0:T |z) = p(xN )
∏

pθ(xn−1|xn, z) = p(xN )
∏
N (xn−1|Mθ(xn, z, n), βnI). (5)

Since the texture latent variables x1:N are not compressed but synthesized at decoding time, the
optimal encoder and prior should be learned jointly with the decoder’s marginal likelihood p(x0|z) =∫
p(x0:N |z)dx1:N while targeting a certain tradeoff between rate and distortion specified by a

Lagrange parameter λ. We can upper-bound this rate-distortion (R-D) objective by invoking Jensen’s
inequality,

Ez∼e(z|x0)[− log p(x0|z)− λ log p(z)] ≤ Ez∼e(z|x0) [Lupper(x0|z)− λ log p(z)] ,

where we introduced Lupper(x0|z) = −Ex1:N∼q(x1:N |x0)

[
log p(x0:N |z)

q(x1:N |x0)

]
as the variational upper

bound to the diffusion model’s negative data log likelihood (Ho et al., 2020). We realize that
Lupper(x0|z) corresponds to a novel image distortion metric induced by the conditional diffusion
model (in analogy to how a Gaussian decoder induces the MSE distortion). This term measures the
model’s ability to reconstruct the image based on z. In contrast, − log p(z) measures the number of
bits needed to compress z under the prior. As in most other works on neural image compression (Ballé
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et al., 2018; Minnen et al., 2018; Yang et al., 2023), we use a box-shaped stochastic encoder e(z|x0)
that simulates rounding by noise injection at training time.

In analogy to Eq. 2, we simplify the training objective by using the denoising score matching loss,

Lupper(x0|z) ≈ Ex0,n,ϵ||ϵ− ϵθ(xn, z,
n

Ntrain
)||2 = Ex0,n,ϵ

αn

1− αn
||x0 −Xθ(xn, z,

n

Ntrain
)||2 (6)

The noise level n and αn are defined in Eq. 2. Instead of conditioning on n, we condition the
model on the pseudo-continuous variable n

Ntrain
which offers additional flexibility in choosing the

number of denoising steps for decoding (e.g., we can use a Ntest smaller than Ntrain). The right-
hand-side equation describes an alternative form of the loss function, where Xθ directly learns to
reconstruct x0 instead of ϵ (Salimans & Ho, 2022). We can easily derive the equivalence with
ϵθ(xn, z,

n
N ) =

xn−
√
αnXθ(xn,z,

n
N )√

1−αn
.

Decoding process Once the model is trained, we entropy-decode z using the prior p(z) and
conditionally decode the image x0 using ancestral sampling. We consider two decoding schemes: a
stochastic one with xN ∼ N (0, γ2I) (where γ > 0) and a deterministic version with xN = 0 (or
γ = 0), both following the DDIM sampling method:

xn−1 =
√
αn−1Xθ(xn, z,

n
N ) +

√
1− αn−1ϵθ(xn, z,

n
N ) (7)

Since the variables x1:N are not stored but generated at test time, these “texture” variables can result
in variable reconstructions upon stochastic decoding (see Figure 5 for decoding with different γ).
Algorithm 1 summarizes training and encoding/decoding.

Fast decoding usingX -prediction In most applications of diffusion models, the iterative generative
process is a major roadblock towards fast generation. Although various methods have been proposed
to reduce the number of iterations, they often require additional post-processing methods, such as
progress distillation (Salimans & Ho, 2022) and parallel denoising (Zheng et al., 2022).

Surprisingly, in our use case of diffusion models, we found that the X -prediction model with only
a handfull of decoding steps achieves comparable compression performance to the ϵ-model with
hundreds of steps, without the need of any post-processing. This can be explained by closely
inspecting X -prediction objective from Eq. 6 that almost looks like an autoencoder loss, with the
modification that n and xn are given as additional inputs. When n is large, xn looks like pure noise
and doesn’t contain much information about x0; in this case, X will ignore this input and reconstruct
the data based on the content latent variable z. In contrast, if n is small, xn will closely resemble x0

and hence carry more information than z to reconstruct the image. This is to say that our diffusion
objective inherits the properties of an autoencoder to reconstruct the data in a single iteration; however,
successive decoding allows the model to refine this estimate and arrive at a reconstruction closer to
the data manifold, with beneficial effects for perceptual properties.

Optional Perceptual Loss While Eq. 6 already describes a viable loss function for our conditional
diffusion compression model, we can influence the perceptual quality of the compressed images by
introducing additional loss functions similar to (Mentzer et al., 2020).

First, we note that the decoded data point can be understood as a function of the low-level latent
xn, the latent code z, and the iteration n, such that x̄0 = Xθ(xn, z, n/N) or xn−

√
1−αnϵθ(xn,z,n/N)√

αn
.

When minimizing a perceptual metric d(·, ·), we can therefore add a new term to the loss:

Lp = Eϵ,n,z∼e(z|x0)[d(x̄0,x0)] and Lc = Ez∼e(z|x0)[Lupper(x0|z)−
λ

1− ρ
log p(z)] (8)

L = ρLp + (1− ρ)Lc. (9)
This loss term is weighted by an additional Lagrange multiplier ρ ∈ [0, 1), resulting in a three-way
tradeoff between rate, distortion, and perceptual quality (Yang et al., 2023).

We stress that different variations of perceptual losses for compression have been proposed (Yang
et al., 2023). While this paper uses the widely-adopted LPIPS loss (Zhang et al., 2018), other
approaches add an adversarial term that seek to make the reconstructions indistinguishable from
reconstructed images. In this setup, Blau & Michaeli (2019) have proven mathematically that it is
impossible to simultaneously obtain abitrarily good perceptual qualities and low distortions. In this
paper, we observe a similar fundamental tradeoff between perception and distortion.
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Figure 2: Tradeoffs between bitrate (x-axes, in bpp) and different metrics (y-axes) for various models
tested on DIV2K. We consider both perceptual (red frames) and distortion metrics (blue frames).
Arrows in the plot titles indicate whether high (↑) or low (↓) values indicate a better score. CDC
(proposed) in its basic version (deterministic, without finetuning to LPIPS) compares favorably in
distortion metrics, while CDC with stochastic decoding and added LPIPS losses performs favorably
on perceptual metrics.

4 Experiments

We conducted a large-scale compression evaluation involving multiple image quality metrics and test
datasets. Besides metrics measuring the traditional distortion scores, we also consider metrics that
can reflect perceptual quality. While some of these metrics are fixed, others are learned from data.
We will refer to our approach as “Conditional Diffusion Compression” (CDC).

Metrics We selected sixteen metrics for image quality evaluations, of which we present eight
most widely-used ones in the main paper and the remaining eight in the appendix. Specifically,
several more recently proposed learned metrics (Heusel et al., 2017; Zhang et al., 2018; Prashnani
et al., 2018; Ding et al., 2020) capture perceptual properties/realism better than other non-learned
methods; we denote these metrics as perceptual metrics and the others as distortion metrics. It is
important to note that when calculating FID, we follow Mentzer et al. (2020) by segmenting images
into non-overlapping patches of 256× 256 resolution. A brief introduction about the metrics is also
available in Appendix D.

Test Data To support our compression quality assessment, we consider the following datasets
with necessary preprocessing: 1. Kodak (Franzen, 2013): The dataset consists of 24 high-quality
images at 768 × 512 resolution. 2. Tecnick (Asuni & Giachetti, 2014): We use 100 natural
images with 600× 600 resolutions and then downsample these images to 512× 512 resolution. 3.
DIV2K (Agustsson & Timofte, 2017): The validation set of this dataset contains 100 high-quality
images. We resize the images with the shorter dimension being equal to 768px. Then, each image is
center-cropped to a 768× 768 squared shape. 4. COCO2017 (Lin et al., 2014): For this dataset, we
extract all test images with resolutions higher than 512× 512 and resize them to 384× 384 resolution
to remove compression artifacts. The resulting dataset consists of 2695 images.

Model Training Our model was trained using the well-established Vimeo-90k dataset (Xue et al.,
2019), which includes 90,000 video clips, each containing 7-frame sequences with a resolution of
448 × 256 pixels, curated from vimeo.com. For each iteration, we randomly selected one frame
from every video clip, which was then subject to random cropping to achieve a uniform resolution of
256× 256 pixels.
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(a) Ground Truth (b) CDC(ρ = 0.9) (bpp=0.205) (c) HiFiC (bpp=0.207)

(d) Ground Truth (e) CDC(ρ = 0.9) (bpp=0.398) (f) HiFiC (bpp=0.456)

Figure 3: Reconstructed Kodak images (cropped images, see full images in Appendix F). 1st row:
compared to HiFiC under similar bitrate, our model retains more details around the eyes of the parrot.
2nd row: our model still gets slightly better visual reconstruction than HiFiC while using less bitrate.

The training procedure initiated with a warm-up phase, setting λ to 10−6 and running the model for
approximately 700,000 steps. Subsequently, we increased λ to align with the desired bitrates and
continued training for an additional 1,000,000 steps until the model reached convergence.

For the ϵ-prediction model, our training utilized diffusion process comprising Ntrain = 20, 000
steps. Conversely, the number of diffusion steps for the X -prediction model is Ntrain = 8, 193. We
implemented a linear variance schedule to optimize the ϵ-prediction model, while a cosine schedule
was selected for theX -prediction model optimization. Throughout the training regime, we maintained
a batch size of 4. The Adam optimizer (Kingma & Ba, 2014) was employed to facilitate efficient
convergence. We commenced with an initial learning rate of lr = 5× 10−5, which was reduced by
20% after every 100,000 steps, ultimately clipped to a learning rate of lr = 2× 10−5.

4.1 Baseline Comparisons

Baselines and Model Variants We showed two variants of our X -prediction CDC model. Our first
proposed model is optimized in the presence of an additive perceptual reconstruction term at ρ = 0.9,
which is the largest ρ-value we chose. For this variant, we used xN ∼ N (0, γ2I) with γ = 0.8 to
reconstruct the images. The other proposed version is the base model, trained without the additional
perceptual term (ρ = 0) and using a deterministic decoding with xN = 0. As discussed below, this
base version performs better in terms of distortion metrics, while the stochastic and LPIPS-informed
version performs better in perceptual metrics.

We compare our method with several neural compression methods. The best reported perceptual
results were obtained by HiFiC (Mentzer et al., 2020). This model is optimized by an adversarial
network and employs additional perceptual and traditional distortion losses (LPIPS and MSE). In
terms of rate-distortion performance, two VAE models are selected: DGML (Cheng et al., 2020) and
NSC (Wang et al., 2022). Both are the improvements over the MSE-trained Mean-Scale Hyperprior
(MS-Hyper) architecture (Minnen et al., 2018). For a fair comparison, we did not use the content-
adaptive encoding for NSC model. For comparisons with classical codecs, we choose BPG as a
reference.

Figure 2 illustrates the tradeoff between bitrate and image quality using the DIV2K dataset. We
only employ 17 steps to decode the images with X -prediction model, which is much more efficient
than ϵ-prediction model that requires hundreds of steps to achieve comparable performance (see
Appendix H for results on other datasets and comparison with ϵ-prediction). In the figure, dashed
lines represent the baseline models, while solid lines depict our proposed CDC models. The eight
shown plots present two different types of metrics, distinguished by their respective frame colors.
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Figure 4: Compression performance with different numbers of decoding step. We use γ = 0
(deterministic decoding) to plot distortion curves and γ = 1 for perceptual quality curves.

• Perceptual Metrics (red). The red subplots depict perceptual metrics that assess the compression
for realism performance. Our findings reveal that our proposed CDC model (ρ = 0.9) achieves
the best performance in three out of four metrics. The closest competitor is the HiFiC baseline.
Notably, HiFiC demonstrates the highest score in LPIPS but exhibits suboptimal performance in all
other metrics.

• Distortion Metrics (blue). The blue subfigures present distortion-based metrics. We note that the
CDC model with ρ = 0 produces relatively favorable results in distortion metrics, excluding PSNR.
It shows on-par scores with the best baselines in FSIM, SSIM, and MS-SSIM scores, despite none
of the shown models being specifically optimized for these three metrics. In contrast, "classical"
neural compression models (Minnen et al., 2018; Wang et al., 2022; Cheng et al., 2020) directly
target MSE distortion by minimizing an ELBO objective with Gaussian decoders, resulting in
better PSNR scores.

Our proposed versions CDC (ρ=0) and CDC (ρ=0.9) show qualitative differences in perceptual and
distortion metrics. Setting ρ = 0 only optimizes a trade-off between bitrate and the diffusion loss;
compared to ρ = 0.9, this results in better performance in model-based distortion metrics (i.e., except
PSNR). Fig. 3 qualitatively shows that the resulting decoded images show fewer over-smoothing
artifacts than VAE-based codecs (Cheng et al., 2020). In contrast, CDC (ρ=0.9) performs the best in
perceptual metrics. These are often based on extracted neural network features, such as Inception
or VGG (Szegedy et al., 2016; Simonyan & Zisserman, 2014), and are more susceptible to image
realism. By varying ρ, we can hence control a three-way trade-off among distortion, perceptual
quality, and bitrate (See Appendix E for results with other ρ values).

Distortion vs. Perception Our experiments revealed the aforementioned distortion-perception
tradeoff in learned compression (Blau & Michaeli, 2019). In contrast to perceptual metrics, distortions
such as PSNR are very sensitive to imperceptible image translations (Wang et al., 2005). The benefit
of distortions is that they carry out a direct comparison between the reconstructed and original image,
albeit using a debatable metric (Dosovitskiy & Brox, 2016). The question of whether distortion or
perceptual quality is more relevant may ultimately not be easily solvable; yet it is plausible that most
compression gains can be expected when targeting a combination of perception/realism and distortion,
rather than distortion alone (Mentzer et al., 2020; Yang et al., 2023). Especially, our method’s strong
performance in terms of FID, one of the most widely-adopted perceptual evaluation schemes (Ho
et al., 2020; Song & Ermon, 2019; Mentzer et al., 2020; Brock et al., 2019; Song et al., 2021a,b),
seems promising in this regard.
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(a) Ground Truth (b) γ = 0
MS-SSIM=0.979
LPIPS=0.078

(c) γ = 0.6
MS-SSIM=0.977
LPIPS=0.064

(d) γ = 0.8
MS-SSIM=0.973
LPIPS=0.054

(e) γ = 1
MS-SSIM=0.964
LPIPS=0.058

Figure 5: Qualitative comparison of deterministic and stochastic decoding methods. Deterministic
decoding typically results in a smoother image reconstruction. By increasing the noise γ used upon
decoding the images, we observe more and more detail and rugged texture on the face of the sculpture.
(γ = 0.8) show the best agreement with the ground truth image. All the images share the same bpp.

4.2 Ablation Studies

Influence of decoding steps In the previous section, we demonstrated that the CDC X -prediction
model can achieve decent performance with a small number of decoding steps. In Figure 4, we
further investigate the compression performance of the X -prediction(ρ = 0) model using different
decoding steps. Our findings reveal that when employing stochastic decoding, the model consistently
produces better perceptual results as the number of decoding steps increases. However, in the case of
deterministic decoding, more decoding steps do not lead to a substantial improvement in distortion.

Our findings show that the X -prediction model can behave similarly to a Gaussian VAE decoder. In
this scenario, the latent code z becomes the primary determinant of the decoding outcome, enabling
the model to reconstruct the original image x0 with a single decoding step. However, even a single
decoding step has a tendency to reconstruct data closer to the data mode, only guaranteeing an
acceptable distortion score. To effectively improve perceptual quality, it is crucial to incorporate more
iterative decoding steps, particularly when utilizing stochastic decoding. Thus, we further explore the
impact of stochastic decoding through the following ablation experiment.

Stochastic Decoding By adjusting the noise level parameter, denoted as γ, during the image
decoding process, we can achieve different decoding outcomes. In order to investigate the impact
of the noise on the decoding results, we present Figure 5, which provides both quantitative and
qualitative evidence for 4 candidates γ values. Our findings indicate that larger values lead to
improved perceptual quality and higher distortion, as evidenced by lower LPIPS and lower MS-
SSIM. Values of γ greater than 0.8 not only increase distortion but also diminish perceptual quality.
In terms of finding the optimal balance, a γ value of 0.8 offers the lowest LPIPS and the best
qualitative outcomes as shown in Figure 5. From a qualitative standpoint, we notice that the noise
introduces plausible high-frequency textures. Although these textures may not perfectly match the
uncompressed ones (which is impossible), they are visually appealing when an appropriate γ is
chosen. For additional insights into our decoding process, we provide visualizations of the decoding
steps in Appendix G. These visualizations showcase how “texture” variables evolve during decoding.
We observe that this phenomenon becomes particularly pronounced when employing the ϵ-prediction,
as X -prediction models exhibit a stronger inclination towards reconstruction.

5 Conclusion & Discussion

We proposed a transform-coding-based neural image compression approach using diffusion models.
We use a denoising decoder to iteratively reconstruct a compressed image encoded by an ordinary
neural encoder. Our loss term is derived from first principles and combines rate-distortion variational
autoencoders with denoising diffusion models. We conduct quantitative and qualitative experiments
to compare our method against several GAN and VAE based neural codecs. Our approach achieves
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promising results in terms of the rate-perception tradeoff, outperforming GAN baselines in three out
of four metrics, including FID. In terms of classical distortion, our approach still performs comparable
to highly-competitive baselines.

Limitations & Societal Impacts In our quest to enhance compression performance, further im-
provement can be achieved by integrating advanced techniques such as autoregressive entropy models
or iterative encoding. We leave such studies for future research.

One critical societal concern associated with neural compression, particularly when prioritizing
perceptual quality, is the risk of misrepresenting data in the low bitrate regime. Within this context,
there is a possibility that the model may generate hallucinated lower-level details. For example,
compressing a human face may lead to a misrepresentation of the person’s identity, which raises
important considerations regarding fairness and trustworthiness in learned compression.
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A Pretrained Baselines

We refer to Bégaint et al. (2020) for pretrained MS-Hyper and DGML models. For HiFiC model,
we use the pretrained models implemented in the publicly available repositories1. Both models
were sufficiently trained on natural image datasets (Xue et al., 2019; Kuznetsova et al., 2020). For
NSC (Wang et al., 2022) baseline, we use the official codebase2 and DIV2k training dataset to train
the model.

B Architectures

Figure 6: Visualization of our model architecture

The denoising module’s design adopts a U-Net architecture similar to that of the DDIM (Song et al.,
2021a) and DDPM (Ho et al., 2020) projects. Each U-Net unit is composed of two ResNet blocks
(He et al., 2016), an attention block, and a convolutional up/downsampling block. We employ six
U-Net units for both the downsampling and upsampling processes. In the downsampling units, the
channel dimension is 64 × j, where j represents the index of the layer ranging from 1 to 6. The
upsampling units follow the reverse order. Each encoder module comprises a ResNet block and a
convolutional downsampling block. For embedding conditioning, we employ ResNet blocks and
transposed convolutions to upscale z to match the spatial dimension of the inputs of the initial four
U-Net downsampling units. This allows us to perform conditioning by concatenating the output of
the embedder with the input of the corresponding U-Net unit.

Figure 6 also describes our design choice of the model. We list the additional detailed specifications
that we did not clarify in the main paper as follow:

• The hyper prior structure shares the same design as Minnen et al. (2018). The channel
number of the hyper latent y is set as 256.

1https://github.com/Justin-Tan/high-fidelity-generative-compression
2https://github.com/Dezhao-Wang/Neural-Syntax-Code
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• We use 3x3 convolution for most of the convolutional layers. The only exceptions are the
1st conv-layer of the first DU component and the 1st layer of the 1st ENC component, where
we use 7x7 convolution for wider receptive field.

• inN is embedded by a linear layer, which expand the 1-dimensional scalar to the same channel
size as the corresponding DU/UU units. We then add the expanded tensor to the intermediate
ResBlock of each DU/UU unit.

C Model Efficiency

We provide information on the model parameter size of the proposed model and baselines, and the
corresponding time cost of running a full forward pass in Table 1. We run benchmarking on a server
with a RTX A6000. We decode 24 images from Kodak dataset and calculate the average neural
decoding time, which does not include entropy-coding process, as all the model share a similar
entropy model.

CDC (1 step) CDC (17 steps) HiFiC MS-hyper DGML
Number of Parameters 53.8M 53.8M 181.47M 17.5M 26.5M
Decoding Time (Seconds) 0.015 1.04 0.0051 0.0011 0.0025

Table 1: Model and decoding time.

Our model exhibits superior memory efficiency compared to HiFiC. However, diffusion models
suffer from slow decoding speed owing to their iterative denoising process. In the benchmark model
utilized in our main paper, the decoding of an image takes approximately 1 second. Although this is
slower than the baselines, it remains within an acceptable time range. Further optimization of the
neural network module, such as the removal of the attention module, holds the potential to enhance
efficiency even further.

D Additional explanation on experiment metrics

FID, as the most popular metric for evaluating the realism of images, measures the divergence
(Fréchet Distance) between the statistical distributions of compressed image latent features and
ground truth ones. The model extracts features from Inception network and calculates the latent
features’ corresponding mean and covariance. LPIPS measures the l2 distance between two latent
embeddings from VGG-Net/AlexNet. Likewise, PieAPP provides a different measurement of
perceptual score based on a model that is trained with the pairwise probabilities. DISTS measures
the structural and textural similarities based on multiple layers of network feature maps and an
algorithm inspired by SSIM. CKDN leverages a distillation method that can extract a knowledge
distribution from reference images, which can help calculate the likelihood of the restored image
under such distribution. Both MUSIQ and DBCNN are non-reference metrics, as they both use
deep network models (transformer and CNN, respectively) that are pre-trained on labeled image
data with Mean Opinion Score. For non-learned metrics (model-based methods), FSIM uses the
phase congruency and the color gradient magnitude of two images to calculate the similarity. The
(CW/MS-)SSIM family uses insights about human perception of contrasts to construct a similarity
metric to mimic human perception better. GMSD evaluates the distance between image color gradient
magnitudes. NLPD means normalized Laplacian pyramid distance, which derives from a simple
model of the human visual system and is also sensitive to the contrast of the images. VSI reflects a
quantitative measure of visual saliency that is widely studied by psychologists and neurobiologists.
MAD implements a multi-stage algorithm also inspired by the human visual system for distortion
score calculation.
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E Supplemental Ablation Study

By manipulating the trade-off parameter ρ, our model can be trained to prioritize either perceptual
quality or traditional distortion performance. In Figure 7, we present the rate-distortion curves for
the COCO dataset. Throughout our study, we examine four distinct values of ρ (0, 0.32, 0.64, 0.9).
The outcomes illustrate that higher values of ρ result in improved perceptual quality but at the cost
of worsened distortions in most scenarios. It is worth noting that values exceeding ρ > 0.9 are not
viable, as perceptual quality ceases to exhibit noticeable improvements.
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Figure 7: rate-distortion curves with different ρ values

F Additional visualization of the compressed images and decoding variability
visualization
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Figure 8: Ground Truth

Figure 9: CDC Xθ(ρ = 0.9), bpp=0.205
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Figure 10: HiFiC bpp=0.207

Figure 11: Ground Truth
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Figure 12: CDC Xθ(ρ = 0.9), bpp=0.398

Figure 13: HiFiC bpp=0.456
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Figure 14: We stochastically decode the same latent variable z and γ = 0.8 but different random seed
for xN ∼ N (0, γ2I). Different random seeds may yield low-level textural distinction.
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G Visualizations of the Decoding Process

(a) A deterministic decoding scheme

(b) A stochastic decoding scheme

Figure 15: Comparing two decoding schemes for decoding the same image, this visualiza-
tion illustrates the evolution of the texture variable xn at five different time steps (n =
{0%N, 30%N, 60%N, 90%N, 100%N}) using a total of N decoding steps. In the deterministic
decoding scheme, the model transforms a grayscale image into the actual reconstruction. Conversely,
in the stochastic decoding scheme, noise is dynamically “denoised” during the process, resulting in a
reconstruction that incorporates high-frequency details.
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H Additional Rate-Distortion(Perception) Results
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Figure 16: Rate-Distortion(Perception) for COCO dataset. We use 500 decoding steps for ϵθ model.
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Figure 17: Rate-Distortion(Perception) for Tecnick dataset. We use 500 decoding steps for ϵθ model.
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Figure 18: Rate-Distortion(Perception) for Kodak dataset. We use 500 decoding steps for ϵθ model.
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Figure 19: Rate-Distortion(Perception) for DIV2K dataset. We use 500 decoding steps for ϵθ model..
The complete 16 metrics.
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