
A Appendix451

A.1 Shower shape variables452

We extend the list of shower shape variables described in Sec. A.1 :453

Point level marginals. Marginals of each point feature by considering the set all the points from all454

the point clouds together.455

Feature means h⌘ii, h�ii, hrii, hEii. Mean of each feature.
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2 denotes the distance of the point in the lateral plane from the center.456

Feature variances �h⌘ii,�h�ii,�hrii,�hEii. Variance of each feature. �h⌘ii =
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Layer Energy Ēi. Denotes the total energy deposited in layer i of the shower. Ēi =
P
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Total Energy Etot. Total energy across all layers of the shower. Etot =
P

iN Ēi.459

Layer Centroids h⌘iiE , h�iiE , hriiE . Energy weighted mean of the features (⌘, �, or r).
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The layer centroids can be interpreted as the center of energy in the lateral plane in respective460

dimensions.461

Layer Lateral Width �h⌘iiE ,�h�iiE ,�hriiE . Denotes the standard deviation of the layer centroids.
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The layer lateral widths can be interpreted as the spread around the center of energy in the lateral462

plane in respective dimensions. We drop the layer notation i from the above metrics when working463

with a single layer for brevity.464

Layer Energy Fraction fi. Fraction of the total energy deposited in layer i of the shower. fi =465

Ēi/Etot.466

Energy Ratio Eratio,i. Ratio of the difference between highest and second highest energy intensity467

point or cell in layer i and their difference. Eratio,i =
Ei
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.468

Depth d. Deepest layer in the shower with non-zero energy deposit. d = maxi{i : maxj(Ei
j) > 0}.469

Layer/Depth Weighted Total Energy ld. Sum of the layer energies weighted by the layer number.470

ld =
P

iN i · Ēi.471

Shower Depth sd. Depth weighted total energy normalized by the total energy in the shower.472

sd = ld/Etot.473

Shower Depth Width �sd . Standard deviation of sd in units of layer number.
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A.2 Details on different variations of SUPA datasets474

A.2.1 Parameters475

Fig. 5 shows the remaining parameters used for generating SUPA variations (see Table 2 for details476

on other parameters). SUPAv1 is most deterministic as particles always split in the first six sub-layers477

with no deposits (psplit = 1 and pstop = 0 for all sub-layers < 7), further since pstop = 1 at sub-layer478

7, all the particles get deposited. Thus each event/example in SUPAv1 has exactly 128(= 27) points.479

Further, since ↵ is fixed to 0, all splits are symmetric and energy is always halved at each split, thus480

all deposits have the same energy value. SUPAv5 has higher psplit in the initial sub-layers (< 7) than481

SUPAv2-4, while pstop is the same for all of them, thus SUPAv5 has more number of hits/points than482

SUPAv2-4 in the respective sub-layers or layers.483

(a) SUPAv1 (b) SUPAv2, SUPAv3, SUPAv4 (c) SUPAv5

Figure 5: Parameters psplit, pstop, ppass for SUPA variations

A.2.2 Shower Shape Variables484

Fig. 6 shows the average events for different variations of SUPA datasets and Figs. Fig. 7 - 12 shows485

the histograms of the various shower shape variables for all SUPA datasets.486

(a) SUPAv1 (b) SUPAv2 (c) SUPAv3

(d) SUPAv4 (e) SUPAv5

Figure 6: Average event representation for different variations of SUPA datasets

A.3 Point Cloud Generative Models487

PointFlow PointFlow [Yang et al., 2019] is a flow based model with a PointNet-like encoder and a488

continuous normalizing flow (CNF) decoder. Additionally, the latents (encoder outputs) are modeled489
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Figure 7: Histograms of point level distributions

Figure 8: Histograms of feature means

Figure 9: Histograms of feature variances

(a) Point dist. for Energy feature (b) Number of Points (c) Energy Mean

(d) Energy Variance (e) Cell Energy Ratio (f) Layer Energy

Figure 10: Histograms of various shower shape variables

with another CNF to enable sampling. We adapted the PointFlow code to handle variable number of490

points with masking and masked batch norm. The encoder consists of 1D convolutions with filter491

sizes 128, 128, 256 and 512, followed by a three-layer MLP with 256 and 128 hidden dimensions492

to convert the point cloud into its latent representation of size 128. The CNF decoder has four493

conditional concatsquash layers with a hidden dimension of 128 and the latent CNF has three494
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Figure 11: Histograms of layer centroids

Figure 12: Histograms of layer widths

concatsquash layers with a hidden dimension of 64. The overall architecture has 0.7M trainable495

parameters.496

SetVAE SetVAE Kim et al. [2021] is a transformer-based hierarchical VAE for set-structured497

data which learns latent variables at multiple scales, capturing coarse-to-fine dependency of the set498

elements while achieving permutation invariance. We set the number of heads to 4, the dimension of499

the initial set to 64, the hidden dimension to 64, the number of mixtures for the initial set to 4, and500

the number of inducing points in the hierarchical setup to [2, 4, 8, 16, 32]. The overall architecture501

has 0.5M trainable parameters.502

Transflowmer The Transflowmer is flow-architecture using Real NVP layers [Dinh et al., 2016].503

As the events are point clouds of varying cardinality, the coupling layers of the flow are required to be504

permutation equivariant and able to process a varying number of inputs. To satisfy these constraints,505

we use transformers [Vaswani et al., 2017] without positional encoding in the coupling layers. The506

overall architecture consists of 16 coupling layers, each of them is parametrised by a 3 transformer507

layers with dmodel = 32. The overall architecture has 2.1M parameters.508

We train all the models with 100K training examples.509

A.4 Experiments on SUPA datasets510

We train point cloud generative models, PointFlow [Yang et al., 2019], SetVAE [Kim et al., 2021], and511

Transflowmer on SUPA datasets. In this section, we show histogram plots to compare the generative512

performance across different shower shape variables. For all these plots, the axes limits are chosen513

according to the ground truth data and generated samples can have probability mass outside the514

shown range.515

A.4.1 SUPAv1516

Figs. 13 - 18 show the histograms of various shower shape variables for SUPAv1 and samples517

generated with PointFlow, SetVAE, and Transflowmer.518

16



Figure 13: Histograms of point distributions for ⌘, �, and r

Figure 14: Histograms of sample means for different features

Figure 15: Histograms of sample variance for different features

Figure 16: Histograms of energy weighted averages

Figure 17: Histograms of lateral widths
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(a) Point dist. for Energy feature (b) Energy Mean (c) Energy Variance

(d) Cell Energy Ratio (e) Layer Energy

Figure 18: Histograms of various shower shape variables

A.4.2 SUPAv2519

Figs. 19 - 24 show the histograms of various shower shape variables for SUPAv2 and samples520

generated with PointFlow, SetVAE, and Transflowmer.521

Figure 19: Histograms of point distributions for ⌘, �, and r

Figure 20: Histograms of sample means for different features
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Figure 21: Histograms of sample variance for different features

Figure 22: Histograms of energy weighted averages

Figure 23: Histograms of lateral widths

(a) Point dist. for Energy feature (b) Energy Mean (c) Energy Variance

(d) Cell Energy Ratio (e) Layer Energy

Figure 24: Histograms of various shower shape variables
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A.4.3 SUPAv3522

Figs. 25 - 30 show the histograms of various shower shape variables for SUPAv3 and samples523

generated with PointFlow, SetVAE, and Transflowmer.524

Figure 25: Histograms of point distributions for ⌘, �, and r

Figure 26: Histograms of sample means for different features

Figure 27: Histograms of sample variance for different features

Figure 28: Histograms of energy weighted averages
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Figure 29: Histograms of lateral widths

(a) Point dist. for Energy feature (b) Energy Mean (c) Energy Variance

(d) Cell Energy Ratio (e) Layer Energy

Figure 30: Histograms of various shower shape variables
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A.4.4 SUPAv4525

Figs. 31 - 36 show the histograms of various shower shape variables for SUPAv4 and samples526

generated with PointFlow, SetVAE, and Transflowmer.527

Figure 31: Histograms of point distributions for ⌘, �, and r

Figure 32: Histograms of sample means for different features

Figure 33: Histograms of sample variance for different features

Figure 34: Histograms of energy weighted averages
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Figure 35: Histograms of lateral widths

(a) Point dist. for Energy feature (b) Energy Mean (c) Energy Variance

(d) Cell Energy Ratio (e) Layer Energy

Figure 36: Histograms of various shower shape variables
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A.4.5 SUPAv5528

We only consider layer 0 for SUPAv5. Figs. 37 - 42 show the histograms of various shower shape529

variables for SUPAv5 and samples generated with PointFlow, SetVAE, and Transflowmer.530

Figure 37: Histograms of point distributions for ⌘, �, and r

Figure 38: Histograms of sample means for different features

Figure 39: Histograms of sample variance for different features

Figure 40: Histograms of energy weighted averages

24



Figure 41: Histograms of lateral widths

(a) Point dist. for Energy feature (b) Energy Mean (c) Energy Variance

(d) Cell Energy Ratio (e) Layer Energy

Figure 42: Histograms of various shower shape variables

A.5 Experiments on grid representation of data531

In this section we will present some studies on generative modeling with the grid representation of532

data from SUPA. We discuss about how to downsample the point clouds below. For these studies, we533

generated another version of the dataset with SUPA such that it is similar to the CALOGAN dataset,534

i.e., with three layers and downsampled to a resolution in the multiples of 3⇥96, 12⇥12, and 12⇥6,535

for layer 0, 1, and 2, respectively.536

Downsampling. For comparison, we downsample the point clouds to their corresponding image537

representation (see Figure 1) by first defining the region of interest i.e. a rectangular region for each538

layer and the number of bins/cells/pixels in both the horizontal (or ⌘) and vertical (or �) directions.539

Finally, for each cell, we sum the energy of all the points falling within it to get the pixel intensity.540

We can increase the number of cells in order to get higher resolutions. Figure 1b, 1c, and 1d show541

the downsampled image representations at resolutions of 3x, 2x and 1x respectively for the shower542

shown in Figure 1a. We choose 1x to be the same resolution as used in CaloGAN [Paganini et al.,543

2018] (i.e. 12⇥ 12 for Layer 1).544

A.5.1 Validity of SUPA as a benchmark with grid representation545

We show the comparison of performance of generative models trained over data generated with SUPA546

and Geant4 in § 5.3. In this section, we extend those studies with more analysis and plots. Figure 43547

shows the scatter plot of the average ranks of those models. The average rank for a model on a dataset548

is obtained by first ranking them with respect to each marginal’s discrepancy and then averaging over549

all the marginals.550
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Figure 43: Scatter Plot for ranks over different models. Ranking of the models are consistent over
both, SUPA and GEANT4, showing the validity of SUPA as a benchmark.

Figure 44: Histogram for various marginals for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated from different trained models

Further, in Figures 44-49, we show a subset of the marginals (see § 5 for a detailed explanation on the551

marginals and Paganini et al. [2018] for the grid representation based marginals) for GEANT4 and552

SUPA and also the showers generated with different models trained on them. These marginal plots553

illustrate the diversity in various distributions present in data from GEANT4, and, more importantly554

in SUPA. Further, the distributions of the generated showers from different models behave similarly555

on both datasets, reinstating the proposition that a better model on SUPA implies a better model on556

the detailed GEANT4.557

A.5.2 High-resolution experiments558

In this section, we show the utility of SUPA beyond using it for training at low resolution (similar to559

the resolution used in CaloGAN, which we call 1x), as well as the limitation of the current models.560

We train CaloFlow [Krause and Shih, 2021] with SUPA by downsampling the point clouds at the561

higher resolutions of 2x and 3x. Table 4 shows the mean discrepancy metric (see § A.5.1) for the562

models. We observe the trend that training at higher resolutions result in poorer performance (diagonal563

terms) in general. Further, when the generated samples from the trained models are downsampled to564

1x, the performance deteriorates as compared to samples generated from models trained directly with565

data at 1x resolution.566

A.6 Extended Results.567
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Figure 45: Histogram for Layer Energy for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.

Figure 46: Histogram for Layer energy fraction for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.

1x 2x 3x
1x 3.57 6.35 7.20
2x - 6.78 -
3x - - 8.29

Table 4: Mean discrepancy metric (see § A.5.1) for CaloFlow model when trained and tested over
different resolutions. Columns correspond to the training resolution and rows to the test resolution.
The results on the diagonal show that CaloFlow’s performance degrades when resolution increases,
and the top row shows that it is not simply due to the sheer dimensionality of the signal since the
model does not leverage structure at high resolution to perform better at low resolution.

Figure 47: Histogram for Layer lateral width for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.

27



Figure 48: Histogram for Eratio,i for GEANT4 e+ (top) and SUPA (bottom) vs. showers generated
with different trained models.

Figure 49: Histogram for Layer sparsity for GEANT4 e+ (top) and SUPA (bottom) vs. showers
generated with different trained models.

Table 5: Performance benchmarks across different datasets with SetVAE, PointFlow and Trans-
flowmer. The distance metric is Wasserstein-1. The reported numbers are averages over a group of
marginals as indicated in the top row. Lower numbers are better.

�h⌘ii,�h�ii,�hrii hEi �hEi

Dataset SV PF TF SV PF TF SV PF TF
SUPAv1 0.513 0.585 0.359 0.001 0.000 0.000 0.000 0.000 0.000
SUPAv2 0.648 0.154 0.130 0.302 0.077 0.087 0.513 0.177 0.165
SUPAv3 1.114 0.109 0.126 0.320 0.064 0.071 0.500 0.152 0.144
SUPAv4 0.634 0.092 0.051 0.263 0.047 0.022 0.355 0.156 0.038
SUPAv5 0.799 0.040 0.223 0.251 0.059 0.414 0.377 0.047 0.421

h⌘iiE , h�iiE , hriiE �h⌘iiE ,�h�iiE ,�hriiE Ē

Dataset SV PF TF SV PF TF SV PF TF
SUPAv1 16.244 21.921 5.766 0.517 0.591 0.379 0.101 0.000 0.039
SUPAv2 1.336 1.933 0.137 0.779 0.134 0.190 23.387 69.814 10.468
SUPAv3 1.365 1.627 0.217 1.226 0.147 0.151 36.116 79.062 5.916
SUPAv4 1.369 1.346 0.083 0.645 0.169 0.067 3.997 12.895 0.659
SUPAv5 2.373 1.615 0.463 0.740 0.058 0.317 6.132 16.742 9.273
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