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Abstract
Since its inception in 1982, Oja’s algorithm has become an established method
for streaming principle component analysis (PCA). We study the problem of
streaming PCA, where the data-points are sampled from an irreducible, aperiodic,
and reversible Markov chain starting in stationarity. Our goal is to estimate the
top eigenvector of the unknown covariance matrix of the stationary distribution.
This setting has implications in scenarios where data can solely be sampled from
a Markov Chain Monte Carlo (MCMC) type algorithm, and the objective is to
perform inference on parameters of the stationary distribution. Most convergence
guarantees for Oja’s algorithm in the literature assume that the data-points
are sampled IID. For data streams with Markovian dependence, one typically
downsamples the data to get a "nearly" independent data stream. In this paper, we
obtain the first near-optimal rate for Oja’s algorithm on the entire data, where we
remove the logarithmic dependence on the sample size, n, resulting from throwing
data away in downsampling strategies.

1 Introduction
Streaming Principal Component Analysis (PCA) is an important and well studied problem where the
principal eigenvector of the sample covariance matrix of a dataset is computed one data-point at a
time. One of the most popular algorithms for streaming PCA was introduced by Erkki Oja in 1982
[29, 30]. Most existing analyses of Oja’s algorithm are done when the data is sampled IID.

However, in many practical applications, the data-points are dependent and are sampled from an
MCMC process converging to a target stationary distribution. This naturally arises in the context of
token algorithms for Federated PCA settings [10, 12, 13] with multiple machines communicating via
a fixed and connected graph topology. Each machine contains an arbitrary fraction of data-points
and the goal is to design a streaming algorithm that respects this topology and returns the principal
component of the whole dataset. This is typically achieved using a Metropolis-Hastings scheme that
uses local information to design the transition matrix of a Markov chain with any desired stationary
distribution. The stationary distribution, π, of the random walk is chosen so that the distribution of the
samples under π matches the uniform distribution over data-points. Governed by this Markov chain,
a random walker then travels the network of machines and samples one data-point at a time from
the current machine and computes the update. However, even under the stationary distribution, the
data-points are dependent, which deviates from the IID setup. Our goal is to obtain a near-optimal
analysis of the sin2 error of the estimated vector with respect to the true top eigenvector of the
unknown covariance matrix in the Markovian setting.

Estimating the first principal component with streaming PCA: Let Xt be a mean zero d
dimensional vector with covariance matrix Σ, and let ηt be a decaying learning rate. The update rule
of Oja’s algorithm is given as -

wt ← (I + ηtXtX
T
t )wt−1, wt ←

wt

∥wt∥2
(1)

where wt is the estimate of v1, the top eigenvector of Σ, and ηt is the step-size at timestep t. We aim
to analyse the sin2 error of Oja’s iterate at timestep t, defined as 1− ⟨wt, v1⟩2.
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Paper Markovian? Online? log-free
sin2 error rate Sample complexitymain-term
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)
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)
Chen et al. Y Y N - O
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1
ϵ log

2
(

G
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1
ϵ

))
[3]

Neeman et al. Y N N O

(
V log

(
d2−π

4

)
(1−|λ2(P )|) gap2

1
n

)
O

(
V log

(
d2−π

4

)
(1−|λ2(P )|) gap2

1
ϵ

)
[28]

Theorem 1 Y Y Y O
(

V
(1−|λ2(P )|) gap2

1
n

)
O
(

V
(1−|λ2(P )|) gap2

1
ϵ

)
Table 1: Comparison of sin2 error rates and sample complexities. Here gap := (λ1 − λ2), where
λ1, λ2 are the top 2 eigenvalues of Σ and V represents a suitably defined variance parameter (see
assumption 2). The sample complexity represents the number of samples required to achieve sin2

error at most ϵ. We note that [1] and [15] also match the online sample complexity bound provided in
[16]. Further, for the offline algorithm with IID data, [17] removes the log (d) factor in exchange for
a constant probability of success for large enough n.

Streaming PCA in the IID setting: For an IID data stream with E [Xi] = 0 and E
[
XiX

T
i

]
= Σ,

there has been a lot of work on determining the non-asymptotic convergence rates for Oja’s algorithm
and its various adaptations [16, 1, 3, 38, 14, 15, 26, 21, 25]. Amongst these, [16], [1] and [15] match
the optimal offline sample complexity bound suggested by the independent and identically distributed
(IID) version of Theorem 1 (See Theorem 1.1 in [16]).

We consider Oja’s algorithm in the setting where the data is generated from a reversible, irreducible,
and aperiodic Markov chain with stationary distribution π. We denote by Eπ[.] the expectation
under the stationary distribution. In this setting our goal is to estimate the principal eigenvector of
Eπ

[
XiX

T
i

]
. As in the IID setting, Eπ[Xi] = 0. The challenge is that the data, even when it reaches

stationarity, is dependent. Here the degree of dependence is captured by the second eigenvalue in
the magnitude of the transition matrix P (denoted as |λ2(P )|) of the Markov chain. This is closely
related to the mixing time of a Markov chain [19], denoted as τmix, which is the time after which the
conditional distribution of a state is close in total variational distance to its stationary distribution, π
(See Section 2.1).

Our contribution: Using a series of approximations, we obtain an optimal error rate for the sin2

error, which is worse by a factor of 1/(1− |λ2(P )|) from the corresponding error rate of the IID case.
Previous work [3] has established rates worse by a poly-logarithmic factor by using downsampling,
i.e. applying the update on every kth datapoint. In Figure 1, we compare Oja’s algorithm with
its downsampled and offline variants (see Section 6 for more details on setup). We see that Oja’s
algorithm performs significantly better than the downsampled variant, and similarly to the offline
variant where for the ith data point we compute the eigenvector of the sample covariance matrix of
all data-points up-to i. Our work provides a concrete and novel result that explains these observations.
In Table 1, we compare our bounds with related analyses of Oja’s algorithm. The last row shows that
we are the first to obtain an error whose main term is free of logarithmic dependence on n or d for
streaming PCA in the Markovian case.

We break the logarithmic barrier in previous work by considering a series of approximations of finer
granularity which uses reversibility of the Markov chain and standard mixing conditions of irreducible
and aperiodic Markov chains. Our rates are comparable to the recent work of [28] (Proposition 1)
that establishes an offline error analysis for estimating the principal component of the empirical
covariance matrix of Markovian data by using a Matrix Bernstein inequality. Therefore, our results
are nearly optimal in terms of the dependence on sample size, n, the dimension d, and the model
parameters V , (λ1 − λ2) and 1− |λ2 (P ) | (See Section 2 for definitions). Our results also imply a
linearly convergent decentralized algorithm for streaming PCA in a distributed setting. As a simple
byproduct of our theoretical result, we also obtain a rate for Oja’s algorithm applied on downsampled
data, which is worse by a factor of log n, as shown in Figure 1. To our knowledge, this is the first
work that analyzes the Markovian streaming PCA problem without any downsampling that matches
the error of the offline algorithm.
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The crux of our analysis uses the mixing properties of the Markov chain. Strong mixing intuitively
says that the conditional distribution of a state s in timestep k given the starting state is exponentially
close to the stationary distribution of s, the closeness being measured using the total variation distance.
All previous work on Markovian data exploits this property by conditioning on states many time steps
before. However, it is crucial to a) adaptively find how far to look back and b) bound the error of
the sequence of matrices we ignore between the current state and the state we are conditioning on.
Observe that these two components are related. Looking back too far makes the dependence very
small but increases the error resulting from approximating a larger matrix product of intermediate
matrices. We present a fine analysis that balances these two parts and then uses spectral theory to
bound the second part within a factor of a variance parameter that characterizes the variability of the
matrices and shows up in the analysis of [16, 28].

Related work on streaming PCA and online matrix decomposition on Markovian data: Amongst
recent work, [3] is very relevant to our setting, since it analyzes Oja’s algorithm with Markovian
Data samples. Inspired by the ideas of [8], the authors propose a downsampled version of Oja’s
algorithm to reduce dependence amongst samples and provide a Stochastic Differential Equation
(SDE) based analysis to achieve a sample complexity of O

(
G

(λ1−λ2)
2
1
ϵ log

2
(

G
(λ1−λ2)

2
1
ϵ

))
for sin2

error smaller than ϵ, where G is a variance parameter. We obtain a similar rate in Corollary 1 through
our techniques. However, comparing with Theorem 1, we observe that downsampling leads to an
extra O (log (n)) factor. It is important to point out that [3] provides an analysis for estimating top
k principal components, whereas this paper focuses on obtaining a log-free error rate for the first
principal component.

Figure 1: Comparison of Oja’s algorithm with
downsampled and offline variants. The X-axis represents
the sample size and the Y axis represents the sin2 error
of each algorithm’s estimate of the leading eigenvector.
The experimental setup is available in Section 6.

[22] consider the harder problem of online
non-negative matrix factorization for Markovian
data. Their analysis establishes asymptotic
convergence of error, but does not provide a
rate.

Stochastic Optimization with Markovian
Data : Markovian models are often considered
in Reinforcement Learning and Linear Dynamic
Systems[2, 5, 9, 31, 4, 35, 18, 24]. There
have been many notable nonasymptotic bounds
for stochastic gradient descent (SGD) methods
for general convex and nonconvex functions
with Markovian data [8, 32, 6, 7, 10, 39, 34].
The convergence rates (sample complexities)
obtained in these works apply to more general
problems but do not exploit the matrix product
structure inherent to Oja’s algorithm. In this
work, we develop novel techniques to show
that a sharper analysis is possible for the PCA
objective. The paper is organized as follows.
Section 2 contains the problem setup and
preliminaries about Markov Chains. Section 3
contains Theorem 1. We present a sketch of the
main technical tools in Section 4, intermediate theorems needed for the main theorem in Section 5
and conclude with simulations in Section 6.

2 Problem Setup and Preliminaries

This section presents the problem setup and outlines important properties of the Markov chain that
will be utilized subsequently. We assume that:

Assumption 1. The Markov chain is irreducible, aperiodic, reversible, and starts in stationarity,
with state distribution π1.

1In practice, one can let the Markov chain mix until a burn-in period of O (τmix) steps to achieve state
distributions close to the stationary one. A simulation experiment with different burn-in periods can be found in
the Supplement Section S.6.
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Such a Markov chain can arise in various situations, for e.g., while performing random walks on
expander graphs which are used extensively in fields such as computer networks, error-correcting
codes, and pseudorandom generators. Each state s of the Markov chain is associated with a
distribution D(s) over d-dimensional vectors with mean µs ∈ Rd and covariance matrix Σs ∈ Rd×d.

For a random walk s1, s2, · · · st on the Markov chain, we define the sequence of random
variables X1, X2 · · ·Xt, where conditioned on the state si, Xi ∼ D (si).We represent the mean
as µ := Es∼π [µs] =

∑
s πsµs and the covariance matrix as Σ ∈ Rd×d, which, for i ∈ [n] can be

expressed as:

Σ := Esi∼πED(si)

[
(Xi − µ) (Xi − µ)T

]
= Es∼π [Σs] + Es∼π

[
µsµ

T
s

]
− µµT

In this work, we assume µ = 0, which is a common assumption in the IID setting (see [16, 1]). While
it may be possible to extend our analysis to the non-zero mean case, it is out of the scope of this paper.
Therefore, Σ = Esi∼πED(si)

[
XiX

T
i

]
for i ∈ [n]

Let the eigenvalues of Σ be denoted as λ1 > λ2 ≥ λ3 · · ·λd. Let v1 denote the leading eigenvector
of Σ and V⊥ denote the Rd×(d−1) matrix with the remaining eigenvectors as columns. In this work,
∥.∥2 denotes the Euclidean L2 norm for vectors and the operator norm for matrices unless otherwise
specified and I denotes the identity matrix of the appropriate dimensionality. We proceed under the
following standard assumptions for i ∈ [n], (see for eg. [15]).
Assumption 2. ∥Esi∼πED(si)[(XiX

T
i − Σ)2]∥2 ≤ V .

Assumption 3. ∥XiX
T
i − Σ∥2 ≤M with probability 1.

Assumption 3 also implies ∥Σs + µsµ
T
s − Σ∥2 ≤ M with probability 1. WLOG, we assume

M + λ1 ≥ 1. We use E [.] := Es∼πED(s) [.] to denote the expectation over state s ∼ π and over
the state-specific distributions D (.), unless otherwise specified. We observe that Assumption 3 can
be relaxed to accommodate sub-gaussian data distributions with appropriate variance decay (see
Proposition 1 in [21]) using standard truncation-based arguments. We do not pursue this here. Define
the matrix product

Bt :=
(
I + ηtXtX

T
t

) (
I + ηtXt−1X

T
t−1

)
. . .
(
I + η1X1X

T
1

)
(2)

Unrolling the recursion in Eq 1, the output of Oja’s algorithm at timestep t is given as wt =
Btw0

∥Btw0∥2
.

2.1 Markov chain mixing times

Now we will discuss some well-known properties of an irreducible, aperiodic, and reversible Markov
chain (see [19] for details and derivations). Let |λ2 (P ) | denote the second largest absolute eigenvalue
of the Markov chain; let the state-distribution of the Markov chain at timestep t with s1 = x be
P t(x, .). For any two probability distributions ν1 and ν2, recall that the total variational distance is
TV (ν1, ν2) := ∥ν1 − ν2∥TV :=

1
2

∑
x∈Ω|ν1(x) − ν2(x)|. The distance from π at the tth timestep

is defined as dmix(t) := supx∈Ω TV (P t(x, .), π). For irreducible and aperiodic Markov chains, by
Theorem 4.9 in [19], we have dmix(t) ≤ C exp(−ct) for some C, c > 0. The mixing time of the
Markov chain is defined as:

τmix(ϵ) := inf{t : dmix(t) ≤ ϵ} (3)

As defined in Section 4.5 of [19], we will denote τmix := τmix
(
1
4

)
. Then, we have

τmix(ϵ) ≤ ⌈log2(1/ϵ)⌉ τmix. It is worth mentioning the useful relationship between dmix (.) and
τmix, given as dmix (lτmix) ≤ 2−l ∀l ∈ N0. These results about mixing time are valid for general
irreducible and aperiodic Markov chains. A reversible Markov chain satisfies ∀ x, y ∈ Ω,
π (x)P (x, y) = π (y)P (y, x). For a reversible, irreducible, and aperiodic Markov chain, the
gap 1− |λ2(P )|, is inversely proportional to (Theorem 12.4, τmix [19]).

3 Main Results

In this section, we present our main result, a near-optimal convergence rate for Oja’s algorithm on
Markovian data. As a corollary, we also establish a rate of convergence for Oja’s algorithm applied
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on downsampled data, where every kth data-point is considered. Supplement Section S.5 contains
comprehensive proofs of Theorem 1 and Corollary 1 while the proof of Proposition 1 can be found in
Supplement Section S.2.
Theorem 1. Fix a δ ∈ (0, 1) and let the step-sizes be ηi := α

(λ1−λ2)(β+i) with η0 ≤ 1
e , α > 2. Under

assumptions 1, 2 and 3, for sufficiently large number of samples n such that n

log( 1
ηn
)
> β

log
(

1
η0

) ,

β :=

1000α2 max

{
τmix log

(
1
η0

)
(M+ λ1)

2
,

(
V

1−|λ2(P )|+λ2
1

)
100

}
(λ1 − λ2)2 log

(
1 + δ

200

) (4)

the output wn of Oja’s algorithm (1) satisfies

1−
(
wT

n v1
)2 ≤ C log

(
1
δ

)
δ2

[
d

(
2β

n

)2α

+
C1V

(λ1 − λ2)2 (1− |λ2 (P ) |)
1

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
τmix

(
η2n
)2

n2

]
with probability atleast (1− δ). Here C is an absolute constant and

C1 :=
α2 (3 + 7|λ2 (P ) |)

2α− 1
, C2 :=

35α3

α− 1

Remark 1. (Interpreting the sin2 error) Theorem 1 simply establishes that, under suitable choices
of α, β, as long as assumptions 1, 2 and 3 hold, for decaying step sizes ηi = α

(λ1−λ2)(β+i) , with
probability at least 3

4 , we have,

1−
(
wT

n v1
)2

= O

(
V

(λ1 − λ2)2 (1− |λ2 (P ) |)
1

n

)
,

for large enough n. This can be seen by using α = 6, setting β as in Eq 4, and taking n =
Ω̃
(
d0.1(β)1.2

)
, where Ω̃ hides logarithmic factors in n. These choices make the first and third terms

of the upper bound on the sin2 error in Theorem 1 a smaller order than the second term, which is

O( 1n ). For the first term, we have d
(

2β
n

)2α
= O

(
1
n2

)
. The third term involves

τmix(η
2
n)

n2 , which is

O
(

log2(n)
n2

)
, using the definition of τmix (ϵ) in Eq 3.

Remark 2. (Knowledge of mixing times) We note that setting the step-sizes ηi in Theorem 1 requires
the knowledge of the mixing time of the Markov chain, τmix. An offline algorithm for estimating the
mixing time is provided in [37]. They show that at least a constant τmix|Ω|

ϵ2 samples are needed for
estimating τmix within an absolute error ϵ. Therefore, it is possible to use the first O

(
1
ϵ2

)
samples to

estimate the mixing time and then set the learning rate accordingly.

Remark 3. (Regarding non-reversible Markov chains) We assume the reversibility of Markov
chains to simplify our analyses. Our techniques and results extend to the non-reversible case
using reversibilization tools (see [20], [11]). Specifically, one can obtain bounds in terms of the
second-largest eigenvalue, in magnitude, of the modified transition matrix P∗P , the multiplicative
reversibilization of P . Here, P∗ represents the probability transition matrix of the time-reversed
chain, given as ∀x, y ∈ Ω, P∗ (x, y) =

π(y)
π(x)P (y, x). We leave this extension for future work.

Next, we compare the rate of convergence proposed in Theorem 1 with the offline algorithm having
access to the entire dataset {Xi}ni=1 using a recent result from [28]. Here, the authors extend the
Matrix Bernstein inequality [36, 33], to Markovian random matrices. Their setup is much like ours
except that the matrix at any state is fixed, i.e., there is no data distribution D(s) as in our setup.
However, it is easy to extend their result to our setting by observing that conditioned on the state
sequence, the matrices XiX

T
i , i ∈ [n] are independent under our model, and we can push in the

expectation over the state-specific distributions, D(s), whenever required. Therefore, we have the
following result -
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Proposition 1 (Theorem 2.2 of [28]+Wedin’s theorem). Fix δ ∈ (0, 1). Consider an irreducible and
aperiodic Markov chain. Under assumptions 2 and 3, with probability 1− δ, the leading eigenvector
v̂ of

∑n
i=1XiX

T
i /n satisfies,

1−
(
v̂T v1

)2 ≤ C ′
1

V log
(

d2−π
4

δ

)
(λ1 − λ2)2

(
1 + |λ2 (P )|
1− |λ2 (P )|

)
.
1

n
+ C ′

2

 M log
(

d2−π
4

δ

)
(λ1 − λ2) (1− |λ2 (P ) |)

2

.
1

n2

for absolute constants C ′
1 and C ′

2.

Observe that Theorem 1 matches the leading term V
(λ1−λ2)

2(1−|λ2(P )|) in Theorem 1 except the log(d)
term. We believe, much like the IID case (also see footnote 1 in [16]), this logarithmic term in [28]’s
result is removable for large n and a constant probability of success.

Remark 4. (Comparison with IID algorithm) Fix a δ ∈ (0, 1). If the data-points {Xi}ni=1 are
sampled IID from the stationary distribution π, then under assumptions 2 and 3, using Theorem 4.1
from [16], we have that the output wn of Oja’s algorithm 1 satisfies,

1−
(
wT

n v1
)2 ≤ C log

(
1
δ

)
δ2

[
d

(
β′

n

)2α

+
α

′2V
(2α′ − 1) (λ1 − λ2)2

1

n

]
(5)

The leading term of Theorem 1 is worse by a factor of 1
1−|λ2(P )| . Further, it has an additive lower

order term O
(

log2(n)
n2

)
due to the covariance between data-points in the Markovian case.

Corollary 1. (Downsampled Oja’s algorithm) Fix a δ ∈ (0, 1). If Oja’s algorithm is applied on the
downsampled data-stream with every kth data-point, where k := τmix

(
η2n
)

then under the conditions
of Theorem 1 with appropriately modified α and β, the output wn satisfies,

1−
(
wT

n v1
)2 ≤

C log
(
1
δ

)
δ2

[
d

(
2βτmix log (n)

n

)2α

+
C1Vτmix

(λ1 − λ2)2
log (n)

n
+
C2M (M+ λ1)

2

(λ1 − λ2)3
log2 (n) τmix

(
η2n
)2

n2

]

with probability atleast (1− δ). Here C is an absolute constant and C1 := 30α2

2α−1 , C2 := 35α3

α−1 .

Remark 5. Data downsampling to reduce dependence amongst samples has been suggested in recent
work [27, 23, 3]. In Corollary 1, we establish that the bound on the rate obtained is sub-optimal
compared to Theorem 1 by a log (n) factor. We prove this by a simple yet elegant observation: the
downsampled data stream can be considered to be drawn from a Markov chain with transition kernel
P k (., .) since each data-point is k steps away from the previous one. For sufficiently large k, this
implies that the mixing time of this chain is Θ(1). These new parameters are used to select the
modified values of α, β according to Lemma S.11 in the Supplement.

The proof of Theorem 1 follows the same general recipe as in [16] for obtaining a bound on the sin2

error. However, the original proof techniques heavily rely on the IID setting. We carry out a refined
analysis for each step under the Markovian data model by a careful control of error terms arising out
of dependence. The first step involves obtaining a high-probability bound on the sin2 error, by noting
that Oja’s algorithm on n data-points can be viewed as a single iteration of the power method on Bn.
Therefore, fixing a δ ∈ (0, 1) using Lemma 3.1 from [16], we have with probability at least (1− δ),

sin2 (wn, v1) ≤
C log

(
1
δ

)
δ

Tr
(
V T
⊥BnB

T
n V⊥

)
vT1 BnBT

n v1
, (6)

where C is an absolute constant. The numerator is bounded by first bounding its expectation (see
Theorem 3) and then using Markov’s inequality. To bound the denominator, similar to [16], we will
use Chebyshev’s inequality. Theorem 4 provides a lower bound for the expectation E

[
vT1 BnB

T
n v1

]
.

Chebyshev’s inequality also requires upper-bounding the variance of E
[
vT1 BnB

T
n v1

]
, which requires

us to bound E
[(
vT1 BnB

T
n v1

)2]
(see Theorem 5).
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4 Main Technical Tools

In this section, we provide a sketch of the main arguments used in our proof.

Warm-up with downsampled Oja’s algorithm: We start with the simple downsampled Oja’s
algorithm to build intuition. Here, one applies Oja’s update rule (Eq 1) to every kth data-point, for
a suitably chosen k. For k = ⌈Lτmix log n⌉, the total variation distance between any consecutive
data-points in the downsampled data stream is O(n−L). As we show in Corollary 1, the error of this
algorithm is similar to the error of Oja’s algorithm applied to n/k data-points in the IID setting, i.e.,
O(Vτmix log n/n).

We will take E
[
vT1 BnB

T
n v1

]
as an example. Let us introduce some notation.

Bj,i :=
(
I + ηjXjX

T
j

) (
I + ηj−1Xj−1X

T
j−1

)
. . .
(
I + ηiXiX

T
i

)
(7)

We peel this quantity one matrix at a time from the inside. Note that for a reversible Markov chain,
standard results imply (see Lemma 1) that the mixing conditions apply to the conditional distribution
of a state given another state k steps in the “future” (see Supplement Section S.3 for a proof). Recall
dmix(k) from Section 2.1.

Lemma 1. Under Assumption 1,
1

2
sup
t∈Ω

∑
s

|P (Zt = s|Zt+k = t)− π (s)| = dmix (k).

It will be helpful to explain our analysis by comparing it with the IID setting. For this reason, we will
use EIID[.] to denote the expectation under the IID data model. Define αn,i := E

[
vT1 Bn,iB

T
n,iv1

]
, i ∈

[n]. Then we have,

αn,1 = E
[
vT1 Bn,2

(
I + η1Σ+ η1(X1X

T
1 − Σ)

) (
I + η1Σ+ η1(X1X

T
1 − Σ)

)T
BT

n,2v1

]
= E

[
vT1 Bn,2 (I + η1Σ)

2
BT

n,2v1

]
+ 2η1T1 + η21T2, (8)

where the first term is smaller than (1 + η1λ1)
2αn,2. We define T1 and T2 as follows. T1 :=

E
[
vT1 Bn,2 (I + η1Σ)

(
X1X

T
1 − Σ

)
BT

n,2v1
]
, and T2 := E

[
vT1 Bn,2

(
X1X

T
1 − Σ

)2
BT

n,2v1

]
.

For the IID setting, the second term is zero, and the third term can be bounded as follows:

EIID

[
vT1 Bn,2

(
X1X

T
1 − Σ

)2
BT

n,2v1

]
= EIID

[
vT1 Bn,2E

[(
X1X

T
1 − Σ

)2]
BT

n,2v1

]
≤ VEIID

[
vT1 Bn,2B

T
n,2v1

]
Let us denote the IID version of αn,i by αIID

n,i := EIID[v
T
1 Bn,iB

T
n,iv1]. The final recursion for the IID

case becomes: αIID
n,1 ≤ (1 + 2η1λ1 + η21

(
λ21 + V

)
)αIID

n,1. So, for our Markovian data model, the hope
is that the cross term T1 (which has a multiplicative factor of η1) is O(η1) and T2 is O(η21). We will
start with the T1 term, which is zero in the IID setting.

Figure 2: If we could replace the intermediate products (white matrices) by I , the conditional expectation of the
noise matrix X1X

T
1 − Σ conditioned on the gray matrices would be nearly zero.

We will show that T1, while not zero like the IID case, is still sufficiently small. Intuitively, if we
could replace the k matrices between X1X

T
1 − Σ and Bn,2+k for some suitably large integer k by

identity (see Figure 2), then using (reverse) mixing properties of the Markov chain, we could argue
using Lemma 1 that E[X1X

T
1 − Σ|s1+k, . . . , sn] is very close to zero (see Figure 2). The following

lemma formally bounds the deviation of the length-k matrix product from identity.

Lemma 2. Let Assumption 3 hold. If ∀i ∈ [n], ηiki (M+ λ1) ≤ ϵ, ϵ ∈ (0, 1) and ηi forms a
non-increasing sequence then ∀ m ≤ n− kn,

∥Bm+km−1,m − I∥2 ≤ (1 + ϵ) kmηm (M+ λ1) and (9)∥∥∥∥∥Bm+km−1,m − I −
m+km−1∑

t=m

ηtXtX
T
t

∥∥∥∥∥
2

≤ k2mη2m (M+ λ1)
2 (10)
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Lemma 2 bounds the norm of the matrix product Bt+kt−1,t at two levels. The first result provides
a coarse bound, approximating linear and higher-order terms. The second result provides a finer
bound, preserving the linear term and approximating quadratic and higher-order terms. The proofs
involve a straightforward combinatorial expansion of Bt+kt−1,t and are deferred to the Supplement
Section S.3.

Approximating
∏k+1

i=2 (I + ηiXiX
T
i ) requires η1k to be small. Since this is a recursive argument, we

would need ηik to be small for i = 1, . . . n, which is satisfied by the strong condition η1k is small.
To obtain a tight analysis, we choose k adaptively. We set ki = τmix(η

2
i ) (see definition in Eq 3).

As we will show in detail in the Supplement, Lemma 2 Eq 10 along with the adaptive choice of ki
gives us a sharp error bound. Using it, we can bound T1 (see Eq 8) as:

T1 ≤
k+1∑
j=2

ηjE

vT1 Bn,k+2 E
[(
XjX

T
j

)
(I + η1Σ) (X1X1 − Σ) |Xk+2, . . . , Xn

]︸ ︷︷ ︸
T1,j

BT
n,k+2v1


+O(η21k

2
1)αn,k+2

Naively bounding the T1,j term by O(1) leads to the same rate as downsampled Oja’s algorithm.

In the following lemma, we will establish that, indeed, T1,j has a much smaller norm. The novelty of
our bound is not just in using the mixing properties of the Markov chain but also in teasing out the
variance parameter V . We will state the lemma, in a slightly more general form as -
Lemma 3. Under Assumptions 1, 2 and 3, for i < j ≤ i+ ki,∥∥E [(XiX

T
i − Σ

)
SXjX

T
j |si+ki

, . . . sn
]∥∥

2
≤
(
|λ2 (P )|j−i V + 8η2iM (M+ λ1)

)
∥S∥2

where ki is as defined in Lemma S.11 and S is a constant symmetric positive semi-definite matrix.

Lemma 3 bounds the norm of the covariance between matrices
(
XiX

T
i − Σ

)
S and XjX

T
j . In

particular, this implies that the norm of T1,j decays as |λ2 (P )|j−1. The proof uses a spectral
argument that replaces a coarse approximation by a sum of ki O(1) terms to sum of k exponentially
decaying terms, thereby removing the dependence on ki, which can be as large as log(n). The proof
is deferred to the Supplement Section S.4.

Let {c1, c2, c3, c4} be positive constants for ease of notation. Coming back to Eq 8, we can bound T1

as follows: T1 ≤ αn,k+2

(
η1
c1|λ2(P )|V
1− |λ2(P )|

+ c2η
2
1k

2
1

)
. A similar argument can be applied to bound

T2 as: T2 ≤ αn,k+2

(
V + c3η1k

2
1

)
. Putting everything together in 8, we have

αn,1 ≤
(
(1 + η1λ1)

2
+ V

)
αn,2︸ ︷︷ ︸

Recursion for IID setting

+

(
c1|λ2 (P ) |
1− |λ2 (P )|

)
Vη21αn,k+2︸ ︷︷ ︸

Error due to Markovian dependence

+ c4η
3
1k

2
1αn,k+2︸ ︷︷ ︸

Error due to approximation of matrix product

Recursing on this inequality gives us our bound on E
[
vT1 BnB

T
n v1

]
(Theorem 2). We are now ready

to present all our accompanying theorems.

5 Intermediate Theorems for Convergence Analysis

In this section, we present our accompanying theorems which are used to obtain the main result in
Theorem 1. But before doing so, we will need to establish some notation. Let ki := τmix

(
η2i
)
, and

the step-sizes be set as ηi := α
(λ1−λ2)(β+i) with α, β as defined in Theorem 1. Let ϵ := 1

100 . As
shown in Lemma S.11 in Supplement Section S.3 our choice of step-sizes satisfy, ∀i ∈ [n],

C.1 ηiki (M+ λ1) ≤ ϵ C.2 (Slow decay) ηi ≤ ηi−ki ≤ (1 + 2ϵ) ηi ≤ 2ηi

Further, we define scalar variables -

r := 2 (1 + ϵ) knηn (M+ λ1) , ζk,t := 40kt+1 (M+ λ1)
2

ψk,t := 6M
[
1 + 3k2t+1 (M+ λ1)

2
]
, V ′ :=

1 + (3 + 4ϵ) |λ2 (P ) |
1− |λ2 (P )|

V (11)
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and recall the definitions of Bt and Bj,i in Eqs 2 and 7, respectively. We are now ready to present the
theoretical results needed to prove our main result. For simplicity of notation, we present versions of
the results by using ηi := α

(λ1−λ2)(β+i) with α, β as defined in Theorem 1. However, these theorems
are in fact valid under more general step-size schedules. We state and prove the more general versions
in the Supplement Section S.4.
Theorem 2. Under Assumptions 1, 2 and 3, for all n > kn, and ηi satisfying C.1 and C.2, we have,

E
[
vT1 BnB

T
n v1

]
≤ (1 + r)

2
exp

(
n−kn∑
t=1

(
2ηtλ1 + η2t

(
V ′ + λ21

)
+ η3tψk,t

))

The three primary differences with the IID case are a) the (1 + r)
2 term, which arises since the

recursion sketched in Section 4 leaves out the last kn terms which are bounded by (1 + r)
2; (b) the

new factor of 1
1−|λ2(P )| with V due to the Markovian dependence between terms; and c) the extra

lower order term η3tψk,t arising from the use of Lemmas 2 and 3.
Theorem 3. Let u := min {t : t ∈ [n], t− kt ≥ 0}. Under Assumptions 1, 2 and 3, for all n > u,
and ηi satisfying C.1 and C.2,

E
[
Tr
(
V T
⊥BnB

T
n V⊥

)]
≤ (1 + 5ϵ) exp

(
n∑

t=u+1

2ηtλ2 + η2t−kt

(
V ′ + λ21

)
+ η3t−kt

ψk,t

)

×

(
d+

n∑
t=u+1

(V ′ + ηtψk,t)C
′
k,tη

2
t−kt

exp

(
t∑

i=u+1

2ηi (λ1 − λ2)

))
where C ′

k,t :=
(
1 + δ

200

)
exp (2λ1

∑u
i=1 ηj).

Here, the difference is mainly in the new variable u, arising since the recursion stops at u, not 1.
(1 + 5ϵ) represents the approximation of the first u terms.
Theorem 4. Under Assumptions 1, 2 and 3, for all n > kn, ηi satisfying C.1 and C.2, and
s := 2r + δ

1000 , we have,

E
[
vT1 BnB

T
n v1

]
≥ (1− s) exp

(
n−kn∑
t=1

2ηtλ1 −
n−kn∑
t=1

4η2t λ
2
1

)

This differs from its IID counterpart by a multiplicative factor of (1− s) for the same reason as
before, which also makes the sums go up to (n− kn) instead of n. Note that for sufficiently large n
(Lemma S.12), r = O

(
log(n)

n

)
is very small and δ ∈ (0, 1). Therefore, (1− s) ≈ 1 as large n.

Theorem 5. Under Assumptions 1, 2 and 3, for all n > kn, and ηi satisfying C.1 and C.2, we have,

E
[(
vT1 BnB

T
n v1

)2] ≤ (1 + r)
4
exp

(
n−kn∑
t=1

4ηtλ1 +

n−kn∑
t=1

η2t ζk,t

)

The differences are similar to the last theorems involving v1. Surprisingly, for this, the coarse
approximation suffices, leading to an absence of the V term in the bound. Having established these
results, the final step is to substitute them into Eq 6 and follow the proof recipe described earlier. This
requires significant calculations and is deferred to the Supplement Section S.5.

6 Experimental Validation
In this section, we present some simple experiments to validate our theoretical results. For more
detailed experiments, see the Supplement Section S.6. We design a Markov chain with |Ω|= 10
states, where the transition matrix entries Pij equal ρ/(|Ω|−1) for i ̸= j and 1− ρ for i = j. Smaller
values of ρ lead to larger mixing times. It can be verified that the stationary distribution π = U (Ω) is
uniform over the state-space and |λ2 (P ) |≈ (1− ρ). We set ρ = 0.2 for Figures 1 and 3a, and vary
it in Figure 3b. Each point in the plot is averaged over 20 random runs over different Markov chains,
datasets, and initialization.
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(a) Variation of sin2 error with β (b) Variation of sin2 error with |λ2 (P ) |

Figure 3: X axis represents the sample size, and Y axis represents the sin2 error.

Each state s ∈ Ω is associated with D(s) := Bernoulli(ps) distribution. We set d = 1000 and select
ps ∼ U (0, 0.05) at the start of each random run. The covariance matrix, Σs, for each state is set
as Σs (i, j) = exp (−|i− j|cs)σiσj where cs := 1 + 9

(
s−1
|Ω|−1

)
, σi := 5i−β . We start with the

stationary distribution π, and for each state si, we draw IID samples Zi ∼ D (si). We standardize Zi

such that all components have zero mean and unit variance under the state distribution, D (si). We

then generate the sample data-point for PCA as Xi = Σ
1
2
i Zi. By construction, ED(si)

[
XiX

T
i

]
= Σi

and E[Xi] = 0d. The step sizes for Oja’s algorithm are set as ηi = α
(β+i)(λ1−λ2)

for α = 5, β =
5

1−|λ2(P )| . For the downsampled variant, every 10th data-point is considered, and β is accordingly
divided by 10. For the offline algorithm, we recompute the leading eigenvector of the sample
covariance matrix of data-points seen so far.

Figure 1 compares the performance of different algorithms for the Bernoulli distribution. Here, we
are checking if the results obtained in Theorem 1, Proposition 1, and Corollary 1 are reflected in
the experiments. The experimental results demonstrate that Oja’s algorithm performs significantly
better than the downsampled version, consistent with the theoretical results. It also shows that Oja’s
algorithm performs similarly to the offline algorithm, which is also confirmed by our theoretical results
and that of [28]. Figure 3a compares the performance of Oja’s algorithm for different covariance
matrices. Smaller values of β decrease the eigengap λ1−λ2, and hence lead to a slower convergence.
Figure 3b confirms that smaller values of ρ (larger values of |λ2 (P ) |) also worsen the rate, which
matches with our theoretical results.

7 Conclusion

We have considered the problem of streaming PCA for Markovian data, which has implications
in various settings like decentralized optimization, reinforcement learning, etc. The analysis of
streaming algorithms in such settings has seen a renewed surge of interest in recent years. However,
the dependence between data-points makes it difficult to obtain sharp bounds. We provide, to our
knowledge, the first near-optimal bound for obtaining the first principal component from a Markovian
data stream that breaks the logarithmic barrier present in the analysis done for downsampled data.
We believe that the theoretical tools that we have developed in this paper would enable one to obtain
sharp bounds for other dependent data settings, learning top k principal components, and online
inference algorithms with updates involving products of matrices.
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