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Abstract

Contextual batched bandit (CBB) is a setting where a batch of rewards is ob-
served from the environment at the end of each episode, but the rewards of the
non-executed actions are unobserved, resulting in partial-information feedback.
Existing approaches for CBB often ignore the rewards of the non-executed actions,
leading to underutilization of feedback information. In this paper, we propose an
efficient approach called Sketched Policy Updating with Imputed Rewards (SPUIR)
that completes the unobserved rewards using sketching, which approximates the
full-information feedbacks. We formulate reward imputation as an imputation
regularized ridge regression problem that captures the feedback mechanisms of
both executed and non-executed actions. To reduce time complexity, we solve
the regression problem using randomized sketching. We prove that our approach
achieves an instantaneous regret with controllable bias and smaller variance than
approaches without reward imputation. Furthermore, our approach enjoys a sub-
linear regret bound against the optimal policy. We also present two extensions, a
rate-scheduled version and a version for nonlinear rewards, making our approach
more practical. Experimental results show that SPUIR outperforms state-of-the-art
baselines on synthetic, public benchmark, and real-world datasets.

1 Introduction

Contextual bandits have gained significant popularity in solving sequential decision-making problems
(Li et al., 2010; Lan and Baraniuk, 2016; Yom-Tov et al., 2017; Yang et al., 2021), where the agent
continuously updates its decision-making policy fully online (i.e., at each step), considering the
context and the received reward feedback to maximize cumulative rewards. In this paper, we address
a more general setting called contextual batched bandits (CBB). In CBB, the decision process is
divided into N episodes, and within each episode, the agent interacts with the environment for a fixed
number of B steps. At the end of each episode, the agent collects reward feedbacks and contexts.
Subsequently, the policy is updated using the collected data to guide the decision-making process in
the subsequent episode. CBB offers a practical framework for real-world streaming applications (e.g.,
streaming recommendation (Zhang et al., 2021, 2022)). In the context of CBB settings, the batch size
B, can be adjusted by the agent to achieve improved regret guarantees and meet the data throughput
requirements based on the available computing resources (Zhou, 2023).
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In bandit settings, it is common for the environment to only provide feedback on the rewards of
executed actions to the agent, while concealing the rewards of non-executed actions. This type of
limited feedback is referred to as partial-information feedback (also called “bandit feedback”). In
CBB setting, existing approaches tend to overlook the potential rewards associated with non-executed
actions. Instead, they address the challenge of partial-information feedback through an exploration-
exploitation tradeoff in both the context space and reward space (Han et al., 2020; Zhang et al.,
2020). However, CBB agents typically estimate and maintain reward models for the action-selection
policy, thereby capturing some information about the potential rewards of non-executed actions. This
additional reward structure information is available for policy updating in each episode but remains
untapped by existing batched bandit approaches.

In the context of contextual bandit settings where the policy is updated online, several bias-correction
approaches have been introduced to tackle the issue of partial-information feedback. Dimakopoulou
et al. (2019) presented linear contextual bandits integrating the balancing approach from causal
inference, which reweight the contexts and rewards by the inverse propensity scores. Chou et al.
(2015) designed pseudo-reward algorithms for contextual bandits using upper confidence bound
(UCB) strategy, which use a direct method to estimate the unobserved rewards. Kim and Paik (2019)
focused on the correction of feedback bias for LASSO bandit with high-dimensional contexts, and
applied the doubly-robust approach to the reward modification using average contexts. While these
approaches have demonstrated effectiveness in contextual bandit settings, little attention has been
given to addressing the under-utilization of partial-information feedback in CBB setting.

Theoretical and experimental analyses in Section 2 indicate that better performance of CBB is
achievable if the rewards of the non-executed actions can be received. Motivated by these observations,
we propose a novel reward imputation approach for the non-executed actions, which mimics the
reward generation mechanisms of environments. We conclude our contributions as follows.

(1) To fully utilize feedback information in CBB, we formulate the reward imputation as a problem of
imputation regularized ridge regression, where the policy can be updated efficiently using sketching.

(2) We prove that our reward imputation approach obtains a relative-error bound for sketching
approximation, achieves an instantaneous regret with a controllable bias and a smaller variance than
that without reward imputation, has a lower bound of the sketch size independently of the overall
number of steps, enjoys a sublinear regret bound against the optimal policy, and reduces the time
complexity from O(Bd2) to O(cd2) for each action in one episode, where B denotes the batch size,
c the sketch size, and d the dimension of the context space, satisfying d < c < B.

(3) We present two practical variants of our reward imputation approach, including the rate-scheduled
version that sets the imputation rate without tuning, and the version for nonlinear rewards.

(4) We carried out extensive experiments on a synthetic dataset, the publicly available Criteo dataset,
and a dataset from a commercial app to demonstrate our performance, empirically analyzed the
influence of different parameters, and verified the correctness of the theoretical results.

Related Work. Recently, batched bandit has become an active research topic in statistics and
learning theory including 2-armed bandit (Perchet et al., 2016), multi-armed bandit (Gao et al., 2019;
Zhang et al., 2020; Wang and Cheng, 2020), and contextual bandit (Han et al., 2020; Ren and Zhou,
2020; Gu et al., 2021). Han et al. (2020) defined linear contextual bandits, and designed UCB-type
algorithms for both stochastic and adversarial contexts, where true rewards of different actions have
the same parameters. Zhang et al. (2020) provided methods for inference on data collected in batches
using bandits, and introduced a batched least squares estimator for both multi-arm and contextual
bandits. Recently, Esfandiari et al. (2021) proved refined regret upper bounds of batched bandits in
stochastic and adversarial settings. There are several recent works that consider similar settings to
CBB, e.g., episodic Markov decision process (Jin et al., 2018), LASSO bandits (Wang and Cheng,
2020). Sketching is another related technology that compresses a large matrix to a much smaller one
by multiplying a (usually) random matrix while retaining certain properties (Woodruff, 2014), which
has been used in online convex optimization (Calandriello et al., 2017; Zhang and Liao, 2019).

2 Problem Formulation and Analysis

Let [x] = {1, 2, . . . , x}, S ⊆ Rd be the context space whose dimension is d, A = {Aj}j∈[M ] the
action space containing M actions,[A;B] = [Aᵀ,Bᵀ]ᵀ, ‖A‖F, ‖A‖1 ‖A‖2 denote the Frobenius
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Protocol 1 Contextual Batched Bandit (CBB)
INPUT: Batch size B, number of episodes N , action space A = {Aj}j∈[M ], context space S ⊆ Rd

1: Initialize policy p0 ← 1/M , sample data buffer D1 = {(s0,b, AI0,b , R0,b)}b∈[B] using initial policy p0
2: for n = 1 to N do
3: Update the policy pn on Dn

4: for b = 1 to B do
5: Observe context sn,b and choose AIn,b ∈ A following the updated policy pn(sn,b)
6: end for
7: Dn+1 ← {(sn,b, AIn,b , Rn,b)}b∈[B], where Rn,b denotes the reward of action AIn,b on context sn,b

8: end for

norm, 1-norm, and spectral norm of a matrixA, respectively, ‖a‖1 and ‖a‖2 be the `1-norm and the
`2-norm of a vector a, σmin(A) and σmax(A) denote the minimum and maximum of the of singular
values ofA. In this paper, we focus on the setting of Contextual Batched Bandits (CBB) in Protocol 1,
where the decision process is partitioned into N episodes, and in each episode, CBB consists of two
phases: (1) the policy updating approximates the optimal policy based on the received contexts and
rewards; (2) the online decision chooses actions for execution following the updated and fixed policy
p for B steps (B is also called the batch size), and stores the context-action pairs and the observed
rewards of the executed actions into a data buffer D. The reward R in CBB is a partial-information
feedback where rewards are unobserved for the non-executed actions.

In contrast to the existing batched bandit setting (Han et al., 2020; Esfandiari et al., 2021), where
the true reward feedbacks for all actions are controlled by the same parameter vector while the
received contexts differ across actions at each step, we make the assumption that in CBB setting,
the mechanism of true reward feedback varies across actions, while the received context is shared
among actions. Formally, for any context si ∈ S ⊆ Rd and action A ∈ A, we assume that the
expectation of the true reward Rtrue

i,A is determined by an unknown action-specific reward parameter
vector θ∗A ∈ Rd: E[Rtrue

i,A | si] = 〈θ∗A, si〉 (the linear reward will be extended to the nonlinear case in
Section 5). This setting for reward feedback matches many real-world applications, e.g., each action
corresponds to a different category of candidate coupons in coupon recommendation, and the reward
feedback mechanism of each category differs due to the different discount pricing strategies.

Next, we delve deeper into understanding the impact of unobserved feedbacks on the perfor-
mance of policy updating in CBB setting. We first conducted an empirical comparison by ap-
plying the batch UCB policy (SBUCB) (Han et al., 2020) to environments under different pro-
portions of received reward feedbacks. In particular, the agent under full-information feedback
can receive all the rewards of the executed and non-executed actions, called Full-Information CB-
B (FI-CBB) setting. From Figure 1, we can observe that the partial-information feedbacks are
damaging in terms of hurting the policy updating, and batched bandit policy can benefit from
more reward feedbacks, where the performance of 80% feedback is very close to that of FI-CBB.
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Figure 1: Average rewards of batch UCB policy
(Han et al., 2020) under different proportions of
received reward feedbacks, interacting with the
synthetic environment in Section 6, where x%
feedback means that x% of actions can receive
their true rewards

Then, we prove the difference of instantaneous re-
grets between the CBB and FI-CBB settings in
Theorem 1 (proof can be found in Appendix A).

Theorem 1. For any action A ∈ A and context
si ∈ S, let θnA be the reward parameter vector
estimated by the batched UCB policy in the n-th
episode. The upper bound of instantaneous regret
(defined by |〈θnA, si〉 − 〈θ∗A, si〉|) in the FI-CBB
setting is tighter than that in CBB setting (i.e., using
the partial-information feedback).

From Theorem 1, we can infer that utilizing partial-
information feedbacks leads to a deterioration in
the regret of the bandit policy. Ideally, the policy
would be updated using full-information feedback.
However, in CBB, full-information feedback is u-
navailable. Fortunately, in CBB, different reward
parameter vectors are maintained and estimated
separately for each action, and the potential reward
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Figure 2: Comparison of the stored data corresponding to the action Aj ∈ A = {Aj}j∈[M ] in CBB,
CBB with our reward imputation, and full-information CBB, in the (n+ 1)-th episode

structures of the non-executed actions have been captured to some extent. Therefore, why not utilize
these maintained reward parameters to estimate the unknown rewards for the non-executed actions?
In the following, we propose an efficient reward imputation approach that leverages this additional
reward structure information to enhance the performance of the bandit policy.

3 Reward Imputation for Policy Updating

In this section, we present an efficient reward imputation approach tailored for policy updating in
CBB setting.

Formulation of Reward Imputation. As shown in Figure 2, in contrast to CBB that ignores the
contexts and rewards of the non-executed steps of each action, our reward imputation approach
completes the missing values using the imputed contexts and rewards, approximating the full-
information CBB setting. Specifically, at the end of the (n + 1)-th episode, for each action Aj ∈
A, j ∈ [M ], the context vectors and rewards received at the steps where the action Aj is executed
are observed, and are stored into a context matrix SnAj

∈ RN
n
j ×d and a reward vector Rn

Aj
∈ RN

n
j ,

respectively, where Nn
j denotes the number of executed steps of Aj in episode n + 1. More

importantly, at the steps (in episode n + 1) where the action Aj is NOT executed, the following
imputations need to be performed for action Aj : (1) since the contexts are shared by all the actions,
we directly store them into an imputed context matrix ŜnAj

∈ RN̂
n
j ×d, where N̂n

j denotes the number

of non-executed steps of Aj (i.e., N̂n
j = B −Nn

j ); (2) since the rewards of Aj are unobserved at the
non-executed steps, we estimate them using an imputed reward vector: for any j ∈ [M ],

R̂n
Aj

= {rn,1(Aj), rn,2(Aj), . . . , rn,N̂n
j

(Aj)} ∈ RN̂
n
j ,

where rn,b(Aj) := 〈θ̄nAj
, sn,b〉 denotes the imputed reward parameterized by θ̄nAj

∈ Rd and sn,b is

the b-th row of ŜnAj
.

Next, we introduce the updating process of the reward parameter vector θ̄nAj
. We first concate-

nate the context and reward matrices from the previous episodes: LnAj
= [S0

Aj
; · · · ;SnAj

] ∈
RL

n
j ×d, T nAj

= [R0
Aj

; · · · ;Rn
Aj

] ∈ RL
n
j , Lnj =

∑n
k=0N

k
j , L̂

n
Aj

= [Ŝ0
Aj

; · · · ; ŜnAj
] ∈

RL̂
n
j ×d, T̂ nAj

= [R̂0
Aj

; · · · ; R̂n
Aj

] ∈ RL̂
n
j , L̂nj =

∑n
k=0 N̂

k
j . Then, the updated parameter vec-

tor θ̄n+1
Aj

of the imputed reward for action Aj can be obtained by solving the following imputation
regularized ridge regression: for n = 0, 1, . . . , N − 1,

θ̄n+1
Aj

= arg min
θ∈Rd

∥∥∥LnAj
θ − T nAj

∥∥∥2
2︸ ︷︷ ︸

Observed Term

+ γ
∥∥∥L̂nAj

θ − T̂ nAj

∥∥∥2
2︸ ︷︷ ︸

Imputation Term

+λ‖θ‖22, (1)

where γ ∈ [0, 1] is the imputation rate that controls the degree of reward imputation and measures
a trade-off between bias and variance (Remark 1&2), λ > 0 is the regularization parameter. The
discounted variant of the closed least squares solution of (1) is used for computing θ̄n+1

Aj
:

θ̄n+1
Aj

=
(
Ψn+1
Aj

)−1 (
bn+1
Aj

+ γb̂n+1
Aj

)
, (2)
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where Ψn+1
Aj

:= λId + Φn+1
Aj

+ γΦ̂n+1
Aj

, and

Φn+1
Aj

= Φn
Aj

+ SnᵀAj
SnAj

, bn+1
Aj

= bnAj
+ SnᵀAj

Rn
Aj
, (3)

Φ̂n+1
Aj

= ηΦ̂n
Aj

+ ŜnᵀAj
ŜnAj

, b̂n+1
Aj

= ηb̂nAj
+ ŜnᵀAj

R̂n
Aj
, (4)

and η ∈ (0, 1) is the discount parameter that controls how fast the previous imputed rewards are
forgotten, and can help guaranteeing the regret bound in Theorem 2.

Efficient Reward Imputation using Sketching. As shown in the first 4 columns in Table 1, the
overall time complexity of the imputation for each action is O(Bd2) in each episode, where B
represents the batch size, and d the dimensionality of the input. Thus, for all the M actions in one
episode, reward imputation increases the time complexity from O(Bd2) of the approach without
imputation to O(MBd2). To address this issue, we design an efficient reward imputation approach
using sketching, which reduces the time complexity of each action in one episode from O

(
Bd2

)
to O

(
cd2
)
, where c denotes the sketch size satisfying d < c < B and cd > B. Specifically, in the

(n+ 1)-th episode, the formulation in (1) can be approximated by a sketched ridge regression as:

θ̃n+1
Aj

= arg min
θ∈Rd

∥∥∥Πn
Aj

(
LnAj

θ − T nAj

)∥∥∥2
2

+ γ
∥∥∥Π̂n

Aj

(
L̂nAj

θ − T̂ nAj

)∥∥∥2
2

+ λ‖θ‖22, (5)

where θ̃n+1
A denotes the updated parameter vector of the imputed reward using sketching for action

A ∈ A, Cn
Aj
∈ Rc×N

n
j and Ĉn

Aj
∈ Rc×N̂

n
j are the sketch submatrices for the observed term and the

imputation term, respectively, and the sketch matrices for the two terms can be represented as

Πn
Aj

=
[
C0
Aj
,C1

Aj
, · · · ,Cn

Aj

]
∈ Rc×L

n
j , Π̂n

Aj
=
[
Ĉ0
Aj
, Ĉ1

Aj
, · · · , Ĉn

Aj

]
∈ Rc×L̂

n
j .

We denote the sketches of the context matrix and the reward vector by ΓnAj
:= Cn

Aj
SnAj
∈ Rc×d and

Λn
Aj

:= Cn
Aj
Rn
Aj
∈ Rc, the sketches of the imputed context matrix and the imputed reward vector

by Γ̂nAj
:= Ĉn

Aj
ŜnAj
∈ Rc×d and Λ̂n

Aj
:= Ĉn

Aj
R̂n
Aj
∈ Rc. Similarly to (2), the discounted variant of

the closed solution of (5) as follows:

θ̃n+1
Aj

=
(
W n+1

Aj

)−1 (
pn+1
Aj

+ γp̂n+1
Aj

)
, (6)

where η ∈ (0, 1) denotes the discount parameter,W n+1
Aj

:= λId +Gn+1
Aj

+ γĜn+1
Aj

, and

Gn+1
Aj

= Gn
Aj

+ ΓnᵀAj
ΓnAj

,pn+1
Aj

= pnAj
+ ΓnᵀAj

Λn
Aj
, (7)

Ĝn+1
Aj

= ηĜn
Aj

+ Γ̂nᵀAj
Γ̂nAj

, p̂n+1
Aj

= ηp̂nAj
+ Γ̂nᵀAj

Λ̂n
Aj
. (8)

Using the parameter θ̃n+1
Aj

, we obtain the sketched version of imputed reward as r̃n,b(Aj) :=

〈θ̃nAj
, sn,b〉 at step b ∈ [N̂n

j ]. Finally, we specify that the sketch submatrices {Cn
A}A∈A,n∈[N ] and

{Ĉn
Aj
}A∈A,n∈[N ] are the block construction of Sparser Johnson-Lindenstrauss Transform (SJLT)

(Kane and Nelson, 2014), where the sketch size c is divisible by the number of blocks D3. As shown
in the last 4 columns in Table 1, sketching reduces the time complexity of reward imputation from
O(MBd2) to O(Mcd2) for all M actions in one episode, where c < B. When Mc ≈ B, the overall
time complexity of our reward imputation using sketching is even comparable to that without reward
imputation, i.e., a O(Bd2) time complexity.

Updated Policy using Imputed Rewards. Inspired by the UCB strategy (Li et al., 2010), the
updated policy for online decision of the (n + 1)-th episode can be formulated using the imputed
rewards (parameterized by θ̄n+1

A in (2)) or the sketched version of imputed rewards (parameterized
by θ̃n+1

A in (6)). Specifically, for a new context s,
• origin policy p̄n+1 selects the action as A← arg maxA∈A〈θ̄n+1

A , s〉+ ω[sᵀ(Ψn+1
A )−1s]

1
2 ,

• sketched policy p̃n+1 selects the action as A← arg maxA∈A〈θ̃n+1
A , s〉+ α[sᵀ(W n+1

A )−1s]
1
2 ,

where ω ≥ 0 and α ≥ 0 are the regularization parameters in policy and their theoretical values are
given in Theorem 4. We summarize the reward imputation using sketching and the sketched policy
into Algorithm 2, called SPUIR. Similarly, we call the updating of the original policy that uses reward
imputation without sketching, the Policy Updating with Imputed Rewards (PUIR).

3Since we set the number of blocks of SJLT as D < d, we omit D in the complexity analysis.
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Table 1: The time complexities of the original reward imputation in (1) (first 4 columns) and the
reward imputation using sketching in (5) (last 4 columns) for action Aj in the (n + 1)-th episode,
where Nn

j (N̂n
j ) denotes the number of steps at which the action Aj is executed (non-executed) in

episode n+ 1, N̂n
j +Nn

j = B, and the sketch size c satisfying d < c < B and cd > B (MM: matrix
multiplication; MI: matrix inversion; Overall: overall time complexity for action Aj in one episode)

Original reward imputation in (1) Reward imputation using sketching in (5)
Item Operation Equation Time Item Operation Equation Time
Φn+1

Aj
, Φ̂n+1

Aj
MM (3), (4) O(Bd2) Gn+1

Aj
, Ĝn+1

Aj
MM (7), (8) O(cd2)

bn+1
Aj

, b̂n+1
Aj

MM (3), (4) O(Bd) pn+1
Aj

, p̂n+1
Aj

MM (7), (8) O(cd)

(Ψn+1
Aj

)−1 MI (2) O(d3) (W n+1
Aj

)−1 MI (6) O(d3)

– Γn
Aj

, Λn
Aj

Sketching – O(Nn
j d)

– Γ̂n
Aj

, Λ̂n
Aj

Sketching – O(N̂n
j d)

Overall – – O(Bd2) Overall – – O(cd2)

Algorithm 2 Sketched Policy Updating with Imputed Rewards (SPUIR) in the (n+ 1)-th episode
INPUT: Policy p̃n, data buffer Dn+1, A = {Aj}j∈[M ], α ≥ 0, η ∈ (0, 1), γ ∈ [0, 1], λ > 0, W 0

Aj
= λId,

G0
Aj

= Ĝ0
Aj

= Od, p0
Aj

= p̂0
Aj

= 0, θ̃0Aj
= 0, j ∈ [M ], batch size B, sketch size c, number of block D

OUTPUT: Updated policy p̃n+1

1: For all j ∈ [M ], store context vectors and rewards corresponding to the steps at which the action Aj is
executed, into Γn

Aj
∈ RNn

j ×d and Λn
Aj
∈ RNn

j

2: For all j ∈ [M ], store context vectors corresponding to the steps at which the action Aj is not executed into
Γ̂n

Aj
∈ RN̂n

j ×d, where N̂n
j ← B −Nn

j

3: r̃n,b(Aj)← 〈θ̃nAj
, sn,b〉, for all Aj ∈ A and b ∈ [N̂n

j ], where sn,b is the b-th row of Γ̂n
Aj

4: Compute imputed reward vector R̂n
Aj
← {r̃n,1(Aj), . . . , r̃n,N̂n

j
(Aj)} ∈ RN̂n

j , ∀j ∈ [M ]

5: for all action Aj ∈ A do
6: Gn+1

Aj
← Gn

Aj
+ Γnᵀ

Aj
Γn

Aj
, pn+1

Aj
← pn

Aj
+ Γnᵀ

Aj
Λn

Aj
{(7)}

Ĝn+1
Aj
← ηĜn

Aj
+ Γ̂nᵀ

Aj
Γ̂n

Aj
, p̂n+1

Aj
← ηp̂n

Aj
+ Γ̂nᵀ

Aj
Λ̂n

Aj
{(8)}

7: W n+1
Aj
← λId +Gn+1

Aj
+ γĜn+1

Aj
, θ̃n+1

Aj
← (W n+1

Aj
)−1(pn+1

Aj
+ γp̂n+1

Aj
) {(6)}

8: end for
9: p̃n+1(s) selects action A← argmaxA∈A〈θ̃

n+1
A , s〉+ α[sᵀ

(
W n+1

A

)−1
s]

1
2 for a new context s

10: Return {θ̃n+1
A }A∈A, {

(
W n+1

A

)−1}A∈A

4 Theoretical Analysis

We provide the instantaneous regret bound, prove the approximation error of sketching, and analyze
the regret of SPUIR in CBB setting. The detailed proofs can be found in Appendix B. We first
demonstrate the instantaneous regret bound of the original solution θ̄nA in (1).
Theorem 2 (Instantaneous Regret Bound). Let η ∈ (0, 1) be the discount parameter, γ ∈ [0, 1] the
imputation rate. In the n-th episode, if the rewards {Rn,b}b∈[B] are independent4 and bounded by
CR, then, for any b ∈ [B], ∀A ∈ A, there exists CImp > 0 such that, with probability at least 1− δ,∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣ ≤ [λ‖θ∗A‖2 + ν + γ

1
2 η−

1
2CImp

]
[sᵀn,b (Ψn

A)
−1
sn,b]

1
2 , (9)

where Ψn
A = λId + Φn

A + γΦ̂n
A, ν = [2C2

R log(2MB/δ)]
1
2 . The first term on the right-hand side

of (9) can be seen as the bias term for the reward imputation, while the second term is the variance
term. The variance term of our algorithm is not larger than that without the reward imputation, i.e,
for any s ∈ Rd,

[sᵀ (Ψn
A)
−1
s]

1
2 ≤ [sᵀ (λId + Φn

A)
−1
s]

1
2 .

Further, a larger imputation rate γ leads to a smaller variance term [sᵀ (Ψn
A)
−1
s]

1
2 .

4The assumption about conditional independence of the rewards is commonly used in the bandits literature,
which can be ensured using a master technology as a theoretical construction (Auer, 2002; Chu et al., 2011).
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Remark 1 (Smaller Variance). From Theorem 2, we can observe that our reward imputation achieves
a smaller variance ([sᵀn,b (Ψn

A)
−1
sn,b]

1
2 ) than that without the reward imputation. By combining

Theorem 2 and the proof of Theorem 1, we can obtain that the variance in instantaneous regret
bound of SPUIR is in between the variances in full and partial information scenarios. Thus, reward
imputation in SPUIR provides a promising way to use expert advice approaches for bandit problems.

Remark 2 (Controllable Bias). Our reward imputation approach incurs a bias term γ
1
2 η−

1
2CImp in

addition to the two bias terms λ‖θ∗A‖2 and ν that exist in every existing UCB-based policy. But the
additional bias term γ

1
2 η−

1
2CImp is controllable due to the presence of imputation rate γ that can

help controlling the additional bias. Moreover, the term CImp in the additional bias can be replaced
by a function fImp(n), and fImp(n) is monotonic decreasing w.r.t. number of episodes n provided
that the mild condition

√
η = Θ(d−1) holds (the definition and analysis about fImp can be found

in Appendix B.1). Overall, the imputation rate γ controls a trade-off between the bias term and the
variance term, and we will design a rate-scheduled approach for automatically setting γ in Section 5.

Remark 3 (Relationship with Existing Instantaneous Regrets). According to the original definition in
the context of online learning, the definition of instantaneous regret should be maxA∈A〈θ∗A, sn,b〉 −
〈θ∗AIn,b

, sn,b〉. However, in the specific setting of contextual batched bandit (CBB) that is the focus of
this paper, as derived in Appendix (second inequality of Eq. (48)), if we denote the upper bound of
|〈θ̄nA, sn,b〉−〈θ∗A, sn,b〉| as U, then 2U serves as an upper bound for instantaneous regret. Thus, in the
context of CBB explored in this paper, we are interested in an upper bound for |〈θ̄nA, sn,b〉−〈θ∗A, sn,b〉|
and define it as the instantaneous regret bound.

Although some approximation error bounds using SJLT have been proposed (Nelson and Nguyên,
2013; Kane and Nelson, 2014; Zhang and Liao, 2019), it is still unknown what is the lower bound
of the sketch size while applying SJLT to the sketched ridge regression problem in our SPUIR.
Next, we prove the approximation error as well as the lower bound of the sketch size in SPUIR. For
convenience, we drop all the superscripts and subscripts in this result.

Theorem 3 (Approximation Error Bound of Imputation using Sketching). Denote the imputation
regularized ridge regression function by F (θ) (defined in (1)) and the sketched ridge regression
function by F S(θ) (defined in (5)) for reward imputation, whose solutions are θ̄ = arg minθ∈Rd F (θ)

and θ̃ = arg minθ∈Rd F S(θ). Let γ ∈ [0, 1] be the imputation rate, λ > 0 the regularization
parameter, δ ∈ (0, 0.1], ε ∈ (0, 1), Lall = [L;

√
γL̂], and ρλ = ‖Lall‖22/(‖Lall‖22 + λ). If Π and Π̂

are SJLT, assuming thatD = Θ(ε−1 log3(dδ−1)) and the sketch size c = Ω
(
d polylog

(
dδ−1

)
/ε2
)
,

with probability at least 1− δ, the following results hold:

F (θ̃) ≤ (1 + ρλε)F (θ̄), ‖θ̃ − θ̄‖2 = O (
√
ρλε) .

To measure the convergence of approximating the optimal policy in an online manner, we define the
regret of SPUIR against the optimal policy as

Reg(N,B) := max
A∈A

∑
n∈[N ],b∈[B]

[〈θ∗A, sn,b〉 − 〈θ∗AIn,b
, sn,b〉],

where In,b denotes the index of the executed action using the sketched policy p̃n (parameterized by
{θ̃nA}A∈A) at step b in the n-th episode. We final prove the regret bound of SPUIR.

Theorem 4 (Regret Bound of SPUIR). Let T = BN be the overall number of steps, η ∈ (0, 1)
be the discount parameter, γ ∈ [0, 1] the imputation rate, λ > 0 the regularization parameter,
Cmax

θ∗ = maxA∈A ‖θ∗A‖2, CImp be the positive constant defined in Theorem 2. Assume that the
conditional independence assumption in Theorem 2 holds and the upper bound of rewards is CR,
M = O(poly(d)), T ≥ d2, ν = [2C2

R log(2MB/δ1)]
1
2 with δ1 ∈ (0, 1), ω = λCmax

θ∗ + ν +

γ
1
2 η−

1
2CImp, α = ωCα, where Cα > 0 which decreases with increase of 1/ε and ε ∈ (0, 1).

Let δ2 ∈ (0, 0.1], ρλ < 1 be the constant defined in Theorem 3, and Creg be a positive constant
that decreases with increase of 1/ε. For the sketch matrices {Πn

A}A∈A,n∈[N ] and {Π̂}A∈A,n∈[N ],
assuming that the number of blocks in SJLT D = Θ(ε−1 log3(dδ−12 )), and the sketch size satisfying

c = Ω
(
d polylog

(
dδ−12

)
/ε2
)
,
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then, for an arbitrary sequence of contexts {sn,b}n∈[N ],b∈[B], with probability at least 1−N(δ1+δ2),

Reg(N,B) ≤ 2αCreg

√
10M log(T + 1)(

√
dT + dB) +O

(
T
√
ρλεd/B

)
. (10)

Remark 4. SettingB = O(
√
T/d), ρλε = 1/d yields a sublinear regret bound of order Õ(

√
MdT )5

provided that the sketch size c = Ω(ρ2λd
3 polylog(dδ−12 )). We can observe that the lower bound

of c is independent of the overall number of steps T , and a theoretical value of the batch size is
B = CB

√
T/d = C2

BN/d, where setting CB ≈ 25 is a suitable choice that has been verified
in the experiments in Section 6. In particular, when ρλ = O(1/d), the sketch size of order c =
Ω(d polylogd) is sufficient to achieve a sublinear regret.

From the theoretical results of regret, we can observe that our SPUIR admits several advantages:
(a) The order of our regret bound (w.r.t. the overall number of steps) is not higher than those in the
literature in the fully-online setting (Li et al., 2019; Dimakopoulou et al., 2019) that is a more simple
setting than ours; (b) The first term in the regret bound (10) measures the performance of policy
updating using imputed rewards (called “policy error”). From Theorem 2 and Remark 1&2, we obtain
that, in each episode, our policy updating has a smaller variance than the policy without the reward
imputation, and incurs a decreasing additional bias under mild conditions, leading to a tighter regret
(i.e., smaller policy error) after some number of episodes. (c) The second term on the right-hand side of
(10) is of order O(T

√
ρλεd/B), which is incurred by the sketching approximation using SJLT (called

“sketching error”). This sketching error does not have any influence on the order of regret of SPUIR,
which may even have a lower order with a suitable choice of ρλε, e.g., setting ρλε = T−1/4d−1

yields a sketching error of order O(T 3/8d1/2) provided that c = Ω(ρ2λd
3 polylog(dδ−12 )

√
T ).

At a fundamental level, the effectiveness of the proposed reward imputation can be attributed to the
following two key factors:

(1) Leveraging contextual bandit structure: Traditional bandit methods only consider the structural
assumptions for executed actions, leaving out non-executed ones. Our reward imputation approach
incorporates a wide range of reward function structural assumptions, covering both executed and
non-executed actions. By imputing missing rewards with observed data, we reduce the impact of
missing data for a more accurate reward estimation.

(2) Balancing exploration and exploitation: Reward imputation’s effectiveness arises from its
impact on the exploration-exploitation trade-off. By incorporating imputed rewards, our proposed
algorithms can make informed decisions even when observed rewards are incomplete. This enhances
the agent’s exploration strategy, helping it discover more valuable actions and reducing cumulative
regret. Essentially, our reward computation approach approximates full-information feedback,
mitigating the explore/exploit dilemma.

5 Extensions of Our Approach

To make the proposed reward imputation approach more feasible and practical, we tackle the following
two research questions by designing variants of our approach following the theoretical results:

RQ1 (Parameter Selection): Can we set the imputation rate γ without tuning?

RQ2 (Nonlinear Reward): Can we apply the proposed reward imputation approach to the case
where the expectation of true rewards is nonlinear?

Rate-Scheduled Approach. For RQ1, we equip PUIR and SPUIR with a rate-scheduled approach,
called PUIR-RS and SPUIR-RS, respectively. From Remark 1&2, a larger imputation rate γ leads to
a smaller variance while increasing the bias, while the bias term includes a monotonic decreasing
function w.r.t. number of episodes under mild conditions. Therefore, we can gradually increase γ with
the number of episodes, avoiding the large bias at the beginning of reward imputation. Specifically,
we set γ = X% for episodes from (X − 10)%×N to X%×N , where X ∈ [10, 100].

Application to Nonlinear Rewards. For RQ2, we provide nonlinear versions of reward imputation.
We use linearization technologies of nonlinear rewards, rather than directly setting the rewards as
nonlinear functions (Valko et al., 2013; Chatterji et al., 2019), avoiding the linear regret or curse of

5We use the notation of Õ to suppress logarithmic factors in the overall number of steps T .
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Table 2: Performance comparison of coupon recommendation on commercial product

Algorithm CVR (mean ± std) CTCVR (mean ± std) Time (sec., mean ± std)

DFM-S 0.8656 ± 0.0473 0.3317 ± 0.0218 302.3140 ± 8.3045
SBUCB 0.8569 ± 0.0037 0.4277 ± 0.0084 43.5435 ± 0.3659
BEXP3 0.4846 ± 0.0205 0.2425 ± 0.0116 53.5001 ± 0.9220
BEXP3-IPW 0.4862 ± 0.0187 0.2436 ± 0.0113 56.0101 ± 1.4142
BLTS-B 0.8663 ± 0.0178 0.4285 ± 0.0157 218.2109 ± 1.8198
PUIR 0.8807 ± 0.0053 0.4411 ± 0.0029 184.3575 ± 2.2346
SPUIR 0.8770 ± 0.0059 0.4397 ± 0.0032 81.5753 ± 1.5879
PUIR-RS 0.8763 ± 0.0056 0.4389 ± 0.0030 180.4999 ± 1.7763
SPUIR-RS 0.8758 ± 0.0058 0.4391 ± 0.0031 80.8003 ± 2.9030

kernelization. Specifically, instead of using the linear imputed reward r̃n,b(Aj) := 〈θ̃nAj
, sn,b〉, we

use the following linearized nonlinear imputed rewards, denotes by Tn,b(θ, A):

(1) SPUIR-Exp. We assume that the expected reward is an exponential function as GE(θ, s) =
exp (θᵀs) . Then Tn,b(θ, A) = 〈θ,∇θGE(θ, sn,b)〉 , where∇θGE(θ, sn,b) = exp (θᵀsn,b) sn,b.

(2) SPUIR-Poly. When the expected reward is a polynomial function as GP(θ, s) = (θᵀs)
2
. Then

Tn,b(θ, A) = 〈θ,∇θGP(θ, sn,b)〉 , where∇θGP(θ, sn,b) = 2 (θᵀsn,b) sn,b.

(3) SPUIR-Kernel. Consider that the underlying expected reward in a Gaussian reproducing kernel
Hilbert space (RKHS). We use Tn,b(θ, A) = 〈θ, φ(sn,b)〉 in random feature space, where the random
feature mapping φ can be explicitly computed.

For SPUIR-Exp and SPUIR-Poly, combining the linearization of convex functions (Shalev-Shwartz,
2011) with Theorem 4 yields the regret bounds of the same order. For SPUIR-Kernel, using the
approximation error of random features (Rahimi and Recht, 2008), we can also obtain that, SPUIR-
Kernel has the same regret bound as SPUIR under mild conditions (see proofs in Appendix B).

6 Experiments

We empirically evaluated the performance of our algorithms on 3 datasets: the synthetic dataset,
publicly available Criteo dataset6 (Criteo-recent, Criteo-all), and dataset collected from
Tencent’s WeChat app for coupon recommendation (commercial product).

Experimental Settings. We compared our algorithms with: Sequential Batch UCB (SBUCB)
(Han et al., 2020), Batched linear EXP3 (BEXP3) (Neu and Olkhovskaya, 2020), Batched linear
EXP3 using Inverse Propensity Weighting (BEXP3-IPW) (Bistritz et al., 2019), Batched Balanced
Linear Thompson Sampling (BLTS-B) (Dimakopoulou et al., 2019), and Sequential version of
Delayed Feedback Model (DFM-S) (Chapelle, 2014). We applied the algorithms to CBB setting
and implemented on Intel(R) Xeon(R) Silver 4114 CPU@2.20GHz, and repeated the experiments
20 times. We tested the performance of algorithms in streaming recommendation scenarios, where
the reward is represented by a linear combination of the click and conversion behaviors of users.
According to Remark 4, we set the batch size as B = C2

BN/d, the constant CB ≈ 25, and the sketch
size c = 150 on all the datasets. The average reward was used to evaluate the accuracy of algorithms.

Performance Evaluation. Figure 3(a)–(c) reports the average reward of SPUIR with its variants
and the baselines. We observed that SPUIR and its variants achieved higher average rewards,
demonstrating the effectiveness of our reward imputation. Moreover, SPUIR and its rate-scheduled
version SPUIR-RS had similar performances compared with the origin PUIR, which indicates the
practical effectiveness of our variants and verifies the correctness of the theoretical analyses. The
results on commercial product in Table 2 indicate that SPUIR outperformed the second-best
baseline with the improvements of 1.07% CVR (conversion rate) and 1.12% CTCVR (post-view

6https://labs.criteo.com/2013/12/conversion-logs-dataset/
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Figure 3: (a), (b), (c): Average rewards of the compared algorithms, the proposed SPUIR and
its variants on synthetic dataset, Criteo dataset, and the real commercial product data, where we
omitted the curves of algorithms whose average rewards are 5% lower than the highest reward; (d):
SPUIR and its three nonlinear variants on synthetic dataset; (e): SPUIR with different batch sizes on
Criteo-recent; (f): SPUIR and SPUIR-RS with different sketch sizes on synthetic dataset

click-through&conversion rate). Besides, our reward imputation approaches were more efficient than
DFM-S, BLTS-B. The variants using sketching of our algorithms (SPUIR, SPUIR-RS) significantly
reduced the time costs of reward imputation, and took less than twice as long to run compared to
the baselines without reward imputation (SBUCB, BEXP3, BEXP3-IPW). Figure 3(d) illustrates
performances of SPUIR and its nonlinear variants, where SPUIR-Kernel achieved the highest rewards
indicating the effectiveness of the nonlinear generalization of our approach. For different decision
tasks, a suitable nonlinear reward model needs to be selected for better performances.

Parameter Influence. From the regret bound (10), we can observe that a larger batch size B results
in a larger first term (of order O(B), called policy error) but a smaller second term (of order O(1/B),
called sketching error), indicating that a suitable batch size B needs to be set. This conclusion
was empirically verified in Figure 3(e), where B = 1, 000 (CB = 25) yields better empirical
performance in terms of the average reward. Similar phenomenon can also be observed on Criteo
dataset and commercial product. All of the results verified the theoretical results in Remark 4:
B = CB

√
T/d = C2

BN/d is a suitable choice while settingCB ≈ 25. From the results in Figure 3(f)
we observe that, for our SPUIR and SPUIR-RS, the performances significantly increased when the
sketch size c reached 10%B (≈ d log d), which demonstrates the conclusion in Remark 4 that only
the sketch size of order c = Ω(d polylogd) is needed for satisfactory performance.

7 Conclusion

This paper presents a computationally efficient reward imputation approach for contextual batched
bandits that addresses the challenge of partial-information feedback in real-world applications. The
proposed approach mimics the reward generation mechanism of the environment, approximating
full-information feedback. It reduces time complexity using sketching, achieves a relative-error bound
for approximation, and exhibits regret with controllable bias and reduced variance. The theoretical
formulation and algorithmic implementation may provide an efficient reward imputation scheme for
online learning under limited feedback.
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