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Abstract

Standard conformal prediction methods provide a marginal coverage guarantee,
which means that for a random test point, the conformal prediction set contains the
true label with a user-specified probability. In many classification problems, we
would like to obtain a stronger guarantee—that for test points of a specific class,
the prediction set contains the true label with the same user-chosen probability. For
the latter goal, existing conformal prediction methods do not work well when there
is a limited amount of labeled data per class, as is often the case in real applications
where the number of classes is large. We propose a method called clustered
conformal prediction that clusters together classes having “similar” conformal
scores and performs conformal prediction at the cluster level. Based on empirical
evaluation across four image data sets with many (up to 1000) classes, we find
that clustered conformal typically outperforms existing methods in terms of class-
conditional coverage and set size metrics.

1 Introduction

Consider a situation in which a doctor relies on a machine learning system that has been trained to
output a set of likely medical diagnoses based on CT images of the head. Suppose that the system
performs well on average and is able to produce prediction sets that contain the actual diagnosis with
at least 0.9 probability. Upon closer examination, however, the doctor discovers the algorithm only
predicts sets containing common and relatively benign conditions, such as {normal, concussion}, and
the sets never include less common but potentially fatal diseases, such as intracranial hemorrhage. In
this case, despite its high marginal (average) performance, the doctor would not want to use such an
algorithm because it may lead to patients missing out on receiving critical care. The core problem is
that even though the average performance of the algorithm is good, the performance for some classes
is quite poor.

Conformal prediction (Vovk et al., 2005) is a method for producing set-valued predictions that serves
as a wrapper around existing prediction systems, such as neural networks. Standard conformal
prediction takes a black-box prediction model, a calibration data set, and a new test example Xtest ∈
X with unknown label Ytest ∈ Y and creates a prediction set C(Xtest) ⊆ Y that satisfies marginal
coverage:

P(Ytest ∈ C(Xtest)) ≥ 1− α, (1)

for a coverage level α ∈ [0, 1] chosen by the user. However, as the example above shows, the utility
of these prediction sets can be limited in some real applications. In classification, which we study in
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this paper, the label space Y is discrete, and it is often desirable to have class-conditional coverage:

P(Ytest ∈ C(Xtest) | Ytest = y) ≥ 1− α, for all y ∈ Y, (2)

meaning that every class y has at least 1− α probability of being included in the prediction set when
it is the true label. Note that (2) implies (1). Predictions sets that only satisfy (1) may neglect the
coverage of some classes, whereas the predictions sets in (2) are effectively “fair” with respect to all
classes, even the less common ones.

Standard conformal prediction, which we will refer to as STANDARD, does not generally provide
class-conditional coverage. We present a brief case study to illustrate.

ImageNet case study. Running STANDARD using a nominal coverage level of 90% on 50,000
examples sampled randomly from ImageNet (Russakovsky et al., 2015), a large-scale image data
set described later in Section 3, yields prediction sets that achieve very close to the correct marginal
coverage (89.8%). However, this marginal coverage is achieved by substantially undercovering some
classes and overcovering others. For example, water jug is severely undercovered: the prediction
sets only include it in 50.8% of the cases where it is the true label. On the other hand, flamingo is
substantially overcovered: it achieves a class-conditional coverage of 99.2%. This underscores the
need for more refined methods in order to achieve the class-conditional coverage defined in (2).

In principle, it is possible to achieve (2) by splitting the calibration data by class and running conformal
prediction once for each class (Vovk, 2012). We refer to this as CLASSWISE. However, this procedure
fails to be useful in many real applications since data-splitting can result in very few calibration
examples for each class-level conformal prediction procedure. This typically happens in problem
settings where we have many classes but limited data; in such settings, the classwise procedure tends
to be overly conservative and produces prediction sets that are too large to be practically useful. We
note that previous papers (Shi et al., 2013; Löfström et al., 2015) on class-conditional conformal
have not focused on the many classes regime and have instead studied binary or at most 10-way
classification tasks.

In this work, we focus on the challenging limited-data, many-class classification setting and we
develop a method targeted at class-conditional coverage. Our method mitigates the problems that arise
from data-splitting by clustering together classes that have similar score distributions and combining
the calibration data for those classes. Figure 1 illustrates how the method we propose strikes a balance
between STANDARD and CLASSWISE. As we will later show in our experiments, this can improve
class-conditional coverage in many situations.
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Figure 1: A schematic comparison of conformal prediction methods, including the CLUSTERED
method we propose. Each colored circle represents the calibration data for a particular class. Existing
methods fall on extremes of the spectrum: STANDARD is very stable because it groups data for all
classes together, but it is not able to treat classes differently when needed; CLASSWISE has high
granularity, but it splits all of the data by class and consequently has high variance in limited-data
settings; CLUSTERED strikes a balance by grouping together data for “similar” classes.
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Our contributions. We make three advances in tackling the problem of class-conditional coverage.

• We propose an extension of conformal prediction called clustered conformal prediction that
often outperforms standard and classwise conformal, in terms of class-conditional coverage,
when there is limited calibration data available per class.

• We present a comprehensive empirical evaluation of class-conditional coverage for con-
formal methods on four large-scale classification data sets, each with many (100 to 1000)
classes.

• We provide general guidelines to practitioners for how to choose an appropriate conformal
prediction method in order to achieve class-conditional coverage in the problem setting at
hand.

1.1 Related work

Mondrian conformal prediction. We work in the split-conformal prediction framework (Pa-
padopoulos et al., 2002; Lei et al., 2018) in which the training data set (to train the base classifier)
and calibration data set are disjoint. Mondrian conformal prediction (MCP) is a general procedure
that encompasses many kinds of conditional conformal prediction (Vovk et al., 2005). For any chosen
grouping function G : X × Y → G where G denotes the set of all groups, MCP provides coverage
guarantees of the form P(Ytest ∈ C(Xtest) | G(Xtest, Ytest) = g) ≥ 1−α for all groups g ∈ G. The
high-level idea behind MCP is to split the calibration data by group and then run conformal prediction
on each group. The CLASSWISE conformal procedure is a special case of MCP where each value of
Y defines a group (this is also sometimes referred to as label-conditional conformal prediction).

To the best of our knowledge, previous work has not focused on class-conditional coverage of con-
formal methods in the many-classes, limited-data regime that is common to many real classification
applications. Löfström et al. (2015) present an empirical study of STANDARD and CLASSWISE on
binary, 3-way, and 4-way classification data sets (with a focus on the binary setting). For class-
imbalanced problems, they find that STANDARD tends to overcover the majority class, and undercover
the minority class. Shi et al. (2013) consider CLASSWISE on the MNIST and USPS data sets, which
are 10-way classification problems. Sun et al. (2017) use a cross-fold variant of CLASSWISE for
binary classification on imbalanced bioactivity data. Hechtlinger et al. (2018) run class-conditional
experiments on the 3-class Iris data set, and provide preliminary ideas on how to incorporate inter-
actions between classes using density estimation. Guan and Tibshirani (2022) use CLASSWISE in
an outlier detection context. Sadinle et al. (2019) consider CLASSWISE with a modification to avoid
empty prediction sets and perform experiments on 3-way or 10-way classification tasks. To reiterate,
the aforementioned papers all focus on the regime that is generally favorable to CLASSWISE, where
data is abundant relative to the number of classes. Our work focuses on the limited-data regime that
often arises in practice.

Other types of conditional conformal prediction. “Conditional coverage” is a term that, within
the conformal prediction literature, often refers to coverage at a particular input value X = x. It is
known to be impossible to achieve coverage conditional on X = x, for all x, without invoking further
distributional assumptions (Lei and Wasserman, 2014; Vovk, 2012; Barber et al., 2021). However,
approximate X-conditional coverage can be achieved in practice by designing better score functions
(Romano et al., 2019, 2020b; Angelopoulos et al., 2022) or by modifying the conformal procedure
itself (Romano et al., 2020a; Guan, 2023; Gibbs et al., 2023). Our work draws inspiration from
the latter camp, but our aim is to achieve class-conditional (Y -conditional) coverage rather than
X-conditional coverage. Note that X-conditional coverage is hard to interpret in settings in which Y
is not random given X = x (e.g., in image classification, if x is an image of a dog, then the true label
is always y = dog, with no intrinsic randomness after conditioning on X = x). In such settings, it is
more natural to consider class-conditional coverage.

1.2 Preliminaries

We work in the classification setting in which each input Xi ∈ X has a class label Yi ∈ Y , for some
discrete set Y . Let {(Xi, Yi)}Ni=1 denote a calibration data set, where each (Xi, Yi)

iid∼ F . Given a
new independent test point (Xtest, Ytest) ∼ F , our goal is to construct (without knowledge of Ytest)
a prediction set C(Xtest) that satisfies (2) for some user-specified α ∈ [0, 1].
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Let s : X × Y → R denote a (conformal) score function, where we take s(x, y) to be negatively
oriented, which means that lower scores indicate a better agreement between the input x and the
proposed class label y. The score function is typically derived from a pre-trained classifier f (a
simple example to keep in mind is s(x, y) = 1− fy(x), where fy(x) represents the yth entry of the
softmax vector output by f for the input x). For brevity, we denote the score of the ith calibration
data point as si = s(Xi, Yi). For τ ∈ [0, 1] and a finite set A ⊆ R, let Quantile(τ,A) denote the
smallest a ∈ A such that τ fraction of elements in A are less than or equal to a. For τ > 1, we take
Quantile(τ,A) = ∞.

With this notation, the STANDARD conformal prediction sets are given by

CSTANDARD(Xtest) = {y : s(Xtest, y) ≤ q̂},

where

q̂ = Quantile

(
⌈(N + 1)(1− α)⌉

N
, {si}Ni=1

)
.

These prediction sets are guaranteed to satisfy (1) (Vovk et al., 2005). We can interpret q̂ as a
finite-sample adjusted (1− α)-quantile of the scores in the calibration data set. Note that all N data
points are used for computing a single number, q̂.

In contrast, the CLASSWISE procedure computes a separate quantile for every class. Let Iy = {i ∈
[N ] : Yi = y} be the indices of examples in the calibration data set that have label y. The CLASSWISE
conformal prediction sets are given by

CCLASSWISE(Xtest) = {y : s(Xtest, y) ≤ q̂y},

where

q̂y = Quantile

(
⌈(|Iy|+ 1)(1− α)⌉

|Iy|
, {si}i∈Iy

)
.

These prediction sets are guaranteed to satisfy (2) (Vovk, 2012). However, the quantile q̂y is only
computed using a subset of the data of size |Iy|, which might be quite small. Importantly, for any
class y for which |Iy| < (1/α) − 1, we will have q̂y = ∞, hence any prediction set generated by
CLASSWISE will include y, no matter the values of the conformal scores.

The advantage of STANDARD is that we do not need to split up the calibration data to estimate q̂, so
the estimated quantile has little noise even in limited-data settings; however, it does not in general
yield class-conditional coverage. Conversely, CLASSWISE is guaranteed to achieve class-conditional
coverage, since we estimate a different threshold q̂y for every class; however, these estimated quantiles
can be very noisy due to the limited data, leading to erratic behavior, such as large sets.

When we assume the scores are almost surely distinct, the exact distribution of the CLASSWISE
class-conditional coverage of class y given a fixed calibration set is (Vovk, 2012; Angelopoulos and
Bates, 2023):

P
(
Ytest ∈ CCLASSWISE(Xtest) | Ytest = y, {(Xi, Yi)}Ni=1

)
∼ Beta(kyα, |Iy|+ 1− kyα),

where kyα = ⌈(|Iy|+ 1)(1− α)⌉. Note that the probability on the left-hand side above is taken with
respect to the test point Xtest as the only source of randomness, as we have conditioned on the
calibration set. The beta distribution Beta(kyα, |Iy|+ 1− kyα) has mean kyα/(|Iy|+ 1) (which, as
expected, is always at least 1− α) and variance

kyα(|Iy|+ 1− kyα)

(|Iy|+ 1)2(|Iy|+ 2)
≈ α(1− α)

|Iy|+ 2
,

which can be large when |Iy| is small. For example, if class y only has 10 calibration examples
and we seek 90% coverage, then the class-conditional coverage given a fixed calibration set is
distributed as Beta(10, 1), so there is probability ≈ 0.107 that the coverage of class y will be less
than 80%. Somewhat paradoxically, the variance of the class-conditional coverage means that on
a given realization of the calibration set, the CLASSWISE method can exhibit poor coverage on a
substantial fraction of classes if the number of calibration data points per class is limited.
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2 Clustered conformal prediction

With the goal of achieving the class-conditional coverage guarantee in (2), we introduce clustered
conformal prediction. Our method strikes a balance between the granularity of CLASSWISE and the
data-pooling of STANDARD by grouping together classes according to a clustering function. For
each cluster, we calculate a single quantile based on all data in that cluster. We design the clustering
algorithm so that clustered classes have similar score distributions, and therefore, the resulting cluster-
level quantile is applicable to all classes in the cluster. Next, in Section 2.1, we formally describe the
clustered conformal prediction method; then, in Section 2.2, we describe the clustering step in detail.

2.1 Meta-algorithm

To begin, we randomly split the calibration data set into two parts: the clustering data set D1 =
{(Xi, Yi) : i ∈ I1}, for performing clustering, and a proper calibration data set D2 = {(Xi, Yi) :
i ∈ I2}, for computing the conformal quantiles, where |I1| = ⌊γN⌋ and |I2| = N − |I1| for some
tuning parameter γ ∈ [0, 1]. Then, we apply a clustering algorithm to D1 to obtain a clustering
function ĥ : Y → {1, . . . ,M} ∪ {null} that maps each class y ∈ Y to one of M clusters or the “null”
cluster (denoted null). The reason that we include the null cluster is to handle rare classes that do not
have sufficient data to be confidently clustered into any of the M clusters. Details on how to create ĥ
are given in the next subsection.

After assigning classes to clusters, we perform the usual conformal calibration procedure within
each cluster. Denote by Iy

2 = {i ∈ I2 : Yi = y} the indices of examples in D2 with label y, and by
I2(m) = ∪y:ĥ(y)=m Iy

2 the indices of examples in D2 with labels in cluster m. The CLUSTERED
conformal prediction sets are given by

CCLUSTERED(Xtest) = {y : s(Xtest, y) ≤ q̂(ĥ(y))},

where, for m = 1, . . . ,M ,

q̂(m) = Quantile

(
⌈(|I2(m)|+ 1)(1− α)⌉

|I2(m)|
, {si}i∈I2(m)

)
,

and

q̂(null) = Quantile

(
⌈(|I2|+ 1)(1− α)⌉

|I2|
, {si}i∈I2

)
.

In words, for each cluster m, we group together examples for all classes in that cluster and then
estimate a cluster-level quantile q̂(m). When constructing prediction sets, we include class y in the
set if the conformal score for class y is less than or equal to the quantile for the cluster that contains
y. For classes assigned to the null cluster, we compare the conformal score against the quantile that
would be obtained from running STANDARD on the proper calibration set.

We now consider the properties of the CLUSTERED prediction sets. For all classes that do not belong
to the null cluster, we have the following guarantee (the proof of this result, and all other proofs, are
deferred to Appendix A).

Proposition 1. The prediction sets C = CCLUSTERED from CLUSTERED achieve cluster-conditional
coverage:

P(Ytest ∈ C(Xtest) | ĥ(Ytest) = m) ≥ 1− α, for all clusters m = 1, . . . ,M.

This coverage result comes from the exchangeability between a test point drawn from cluster m and
all of the calibration points that belong to cluster m. We get this exchangeability for free from the
assumption that the calibration point and test points are sampled i.i.d. from the same distribution.
Cluster-conditional coverage is a stronger guarantee than marginal coverage, but it is still not as strong
as the class-conditional coverage property that we hope to achieve. However, cluster-conditional
coverage implies class-conditional in an idealized setting: suppose we have access to an “oracle”
clustering function h∗ that produces M clusters such that, for each cluster m = 1, . . . ,M , the scores
for all classes in this cluster are exchangeable (this would hold, for example, if all classes in the
same cluster have the same score distribution). In this case, we have a guarantee on class-conditional
coverage.
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Proposition 2. If ĥ = h∗, the “oracle” clustering function as described above, then the prediction
sets from CLUSTERED satisfy class-conditional coverage (2) for all classes y such that h∗(y) ̸= null.

This coverage result arises because the oracle clustering function ensures exchangeability between a
test point drawn from class y and all of the calibration points that belong to the cluster to which y
belongs. To try to achieve this exchangeability, we need to construct the clusters carefully. Specifically,
we want to design ĥ so that the scores within each cluster m = 1, . . . ,M are as close to identically
distributed as possible, an idea we pursue next.

2.2 Quantile-based clustering

We seek to cluster together classes that have similar score distributions. To do so, we first summarize
the empirical score distribution for each class via a vector of score quantiles evaluated at a discrete set
of levels τ ∈ T ⊆ [0, 1]. In this embedding space, a larger distance between classes means their score
distributions are more different. While there are various options for defining such an embedding,
recall that to achieve class-conditional coverage, we want to accurately estimate the (finite-sample
adjusted) (1− α)-quantile for the score distribution of each class. Thus, we want to group together
classes with similar quantiles, which is what our embedding is designed to facilitate. After obtaining
these embeddings, we can then simply apply any clustering algorithm, such as k-means.

In more detail, denote by Iy
1 = {i ∈ I1 : Yi = y} the indices of examples in D1 with label y. We

compute quantiles of the scores {si}i∈Iy
1

from class y at the levels

T =

{
⌈(|Iy|+ 1)τ⌉

|Iy|
: τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} ∪ {1− α}

}
.

and collect them into an embedding vector zy ∈ R|T |. If |Iy
1 | < nα, where nα = (1/min{α, 0.1})−

1, then the uppermost quantile in zy will not be finite, so we simply assign y to the null cluster. For a
pre-chosen number of clusters M , we run k-means clustering with k = M on the data {zy}y∈Y\Ynull

,
where Ynull denotes the set of labels assigned to the null cluster. More specifically, we use a weighted
version of k-means where the weight for class y is set to |Iy

1 |1/2; this allows the class embeddings
computed from more data to have more influence on the cluster centroids. We denote the cluster
mapping that results from this procedure by ĥ : Y → {1, . . . ,M} ∪ {null}.

Of course, we cannot generally recover an oracle clustering function h∗ with the above (or any practi-
cal) procedure, so Proposition 2 does not apply. However, if the score distributions for the classes that
ĥ assigns to the same cluster are similar enough, then we can provide an approximate class-conditional
coverage guarantee. We measure similarity in terms of the Kolmogorov-Smirnov (KS) distance, which
is defined between random variables X and Y as DKS(X,Y ) = supλ∈R |P(X ≤ λ)− P(Y ≤ λ)|.
Proposition 3. Let Sy denote a random variable sampled from the score distribution for class y, and
assume that the clustering map ĥ satisfies

DKS(S
y, Sy′

) ≤ ϵ, for all y, y′ such that ĥ(y) = ĥ(y′) ̸= null.

Then, for C = CCLUSTERED and for all classes y such that such that ĥ(y) ̸= null,

P(Ytest ∈ C(Xtest) | Ytest = y) ≥ 1− α− ϵ.

To summarize, the two main tuning parameters used in the proposed method are γ ∈ [0, 1], the
fraction of points to use for the clustering step, and M ≥ 1, the number of clusters to use in k-means.
While there are no universal fixed values of these parameters that serve all applications equally well,
we find that simple heuristics for setting these parameters often work well in practice, which we
describe in the next section.

3 Experiments

We evaluate the class-conditional coverage of STANDARD, CLASSWISE, and CLUSTERED con-
formal prediction on four large-scale image data sets using three conformal score functions on
each. Code for reproducing our experiments is available at https://github.com/tiffanyding/
class-conditional-conformal.
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3.1 Experimental setup

We run experiments on the ImageNet (Russakovsky et al., 2015), CIFAR-100 (Krizhevsky, 2009),
Places365 (Zhou et al., 2018), and iNaturalist (Van Horn et al., 2018) image classification data sets,
whose characteristics are summarized in Table 1. The first three have roughly balanced classes,
the fourth, iNaturalist, has high class imbalance. We consider three conformal score functions:
softmax, one minus the softmax output of the base classifier; APS, a score designed to improve
X-conditional coverage; and RAPS, a regularized version of APS that often produces smaller sets.
Precise definitions of the score functions are provided in Appendix B.1; we refer also to Romano
et al. (2020b); Angelopoulos et al. (2021) for the details and motivation behind APS and RAPS.
Throughout, we set α = 0.1 for a desired coverage level of 90%.

Table 1: Description of data sets. The class balance metric is described precisely in Appendix B.3.

Data set ImageNet CIFAR-100 Places365 iNaturalist

Number of classes 1000 100 365 663∗

Class balance 0.79 0.90 0.77 0.12
Example classes mitten orchid beach salamander

triceratops forest sushi bar legume
guacamole bicycle catacomb common fern

*The number of classes in the iNaturalist data set can be adjusted by selecting which taxonomy level (e.g.,
species, genus, family) to use as the class labels. We use the species family as our label and then filter out
any classes with < 250 examples in order to have sufficient examples to properly perform evaluation.

Our experiments all follow a common template. First, we fine-tune a pre-trained neural network as
our base classifier (for details on model architectures, see Appendix B.2) on a small subset Dfine of
the original data, leaving the rest for calibration and validation purposes. We construct calibration
sets of varying size by changing the average number of points in each class, denoted navg. For each
navg ∈ {10, 20, 30, 40, 50, 75, 100, 150}, we construct a calibration set Dcal by sampling navg × |Y|
examples without replacement from the remaining data Dc

fine (where c denotes the set complement).
We estimate the conformal quantiles for STANDARD, CLASSWISE, and CLUSTERED on Dcal. The
remaining data (Dfine ∪Dcal)

c is used as the validation set for computing coverage and set size
metrics. Finally, this process—splitting Dc

fine into random calibration and validation sets—is repeated
ten times, and the reported metrics are averaged over these repetitions.

Details about clustering. For CLUSTERED, we choose γ ∈ [0, 1] (the fraction of calibration data
points used for clustering) and M ≥ 1 (the number of clusters) in the following way. First, we
define nmin = miny∈Y |Iy|, the number of examples in the rarest class in the calibration set, and
nα = (1/α)−1, the minimum sample size needed so that the finite-sample adjusted (1−α)-quantile
used in conformal prediction is finite (e.g., nα = 9 when α = 0.1). Now define ñ = max(nmin, nα)
and let K be the number of classes with at least ñ examples. We then set γ = K/(75 + K) and
M = ⌊γñ/2⌋. These choices are motivated by two goals: we want M and γ to grow together (to find
more clusters, we need more samples for clustering), and we want the proper calibration set to have
at least 150 points per cluster on average; see Appendix B.4 for details on how the latter is achieved.
Clustering is carried out by running k-means on the quantile-based embeddings, as described in
Section 2.2; we use the implementation in sklearn.cluster.KMeans, with the default settings
(Pedregosa et al., 2011).

3.2 Evaluation metrics

Denote the validation data set by {(X ′
i, Y

′
i )}N

′

i=1 (recall this is separate from the fine-tuning and
calibration data sets) and let J y = {i ∈ [N ′] : Y ′

i = y} be the indices of validation examples with
label y. For any given conformal method, we define ĉy = 1

|J y|
∑

i∈J y 1 {Y ′
i ∈ C(X ′

i)} as the
empirical class-conditional coverage of class y. Our main evaluation metric is the average class
coverage gap (CovGap):

CovGap = 100× 1

|Y|
∑
y∈Y

|ĉy − (1− α)|.
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This measures how far the class-conditional coverage is from the desired coverage level of 1− α, in
terms of the ℓ1 distance across all classes (multiplied by 100 to put it on the percentage scale). We
also measure the sharpness of the prediction sets by average set size (AvgSize):

AvgSize =
1

N ′

N ′∑
i=1

|C(X ′
i)|.

For a given class-conditional coverage level (a given CovGap), we want a smaller average set size.

3.3 Results

To begin, we investigate the CovGap of the methods on each data set, and display the results in Figure
2. In brief, CLUSTERED achieves the best or comparable performance across all settings. Restricting
our attention to the baseline methods, note that the CovGap of STANDARD does not change much
as we vary navg; this is as expected, because navg × |Y| samples are being used to estimate the
conformal quantile q̂, which will be stable regardless of navg, provided |Y| is large. Conversely, the
CovGap of CLASSWISE decreases significantly as navg increases, because the classwise conformal
quantiles q̂y are volatile for small navg.

For the softmax score (left column of the figure), we see that CLUSTERED clearly outperforms
STANDARD, and the gap widens with navg; further, CLUSTERED outperforms CLASSWISE for small
enough values of navg (that is, navg < 75 for ImageNet and Places365, navg < 150 for CIFAR-
100, and navg < 50 for iNaturalist). The comparison between CLUSTERED and CLASSWISE is
qualitatively similar for APS score (right column of the figure), with the former outperforming the
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Figure 2: Average class coverage gap for ImageNet, CIFAR-100, Places365, and iNaturalist, for the
softmax (left) and APS (right) scores, as we vary the average number of calibration examples per
class. The shaded regions denote ±1.96 times the standard errors (often, the standard errors are too
small to be visible).
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latter for small enough values of navg. However, the behavior of STANDARD changes notably as we
move from softmax to APS: it becomes comparable to CLUSTERED and only slightly worse for large
navg. Lastly, the results for RAPS (not shown, and deferred to Appendix C.1) are similar to APS but
the CovGap is shifted slightly higher.

To examine the potential tradeoffs between class-conditional coverage and average set size, we focus
on the navg ∈ {10, 20, 50, 75} settings and report CovGap and AvgSize in Table 2 for all data sets and
score functions. We see that CLUSTERED achieves the best or near-best CovGap in any experimental
combination, and its improvement over the baselines is particularly notable in the regime where data
is limited, but not extremely limited (navg = 20 or 50). Meanwhile, AvgSize for STANDARD and
CLUSTERED is relatively stable across values of navg, with the latter being generally slightly larger;
AvgSize for CLASSWISE decreases as we increase navg, but is still quite large relative to STANDARD
and CLUSTERED, especially for iNaturalist.

We finish with two more remarks. First, we find CovGap tends to behave quite similarly to the fraction
of classes that are drastically undercovered, which we define as having a class-conditional coverage
at least 10% below the desired level. Results for this metric are given in Appendix C.2. Second,
as is the case in any conformal method, auxiliary randomization can be applied to STANDARD,
CLASSWISE, or CLUSTERED in order to achieve a coverage guarantee (marginal, class-conditional,
or cluster-conditional, respectively) of exactly 1 − α, rather than at least 1 − α. These results are
included in Appendix C.3. In terms of CovGap, we find that randomization generally improves
CLASSWISE, and does not change STANDARD or CLUSTERED much at all; however, the set sizes
from randomized CLASSWISE are still overall too large to be practically useful (moreover, injecting
auxiliary randomness is prediction sets is not always practically palatable).

4 Discussion

We summarize our practical takeaways, in an effort towards creating guidelines for answering the
question: for a given problem setting, what is the best way to produce prediction sets that have good
class-conditional coverage but are not too large to be useful?

• Extremely low-data regime. When most classes have very few calibration examples (say,
less than 10), this is not enough data to run CLUSTERED or CLASSWISE unless α is large, so
the only option is to run STANDARD. With this method, softmax and RAPS are both good
score functions. RAPS tends to yield better class-conditional coverage, while softmax tends
to have smaller sets.

• Low-data regime. When the average number of examples per class is low but not tiny (say,
around 20 to 75), CLUSTERED tends to strike a good balance between variance and granu-
larity and often achieves good class-conditional coverage and reasonably-sized prediction
sets with either softmax or RAPS. The STANDARD method with RAPS is also competitive
towards the lower-data end of this regime.

• High-data regime. When the average number of examples per class is large (say, over 75),
CLUSTERED conformal with either softmax or RAPS continues to do well, and CLASSWISE
with these same scores can also do well if the classes are balanced. In settings with high
class imbalance, CLASSWISE is unstable for rare classes and produces excessively large
prediction sets, whereas CLUSTERED is more robust due to the data-sharing it employs.

• Extremely high-data regime. When the calibration dataset is so large that the rarest class has
at least, say, 100 examples, then CLASSWISE with softmax or RAPS will be a good choice,
regardless of any class imbalance.

The boundaries between these regimes are not universal and are dependent on the data characteristics,
and the above guidelines are based only on our findings from our experiments. We also note that the
precise boundary between the low-data and high-data regimes is dependent on the particular score
function that is used: the transition happens around 20-40 examples per class for softmax and 50-100
for RAPS. This serves as further motivation for CLUSTERED, which performs relatively well in all
regimes.

As a possible direction for future work, it might be interesting to generalize our approach to the
broader problem of group-conditional coverage with many groups. In the present setting, the groups
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Table 2: Average class coverage gap and average set size for select values of navg on ImageNet,
CIFAR-100, Places365, and iNaturalist. Bold emphasizes the best (within ±0.2) class coverage gap
in each experimental combination. Standard errors are reported in parentheses.

navg = 10 navg = 20 navg = 50 navg = 75

CovGap AvgSize CovGap AvgSize CovGap AvgSize CovGap AvgSize
Data set Score Method

ImageNet softmax STANDARD 5.2 (0.0) 1.9 (0.0) 5.2 (0.0) 1.9 (0.0) 5.3 (0.0) 1.9 (0.0) 5.2 (0.0) 1.9 (0.0)
CLASSWISE 7.7 (0.0) 354.4 (2.0) 5.4 (0.0) 23.0 (0.9) 3.4 (0.0) 5.1 (0.1) 2.8 (0.0) 4.2 (0.1)
CLUSTERED 4.9 (0.1) 2.5 (0.1) 3.9 (0.0) 2.7 (0.1) 3.1 (0.0) 2.6 (0.1) 2.8 (0.0) 2.7 (0.0)

APS STANDARD 2.6 (0.0) 25.9 (0.3) 2.6 (0.0) 25.8 (0.1) 2.5 (0.0) 25.6 (0.1) 2.6 (0.0) 25.7 (0.1)
CLASSWISE 7.6 (0.0) 394.2 (1.9) 5.5 (0.0) 76.9 (0.8) 3.5 (0.0) 39.7 (0.2) 2.9 (0.0) 35.0 (0.2)
CLUSTERED 3.0 (0.1) 29.6 (1.5) 2.6 (0.0) 27.0 (0.7) 2.3 (0.0) 27.2 (0.5) 2.2 (0.0) 27.3 (0.4)

RAPS STANDARD 3.0 (0.0) 5.2 (0.0) 3.0 (0.0) 5.1 (0.0) 3.0 (0.0) 5.1 (0.0) 3.0 (0.0) 5.1 (0.0)
CLASSWISE 7.7 (0.1) 361.9 (1.9) 5.6 (0.0) 34.2 (1.0) 3.4 (0.0) 8.8 (0.3) 2.8 (0.0) 7.3 (0.1)
CLUSTERED 3.1 (0.0) 7.7 (1.0) 2.9 (0.0) 6.6 (0.6) 2.6 (0.0) 6.5 (0.3) 2.4 (0.0) 6.8 (0.3)

CIFAR-100 softmax STANDARD 4.0 (0.1) 8.1 (0.2) 4.0 (0.0) 7.9 (0.2) 4.1 (0.0) 7.9 (0.1) 4.1 (0.0) 8.0 (0.1)
CLASSWISE 7.6 (0.1) 47.2 (0.6) 5.6 (0.1) 19.3 (0.5) 3.8 (0.0) 11.9 (0.2) 3.2 (0.1) 10.8 (0.1)
CLUSTERED 4.2 (0.1) 8.9 (0.5) 3.6 (0.1) 8.9 (0.3) 2.9 (0.1) 9.3 (0.3) 2.8 (0.0) 9.1 (0.2)

APS STANDARD 3.7 (0.1) 11.2 (0.3) 3.7 (0.0) 10.8 (0.2) 3.8 (0.0) 11.0 (0.1) 3.8 (0.0) 11.0 (0.1)
CLASSWISE 7.5 (0.1) 49.4 (0.5) 5.6 (0.1) 22.6 (0.5) 3.8 (0.1) 15.0 (0.2) 3.2 (0.1) 13.7 (0.1)
CLUSTERED 4.0 (0.1) 11.9 (0.5) 3.6 (0.1) 12.1 (0.5) 3.1 (0.1) 12.2 (0.4) 2.8 (0.1) 12.2 (0.2)

RAPS STANDARD 4.7 (0.1) 8.6 (0.3) 4.8 (0.1) 8.3 (0.3) 4.8 (0.0) 8.3 (0.1) 4.9 (0.1) 8.1 (0.1)
CLASSWISE 7.5 (0.1) 47.5 (0.7) 5.6 (0.1) 20.7 (0.6) 3.8 (0.1) 13.3 (0.2) 3.3 (0.1) 12.1 (0.1)
CLUSTERED 4.9 (0.1) 9.5 (0.5) 4.5 (0.1) 8.7 (0.5) 3.7 (0.1) 9.5 (0.3) 3.4 (0.1) 9.9 (0.1)

Places365 softmax STANDARD 4.5 (0.0) 6.9 (0.1) 4.5 (0.0) 6.9 (0.0) 4.6 (0.0) 6.9 (0.0) 4.6 (0.0) 6.9 (0.0)
CLASSWISE 7.6 (0.1) 136.5 (1.7) 5.4 (0.0) 18.0 (0.2) 3.5 (0.0) 10.1 (0.1) 3.0 (0.0) 9.3 (0.1)
CLUSTERED 4.5 (0.1) 7.1 (0.1) 3.9 (0.1) 7.1 (0.1) 3.0 (0.0) 7.8 (0.1) 2.9 (0.1) 7.9 (0.1)

APS STANDARD 3.3 (0.0) 10.8 (0.1) 3.3 (0.0) 10.9 (0.1) 3.3 (0.0) 10.8 (0.1) 3.3 (0.0) 10.8 (0.1)
CLASSWISE 7.6 (0.1) 140.5 (1.7) 5.4 (0.1) 23.5 (0.3) 3.5 (0.0) 14.4 (0.1) 3.0 (0.0) 13.4 (0.1)
CLUSTERED 3.5 (0.1) 10.9 (0.3) 3.1 (0.0) 10.9 (0.2) 2.6 (0.0) 11.8 (0.1) 2.7 (0.1) 11.6 (0.2)

RAPS STANDARD 3.8 (0.0) 7.9 (0.0) 3.9 (0.0) 7.9 (0.0) 3.8 (0.0) 7.9 (0.0) 3.8 (0.0) 7.9 (0.0)
CLASSWISE 7.6 (0.1) 138.9 (1.7) 5.5 (0.1) 21.3 (0.3) 3.6 (0.0) 11.4 (0.1) 3.0 (0.0) 10.5 (0.1)
CLUSTERED 3.9 (0.1) 8.0 (0.1) 3.4 (0.0) 8.2 (0.2) 3.0 (0.0) 8.8 (0.1) 2.9 (0.0) 9.0 (0.2)

iNaturalist softmax STANDARD 7.0 (0.1) 3.1 (0.0) 7.0 (0.1) 3.1 (0.0) 7.0 (0.1) 3.2 (0.0) 7.0 (0.0) 3.2 (0.0)
CLASSWISE 8.7 (0.0) 469.4 (1.8) 7.8 (0.0) 364.0 (1.4) 5.8 (0.0) 148.7 (2.2) 4.8 (0.0) 55.3 (1.6)
CLUSTERED 6.9 (0.2) 3.1 (0.1) 6.4 (0.1) 3.4 (0.1) 5.7 (0.1) 3.7 (0.0) 5.3 (0.1) 3.8 (0.0)

APS STANDARD 4.3 (0.1) 8.3 (0.1) 4.2 (0.1) 8.4 (0.1) 4.1 (0.0) 8.3 (0.0) 4.2 (0.0) 8.3 (0.0)
CLASSWISE 8.7 (0.0) 472.8 (1.8) 7.8 (0.0) 368.4 (1.4) 5.7 (0.0) 153.9 (2.2) 4.8 (0.0) 60.7 (1.5)
CLUSTERED 4.3 (0.1) 8.1 (0.1) 4.1 (0.1) 8.3 (0.1) 3.9 (0.0) 8.5 (0.1) 3.5 (0.0) 8.7 (0.1)

RAPS STANDARD 5.1 (0.1) 5.1 (0.0) 5.0 (0.0) 5.2 (0.0) 5.0 (0.0) 5.1 (0.0) 5.0 (0.0) 5.2 (0.0)
CLASSWISE 8.7 (0.0) 473.8 (1.9) 7.8 (0.0) 369.2 (1.5) 5.8 (0.0) 155.3 (2.3) 4.9 (0.0) 63.1 (1.7)
CLUSTERED 5.0 (0.1) 5.0 (0.0) 4.9 (0.1) 5.2 (0.0) 4.5 (0.1) 5.4 (0.1) 4.1 (0.1) 5.4 (0.1)

are defined by class labels, but our clustering methodology could also be applied to other group
structures (e.g., defined by the input features or components of a mixture distribution).
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A Proofs

Proof of Proposition 1. For each m ∈ {1, . . . ,M}, denote by G(m) the distribution of the
score s(X,Y ) conditioned on Y being in cluster m. Consider a randomly sampled test example
(Xtest, Ytest) with a label in cluster m; the test score stest = s(Xtest, Ytest) then follows distribution
G(m). Next consider {si}i∈I2(m), the scores for examples in the proper calibration set with labels in
cluster m; these also follow distribution G(m). Furthermore, stest and the elements of {si}i∈I2(m)

are all mutually independent, so the result follows by the standard coverage guarantee for conformal
prediction with exchangeable scores (e.g., see Vovk et al. (2005) or Lei et al. (2018)).

Proof of Proposition 2. This is a direct result of exchangeability and Proposition 1.

Proof of Proposition 3. Let S = s(X,Y ) denote the score of a randomly sampled example
(X,Y ) ∼ F . Fix an m ∈ {1, . . . ,M}. Define Y(m) = {y ∈ Y : ĥ(y) = m} as the set of classes
that ĥ assigns to cluster m. Without a loss of generality, we treat both ĥ and q̂(m) as fixed for
the remainder of this proof. This can be done by conditioning on both the clustering and proper
calibration sets, leaving only the randomness in the test point (X,Y ) ∼ F , and then integrating over
the clustering and proper calibration sets in the end.

Let G(m) denote the distribution of S conditional on Y ∈ Y(m), and let S(m) ∼ G(m). Similarly,
let Gy denote the distribution of S conditional on Y = y, and let Sy ∼ Gy. Since we assume that
the KS distance between the score distribution for every pair of classes in cluster m is bounded by
ϵ, and G(m) is a mixture of these distributions (that is, G(m) =

∑
y∈Y(m) πy ·Gy for some fixed

probability weights πy , y ∈ Y(m)), it follows by the triangle inequality that

DKS(S
y, S(m)) ≤ ϵ, for all y ∈ Y(m).

By definition of KS distance, this implies∣∣P(S ≤ q̂(m) | Y = y)− P(S ≤ q̂(m) | Y ∈ Y(m))
∣∣ ≤ ϵ.

Since the CLUSTERED procedure includes the true label Y from the prediction set C when S ≤ q̂(m),
these probabilities can be rewritten in terms of coverage events:∣∣P(Y ∈ C(X) | Y = y)− P(Y ∈ C(X) | Y ∈ Y(m))

∣∣ ≤ ϵ.

Combining the result from Proposition 1 gives the desired conclusion.

B Experiment details

B.1 Score functions

We perform experiments using three score functions:

• softmax: The softmax-based conformal score at an input x and a label y is defined as

ssoftmax(x, y) = 1− fy(x),

where fy(x) is entry y of the softmax vector output by the classifier f at input x.

• APS: The Adaptive Prediction Sets (APS) score of Romano et al. (2020b) is designed to
improve X-conditional coverage as compared to the more traditional softmax score. This
score is computed at an input x and label y as follows. Let

f(1)(x) ≤ f(2)(x) ≤ · · · ≤ f(|Y|)(x)

denote the sorted values of the base classifier softmax outputs fy(x), y ∈ Y . Let kx(y) be
the index in the sorted order that corresponds to class y, that is, f(kx(y)) = fy(x). The APS
score is then defined as

sAPS(x, y) =

kx(y)−1∑
i=1

f(i)(x) + Unif([0, f(kx(y))(x)]).
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• RAPS: The regularized APS (RAPS) score of Angelopoulos et al. (2021) is a modification
of the APS score that adds a regularization term designed to reduce the prediction set sizes
(which can often be very large with APS). The RAPS score is defined as

sRAPS(x, y) = sAPS(x, y) + max(0, λ(kx(y)− kreg)),

where kx(y) is as defined above, and λ and kreg are user-chosen parameters. In all of our
experiments, we use λ = 0.01 and kreg = 5, which Angelopoulos et al. (2021) found to
work well for ImageNet.

B.2 Model training

An important consideration when we fine-tune and calibrate our models is that we must reserve
sufficient data to evaluate the class-conditional coverage of the conformal methods. This means we
aim to exclude at least 250 examples per class from the fine-tuning and calibration sets so that we can
then use this data for validation (applying the conformal methods and computing coverage and set
size metrics).

For all data sets except ImageNet, we use a ResNet-50 model as our base classifier. We initialize to
the IMAGENET1K_V2 pre-trained weights from PyTorch (Paszke et al., 2019), and then fine-tune all
parameters by training on the data set at hand. For ImageNet, we must do something different, as
explained below.

ImageNet. Setting up this data set for our experiments is a bit tricky because we need sufficient
data for performing validation, but we also need this data to be separate from the fine-tuning and
calibration sets. The ImageNet validation set only contains 50 examples per class, which is not
enough for our setting. The ImageNet training set is much larger, with roughly 1000 examples per
class, but if we want to use this data for validation, then we cannot use the ResNet-50 initialized to
the IMAGENET1K_V2 pre-trained weights, as these weights were obtained by training on the whole
ImageNet training set. We therefore instead use a SimCLR-v2 model (Chen et al., 2020), which was
trained on the ImageNet training set without labels, to extract feature vectors of length 6144 for all
images in the ImageNet training set. We then use 10% of these feature vectors for training a linear
head (a single fully connected neural network layer). After training for 10 epochs, the model achieves
a validation accuracy of 78%. We then apply the linear head to the remaining 90% of the feature
vectors to obtain softmax scores for the calibration set.

CIFAR-100. This data set has 600 images per class (500 from the training set and 100 from the
validation set). We combine the data and then randomly sample 50% for fine-tuning, and we use
the remaining data for calibrating and validating our procedures. After training for 30 epochs, the
validation accuracy is 60%.

Places365. This data set contains more than 10 million images of 365 classes, where each class
has 5000 to 30000 examples. We randomly sample 90% of the data for fine-tuning, and we use
the remaining data for calibrating and validating our procedures. After training for one epoch, the
validation accuracy is 52%.

iNaturalist. This data set has class labels of varying specificity. For example, at the species level,
there are 6414 classes with 300 examples each (290 training examples and 10 validation examples)
and a total of 10000 classes with at least 150 examples. We instead work at the family level, which
groups the species into 1103 classes. We randomly sample 50% of the data for fine-tuning, and we
use the remaining for calibrating and validating our procedures. After training for one epoch, the
validation accuracy is 69%.

However, due to high class imbalance and sampling randomness, some classes have insufficient
validation samples, so we filter out classes with fewer than 250 validation examples, which leaves us
with 633 classes. The entries of the softmax vectors that correspond to rare classes are removed and
the vector is renormalized to sum to one.
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B.3 Measuring class balance in Table 1

The class balance metric in Table 1 is defined as the number of examples in the rarest 5% of classes
divided by the expected number of examples if the class distribution were perfectly uniform. This
metric is bounded between 0 and 1, with lower values denoting more class imbalance. We compute
this metric using Dc

fine.

B.4 Choosing clustering parameters

To choose γ ∈ [0, 1] and M ≥ 1 for CLUSTERED, as described briefly in Section 3.1, we employ two
intuitive heuristics. We restate these heuristics in more detail here.

• First, to distinguish between more clusters (or distributions), we need more samples from
each distribution. As a rough guess, to distinguish between two distributions, we want at
least four samples per distribution; to distinguish between five distributions, we want at least
ten samples per distribution. In other words, we want the number of clustering examples per
class to be at least twice the number of clusters. This heuristic can be expressed as

γñ ≥ 2M, (3)

where γñ is the expected number of clustering examples for the rarest class that is not
assigned to the null cluster.

• Second, we want enough data for computing the conformal quantiles for each cluster.
Specifically, we seek at least 150 examples per cluster on average. This heuristic can be
expressed as

(1− γ)ñ
K

M
≥ 150, (4)

where K/M is the average number of classes per cluster and (1− γ)ñ is the expected
number of proper calibration examples for the rarest class not assigned to the null cluster.

Changing the inequalities of (3) and (4) into equalities and solving for γ and M yields

M =
γñ

2
and γ =

K

K + 75
.

Varying the clustering parameters. As sensitivity analysis, we examine the performance of
CLUSTERED across a wide range of values for the tuning parameters γ and M . As the heatmaps
in Figure 3 confirm, the performance of CLUSTERED is not particularly sensitive to the values of
these parameters. When navg = 10, the heuristic chooses γ = 0.89 and M = 4, meanwhile, when
navg = 50, the heuristic chooses γ ∈ [0.88, 0.92] and M ∈ [7, 12] (since the calibration data set is
randomly sampled, and γ and M are chosen based on the calibration data set, there is randomness in
the chosen values). However, there are large areas surrounding these values that would yield similar
performance. We observe that the heuristics do not always choose the parameter values that yield the
lowest CovGap. The heatmaps reveal that the optimal parameter values are dependent not only on
data set characteristics, but also on the score function. Future work could be done to extract further
performance improvements by determining a better method for choosing γ and M .

C Additional experimental results

We present additional experimental results in this section. As in the main text, the shaded regions in
plots denote ±1.96 times the standard errors.

C.1 RAPS CovGap results

Figure 4 shows the CovGap on all data sets when we use RAPS as our score function.

C.2 Additional metrics

Average set size. To supplement Table 2 from the main text, which reports AvgSize for select values
of navg, Figure 5 plots AvgSize for all values of navg that we use in our experimental setup. Note
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Figure 3: Average class coverage gap on ImageNet for navg ∈ {10, 50}, using the softmax, APS,
and RAPS scores, as we vary the clustering parameters. Each entry is averaged across 10 random
splits of the data into calibration and validation sets.

.

2

4

6

8

Co
vG

ap

ImageNet: RAPS

.

CIFAR-100: RAPS Standard
Classwise
Clustered

10 20 30 40 50 75 100 150
navg

2

4

6

8

Co
vG

ap

Places365: RAPS

10 20 30 40 50 75 100 150
navg

iNaturalist: RAPS

Figure 4: Average class coverage gap for ImageNet, CIFAR-100, Places365, and iNaturalist, using
the RAPS score, as we vary the average number of calibration examples per class.

that RAPS sharply reduces AvgSize relative to APS on ImageNet and also induces a slight reduction
for the other three data sets. This asymmetric reduction is likely due to the fact that the RAPS
hyperparameters, which control the strength of the set size regularization, were tuned on ImageNet.
The set sizes of RAPS on other data sets could likely be improved by tuning the hyperparameters for
each data set.

Fraction undercovered. In various practical applications, we want to limit the number of classes
that are severely undercovered, which we define as having a class-conditional coverage more than
10% below the desired coverage level. We define the fraction of undercovered classes (FracUnderCov)
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Figure 5: Average set size for ImageNet, CIFAR-100, Places365, and iNaturalist, for the softmax,
APS, and RAPS scores, as we vary the average number of calibration examples per class.

metric as:

FracUnderCov =
1

|Y|

|Y|∑
y=1

1 {ĉy ≤ 1− α− 0.1} ,

recalling that ĉy is the empirical class-conditional coverage for class y. Figure 6 plots FracUnderCov
for all experimental settings. Comparing to the CovGap plots in Figure 2 and Figure 4, we see that
the trends in FracUnderCov generally mirror the trends in CovGap. However, FracUnderCov is a
much noisier metric, as evidenced by the large error bars. Another difference is that FracUnderCov
as a metric is unable to penalize uninformatively large set sizes. This is best seen in the performance
of CLASSWISE on iNaturalist: for every score function, CLASSWISE has very low FracUnderCov, but
this is achieved by producing extremely large prediction sets, as shown in the bottom row of Figure 5.
Meanwhile, CovGap is somewhat able to penalize this kind of behavior since unnecessarily large set
sizes often lead to overcoverage, and CovGap penalizes overcoverage.

C.3 Auxiliary randomization

The conformal methods in the main paper generate deterministic prediction sets, so running the
method on the same input will always produce the same prediction set. These prediction sets are
designed to achieve at least 1− α marginal, class-conditional, or cluster-conditional coverage. In
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Figure 6: Fraction of severely undercovered classes for ImageNet, CIFAR-100, Places365, and
iNaturalist, using the softmax, APS, and RAPS scores, as we vary the average number of calibration
examples per class.

most practical situations, it is arguably undesirable to use non-deterministic or randomized prediction
sets (say, if you are a patient, you would not want your doctor to tell you that your diagnoses change
depending on a random seed). However, if one is willing to accept randomized prediction sets, then
the conformal methods described in the main text can be modified to achieve exact 1− α coverage.

Randomizing to achieve exact 1− α coverage. Recall that the unrandomized STANDARD method
used in the main paper uses

q̂ = Quantile

(
⌈(N + 1)(1− α)⌉

N
, {si}Ni=1

)
,

which yields a coverage guarantee of

P(Ytest ∈ C(Xtest) | Ytest = y) =
⌈(N + 1)(1− α)⌉

N + 1
≥ 1− α,

under the assumption that the scores are distinct almost surely. The equality above holds because
the event that Ytest is included in C(Xtest) is equivalent to the event that s(Xtest, Ytest) is one of
the ⌈(N + 1)(1− α)⌉ smallest scores in the set containing the calibration points and the test point,
and, by exchangeability, this occurs with probability exactly ⌈(N + 1)(1− α)⌉/(N + 1). By similar
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reasoning, if we instead use

q̃ = Quantile

(
⌈(N + 1)(1− α)⌉ − 1

N
, {si}Ni=1

)
as our conformal quantile (note the added −1 in the numerator), then we would have

P(Ytest ∈ C(Xtest) | Ytest = y) =
⌈(N + 1)(1− α)⌉ − 1

N + 1
< 1− α.

To summarize, using q̂ results in at least 1 − α coverage, and using q̃ results in less than 1 − α
coverage. Thus, to achieve exact 1− α coverage, we can randomize between using q̂ and q̃. Let

b =
⌈(N + 1)(1− α)⌉

N + 1
− (1− α)

be the amount by which the coverage using q̂ overshoots the desired coverage level and let

c = (1− α)− ⌈(N + 1)(1− α)⌉ − 1

N + 1

be the amount by which the coverage using q̃ undershoots the desired coverage level. Then, if we
define the Bernoulli random variable

B ∼ Bern

(
c

b+ c

)
,

independent of everything else that is random, and set

q̂rand = Bq̂ + (1−B)q̃

then the prediction sets created using q̂rand will have exact 1− α marginal coverage. The same idea
translates to CLASSWISE and CLUSTERED methods (where we randomize q̂y and q̂(m), respectively).

Figures 7, 8, and 9 display the CovGap, AvgSize, and FracUnderCov for the randomized versions
of the conformal methods. Comparing against earlier plots, we observe that the performance of
unrandomized and randomized STANDARD and CLUSTERED are essentially identical in terms of
all three metrics. However, we cam see that randomized CLASSWISE exhibits a large improvement
relative to unrandomized CLASSWISE in terms of CovGap and AvgSize. That said, the previously-
given qualitative conclusions do not change, and the set sizes of randomized CLASSWISE are still too
large to be practically useful.
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Figure 7: Average class coverage gap for randomized methods on ImageNet, CIFAR-100, Places365,
and iNaturalist, for the softmax, APS, and RAPS scores, as we vary the average number of calibration
examples per class. The unrandomized original CLASSWISE method is also plotted for comparison
purposes.
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Figure 8: Average set size for randomized methods on ImageNet, CIFAR-100, Places365, and
iNaturalist, for the softmax, APS, and RAPS scores, as we vary the average number of calibration
examples per class. The unrandomized original CLASSWISE method is also plotted for comparison
purposes.
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Figure 9: Fraction of severely undercovered classes for randomized methods on ImageNet, CIFAR-
100, Pla- ces365, and iNaturalist, for the softmax, APS, and RAPS scores, as we vary the average
number of calibration examples per class. The unrandomized original CLASSWISE method is also
plotted for comparison purposes.
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