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Abstract

We present an approach for analyzing message passing graph neural networks
(MPNNs) based on an extension of graphon analysis to a so called graphon-signal
analysis. A MPNN is a function that takes a graph and a signal on the graph
(a graph-signal) and returns some value. Since the input space of MPNNs is
non-Euclidean, i.e., graphs can be of any size and topology, properties such as
generalization are less well understood for MPNNs than for Euclidean neural
networks. We claim that one important missing ingredient in past work is a
meaningful notion of graph-signal similarity measure, that endows the space of
inputs to MPNNs with a regular structure. We present such a similarity measure,
called the graphon-signal cut distance, which makes the space of all graph-signals a
dense subset of a compact metric space – the graphon-signal space. Informally, two
deterministic graph-signals are close in cut distance if they “look like” they were
sampled from the same random graph-signal model. Hence, our cut distance is a
natural notion of graph-signal similarity, which allows comparing any pair of graph-
signals of any size and topology. We prove that MPNNs are Lipschitz continuous
functions over the graphon-signal metric space. We then give two applications of
this result: 1) a generalization bound for MPNNs, and, 2) the stability of MPNNs
to subsampling of graph-signals. Our results apply to any regular enough MPNN
on any distribution of graph-signals, making the analysis rather universal.

1 Introduction

In recent years, the need to accommodate non-regular structures in data science has brought a
boom in machine learning methods on graphs. Graph deep learning (GDL) has already made a
significant impact on the applied sciences and industry, with ground-breaking achievements in
computational biology [2, 10, 17, 28], and a wide adoption as a general-purpose tool in social
media, e-commerce, and online marketing platforms, among others. These achievements pose
exciting theoretical challenges: can the success of GDL models be grounded in solid mathematical
frameworks? Since the input space of a GDL model is non-Euclidean, i.e., graphs can be of any
size and any topology, less is known about GDL than standard neural networks. We claim that
contemporary theories of GDL are missing an important ingredient: meaningful notions of metric on
the input space, namely, graph similarity measures that are defined for all graphs of any size, which
respect and describe in some sense the behavior of GDL models. In this paper, we aim at providing
an analysis of GDL by introducing such appropriate metrics, using graphon theory.

A graphon is an extension of the notion of a graph, where the node set is parameterized by a probability
space instead of a finite set. Graphons can be seen as limit objects of graphs, as the number of nodes
increases to infinity, under an appropriate metric. One result from graphon theory (that reformulates
Szemerédi’s regularity lemma from discrete mathematics) states that any sufficiently large graph
behaves as if it was randomly sampled from a stochastic block model with a fixed number of classes.
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Figure 1: Illustration of the graph-signal cut distance. Left: a stochastic block model (SBM) with a
signal. The color of the block represents the value of the signal at this block. The thickness of the
edges between the blocks (including self-loops) represents the probability/density of edges between
the blocks. Middle: a small graph-signal which looks like was sampled from the SMB. The color
of the nodes represents the signal values. Right: a large graph-signal which looks like was sampled
from the SMB. In graphon-signal cut distance, these two graph-signals are close to each other.

This result poses an “upper bound” on the complexity of graphs: while deterministic large graphs may
appear to be complex and intricate, they are actually approximately regular and behave random-like.

In this paper we extend this regularity result to an appropriate setting for message passing neural
networks (MPNNs), a popular GDL model. Since MPNNs take as input a graph with a signal defined
over the nodes (a graph-signal), we extend graphon theory from a theory of graphs to a theory of
graph-signals. We define a metric, called the graph-signal cut distance (see Figure 1 for illustration),
and formalize regularity statements for MPNNs of the following sort.

(1) Any deterministic graph-signal behaves as if it was randomly sampled from a stochastic
block model, where the number of blocks only depends on how much we want the graph-
signal to look random-like, and not on the graph-signal itself.
(2) If two graph-signals behave as if they were sampled from the same stochastic block model,
then any (regular enough) MPNN attains approximately the same value on both.

Formally, (1) is proven by extending Szemerédi’s weak regularity lemma to graphon-signals. As a
result of this new version of the regularity lemma, we show that the space of graph-signals is a dense
subset of the space of graphon-signals, which is shown to be compact. Point (2) is formalized by
proving that MPNNs with Lipschitz continuous message functions are Lipschitz continuous mappings
from the space of graph-signals to an output space, in the graphon-signal cut distance.

We argue that the above regularity result is a powerful property of MPNNs. To illustrate this, we use
the new regularity result to prove two corollaries. First, a generalization bound of MPNNs, showing
that if the learned MPNN performs well on the training graph-signals, it is guaranteed to also perform
well on test graph-signals. This is shown by first bounding the covering number of the graphon-signal
space, and then using the Lipschitzness of MPNNs. Second, we prove that MPNNs are stable to
graph-signal subsampling. This is done by first showing that randomly subsampling a graphon-signal
produces a graph-signal which is close in cut distance to the graphon-signal, and then using the
Lipschitzness of MPNNs.

As opposed to past works that analyze MPNNs using graphon analysis, we do not assume any
generative model on the data. Our results apply to any regular enough MPNN on any distribution of
graph-signals, making the analysis rather universal. We note that past works about generalization in
GNNs [14, 23, 26, 30] consider special assumptions on the data distribution, and often on the MPNN
model. Our work provides upper bounds under no assumptions on the data distribution, and only
mild Lipschitz continuity assumptions on the message passing functions. Hence, our theory bounds
the generalization error when all special assumptions (that are often simplistic) from other papers
are not met. We show that when all assumptions fail, MPNNs still have generalization and sampling
guarantees, albeit much slower ones. See Table 1. This is also true for past sampling theorems, e.g.,
[18, 22, 27, 31, 32].

The problem with graph-signal domains. Since the input space of MPNNs is non-Euclidean,
results like universal approximation theorems and generalization bounds are less well developed for
MPNNs than Euclidean deep learning models. For example, analysis like in [6] is limited to graphs
of fixed sizes, seen as adjacency matrices. The graph metric induced by the Euclidean metric on
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adjacency matrices is called edit-distance. This reduction of the graph problem to the Euclidean case
does not describe the full complexity of the problem. Indeed, the edit-distance is defined for weighted
graphs, and non-isomorphic simple graphs are always far apart in this metric. This is an unnatural
description of the reality of machine learning on graphs, where different large non-isomorphic simple
graphs can describe the same large-scale phenomenon and have similar outputs for the same MPNN.

Other papers that consider graphs of arbitrary but bounded size are based on taking the union of the
Euclidean edit-distance spaces up to a certain graph size [3]. If one omits the assumption that all
graphs are limited by a predefined size, the edit-metric becomes non-compact – a topology too fine
to explain the behavior of real MPNNs. For example, two graphs with different number of nodes
are always far apart in edit-distance, while most MPNN architectures in practice are not sensitive
to the addition of one node to a large graph. In [19], the expressivity of GNNs is analyzed on
spaces of graphons. It is assumed that graphons are Lipschitz continuous kernels. The metric on the
graphon space is taken as the L∞ distance between graphons as functions. We claim that the Lipschitz
continuity of the graphons in [19], the choice of the L∞ metric, and the choice of an arbitrary compact
subset therein, are not justified as natural models for graphs, and are not grounded in theory. Note
that graphon analysis is measure theoretic, and results like the regularity lemma are no longer true
when requiring Lipschitz continuity for the graphons. Lastly, in papers like [18, 26, 27, 31], the data
is assumed to be generated by one, or a few graphons, which limits the data distribution significantly.
We claim that this discrepancy between theory and practice is an artifact of the inappropriate choices
of the metric on the space of graphs, and the choice of a limiting generative model for graphs.

2 Background

For n ∈ N, we denote [n] = {1, . . . , n}. We denote the Lebesgue p space over the measure space X
by Lp(X ), or, in short, Lp. We denote by µ the standard Lebesgue measure on [0, 1]. A partition is
a sequence Pk = {P1, . . . , Pk} of disjoint measurable subsets of [0, 1] such that

⋃k
j=1 Pj = [0, 1].

The partition is called equipartition if µ(Pi) = µ(Pj) for every i, j ∈ [k]. We denote the indicator
function of a set S by 1S . See Appendix A for more details. We summarize our notations in
Appendix I.

2.1 Message passing neural networks

Most graph neural networks used in practice are special cases of MPNN (see [15] and [11] of a
list of methods). MPNNs process graphs with node features, by repeatedly updating the feature at
each node using the information from its neighbors. The information is sent between the different
nodes along the edges of the graph, and hence, this process is called message passing. Each node
merges all messages sent from its neighbors using an aggregation scheme, where typical choices is to
sum, average or to take the coordinate-wise maximum of the messages. In this paper we focus on
normalized sum aggregation (see Section 4.1). For more details on MPNNs we refer the reader to
Appendix E.

2.2 Szemerédi weak regularity lemma

The following is taken from [13, 25]. Let G = {V,E} be a simple graph with nodes V and edges E.
For any two subsets U, S ⊂ V , denote the number of edges with one end point at U and the other at
S by eG(U, S). Let P = {V1, . . . , Vk} be a partition of V . The partition is called equipartition if
||Vi| − |Vj || ≤ 1 for every i, j ∈ [k]. Given two node set U, S ⊂ V , if the edges between each pair
of classes Vi and Vj were random, we would expect the number of edges of G connecting U and
S to be close to the expected value eP(U,S) :=

∑k
i=1

∑k
j=1

eG(Vi,Vj)
|Vi||Vj | |Vi ∩ U | |Vj ∩ S|. Hence, the

irregularity, that measures how non-random like the edges between {Vj}kj=1 are, is defined to be

irregG(P) = max
U,S⊂V

|eG(U, S)− eP(U, S)| / |V |2 . (1)

Theorem 2.1 (Weak Regularity Lemma [13]). For every ϵ > 0 and every graph G = (V,E), there is
an equipartition P = {V1, . . . , Vk} of V into k ≤ 2c/ϵ

2

classes such that irregG(P) ≤ ϵ. Here, c is
a universal constant that does not depend on G and ϵ.
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Theorem 2.1 asserts that we can represent any large graph G by a smaller, coarse-grained version
of it: the weighted graph Gϵ with node set V ϵ = {V1, . . . , Vk}, where the edge weight between
the nodes Vi and Vj is eG(Vi,Vj)

|Vi|,|Vj | . The “large-scale” structure of G is given by Gϵ, and the number
of edges between any two subsets of nodes Ui ⊂ Vi and Uj ⊂ Vj is close to the “expected value”
eP(Ui,Uj). Hence, the deterministic graph G “behaves” as if it was randomly sampled from Gϵ.

2.3 Graphon analysis

A graphon [4, 24] can be seen as a weighted graph with a “continuous” node set, or more accurately,
the nodes are parameterized by an atomless standard probability space called the graphon domain.
Since all such graphon domains are equivalent to [0, 1] with the standard Lebesgue measure (up to a
measure preserving bijection), we take [0, 1] as the node set. The space of graphons W0 is defined to
be the set of all measurable symmetric function W : [0, 1]2 → [0, 1], W (x, y) = W (y, x). The edge
weight W (x, y) of a graphon W ∈ W0 can be seen as the probability of having an edge between the
nodes x and y.

Graphs can be seen as special graphons. Let Im = {I1, . . . , Im} be an interval equipartition: a
partition of [0, 1] into intervals of equal length. The graph G = {V,E} with adjacency matrix
A = {ai,j}mi,j=1 induces the graphon WG, defined by WG(x, y) = a⌈xm⌉,⌈ym⌉

1. Note that WG is
piecewise constant on the partition Im. We hence identify graphs with their induced graphons. A
graphon can also be seen as a generative model of graphs. Given a graphon W , a corresponding
random graph is generated by sampling i.i.d. nodes {Xn} from he graphon domain, and connecting
each pair Xn, Xm in probability W (Xn, Xm) to obtain the edges of the graph.

2.4 Regularity lemma for graphons

A simple way to formulate the regularity lemma in the graphon language is via stochastic block
models (SBM). A SBM is a piecewise constant graphon, defined on a partition of the graphon domain
[0, 1]. The number of classes of the SBM is defined to be the number of sets in the partition. A
SBM is seen as a generative model for graphs, where graphs are randomly sampled from the graphon
underlying the SBM, as explained above. Szemerédi weak regularity lemma asserts that for any
error tolerance ϵ, there is a number of classes k, such that any deterministic graph (of any size and
topology) behaves as if it was randomly sampled from a SBM with k classes, up to error ϵ. Hence, in
some sense, every graph is approximately quasi-random.

To write the weak regularity lemma in the graphon language, the notion of irregularity (1) is extended
to graphons. For any measurable W : [0, 1]2 → R the cut norm is defined to be

∥W∥□ = sup
U,S⊂[0,1]

∣∣∣∣∫
U×S

W (x, y)dxdy

∣∣∣∣ ,
where U, S ⊂ [0, 1] are measurable. It can be verified that the irregularity (1) is equal to the cut norm
of a difference between graphons induced by adequate graphs. The cut metric between two graphons
W,V ∈ W0 is defined to be d□(W,V ) = ∥W − V ∥□. The cut distance is defined to be

δ□(W,V ) = inf
ϕ∈S[0,1]

∥W − V ϕ∥□,

where S[0,1] is the space of measure preserving bijections [0, 1] → [0, 1], and V ϕ(x, y) =
V (ϕ(x), ϕ(y)) (see Section 3.1 and Appendix A.3 for more details). The cut distance is a pseudo
metric on the space of graphons. By considering equivalence classes of graphons with zero cut
distance, we can construct a metric space W̃0 for which δ□ is a metric. The following version of the
weak regularity lemma is from [25, Lemma 7].
Theorem 2.2. For every graphon W ∈ W0 and ϵ > 0 there exists a step graphon W ′ ∈ W0 with
respect to a partition of at most ⌈2c/ϵ2⌉ sets such that δ□(W,W ′) ≤ ϵ, for some universal constant c.

The exact definition of a step graphon is given in Definition 3.3. It is possible to show, using
Theorem 2.2, that W̃0 is a compact metric space [25, Lemma 8]. Instead of recalling this construction
here, we refer to Section 3.4 for the extension of this construction to graphon-signals.

1In the definition of WG, the convention is that ⌈0⌉ = 1.
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3 Graphon-signal analysis

A graph-signal (G, f) is a graph G, that may be weighted or simple, with node set [n], and a signal
f ∈ Rn×k that assigns the value fj ∈ Rk for every node j ∈ [n]. A graphon-signal will be defined in
Section 3.1 similarly to a graph-signal, but over the node set [0, 1]. In this section, we show how to
extend classical results in graphon theory to a so called graphon-signal theory. All proofs are given in
the appendix.

3.1 The graphon signal space

For any r > 0, define the signal space
L∞
r [0, 1] :=

{
f ∈ L∞[0, 1]

∣∣ ∀x ∈ [0, 1], |f(x)| ≤ r
}
. (2)

We define the following “norm” on L∞
r [0, 1] (which is not a vector space).

Definition 3.1 (Cut norm of a signal). For a signal f : [0, 1] → R, the cut norm ∥f∥□ is defined as

∥f∥□ := sup
S⊆[0,1]

∣∣∣∣ ∫
S

f(x)dµ(x)

∣∣∣∣, (3)

where the supremum is taken over the measurable subsets S ⊂ [0, 1].

In Appendix A.2 we prove basic properties of signal cut norm. One important property is the
equivalence of the signal cut norm to the L1 norm

∀f ∈ L∞
r [0, 1], ∥f∥□ ≤ ∥f∥1 ≤ 2∥f∥□.

Given a bound r on the signals, we define the space of graphon-signals to be the set of pairs
WLr := W0×L∞

r [0, 1]. We define the graphon-signal cut norm, for measurable W,V : [0, 1]2 → R
and f, g : [0, 1] → R, by

∥(W, f)∥□ = ∥W∥□ + ∥f∥□.
We define the graphon-signal cut metric by d□

(
(W, f), (V, g)

)
= ∥(W, f)− (V, g)∥□.

We next define a pseudo metric that makes the space of graphon-signals a compact space. Let S′
[0,1]

be the set of measurable measure preserving bijections between co-null sets of [0, 1], namely,

S′
[0,1] =

{
ϕ : A → B

∣∣ A,B co-null in [0, 1], and ∀S ∈ A, µ(S) = µ(ϕ(S))
}
,

where ϕ is a measurable bijection and A,B, S are measurable. For ϕ ∈ S′
[0,1], we define Wϕ(x, y) :=

W (ϕ(x), ϕ(y)), and fϕ(z) = f(ϕ(z)). Note that Wϕ and fϕ are only defined up to a null-set, and
we arbitrarily set W,Wϕ, f and fϕ to 0 in their respective null-sets, which does not affect our analysis.
Define the cut distance between two graphon-signals (W, f), (V, g) ∈ WLr by

δ□
(
(W, f), (V, g)

)
= inf

ϕ∈S′
[0,1]

d□
(
(W, f), (V, g)ϕ

)
. (4)

Here, (V, g)ϕ := (V ϕ, gϕ). More details on this construction are given in Appendix A.3.

The graphon-signal cut distance δ□ is a pseudo-metric, and can be made into a metric by introducing
the equivalence relation: (W, f) ∼ (V, g) if δ□((W, f), (V, g)) = 0. The quotient space W̃Lr :=
WLr/ ∼ of equivalence classes [(W, f)] of graphon-signals (W, f) is a metric space with the metric
δ□([(W, f)], [(V, g)]) = δ□((W, f), (V, g)). By abuse of terminology, we call elements of W̃Lr also
graphon-signals. A graphon-signal in W̃Lr is defined irrespective of a specific “indexing” of the
nodes in [0, 1].

3.2 Induced graphon-signals

Any graph-signal can be identified with a corresponding graphon-signal as follows.
Definition 3.2. Let (G, f) be a graph-signal with node set [n] and adjacency matrix A = {ai,j}i,j∈[n].
Let {Ik}nk=1 with Ik = [(k − 1)/n, k/n) be the equipartition of [0, 1] into n intervals. The graphon-
signal (W, f)(G,f) = (WG, ff ) induced by (G, f) is defined by

WG(x, y) =

n∑
i,j=1

aij1Ii(x)1Ij (y), and ff (z) =

n∑
i

fi1Ii(z).
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We denote (W, f)(G,f) = (WG, ff ). We identify any graph-signal with its induced graphon-signal.
This way, we define the cut distance between a graph-signal and a graphon-signal. As before, the cut
distance between a graph-signal (G, f) and a graphon-signal (W, g) can be interpreted as how much
the deterministic graph-signal (G, f) “looks like” it was randomly sampled from (W, g).

3.3 Graphon-signal regularity lemma

(a) (b) (c)

Figure 2: Illustration of the graphon-signal regularity lemma. The values of the graphon are in gray
scale over [0, 1]2, and the signal is plotted in color on the diagonal of [0, 1]2. (a) A graphon-signal.
(b) Representation of the same graphon-signal under the “good” permutation/measure preserving
bijection guaranteed by the regularity lemma. (c) The approximating step graphon-signal guaranteed
by the regularity lemma.

To formulate our regularity lemma, we first define spaces of step functions.
Definition 3.3. Given a partition Pk, and d ∈ N, we define the space Sd

Pk
of step functions of

dimension d over the partition Pk to be the space of functions F : [0, 1]d → R of the form

F (x1, . . . , xd) =
∑

j=(j1,...,jd)∈[k]d

cj

d∏
l=1

1Pjl
(xl), (5)

for any choice of {cj ∈ R}j∈[k]d .

We call any element of W0 ∩ S2
Pk

a step graphon with respect to Pk. A step graphon is also called a
stochastic block model (SBM). We call any element of L∞

r [0, 1] ∩ S1
Pk

a step signal. We also call
[WLr]Pk

:= (W0 ∩ S2
Pk

)× (L∞
r [0, 1] ∩ S1

Pk
) the space of SBMs with respect to Pk.

In Appendix B.2 we give a number of versions of the graphon-signal regularity lemma. Here, we
show one version in which the partition is fixed regardless of the graphon-signal.
Theorem 3.4 (Regularity lemma for graphon-signals – equipartition). For any c > 1, and any
sufficiently small ϵ > 0, for every n ≥ 2⌈

9c
4ϵ2

⌉ and every (W, f) ∈ WLr, there exists a step
graphon-signal (Wn, fn) ∈ [WLr]In such that

δ□
(
(W, f), (Wn, fn)

)
≤ ϵ, (6)

where In is the equipartition of [0, 1] into n intervals.

Figure 2 illustrates the graphon-signal regularity lemma. By identifying graph-signals with their
induced graphon-signals, (6) shows that the space of graph-signals is dense in the space of graphon-
signals with cut distance.

Similarly to the classical case, Theorem 3.4 is interpreted as follows. While deterministic graph-
signals may seem intricate and complex, they are actually regular, and “look like” random graph-
signals that were sampled from SBMs, where the number of blocks of the SBM only depends on
the desired approximation error between the SBM and the graph-signal, and not on the graph-signal
itself.
Remark 3.5. The lower bound n ≥ 2⌈

9c
4ϵ2

⌉ on the number of steps in the graphon-signal regularity
lemma is essentially tight in the following sense. There is a universal constant C such that for every
ϵ > 0 there exists a graphon-signal (W, f) such that no step graphon-signal (W ′, f ′) with less than
2⌈

C
ϵ2

⌉ steps satisfies δ□
(
(W, f), (W ′, f ′)

)
≤ ϵ. To see this, [8, Theorem 1.4, Theorem 7.1] shows

that the bound in the standard weak regularity lemma (for graphs/graphons) is essentially tight in the
above sense. For the graphon-signal case, we can take the graphon W ′ from [8, Theorem 7.1] which
does not allow a regularity partition with less than 2⌈

C
ϵ2

⌉ steps, and consider the graphon-signal
(W ′, 1), which then also does not allow such a regularity partition.
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3.4 Compactness of the graphon-signal space and its covering number

We prove that W̃Lr is compact using Theorem 3.4, similarly to [25, Lemma 8]. Moreover, we can
bound the number of balls of radius ϵ required to cover W̃Lr.

Theorem 3.6. The metric space (W̃Lr, δ□) is compact. Moreover, given r > 0 and c > 1, for every
sufficiently small ϵ > 0, the space W̃Lr can be covered by

κ(ϵ) = 2k
2

(7)

balls of radius ϵ, where k = ⌈2
9c
4ϵ2 ⌉.

The Proof of Theorem 3.6 is given in Appendix C. This is a powerful result – the space of arbitrarily
large graph-signals is dense in the “small” space W̃Lr. We will use this property in Section 4.3 to
prove a generalization bound for MPNNs.

3.5 Graphon-signal sampling lemmas

In this section we prove that randomly sampling a graphon signal produces a graph-signal that is
close in cut distance to the graphon signal. Let us first describe the sampling setting. More details on
the construction are given in Appendix D.1. Let Λ = (λ1, . . . λk) ∈ [0, 1]k be k independent uniform
random samples from [0, 1], and (W, f) ∈ WLr. We define the random weighted graph W (Λ) as
the weighted graph with k nodes and edge weight wi,j = W (λi, λj) between node i and node j. We
similarly define the random sampled signal f(Λ) with value fi = f(λi) at each node i. Note that
W (Λ) and f(Λ) share the sample points Λ. We then define a random simple graph as follows. We
treat each wi,j = W (λi, λj) as the parameter of a Bernoulli variable ei,j , where P(ei,j = 1) = wi,j

and P(ei,j = 0) = 1− wi,j . We define the random simple graph G(W,Λ) as the simple graph with
an edge between each node i and node j if and only if ei,j = 1.

We note that, given a graph signal (G, f), sampling a graph-signal from (W, f)(G,f) is equivalent
to subsampling the nodes of G independently and uniformly (with repetitions), and considering
the resulting subgraph and subsignal. Hence, we can study the more general case of sampling a
graphon-signal, where graph-signal sub-sampling is a special case. We now extend [24, Lemma
10.16], which bounds the cut distance between a graphon and its sampled graph, to the case of a
sampled graphon-signal.
Theorem 3.7 (Sampling lemma for graphon-signals). Let r > 1. There exists a constant K0 > 0 that
depends on r, such that for every k ≥ K0, every (W, f) ∈ WLr, and for Λ = (λ1, . . . λk) ∈ [0, 1]k

independent uniform random samples from [0, 1], we have

E
(
δ□

((
W, f

)
,
(
W (Λ), f(Λ)

)))
<

15√
log(k)

,

and

E
(
δ□

((
W, f

)
,
(
G(W,Λ), f(Λ)

)))
<

15√
log(k)

.

The proof of Theorem 3.7 is given in Appendix D.2

4 Graphon-signal analysis of MPNNs

In this section, we propose utilizing the compactness of the graphon-signal space under cut distance,
and the sampling lemma, to prove regularity results for MPNNs, uniform generalization bounds, and
stability to subsampling theorems.

4.1 MPNNs on graphon signals

Next, we define MPNNs on graphon-signals, in such a way that the application of a MPNN on an
induced graphon-signal is equivalent to applying the MPNN on the graph-signal and then inducing it.
A similar construction was presented in [26], for average aggregation, but we use normalized sum
aggregation.
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At each layer, we define the message function Φ(x, y) as a linear combination of simple tensors as
follows. Let K ∈ N. For every k ∈ [K], let ξkr , ξ

k
t : Rd → Rp be Lipschitz continuous functions

that we call the receiver and transmitter message functions respectively. Define the message function
Φ : R2d → Rp by

Φ(a, b) =

K∑
k=1

ξkr (a)ξ
k
t (b),

where the multiplication is elementwise along the feature dimension. Given a signal f , define the
message kernel Φf : [0, 1]2 → Rp by

Φf (x, y) = Φ(f(x), f(y)) =

K∑
k=1

ξkr (f(x))ξ
k
t (f(y)).

We see the x variable of Φf (x, y) as the receiver of the message, and y as the transmitter. Define the
aggregation of a message kernel Q : [0, 1]2 → Rp, with respect to the graphon W ∈ W0, to be the
signal Agg(W,Q) ∈ L∞

r [0, 1], defined by

Agg(W,Q)(x) =

∫ 1

0

W (x, y)Q(x, y)dy,

for an appropriate r > 0. A message passing layer (MPL) takes the form f (t) 7→ Agg(W,Φ
(t+1)

f(t) ),

where f (t) is the signal at layer t. Each MPL is optionally followed by an update layer, which updates
the signal pointwise via f (t+1) = µ(t+1)

(
f (t)(x),Agg(W,Φ

(t+1)

f(t) )(x)
)
, where µ(t+1) is a learnable

mapping called the update function. A MPNN is defined by choosing the number of layers T , and
defining message and update functions {µt, (tξkr ), (

tξkt )}k∈[K],t∈[T ]. A MPNN only modifies the
signal, and keeps the graph/graphon intact. We denote by Θt(W, f) the output of the MPNN applied
on (W, f) ∈ WLr at layer t ∈ [T ]. More details on the construction are given in Appendix E.1.

The above construction is rather general. Indeed, it is well known that many classes of functions
F : Rd × Rd → RC (e.g., L2 functions) can be approximated by (finite) linear combinations of
simple tensors F (a, b) ≈

∑K
k=1 ξ

k
1 (a)ξ

k
2 (b). Hence, message passing based on general message

functions Φ : R2d → Rp can be approximated by our construction. Moreover, many well-known
MPNNs can be written using our formulation with a small K, e.g., [29, 36] and spectral convolutional
networks [9, 20, 21], if we replace the aggregation in these method with normalized sum aggregation.

In Appendix E.1 we show that for any graph-signal (G, f), we have Θt(W, f)(G,f) = (W, f)Θt(G,f),
where the MPNN on a graph-signal is defined with normalized sum aggregation(

Agg(G,Φf )
)
i
=

1

n

∑
j∈[n]

ai,j(Φf )i,j .

Here, n is the number of nodes, and {ai,j}i,j∈[n] is the adjacency matrix of G. Hence, we may
identify graph-signals with their induced graphon-signals when analyzing MPNNs.

4.2 Lipschitz continuity of MPNNs

We now show that, under the above construction, MPNNs are Lipschitz continuous with respect to
cut distance.
Theorem 4.1. Let Θ be a MPNN with T layers. Suppose that there exist constants L,B > 0 such
that for every layer t ∈ [T ], every y ∈ {t, r} and every k ∈ [K],∣∣µt(0)

∣∣ , ∣∣tξky (0)∣∣ ≤ B, and Lµt , Ltξky
< L,

where Lµt and Ltξky
are the Lipschitz constants of µt and tξky . Then, there exists a constant LΘ (that

depends on T,K,B and L) such that for every (W, f), (V, g) ∈ WLr,

∥Θ(W, f)−Θ(V, g)∥□ ≤ LΘ

(
∥f − g∥□ + ∥W − V ∥□

)
.

The constant LΘ depends exponentially on T , and polynomially on K,B and L. For formulas of LΘ,
under different assumptions on the hypothesis class of the MPNN, we refer to Appendix F.
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4.3 A generalization theorem for MPNN

In this section we prove a uniform generalization bound for MPNNs. For background on general-
ization analysis, we refer the reader to Appendix G.1. While uniform generalization bounds are
considered a classical approach in standard neural networks, the approach is less developed in the
case of MPNNs. For some works on generalization theorems of MPNNs, see [14, 23, 26, 30, 33].

When a MPNN is used for classification or regression, ΘT is followed by global pooling. Namely,
for the output signal g : [0, 1] → Rp, we return

∫
g(x)dx ∈ Rp. This is then typically followed by a

learnable mapping Rp → RC . In our analysis, we see this mapping as part of the loss, which can
hence be learnable. The combined loss is assumed to be Lipschitz continuous2.

We model the ground truth classifier into C classes as a piecewise constant function C : W̃Lr →
{0, 1}C , where the sets of different steps in W̃Lr are Borel measurable sets, correspond to different
classes. We consider an arbitrary probability Borel measure ν on W̃Lr as the data distribution. More
details on the construction are given in Appendix G.2.

Let Lip(W̃Lr, L1) be the space of Lipschitz continuous mappings Υ : W̃Lr → RC with Lipschitz
constant L1. By Theorem 4.1, we may assume that our hypothesis class of MPNNs is a subset of
Lip(W̃Lr, L1) for some given L1. Let X = (X1, . . . , XN ) be independent random samples from
the data distribution (W̃Lr, ν). Let ΥX be a model that may depend on the sampled data, e.g.,
via training. Let E be a Lipschitz continuous loss function3 with Lipschitz constant L2. For every
function Υ in the hypothesis class Lip(W̃Lr, L1) (i.e. ΥX), define the statistical risk

R(Υ) = E
(
E(Υ, C)

)
=

∫
E(Υ(x), C(x))dν(x).

We define the empirical risk R̂(ΥX,X) = 1
N

∑N
i=1 E

(
ΥX(Xi), C(Xi)

)
.

Theorem 4.2 (MPNN generalization theorem). Consider the above classification setting, and let
L = L1L2. Let X1, . . . , XN be independent random samples from the data distribution (W̃Lr, ν).

Then, for every p > 0, there exists an event Up ⊂ W̃Lr

N
, with probability

νN (Up) ≥ 1− Cp− 2
C2

N
,

in which∣∣∣R(ΥX)− R̂(ΥX,X)
∣∣∣ ≤ ξ−1(N/2C)

(
2L+

1√
2

(
L+ E(0, 0)

)(
1 +

√
log(2/p)

))
, (8)

where ξ(ϵ) = κ(ϵ)2 log(κ(ϵ))
ϵ2 , κ is the covering number of W̃Lr given in (7), and ξ−1 is the inverse

function of ξ.

The theorem is proved in Appendix G.4. Note that the term ξ−1(N/2C) in (8) decreases to zero as
the size of the training set N goes to infinity.

In Table 1 we compare the assumptions and dependency on the number of data points of different
generalization theorems. All past works consider special assumptions. Our work provides upper
bounds under no assumptions on the data distribution, and only mild assumptions on the MPNN
(Lipschitz continuity of the message passing and update functions). In Table 2 in Appendix G.5 we
present experiments that illustrate the generalization capabilities of MPNNs with normalized sum
aggregation.

4.4 Stability of MPNNs to graph-signal subsampling

When working with very large graphs, it is often the practice to subsample the large graph, and apply
a MPNN to the smaller subsampled graph [5, 7, 16]. Here, we show that such an approach is justified

2We note that loss functions like cross-entropy are not Lipschitz continuous. However, the composition of
cross-entropy on softmax is Lipschitz, which is the standard way of using cross-entropy.

3The loss E may have a learnable component (that depends on the dataset X), as long as the total Lipschitz
bound of E is L2.
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Table 1: Comparison of the assumptions made by different GNN generalization analysis papers.
Generalization analysis paper Assumption on the graphs No weight sharing General MPL Dependency on N

Generalization Limits of GNNs [14] bounded degree ✗ ✗ N−1/2

PAC-bayesian MPNN [23] bounded degree ✗ ✗ N−1/2

PAC-bayesian GCN [23] bounded degree ✓ ✗ N−1/2

VC meets 1WL [30] bounded color complexity ✓ ✗ N−1/2

Generalization Analysis of MPNNs [26] sampled from a small set of graphons ✓ ✓ N−1/2

Our graphon-signal theory non ✓ ✓ ξ−1(N)

theoretically. Namely, any (Lipschitz continuous) MPNN has approximately the same outcome on
the large graph and its subsampled version.

Transferability and stability analysis [18, 22, 27, 31, 32] often studies a related setting. Namely, it
is shown that a MPNN applied on a randomly sampled graph G approximates the MPNN on the
graphon W from which the graph is sampled. However, previous analyses assumed that the generating
graphon W has metric properties. Namely, it is assumed that there is some probability metric space
M which is the graphon domain, and the graphon W : M×M → [0, 1] is Lipschitz continuous
with respect to M, where the dimension of M affects the asymptotics. This is an unnatural setting, as
general graphons are only assumed to be measurable, not continuous. Constraining the construction
to Lipschitz continuous graphons with a uniformly bounded Lipschitz constant only accounts for
a small subset of WLr, and, hence, limits the analysis significantly. In comparison, our analysis
applies to any graphon-signal in WLr. When we only assume that the graphon is measurable, [0, 1]
is only treated as a standard (atomless) probability space, which is very general, and equivalent for
example to [0, 1]d for any d ∈ N, and to any Polish space. Note that graphon theory allows restricting
the graphon domain to [0, 1] since [0, 1], as a measure space, is very generic.
Theorem 4.3. Consider the setting of Theorem 4.2, and let Θ be a MPNN with Lipschitz constant L.
Denote

Σ =
(
W,Θ(W, f)

)
, and Σ(Λ) =

(
G(W,Λ),Θ

(
G(W,Λ), f(Λ)

))
.

Then
E
(
δ□
(
Σ,Σ(Λ)

))
<

15√
log(k)

L.

5 Discussion

We presented an extension of graphon theory to a graphon-signal theory. Especially, we extended
well-known regularity, compactness, and sampling lemmas from graphons to graphon-signals. We
then showed that the normalized sum aggregation of MPNNs is in some sense compatible with the
graphon-signal cut distance, which leads to the Lipschitz continuity of MPNNs with respect to cut
distance. This then allowed us to derive generalization and sampling theorems for MPNNs. The
strength of our analysis is in its generality and simplicity– it is based on a natural notion of graph
similarity, that allows studying the space of all graph-signals, it applies to any graph-signal data
distribution, and does not impose any restriction on the number of parameters of the MPNNs, only to
their regularity through the Lipschitzness of the message functions.

The main limitation of the theory is the very slow asymptotics of the generalization and subsampling
theorems. This follows the fact that the upper bound on the covering number of the compact space
W̃Lr grows faster than the covering number of any finite-dimensional compact space. Yet, we believe
that our work can serve as a point of departure for future works, that 1) will model subspaces of W̃Lr

of lower complexity, which approximate the support of the data-distribution in real-life settings of
graph machine learning, and, 2) will lead to improved asymptotics. Another open problem is to find
an essentially tight estimate of the covering number of W̃Lr, which may be lower than the estimate
presented in this paper.
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A Basic definitions and properties of graphon-signals

In this appendix, we give basic properties of graphon-signals, cut norm, and cut distance.

A.1 Lebesgue spaces and signal spaces

For 1 ≤ p < ∞, the space Lp[0, 1] is the space of (equivalence classes up to null-set) of measurable
functions f : [0, 1] → R, with finite L1 norm

∥f∥p =

(∫ 1

0

|f(x)|pdx
)1/p

< ∞.

The space L∞[0, 1] is the space of (equivalence classes) of measurable functions with finite L∞ norm

∥f∥∞ = ess sup
x∈[0,1]

|f(x)| = inf{a ≥ 0 | |f(x)| ≤ a for almost every x ∈ [0, 1]}.

A.2 Properties of cut norm

Every f ∈ L∞
r [0, 1] can be written as f = f+ − f−, where

f+(x) =

{
f(x) f(x) > 0
0 f(x) ≤ 0.

and f− is defined similarly. It is easy to see that the supremum in (3) is attained for S which is either
the support of f+ or f−, and

∥f∥□ = max{∥f+∥1, ∥f−∥1}.
As a result, the signal cut norm is equivalent to the L1 norm

1

2
∥f∥1 ≤ ∥f∥□ ≤ ∥f∥1. (9)

Moreover, for every r > 0 and measurable function W : [0, 1]2 → [−r, r],

0 ≤ ∥W∥□ ≤ ∥W∥1 ≤ ∥W∥2 ≤ ∥W∥∞ ≤ r.

The following lemma is from [24, Lemma 8.10].
Lemma A.1. For every measurable W : [0, 1]2 → R, the supremum

sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T

W (x, y)dxdy

∣∣∣∣
is attained for some S, T .

A.3 Properties of cut distance and measure preserving bijections

Recall that we denote the standard Lebesgue measure of [0, 1] by µ. Let S[0,1] be the space of
measurable bijections [0, 1] → [0, 1] with measurable inverse, that are measure preserving, namely,
for every measurable A ⊂ [0, 1], µ(A) = µ(ϕ(A)). Recall that S′

[0,1] is the space of measurable
bijections between co-null sets of [0, 1].

For ϕ ∈ S[0,1] or ϕ ∈ S′
[0,1], we define Wϕ(x, y) := W (ϕ(x), ϕ(y)). In case ϕ ∈ S′

[0,1], W
ϕ is only

define up to a null-set, and we arbitrarily set W to 0 in this null-set. This does not affect our analysis,
as the cut norm is not affected by changes to the values of functions on a null sets. The cut-metric
between graphons is then defined to be

δ□(W,Wϕ) = inf
ϕ∈S[0,1]

∥W −Wϕ∥□

= inf
ϕ∈S[0,1]

sup
S,T⊆[0,1]

∣∣∣∣ ∫
S×T

(
W (x, y)−W (ϕ(x), ϕ(y))

)
dxdy

∣∣∣∣.
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Remark A.2. Note that δ□ can be defined equivalently with respect to ϕ ∈ S′
[0,1]. Indeed, By [24,

Equation (8.17) and Theorem 8.13], δ□ can be defined equivalently with respect to the measure
preserving maps that are not necessarily invertible. These include the extensions of mappings from
S′
[0,1] by defining ϕ(x) = 0 for every x in the co-null set underlying ϕ.

Similarly to the graphon case, the graphon-signal distance δ□ is a pseudo-metric. By introducing
an equivalence relation (W, f) ∼ (V, g) if δ□((W, f), (V, g)) = 0, and the quotient space W̃Lr :=

WLr/ ∼, W̃Lr is a metric space with a metric δ□ defined by δ□([(W, f)], [V, g)]) = d□(W,V )
where [(W, f)], [(V, g)], are the equivalence classes of (W, f) and (V, g) respectively. By abuse of
terminology, we call elements of W̃Lr also graphon-signals.

Remark A.3. We note that W̃Lr ̸= W̃0 × ˜L∞
r [0, 1] (for the natural definition of ˜L∞

r [0, 1]), since
in W̃Lr we require that the measure preserving bijection is shared between the graphon W and
the signal f . Sharing the measure preserving bijetion between W and f is an important modelling
requirement, as ϕ is seen as a “re-indexing” of the node set [0, 1]. When re-indexing a node x, both
the neighborhood W (x, ·) of x and the signal value f(x) at x should change together, otherwise, the
graphon and the signal would fall out of alignment.

We identify graphs with their induced graphons and signal with their induced signals

B Graphon-signal regularity lemmas

In this appendix, we prove a number of versions of the graphon-signal regularity lemma, where
Theorem 3.4 is one version.

B.1 Properties of partitions and step functions

Given a partition Pk and d ∈ N, the next lemma shows that there is an equiparition En such that the
space Sd

En
uniformly approximates the space Sd

Pk
in L1[0, 1]d norm (see Definition 3.3).

Lemma B.1 (Equitizing partitions). Let Pk be a partition of [0, 1] into k sets (generally not of the
same measure). Then, for any n > k there exists an equipartition En of [0, 1] into n sets such that
any function F ∈ Sd

Pk
can be approximated in L1[0, 1]

d by a function from F ∈ Sd
En

up to small
error. Namely, for every F ∈ Sd

Pk
there exists F ′ ∈ Sd

En
such that

∥F − F ′∥1 ≤ d∥F∥∞
k

n
.

Proof. Let Pk = {P1, . . . , Pk} be a partition of [0, 1]. For each i, we divide Pi into subsets
Pi = {Pi,1, . . . , Pi,mi

} of measure 1/n (up to the last set) with a residual, as follows. If µ(Pi) <
1/n, we choose Pi = {Pi,1 = Pi}. Otherwise, we take Pi,1, . . . , Pi,mi−1 of measure 1/n, and
µ(Pi,mi

) ≤ 1/n. We call Pi,mi
the remainder.

We now define the sequence of sets of measure 1/n

Q := {P1,1, . . . , P1,m1−1, P2,1, . . . , P2,m2−1, . . . , Pk,1, . . . , Pk,mk−1}, (10)

where, by abuse of notation, for any i such that mi = 1, we set {Pi,1, . . . , Pi,mi−1} = ∅ in the
above formula. Note that in general ∪Q ̸= [0, 1]. We moreover define the union of residuals
Π := P1,m1 ∪P2,m2 ∪ · · · ∪Pk,mk

. Note that µ(Π) = 1− µ(∪Q) = 1− k 1
n = h/n, where k is the

number of elements in Q, and h = n− k. Hence, we can partition Π into h parts {Π1, . . .Πh} of
measure 1/n with no residual. Thus we have obtain the equipartition of [0, 1] to n sets of measure
1/n

En := {P1,1, . . . , P1,m1−1, P2,1, . . . , P2,m2−1, . . . , Sk,1, . . . , Sk,mk−1,Π1,Π2, . . . ,Πh}. (11)

For convenience, we also denote En = {Z1, . . . , Zn}.

Let

F (x) =
∑

j=(j1,...,jd)∈[k]d

cj

d∏
l=1

1Pjl
(xl) ∈ Sd

Pk
.
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We can write F with respect to the equipartition En as

F (x) =
∑

j=(j1,...,jd)∈[n]d; ∀l=1,...,d, Zjl
̸⊂Π

c̃j

d∏
l=1

1Zjl
(xl) + E(x),

for some {c̃j} with the same values as the values of {cj}. Here, E is supported in the set Π(d) ⊂
[0, 1]d, defied by

Π(d) =
(
Π× [0, 1]d−1

)
∪
(
[0, 1]×Π× [0, 1]d−2

)
∪ . . . ∪

(
[0, 1]d−1 ×Π

)
.

Consider the step function

F ′(x) =
∑

j=(j1,...,jd)∈[n]d; ∀l=1,...,d, Zjl
̸⊂Π

c̃j

d∏
l=1

1Zjl
(xl) ∈ Sd

En
.

Since µ(Π) = k/n, we have µ(Π(d)) = dk/n, and so

∥F − F ′∥1 ≤ d∥F∥∞
k

n
.

■

Lemma B.2. Let {Q1, Q2, . . . , Qm} partition of [0, 1]. Let {I1, I2, . . . , Im} be a partition of [0, 1]
into intervals, such that for every j ∈ [m], µ(Qj) = µ(Ij). Then, there exists a measure preserving
bijection ϕ : [0, 1] → [0, 1] ∈ S′

[0,1] such that4

ϕ(Qj) = Ij

Proof. By the definition of a standard probability space, the measure space induced by [0, 1] on a
non-null subset Qj ⊆ [0, 1] is a standard probability space. Moreover, each Qj is atomless, since
[0, 1] is atomless. Since there is a measure-preserving bijection (up to null-set) between any two
atomless standard probability spaces, we obtain the result. ■

Lemma B.3. Let S = {Sj ⊂ [0, 1]}m−1
j=0 be a collection of measurable sets (that are not disjoint in

general), and d ∈ N. Let Cd
S be the space of functions F : [0, 1]d → R of the form

F (x) =
∑

j=(j1,...,jd)∈[m]d

cj

d∏
l=1

1Sjl
(xl),

for some choice of {cj ∈ R}j∈[m]d . Then, there exists a partition Pk = {P1, . . . , Pk} into k = 2m

sets, that depends only on S, such that
Cd
S ⊂ Sd

Pk
.

Proof. The partition Pk = {P1, . . . , Pk} is defined as follows. Let

P̃ =
{
P ⊂ [0, 1] | ∃ x ∈ [0, 1], P = ∩{Sj ∈ S|x ∈ Sj}

}
.

We must have |P̃| ≤ 2m. Indeed, there are at most 2m different subsets of S for the intersections.
We endow an arbitrarily order to P̃ and turn it into a sequence. If the size of P̃ is strictly smaller than
2m, we add enough copies of {∅} to P̃ to make the size of the sequence 2m, that we denote by Pk,
where k = 2m. ■

The following simple lemma is proved similarly to Lemma B.3. We give it without proof.
Lemma B.4. Let Pk = {P1, . . . , Pk},Qm = {Q1, . . . , Qk} be two partitions. Then, there exists a
partition Zkm into km sets such that for every d,

Sd
Pk

⊂ Sd
Zmk

, and Sd
Qm

⊂ Sd
Zmk

.

4Namely, there is a measure preserving bijection ϕ between two co-null sets C1 and C2 of [0, 1], such that
ϕ(Qj ∩ C1) = Ij ∩ C2.
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B.2 List of graphon-signal regularity lemmas

The following lemma from [25, Lemma 4.1] is a tool in the proof of the weak regularity lemma.
Lemma B.5. Let K1,K2, . . . be arbitrary nonempty subsets (not necessarily subspaces) of a Hilbert
space H. Then, for every ϵ > 0 and v ∈ H there is m ≤ ⌈1/ϵ2⌉ and vi ∈ Ki and γi ∈ R, i ∈ [m],
such that for every w ∈ Km+1 ∣∣∣∣

〈
w, v − (

m∑
i=1

γivi)

〉∣∣∣∣ ≤ ϵ ∥w∥∥v∥. (12)

The following theorem is an extension of the graphon regularity lemma from [25] to the case of
graphon-signals. Much of the proof follows the steps of [25].
Theorem B.6 (Weak regularity lemma for graphon-signals). Let ϵ, ρ > 0. For every (W, f) ∈ WLr

there exists a partition Pk of [0, 1] into k = ⌈r/ρ⌉
(
22⌈1/ϵ

2⌉
)

sets, a step function graphon Wk ∈
S2
Pk

∩W0 and a step function signal fk ∈ S1
Pk

∩ L∞
r [0, 1], such that

∥W −Wk∥□ ≤ ϵ and ∥f − fk∥□ ≤ ρ. (13)

Proof. We first analyze the graphon part. In Lemma B.5, set H = L2([0, 1]2) and for all i ∈ N, set

Ki = K =
{
1S×T

∣∣ S, T ⊂ [0, 1] measurable
}
.

Then, by Lemma B.5, there exists m ≤ ⌈1/ϵ2⌉ two sequences of sets Sm = {Si}mi=1, Tm = {Ti}mi=1,
a sequence of coefficients {γi ∈ R}mi=1, and

W ′
ϵ =

m∑
i=1

γi1Si×Ti
,

such that for any V ∈ K, given by V (x, y) = 1S(x)1T (y), we have∣∣∣∣ ∫ V (x, y)
(
W (x, y)−W ′

ϵ(x, y)
)
dxdy

∣∣∣∣ = ∣∣∣∣ ∫
S

∫
T

(
W (x, y)−W ′

ϵ(x, y)
)
dxdy

∣∣∣∣ (14)

≤ ϵ∥1S×T ∥∥W∥ ≤ ϵ. (15)

We may choose exactly m = ⌈1/ϵ2⌉ by adding copies of the empty set to Sm and Tm, if the constant
m guaranteed by Lemma B.5 is strictly less than ⌈1/ϵ2⌉. Let Wϵ(x, y) = (W ′

ϵ(x, y) +W ′
ϵ(y, x))/2.

By the symmetry of W , it is easy to see that (15) is also true when replacing W ′
ϵ by Wϵ. Indeed,∣∣∣∣ ∫ V (x, y)

(
W (x, y)−Wϵ(x, y)

)
dxdy

∣∣∣∣
≤ 1/2

∣∣∣∣ ∫ V (x, y)
(
W (x, y)−W ′

ϵ(x, y)
)
dxdy

∣∣∣∣+ 1/2

∣∣∣∣ ∫ V (y, x)
(
W (x, y)−W ′

ϵ(x, y)
)
dxdy

∣∣∣∣
≤ ϵ.

Consider the concatenation of the two sequences Tm,Sm given by Y2m = Tm ∪ Sm. Note that in
the notation of Lemma B.3, Wϵ ∈ C2

Y2m
. Hence, by Lemma B.3, there exists a partition Qn into

n = 22m = 22⌈
1
ϵ2

⌉ sets, such that Wϵ is a step graphon with respect to Qn.

To analyze the signal part, we partition the range of the signal [−r, r] into j = ⌈r/ρ⌉ intervals
{Ji}ji=1 of length less or equal to 2ρ, where the left edge point of each Ji is −r+(i− 1)ρr . Consider
the partition of [0, 1] based on the preimages Yj = {Yi = f−1(Ji)}ji=1. It is easy to see that for the
step signal

fρ(x) =

j∑
i=1

ai1Yi
(x),

where ai the midpoint of the interval Yi, we have

∥f − fρ∥□ ≤ ∥f − fρ∥1 ≤ ρ.
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Lastly, by Lemma B.4, there is a partition Pk of [0, 1] into k = ⌈r/ρ⌉
(
22⌈1/ϵ

2⌉
)

sets such that

Wϵ ∈ S2
Pk

and fρ ∈ S1
Pk

.

■

Corollary B.7 (Weak regularity lemma for graphon-signals – version 2). Let r > 0 and c > 1. For
every sufficiently small ϵ > 0 (namely, ϵ that satisfies (17)), and for every (W, f) ∈ WLr there exists

a partition Pk of [0, 1] into k =
(
2⌈2c/ϵ

2⌉
)

sets, a step graphon Wk ∈ S2
Pk

∩W0 and a step signal

fk ∈ S1
Pk

∩ L∞
r [0, 1], such that

d□
(
(W, f), (Wk, fk)

)
≤ ϵ.

Proof. First, evoke Theorem B.6, with errors ∥W −Wk∥□ ≤ ν and ∥f − fk∥□ ≤ ρ = ϵ− ν. We
now show that there is some ϵ0 > 0 such that for every ϵ < ϵ0, there is a choice of ν such that the
number of sets in the partition, guaranteed by Theorem B.6, satisfies

k(ν) := ⌈r/(ϵ− ν)⌉
(
22⌈1/ν

2⌉
)
≤ 2⌈2c/ϵ

2⌉.

Denote c = 1 + t. In case

ν ≥

√
2

2(1 + 0.5t)/ϵ2 − 1
, (16)

we have
22⌈1/ν

2⌉ ≤ 22(1+0.5t)/ϵ2 .

On the other hand, for

ν ≤ ϵ− r

2t/ϵ2 − 1
,

we have
⌈r/(ϵ− ν)⌉ ≤ 22(0.5t)/ϵ

2

.

The reconcile these two conditions, we restrict to ϵ such that

ϵ− r

2t/ϵ2 − 1
≥

√
2

2(1 + 0.5t)/ϵ2 − 1
. (17)

There exists ϵ0 that depends on c and r (and hence also on t) such that for every ϵ < ϵ0 (17) is
satisfied. Indeed, for small enough ϵ,

1

2t/ϵ2 − 1
=

2−t/ϵ2

1− 2−t/ϵ2
< 2−t/ϵ2 <

ϵ

r

(
1− 1

1 + 0.1t

)
,

so
ϵ− r

2t/ϵ2 − 1
> ϵ(1 + 0.1t).

Moreover, for small enough ϵ,√
2

2(1 + 0.5t)/ϵ2 − 1
= ϵ

√
1

(1 + 0.5t)− ϵ2
< ϵ/(1 + 0.4t).

Hence, for every ϵ < ϵ0, there is a choice of ν such that

k(ν) = ⌈r/(ϵ− ν)⌉
(
22⌈1/ν

2⌉
)
≤ 22(0.5t)/ϵ

2

22(1+0.5t)/ϵ2 ≤ 2⌈2c/ϵ
2⌉.

Lastly, we add as many copies of ∅ to Pk(ν) as needed so that we get a sequence of k = 2⌈2c/ϵ
2⌉ sets.

■
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Theorem B.8 (Regularity lemma for graphon-signals – equipartition version). Let c > 1 and r > 0.
For any sufficiently small ϵ > 0, and every (W, f) ∈ WLr there exists ϕ ∈ S′

[0,1], a step function
graphon [Wϕ]n ∈ S2

In
∩W0 and a step signal [fϕ]n ∈ S1

In
∩ L∞

r [0, 1], such that

d□

(
(Wϕ, fϕ) ,

(
[Wϕ]n, [f

ϕ]n
) )

≤ ϵ, (18)

where In is the equipartition of [0, 1] into n = 2⌈2c/ϵ
2⌉ intervals.

Proof. Let c = 1 + t > 1, ϵ > 0 and 0 < α, β < 1. In Corollary B.7, consider the approximation
error

d□
(
(W, f), (Wk, fk)

)
≤ αϵ.

with a partition Pk into k = 2
⌈ 2(1+t/2)

(ϵα)2
⌉ sets. We next equatize the partition Pk up to error ϵβ. More

accurately, in Lemma B.1, we choose

n = ⌈2
2(1+0.5t)

(ϵα)2
+1

/(ϵβ)⌉,
and note that

n ≥ 2
⌈ 2(1+0.5t)

(ϵα)2
⌉⌈1/ϵβ⌉ = k⌈1/ϵβ⌉.

By Lemma B.1 and by the fact that the cut norm is bounded by L1 norm, there exists an equipartition
En into n sets, and step functions Wn and fn with respect to En such that

∥Wk −Wn∥□ ≤ 2ϵβ and ∥fk − fn∥1 ≤ rϵβ.

Hence, by the triangle inequality,
d□
(
(W, f), (Wn, fn)

)
≤ d□

(
(W, f), (Wk, fk)

)
+ d□

(
(Wk, fk), (Wn, fn)

)
≤ ϵ(α+ (2 + r)β).

In the following, we restrict to choices of α and β which satisfy α + (2 + r)β = 1. Consider the
function n : (0, 1) → N defined by

n(α) := ⌈2
4(1+0.5t)

(ϵα)2
+1

/(ϵβ)⌉ = ⌈(2 + r) · 2
9(1+0.5t)

4(ϵα)2
+1

/(ϵ(1− α))⌉.
Using a similar technique as in the proof of Corollary B.7, there is ϵ0 > 0 that depends on c and
r (and hence also on t) such that for every ϵ < ϵ0 , we may choose α0 (that depends on ϵ) which
satisfies

n(α0) = ⌈(2 + r) · 2
2(1+0.5t)

(ϵα0)2
+1

/(ϵ(1− α0))⌉ < 2⌈
2c
ϵ2

⌉. (19)
Moreover, there is a choice α1 which satisfies

n(α1) = ⌈(2 + r) · 2
2(1+0.5t)

(ϵα1)2
+1

/(ϵ(1− α1))⌉ > 2⌈
2c
ϵ2

⌉. (20)

We note that the function n : (0, 1) → N satisfies the following intermediate value property. For
every 0 < α1 < α2 < 1 and every m ∈ N between n(α1) and n(α2), there is a point α ∈ [α1, α2]

such that n(α) = m. This follows the fact that α 7→ (2+ r) · 2
2(1+0.5t)

(ϵα)2
+1

/(ϵ(1−α)) is a continuous
function. Hence, by (19) and (20), there is a point α (and β such that α+ (2 + r)β = 1) such that

n(α) = n = ⌈2
2(1+0.5t)

(ϵα)2
+1

/(ϵβ)⌉ = 2⌈2c/ϵ
2⌉.

■

By a slight modification of the above proof, we can replace n with the constant n = ⌈2
2c
ϵ2 ⌉. As a

result, we can easily prove that for any n′ ≥ 2⌈
2c
ϵ2

⌉ we have the approximation property (18) with n′

instead of n. This is done by choosing an appropriate c′ > c and using Theorem B.8 on c′, giving a

constant n′ = ⌈2
2c′
ϵ2 ⌉ ≥ 2⌈

2c
ϵ2

⌉ = n. This leads to the following corollary.
Corollary B.9 (Regularity lemma for graphon-signals – equipartition version 2). Let c > 1 and r > 0.
For any sufficiently small ϵ > 0, for every n ≥ 2⌈

2c
ϵ2

⌉ and every (W, f) ∈ WLr, there exists ϕ ∈ S′
[0,1],

a step function graphon [Wϕ]n ∈ S2
In

∩ W0 and a step function signal [fϕ]n ∈ S1
In

∩ L∞
r [0, 1],

such that
d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]n, [f

ϕ]n
) )

≤ ϵ,

where In is the equipartition of [0, 1] into n intervals.
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Next, we prove that we can use the average of the graphon and the signal in each part for the
approximating graphon-signal. For that we define the projection of a graphon signal upon a partition.

Definition B.10. Let Pn = {P1, . . . , Pn} be a partition of [0, 1], and (W, f) ∈ WLr. We define the
projection of (W, f) upon (S2

P ×S1
P)∩WLr to be the step graphon-signal (W, f)Pn

= (WPn
, fPn

)
that attains the value

WPn(x, y) =

∫
Pi×Pj

W (x, y)dxdy , fPn(x) =

∫
Pi

f(x)dx

for every (x, y) ∈ Pi × Pj .

At the cost of replacing the error ϵ by 2ϵ, we can replace W ′ with its projection. This was shown in
[1]. Since this paper does not use the exact same setting as us, for completeness, we write a proof of
the claim below.

Corollary B.11 (Regularity lemma for graphon-signals – projection version). For any c > 1, and
any sufficiently small ϵ > 0, for every n ≥ 2⌈

8c
ϵ2

⌉ and every (W, f) ∈ WLr, there exists ϕ ∈ S′
[0,1],

such that such that
d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]In

, [fϕ]In

) )
≤ ϵ.

where In is the equipartition of [0, 1] into n intervals.

We first prove a simple lemma.

Lemma B.12. Let Pn = {P1, . . . , Pn} be a partition of [0, 1], and Let V,R ∈ S2
Pn

∩W0. Then, the
supremum of

sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T

(
V (x, y)−R(x, y)

)
dxdy

∣∣∣∣ (21)

is attained for S, T of the form
S =

⋃
i∈s

Pi , T =
⋃
j∈t

Pj ,

where t, s ⊂ [n]. Similarly for any two signals f, g ∈ S1
Pn

∩ L∞
r [0, 1], the supremum of

sup
S⊂[0,1]

∣∣∣∣∫
S

(
f(x)− g(x)

)
dx

∣∣∣∣ (22)

is attained for S of the form
S =

⋃
i∈s

Pi,

where s ⊂ [n].

Proof. First, by Lemma A.1, the supremum of (21) is attained for some S, T ⊂ [0, 1]. Given the
maximizers S, T , without loss of generality, suppose that∫

S

∫
T

(
V (x, y)−R(x, y)

)
dxdy > 0.

we can improve T as follows. Consider the set t ⊂ [n] such that for every j ∈ t∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy > 0.

By increasing the set T ∩ Pj to Pj , we can only increase the size of the above integral. Indeed,∫
S

∫
Pj

(
V (x, y)−R(x, y)

)
dxdy =

µ(Pj)

µ(T ∩ Pj)

∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy

≥
∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy.
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Hence, by increasing T to
T ′ =

⋃
{j|T∩Pj ̸=∅}

Pj ,

we get ∫
S

∫
T ′

(
V (x, y)−R(x, y)

)
dxdy ≥

∫
S

∫
T

(
V (x, y)−R(x, y)

)
dxdy.

We similarly replace each T ∩ Pj such that∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy ≤ 0

by the empty set. We now repeat this process for S, which concludes the proof for the graphon part.

For the signal case, let f = f+ − f−, and suppose without loss of generality that ∥f∥□ = ∥f∥1. It is
easy to see that the supremum of (22) is attained for the support of f+, which has the required form.
■

Proof. Proof of Corollary B.11 Let Wn ∈ SPn
∩W0 be the step graphon guaranteed by Corollary B.9,

with error ϵ/2 and measure preserving bijection ϕ ∈ S′
[0,1]. Without loss of generality, we suppose

that Wϕ = W . Otherwise, we just denote W ′ = Wϕ and replace the notation W with W ′ in the
following. By Lemma B.12, the infimum underlying ∥WPn

−Wn∥□ is attained for for some

S =
⋃
i∈s

Pi , T =
⋃
j∈t

Pj .

We now have, by definition of the projected graphon,

∥Wn −WPn
∥□ =

∣∣∣∣∣∣
∑

i∈s,j∈t

∫
Pi

∫
Pj

(WPn
(x, y)−Wn(x, y))dxdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈s,j∈t

∫
Pi

∫
Pj

(W (x, y)−Wn(x, y))dxdy

∣∣∣∣∣∣
=

∣∣∣∣∫
S

∫
T

(W (x, y)−Wn(x, y))dxdy

∣∣∣∣ = ∥Wn −W∥□.

Hence, by the triangle inequality,

∥W −WPn
∥□ ≤ ∥W −Wn∥□ + ∥Wn −WPn

∥□ < 2∥Wn −W∥□.

A similar argument shows
∥f − fPn

∥□ < 2∥fn − f∥□.
Hence,

d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]In , [f

ϕ]In

) )
≤ 2d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]n, [f

ϕ]n
) )

≤ ϵ.

■

C Compactness and covering number of the graphon-signal space

In this appendix we prove Theorem 3.6.

Given a partition Pk, recall that

[WLr]Pk
:= (W0 ∩ S2

Pk
)× (L∞

r [0, 1] ∩ S1
Pk

)

is called the space of SBMs or step graphon-signals with respect to Pk. Recall that W̃Lr is the
space of equivalence classes of graphon-signals with zero δ□ distance, with the δ□ metric (defined on
arbitrary representatives). By abuse of terminology, we call elements of W̃Lr also graphon-signals.

Theorem C.1. The metric space (W̃Lr, δ□) is compact.
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The proof is a simple extension of [25, Lemma 8] from the case of graphon to the case of graphon-
signal. The proof relies on the notion of martingale. A martingale is a sequence of random variables
for which, for each element in the sequence, the conditional expectation of the next value in the
sequence is equal to the present value, regardless of all prior values. The Martingale convergence
theorem states that for any bounded martingale {Mn}n over the probability pace X , the sequence
{Mn(x)}n converges for almost every x ∈ X , and the limit function is bounded (see [12, 35]).

Proof. [Proof of Theorem C.1] Consider a sequence {[(Wn, fn)]}n∈N ⊂ W̃Lr, with (Wn, fn) ∈
WLr. For each k, consider the equipartition into mk intervals Imk

, where mk = 230⌈(r
2+1)⌉k2

. By
Corollary B.11, there is a measure preserving bijection ϕn,k (up to nullset) such that

∥(Wn, fn)
ϕn,k − (Wn, fn)

ϕn,k

Imk
∥□;r < 1/k,

where (Wn, fn)
ϕn,k

Imk
is the projection of (Wn, fn)

ϕn,k upon Imk
(Definition B.10). For every fixed k,

each pair of functions (Wn, fn)
ϕn,k

Imk
is defined via m2

k+mk values in [0, 1]. Hence, since [0, 1]m
2
k+mk

is compact, there is a subsequence {nk
j }j∈N, such that all of these values converge. Namely, for each

k, the sequence

{(Wnk
j
, fnk

j
)
ϕ
nk
j
,k

Imk
}∞j=1

converges pointwise to some step graphon-signal (Uk, gk) in [WLr]Pk
as j → ∞. Note that Iml

is a
refinement of Imk

for every l > k. As as a result, by the definition of projection of graphon-signals
to partitions, for every l > k, the value of (Wϕn,k

n )Imk
at each partition set Iimk

× Ijmk
can be

obtained by averaging the values of (Wϕn,l
n )Iml

at all partition sets Ii
′

ml
× Ij

′

ml
that are subsets of

Iimk
× Ijmk

. A similar property applies also to the signal. Moreover, by taking limits, it can be
shown that the same property holds also for (Uk, gk) and (Ul, gl). We now see {(Uk, gk)}∞k=1 as a
sequence of random variables over the standard probability space [0, 1]2. The above discussion shows
that {(Uk, gk)}∞k=1 is a bounded martingale. By the martingale convergence theorem, the sequence
{(Uk, gk)}∞k=1 converges almost everywhere pointwise to a limit (U, g), which must be in WLr.

Lastly, we show that there exist increasing sequences {kz ∈ N}∞z=1 and {tz = nkz
jz
}z∈N such that

(Wtz , ftz )
ϕtz,kz converges to (U, g) in cut distance. By the dominant convergence theorem, for each

z ∈ N there exists a kz such that

∥(U, g)− (Ukz , gkz )∥1 <
1

3z
.

We choose such an increasing sequence {kz}z∈N with kz > 3z. Similarly, for ever z ∈ N, there is a
jz such that, with the notation tz = nkz

jz
,

∥(Ukz
, gkz

)− (Wtz , ftz )
ϕtz,kz

Imkz

∥1 <
1

3z
,

and we may choose the sequence {tz}z∈N increasing. Therefore, by the triangle inequality and by
the fact that the L1 norm bounds the cut norm,

δ□
(
(U, g), (Wtz , ftz )

)
≤ ∥(U, g)− (Wtz , ftz )

ϕtz,kz ∥□
≤ ∥(U, g)− (Ukz , gkz )∥1 + ∥(Ukz , gkz )− (Wtz , ftz )

ϕtz,kz

Imkz

∥1

+ ∥(Wtz , ftz )
ϕtz,kz

Imkz

− (Wtz , ftz )
ϕtz,kz ∥□

≤ 1

3z
+

1

3z
+

1

3z
≤ 1

z
.

■

The next theorem bounds the covering number of W̃Lr.

Theorem C.2. Let r > 0 and c > 1. For every sufficiently small ϵ > 0, the space W̃Lr can be
covered by

κ(ϵ) = 2k
2

(23)

balls of radius ϵ in cut distance, where k = ⌈22c/ϵ2⌉.
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Proof. Let 1 < c < c′ and 0 < α < 1. Given an error tolerance αϵ > 0, using Theorem B.8,
we take the equipartition In into n = 2⌈

2c
α2ϵ2

⌉ intervals, for which any graphon-signal (W, f) ∈
W̃Lr can be approximated by some (W, f)n in [W̃Lr]In , up to error αϵ. Consider the rectangle
Rn,r = [0, 1]n

2 × [−r, r]n. We identify each element of [W̃Lr]In
with an element of Rn,r using

the coefficients of (5). More accurately, the coefficients ci,j of the step graphon are identifies with the
first n2 entries of a point in Rn,r, and the the coefficients bi of the step signals are identifies with the
last n entries of a point in Rn,r. Now, consider the quantized rectangle R̃n,r, defined as

R̃n,r =
(
(1− α)ϵZ)n

2+2rn ∩Rn,r.

Note that R̃n consists of

M ≤ ⌈ 1

(1− α)ϵ
⌉n

2+2rn ≤ 2

(
−log

(
(1−α)ϵ

)
+1
)
(n2+2rn)

points. Now, every point x ∈ Rn,r can be approximated by a quantized version xQ ∈ R̃n,r up to
error in normalized ℓ1 norm

∥x− xQ∥1 :=
1

M

M∑
j=1

∣∣∣xj − xj
Q

∣∣∣ ≤ (1− α)ϵ,

where we re-index the entries of x and xQ in a 1D sequence. Let us denote by (W, f)Q the quantized
version of (Wn, fn), given by the above equivalence mapping between (W, f)n and Rn,r. We hence
have

∥(W, f)− (W, f)Q∥□ ≤ ∥(W, f)− (Wn, fn)∥□ + ∥(Wn, fn)− (W, f)Q∥□ ≤ ϵ.

We now choose the parameter α. Note that for any c′ > c, there exists ϵ0 > 0 that depends on c′ − c,
such that for any ϵ < ϵ0 there is a choice of α (close to 1) such that

M ≤ ⌈ 1

(1− α)ϵ
⌉n

2+2rn ≤ 2

(
−log

(
(1−α)ϵ

)
+1
)
(n2+2rn) ≤ 2k

2

where k = ⌈22c′/ϵ2⌉. This is shown similarly to the proof of Corollary B.7 and Theorem B.8. We
now replace the notation c′ → c, which concludes the proof.

■

D Graphon-signal sampling lemmas

In this appendix, we prove Theorem 3.7. We denote by W1 the space of measurable functions
U : [0, 1] → [−1, 1], and call each U ∈ W1 a kernel.

D.1 Formal construction of sampled graph-signals

Let W ∈ W0 be a graphon, and Λ′ = (λ′
1, . . . λ

′
k) ∈ [0, 1]k. We denote by W (Λ′) the adjacency

matrix
W (Λ′) = {W (λ′

i, λ
′
j)}i,j∈[k].

By abuse of notation, we also treat W (Λ′) as a weighted graph with k nodes and the adjacency matrix
W (Λ′). We denote by Λ = (λ1, . . . , λk) : (λ

′
1, . . . λ

′
k) 7→ (λ′

1, . . . λ
′
k) the identity random variable

in [0, 1]k. We hence call (λ1, . . . , λk) random independent samples from [0, 1]. We call the random
variable W (Λ) a random sampled weighted graph.

Given f ∈ L∞
r [0, 1] and Λ′ = (Λ′

1, . . . ,Λ
′
k) ∈ [0, 1]k, we denote by f(Λ′) the discrete signal with

k nodes, and value f(λ′
i) for each node i = 1, . . . , k. We define the sampled signal as the random

variable f(Λ).

We then define the random sampled simple graph as follows. First, for a deterministic Λ′ ∈ [0, 1]k, we
define a 2D array of Bernoulli random variables {ei,j(Λ′)}i,j∈[k] where ei,j(Λ

′) = 1 in probability
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W (λ′
i, λ

′
j), and zero otherwise, for i, j ∈ [k]. We define the probability space {0, 1}k×k with

normalized counting measure, defined for any S ⊂ {0, 1}k×k by

PΛ′(S) =
∑
z∈S

∏
i,j∈[k]

PΛ′;i,j(zi,j),

where

PΛ′;i,j(zi,j) =

{
W (λ′

i, λ
′
j) if zi,j = 1

1−W (λ′
i, λ

′
j) if zi,j = 0.

We denote the identity random variable by G(W,Λ′) : z 7→ z, and call it a random simple graph
sampled from W (Λ′).

Next we also allow to “plug” the random variable Λ into Λ′. For that, we define the joint probability
space Ω = [0, 1]k × {0, 1}k×k with the product σ-algebra of the Lebesgue sets in [0, 1]k with the
power set σ-algebra of {0, 1}k×k, with measure, for any measurable S ⊂ Ω,

µ(S) =

∫
[0,1]k

PΛ′
(
S(Λ′)

)
dΛ′,

where
S(Λ′) ⊂ {0, 1}k×k := {z = {zi,j}i,j∈[k] ∈ {0, 1}k×k | (Λ′, z) ∈ S},

We call the random variable G(W,Λ) : Λ′ × z 7→ z the random simple graph generated by W .
We extend the domains of the random variables W (Λ), f(Λ) and G(W,Λ′) to Ω trivially (e.g.,
f(Λ)(Λ′, z) = f(Λ)(Λ′) and G(W,Λ′)(Λ′, z) = G(W,Λ′)(z)), so that all random variables are
defined over the same space Ω. Note that the random sampled graphs and the random signal share
the same sample points.

Given a kernel U ∈ W1, we define the random sampled kernel U(Λ) similarly.

Similarly to the above construction, given a weighted graph H with k nodes and edge weights hi,j ,
we define the simple graph sampled from H as the random variable simple graph G(H) with k nodes
and independent Bernoulli variables ei,j ∈ {0, 1}, with P(ei,j = 1) = hi,j , as the edge weights. The
following lemma is taken from [24, Equation (10.9)].

Lemma D.1. Let H be a weighted graph of k nodes. Then

E
(
d□(G(H), H)

)
≤ 11√

k
.

The following is a simple corollary of Lemma D.1, using the law of total probability.

Corollary D.2. Let W ∈ W0 and k ∈ N. Then

E
(
d□(G(W,Λ),W (Λ))

)
≤ 11√

k
.

D.2 Sampling lemmas of graphon-signals

The following lemma, from [24, Lemma 10.6], shows that the cut norm of a kernel is approximated
by the cut norm of its sample.

Lemma D.3 (First Sampling Lemma for kernels). Let U ∈ W1, and Λ ∈ [0, 1]k be uniform
independent samples from [0, 1]. Then, with probability at least 1− 4e−

√
k/10,

−3

k
≤ ∥U [Λ]∥□ − ∥U∥□ ≤ 8

k1/4
.

We derive a version of Lemma D.3 with expected value using the following lemma.

Lemma D.4. Let z : Ω → [0, 1] be a random variable over the probability space Ω. Suppose that in
an event E ⊂ Ω of probability 1− ϵ we have z < α. Then

E(z) ≤ (1− ϵ)α+ ϵ.
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Proof.

E(z) =
∫
Ω

z(x)dx =

∫
E
z(x)dx+

∫
Ω\E

z(x)dx ≤ (1− ϵ)α+ ϵ.

■

As a result of this lemma, we have a simple corollary of Lemma D.3.
Corollary D.5 (First sampling lemma - expected value version). Let U ∈ W1 and Λ ∈ [0, 1]k be
chosen uniformly at random, where k ≥ 1. Then

E |∥U [Λ]∥□ − ∥U∥□| ≤
14

k1/4
.

Proof. By Lemma D.4, and since 6/k1/4 > 4e−
√
k/10,

E
∣∣∥U [Λ]∥□ − ∥U∥□

∣∣ ≤ (1− 4e−
√
k/10

) 8

k1/4
+ 4e−

√
k/10 <

14

k1/4
.

■

We note that a version of the first sampling lemma, Lemma D.3, for signals instead of kernels, is just
a classical Monte Carlo approximation, when working with the L1[0, 1] norm, which is equivalent to
the signal cut norm.
Lemma D.6 (First sampling lemma for signals). Let f ∈ L∞

r [0, 1]. Then

E |∥f(Λ)∥1 − ∥f∥1| ≤
r

k1/2
.

Proof. By standard Monte Carlo theory, since r2 bounds the variance of f(λ), where λ is a random
uniform sample from [0, 1], we have

V(∥f(Λ)∥1) = E
(
|∥f(Λ)∥1 − ∥f∥1|2

)
≤ r2

k
.

Here, V denotes variance, and we note that E∥f(Λ)∥1 = 1
k

∑k
j=1 |f(λj)| = ∥f∥1. Hence, by

Cauchy Schwarz inequality,

E |∥f(Λ)∥1 − ∥f∥1| ≤
√

E
(
|∥f(Λ)∥1 − ∥f∥1|2

)
≤ r

k1/2
.

■

We now extend [24, Lemma 10.16], which bounds the cut distance between a graphon and its sampled
graph, to the case of a sampled graphon-signal.
Theorem D.7 (Second sampling lemma for graphon signals). Let r > 1. Let k ≥ K0, where K0 is a
constant that depends on r, and let (W, f) ∈ WLr. Then,

E
(
δ□
(
(W, f), (W (Λ), f(Λ))

))
<

15√
log(k)

,

and
E
(
δ□
(
(W, f), (G(W,Λ), f(Λ))

))
<

15√
log(k)

.

The proof follows the steps of [24, Lemma 10.16] and [4]. We note that the main difference in our
proof is that we explicitly write the measure preserving bijection that optimizes the cut distance.
While this is not necessary in the classical case, where only a graphon is sampled, in our case we
need to show that there is a measure preserving bijection that is shared by the graphon and the signal.
We hence write the proof for completion.

Proof.

Denote a generic error bound, given by the regularity lemma Theorem B.8 by ϵ. If we take n intervals
in the Theorem B.8 , then the error in the regularity lemma will be, for c such that 2c = 3,

⌈3/ϵ2⌉ = log(n)
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so
3/ϵ2 + 1 ≥ log(n).

For small enough ϵ, we increase the error bound in the regularity lemma to satisfy

4/ϵ2 > 3/ϵ2 + 1 ≥ log(n).

More accurately, for the equipartition to intervals In, there is ϕ′ ∈ S′
[0,1] and a piecewise constant

graphon signal ([Wϕ]n, [f
ϕ]n) such that

∥Wϕ′
− [Wϕ′

]n∥□ ≤ α
2√

log(n)

and
∥fϕ′

− [fϕ′
]n∥□ ≤ (1− α)

2√
log(n)

,

for some 0 ≤ α ≤ 1. If we choose n such that

n = ⌈
√
k

r log(k)
⌉,

then an error bound in the regularity lemma is

∥Wϕ′
− [Wϕ′

]n∥□ ≤ α
2√

1
2 log(k)− log

(
log(k)

)
− log(r)

and
∥fϕ′

− [fϕ′
]n∥□ ≤ (1− α)

2√
1
2 log(k)− log

(
log(k)

)
− log(r)

,

for some 0 ≤ α ≤ 1. Without loss of generality, we suppose that ϕ′ is the identity. This only means
that we work with a different representative of [(W, f)] ∈ W̃Lr throughout the proof. We hence have

d□(W,Wn) ≤ α
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

and

∥f − fn∥1 ≤ (1− α)
4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

,

for some step graphon-signal (Wn, fn) ∈ [WLr]In
.

Now, by the first sampling lemma (Corollary D.5),

E
∣∣d□(W (Λ),Wn(Λ)

)
− d□(W,Wn)

∣∣ ≤ 14

k1/4
.

Moreover, by the fact that f − fn ∈ L∞
2r[0, 1], Lemma D.6 implies that

E
∣∣∥f(Λ)− fn(Λ)∥1 − ∥f − fn∥1

∣∣ ≤ 2r

k1/2
.

Therefore,

E
(
d□
(
W (Λ),Wn(Λ)

))
≤ E

∣∣d□(W (Λ),Wn(Λ)
)
− d□(W,Wn)

∣∣+ d□(W,Wn)

≤ 14

k1/4
+ α

2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

.

Similarly, we have

E∥f(Λ)− fn(Λ)∥1 ≤ E
∣∣∥f(Λ)− fn(Λ)∥1 − ∥f − fn∥1

∣∣+ ∥f − fn∥1

≤ 2r

k1/2
+ (1− α)

4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

.
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Now, let πΛ be a sorting permutation in [k], such that

πΛ(Λ) := {Λπ−1
Λ (i)}

k
i=1 = (λ′

1, . . . , λ
′
k)

is a sequence in a non-decreasing order. Let {Iik = [i−1, i)/k}ki=1 be the intervals of the equipartition
Ik. The sorting permutation πΛ induces a measure preserving bijection ϕ that sorts the intervals Iik.
Namely, we define, for every x ∈ [0, 1],

if x ∈ Iik, ϕ(x) = Ji,πΛ(i)(x), (24)

where Ji,j : I
i
k → Ijk are defined as x 7→ x− i/k + j/k, for all x ∈ Iik.

By abuse of notation, we denote by Wn(Λ) and fn(Λ) the induced graphon and signal from Wn(Λ)
and fn(Λ) respectively. Hence, Wn(Λ)

ϕ and fn(Λ)
ϕ are well defined. Note that the graphons Wn

and Wn(Λ)
ϕ are stepfunctions, where the set of values of Wn(Λ)

ϕ is a subset of the set of values of
Wn. Intuitively, since k ≫ m, we expect the partition {[λ′

i, λ
′
i+1)}ki=1 to be “close to a refinement”

of In in high probability. Also, we expect the two sets of values of Wn(Λ)
ϕ and Wn to be identical in

high probability. Moreover, since Λ′ is sorted, when inducing a graphon from the graph Wn(Λ) and
“sorting” it to Wn(Λ)

ϕ, we get a graphon that is roughly “aligned” with Wn. The same philosophy
also applied to fn and fn(Λ)

ϕ. We next formalize these observations.

For each i ∈ [n], let λ′
ji

be the smaller point of Λ′ that is in Iin, set ji = ji+1 if Λ′ ∩ Iin = ∅, and set
jn+1 = k + 1. For every i = 1, . . . , n, we call

Ji := [ji − 1, ji+1 − 1)/k

the i-th step of Wn(Λ)
ϕ (which can be the empty set). Let ai = ji−1

k be the left edge point of Ji.
Note that ai = |Λ ∩ [0, i/n)| /k is distributed binomially (up to the normalization k) with k trials
and success in probability i/n.

∥Wn −Wn(Λ)
ϕ∥□ ≤ ∥Wn −Wn(Λ)

ϕ∥1

=
∑
i

∑
k

∫
Ii
n∩Ji

∫
Ik
n∩Jk

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
+
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

∫
Ii
n∩Jj

∫
Ik
n∩Jl

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
=
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

∫
Ii
n∩Jj

∫
Ik
n∩Jl

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
=
∑
i

∑
k

∫
Ii
n\Ji

∫
Ik
n\Jk

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
≤
∑
i

∑
k

∫
Ii
n\Ji

∫
Ik
n\Jk

1dxdy ≤ 2
∑
i

∫
Ii
n\Ji

1dxdy

≤ 2
∑
i

(|i/n− ai|+ |(i+ 1)/n− ai+1|).

Hence,

E∥Wn −Wn(Λ)
ϕ∥□ ≤ 2

∑
i

(E |i/n− ai|+ E |(i+ 1)/n− ai+1|)

≤ 2
∑
i

(√
E(i/n− ai)2 +

√
E
(
(i+ 1)/n− ai+1

)2)
By properties of the binomial distribution, we have E(kai) = ik/n, so

E(ik/n− kai)
2 = V(kai) = k(i/n)(1− i/n).

As a result

E∥Wn −Wn(Λ)
ϕ∥□ ≤ 5

n∑
i=1

√
(i/n)(1− i/n)

k

≤ 2

∫ n

1

√
(i/n)(1− i/n)

k
di,

26



and for n > 10,

≤ 5
n√
k

∫ 1.1

0

√
z − z2dz ≤ 5

n√
k

∫ 1.1

0

√
zdz ≤ 10/3(1.1)3/2

n√
k
< 4

n√
k
.

Now, by n = ⌈
√
k

r log(k)⌉ ≤
√
k

r log(k) + 1, for large enough k,

E∥Wn −Wn(Λ)
ϕ∥□ ≤ 4

1

r log(k)
+ 4

1√
k
≤ 5

r log(k)
.

Similarly,

E∥fn − fn(Λ)
ϕ∥1 ≤ 5

log(k)
.

Note that in the proof of Corollary B.7, in (16), α is chosen close to 1, and especially, for small
enough ϵ, α > 1/2. Hence, for large enough k,

E(d□(W,W (Λ)ϕ)) ≤ d□(W,Wn) + E
(
d□(Wn,Wn(Λ)

ϕ)
)
+ E(d□(Wn(Λ),W (Λ)))

≤ α
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

+
5

r log(k)
+

14

k1/4

+ α
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

≤ α
6√

log(k)
,

Similarly, for each k, if 1− α < 1√
log(k)

, then

E(d□(f, f(Λ)ϕ)) ≤ (1− α)
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

+
5

log(k)

+
2r

k1/2
+ (1− α)

4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

≤ 14

log(k)
.

Moreover, for each k such that 1− α > 1√
log(k)

, if k is large enough (where the lower bound of k

depends on r), we have

5

log(k)
+

2r

k1/2
<

5.5

log(k)
<

1√
log(k)

6√
log(k)

< (1− α)
6√

log(k)

so, by 6
√
2 < 9,

E(d□(f, f(Λ)ϕ)) ≤ (1− α)
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

+
2

log(k)

+
2r

k1/2
+ (1− α)

4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

≤ (1− α)
15√
log(k)

.

Lastly, by Corollary D.2,

E
(
d□
(
W,G(W,Λ)ϕ

))
≤ E

(
d□
(
W,W (Λ)ϕ

))
+ E

(
d□
(
W (Λ)ϕ,G(W,Λ)ϕ

))
≤ α

6√
log(k)

+
11√
k
≤ α

7√
log(k)

,

27



As a result, for large enough k,

E
(
δ□
(
(W, f), (W (Λ), f(Λ))

))
<

15√
log(k)

,

and

E
(
δ□
(
(W, f), (G(W,Λ), f(Λ))

))
<

15√
log(k)

.

■

E Graphon-signal MPNNs

In this appendix we give properties and examples of MPNNs.

E.1 Properties of graphon-signal MPNNs

Consider the construction of MPNN from Section 4.1. We first explain how a MPNN on a grpah is
equivalent to a MPNN on the induced graphon.

Let G be a graph of n nodes, with adjacency matrix A = {ai,j}i,j∈[n] and signal f ∈ Rn×d. Consider
a MPL θ, with receiver and transmitter message functions ξkr , ξ

k
t : Rd → Rp, for k ∈ [K], where

K ∈ N, and update function µ : Rd+p → Rs. The application of the MPL on (G, f) is defined as
follows. We first define the message kernel Φf : [n]

2 → Rp, with entries

Φf (i, j) = Φ(fi, fj) =

K∑
k=1

ξkr (fi)ξ
k
t (fj).

We then aggregate the message kernel with normalized sum aggregation(
Agg(G,Φf )

)
i
=

1

n

∑
j∈[n]

ai,jΦf (i, j).

Lastly, we apply the update function, to obtain the output θ(G, f) of the MPL with value at each node
i

θ(G, f)i = η
(
fi,
(
Agg(G,Φf )

)
i

)
∈ Rs.

Lemma E.1. Consider a MPL θ as in the above setting. Then, for every graph signal (G,A, f),

θ
(
(W, f)(G,f)

)
= (W, f)θ(G,f).

Proof. Let {Ii, . . . , In} be the equipartition to intervals. For each j ∈ [n], let yj ∈ Ij be an arbitrary
point. Let i ∈ [n] and x ∈ Ii. We have

Agg(G,Φf )i =
1

n

∑
j∈[n]

ai,jΦf (i, j) =
1

n

∑
j∈[n]

WG(x, yj)Φff (x, yj)

=

∫ 1

0

WG(x, y)Φff (x, y)dy = Agg(WG,Φff )(x).

Therefore, for every i ∈ [n] and every x ∈ Ii,

fθ(G,f)(x) = f
η
(
f ,Agg(G,Φf )

)(x) = η
(
fi,Agg(G,Φf )i

)
= η

(
ff (x),Agg(WG,Φff )(x)

)
= θ(WG, ff )(x).

■
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E.2 Examples of MPNNs

The GIN convolutional layer [36] is defined as follows. First, the message function is

Φ(a, b) = b

and the update function is
η(x, y) = M

(
(1 + ϵ)x+ y

)
.

where M is a multi-layer perceptron (MLP) and ϵ a constant. Each layer may have a different MLP
and different constant ϵ. The standard GIN is defined with sum aggregation, but we use normalized
sum aggregation.

Given a graph-signal (G, f), with f ∈ Rn×d with adjacency matrix A ∈ Rn×n, a spectral convo-
lutional layer based on a polynomial filter p(λ) =

∑J
j=0 λ

jCj , where Cj ∈ Rd×p, is defined to
be

p(A)f =

J∑
j=0

1

nj
AjfCj ,

followed by a pointwise non-linearity like ReLU. Such a convolutional layer can be seen as J + 1
MPLs. We first apply J MPLs, where each MPL is of the form

θ(f) =
(
f ,

1

n
Af
)
.

We then apply an update layer
U(f) = fC

for some C ∈ R(J+1)d×p, followed by the pointwise non-linearity. The message part of θ can be
written in our formulation with Φ(a, b) = b, and the update part of θ with η(c, d) = (c, d). The last
update layer U is linear followed by the pointwise non-linearity.

F Lipschitz continuity of MPNNs

In this appendix we prove Theorem 4.1. For v ∈ Rd, we often denote by |v| = ∥v∥∞. We define the
L1 norm of a measurable function h : [0, 1] → Rd by

∥h∥1 :=

∫ 1

0

|h(x)| dx =

∫ 1

0

∥h(x)∥∞dx.

Similarly,
∥h∥∞ := sup

x∈Rd

|h(x)| = sup
x∈Rd

∥h(x)∥∞.

We define Lipschitz continuity with respect to the infinity norm. Namely, Z : Rd → Rc is called
Lipschitz continuous with Lipschitz constant L if

|Z(x)− Z(y)| = ∥Z(x)− Z(y)∥∞ ≤ L∥x− z∥∞ = L |x− z| .

We denote the minimal Lipschitz bound of the function Z by LZ .

We extend L∞
r [0, 1] to the space of functions f : [0, 1] → Rd with the above L1 norm.

Define the space Kq of kernels bounded by q > 0 to be the space of measurable functions

K : [0, 1]2 → [−q, q].

The cut norm, cut metric, and cut distance are defined as usual for kernels in Kq .

F.1 Lipschitz continuity of message passing and update layers

In this subsection we prove that message passing layers and update layers are Lipschitz continuous
with respect to he graphon-signal cut metric.
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Lemma F.1 (Product rule for message kernels). Let Φf ,Φg be the message kernels corresponding to
the signals f, g. Then

∥Φf − Φg∥L1[0,1]2 ≤
K∑

k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1.

Proof. Suppose p = 1 For every x, y ∈ [0, 1]2

|Φf (x, y)− Φg(x, y)| =

∣∣∣∣∣
K∑

k=1

ξkr (f(x))ξ
k
t (f(y))−

K∑
k=1

ξkr (g(x))ξ
k
t (g(y))

∣∣∣∣∣
≤

K∑
k=1

∣∣ξkr (f(x))ξkt (f(y))− ξkr (g(x))ξ
k
t (g(y))

∣∣
≤

K∑
k=1

( ∣∣ξkr (f(x))ξkt (f(y))− ξkr (g(x))ξ
k
t (f(y))

∣∣+ ∣∣ξkr (g(x))ξkt (f(y))− ξkr (g(x))ξ
k
t (g(y))

∣∣ )
≤

K∑
k=1

(
Lξkr

|f(x)− g(x)|
∣∣ξkt (f(y))∣∣+ ∣∣ξkr (g(x))∣∣Lξkt

|f(y)− g(y)|
)
.

Hence,

∥Φf − Φg∥L1[0,1]2

≤
K∑

k=1

∫ 1

0

∫ 1

0

(
Lξkr

|f(x)− g(x)|
∣∣ξkt (f(y))∣∣+ ∣∣ξkr (g(x))∣∣Lξkt

|f(y)− g(y)|
)
dxdy

≤
K∑

k=1

(
Lξkr

∥f − g∥1∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt
∥f − g∥1

)
=

K∑
k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1.

■

Lemma F.2. Let Q,V be two message kernels, and W ∈ W0. Then

∥Agg(W,Q)−Agg(W,V )∥1 ≤ ∥Q− V ∥1.

Proof.

Agg(W,Q)(x)−Agg(W,V )(x) =

∫ 1

0

W (x, y)(Q(x, y)− V (x, y))dy

So

∥Agg(W,Q)−Agg(W,V )∥1 =

∫ 1

0

∣∣∣∣∫ 1

0

W (x, y)(Q(x, y)− V (x, y))dy

∣∣∣∣ dx
≤
∫ 1

0

∫ 1

0

|W (x, y)(Q(x, y)− V (x, y))| dydx

≤
∫ 1

0

∫ 1

0

|(Q(x, y)− V (x, y))| dydx = ∥Q− V ∥1.

■

As a result of Lemma F.2 and the product rule Lemma F.1, we have the following corollary, that
computes the error in aggregating two message kernels with the same graphon.
Corollary F.3.

∥Agg(W,Φf )−Agg(W,Φg)∥1 ≤
K∑

k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1.
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Next we fix the message kernel, and bound the difference between the aggregation of the message
kernel with respect to two different graphons. Let L+[0, 1] be the space of measurable function
f : [0, 1] → [0, 1]. The following lemma is a trivial extension of [24, Lemma 8.10] from K1 to Kr.

Lemma F.4. For any kernel Q ∈ Kr

∥Q∥□ = sup
f,g∈L+[0,1]

∣∣∣∣∣
∫
[0,1]2

f(x)Q(x, y)g(y)dxdy

∣∣∣∣∣ ,
where the supremum is attained for some f, g ∈ L+[0, 1].

The following Lemma is proven as part of the proof of [24, Lemma 8.11].

Lemma F.5. For any kernel Q ∈ Kr

sup
f,g∈L∞

1 [0,1]

∣∣∣∣∣
∫
[0,1]2

f(x)Q(x, y)g(y)dxdy

∣∣∣∣∣ ≤ 4∥Q∥□.

For completeness, we give here a self-contained proof.

Proof. Any function f ∈ L∞
1 [0, 1] can be written as f = f+ − f−, where f+, f− ∈ L+[0, 1]. Hence,

by Lemma F.4,

sup
f,g∈L∞

1 [0,1]

∣∣∣∣∣
∫
[0,1]2

f(x)Q(x, y)g(y)dxdy

∣∣∣∣∣
= sup

f+,f−,g+,g−∈L+[0,1]

∣∣∣∣∣
∫
[0,1]2

(f+(x)− f−(x))Q(x, y)(g+(y)− g−(y))dxdy

∣∣∣∣∣
≤

∑
s∈{+,−}

sup
fs,gs∈L+[0,1]

∣∣∣∣∣
∫
[0,1]2

fs(x)Q(x, y)gs(y)dxdy

∣∣∣∣∣ = 4∥Q∥□.

■

Next we state a simple lemma.

Lemma F.6. Let f = f+ − f− be a signal, where f+, f− : [0, 1] → (0,∞) are measurable. Then
the supremum in the cut norm ∥f∥□ = supS⊂[0,1]

∣∣∫
S
f(x)dx

∣∣ is attained as the support of either f+
or f−.

Lemma F.7. Let f ∈ L∞
r [0, 1] , W,V ∈ W0, and suppose that

∣∣ξkr (f(x))∣∣ , ∣∣ξkt (f(x))∣∣ ≤ ρ for
every x ∈ [0, 1] and k = 1, . . . ,K. Then

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ 4Kρ2∥W − V ∥□.

Moreover, if ξkr and ξkt are non-negatively valued for every k = 1, . . . ,K, then

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ Kρ2∥W − V ∥□.

Proof. Let T = W − V . Let S be the maximizer of the supremum underlying the cut norm of
Agg(T,Φf ). Suppose without loss of generality that

∫
S
Agg(T,Φf )(x)dx > 0. Denote qkr (x) =

ξkr (f(x)) and qkt (x) = ξkt (f(x)). We have∫
S

(
Agg(W,Φf )(x)−Agg(V,Φf )(x)

)
dx =

∫
S

Agg(T,Φf )(x)dx

=

K∑
k=1

∫
S

∫ 1

0

qkr (x)T (x, y)q
k
t (y)dydx.

Let

vkr (x) =

{
qkr (x)/ρ x ∈ S

0 x /∈ S.
(25)
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Moreover, define vkt = qkt /ρ, and note that vkr , v
k
t ∈ L∞

1 [0, 1]. We hence have, by Lemma F.5,∫
S

Agg(T,Φf )(x)dx =

K∑
k=1

ρ2
∫ 1

0

∫ 1

0

vkr (x)T (x, y)v
k
t (y)dydx

≤
K∑

k=1

ρ2
∣∣∣∣∫ 1

0

∫ 1

0

vkr (x)T (x, y)v
k
t (y)dydx

∣∣∣∣
≤ 4Kρ2∥T∥□.

Hence,
∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ 4Kρ2∥T∥□

Lastly, in case ξkr , ξ
k
t are nonnegatively valued, so are qkr , q

k
t , and hence by Lemma F.4,∫

S

Agg(T,Φf )(x)dx ≤ Kρ2∥T∥□.

■

Theorem F.8. Let (W, f), (V, g) ∈ WLr, and suppose that
∣∣ξkr (f(x))∣∣ , ∣∣ξkt (f(x))∣∣ ≤ ρ and

Lξkt
, Lξkt

< L for every x ∈ [0, 1] and k = 1, . . . ,K. Then,

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4KLρ∥f − g∥□ + 4Kρ2∥W − V ∥□.

Proof. By Lemma F.1, Lemma F.2 and Lemma F.7,

∥Agg(W,Φf )−Agg(V,Φg)∥□
≤ ∥Agg(W,Φf )−Agg(W,Φg)∥□ + ∥Agg(W,Φg)−Agg(V,Φg)∥□

≤
K∑

k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1 + 4Kρ2∥W − V ∥□

≤ 4KLρ∥f − g∥□ + 4Kρ2∥W − V ∥□.

■

Lastly, we show that update layers are Lipschitz continuous. Since the update function takes two
functions f : [0, 1] → Rdi (for generally two different output dimensions d1, d2), we “concatenate”
these two inputs and treat it as one input f : [0, 1] → Rd1+d2 .

Lemma F.9. Let η : Rd+p → Rs be Lipschitz with Lipschitz constant Lη, and let f, g ∈ L∞
r [0, 1]

with values in Rd+p for some d, p ∈ N.

Then
∥η(f)− η(g)∥1 ≤ Lη∥f − g∥1.

Proof.

∥η(f)− η(g)∥1 =

∫ 1

0

∣∣η(f(x))− η
(
g(x)

)∣∣ dx
≤
∫ 1

0

Lη |f(x)− g(x)| dx = Lη∥f − g∥1.

■

F.2 Bounds of signals and MPLs with Lipschitz message and update functions

We will consider three settings for the MPNN Lipschitz bounds. In all settings, the transmitter,
receiver, and update functions are Lipschitz. In the first setting all message and update functions are
assumed to be bounded. In the second setting, there is no additional assumption over Lipschtzness
of the transmitter, receiver, and update functions. In the third setting, we assume that the message
function Φ is also Lipschitz with Lipschitz bound LΦ, and that all receiver and transmitter functions
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are non-negatively bounded (e.g., via an application of ReLU or sigmoid in their implementation).
Note that in case K = 1 and all functions are differentiable, by the product rule, Φ can be Lipschitz
only in two cases: if both ξr and ξt are bounded and Lipschitz, or if either ξr or ξt is constant, and the
other function is Lipschitz. When K > 1, we can have combinations of these cases.

We next derive bounds for the different settings. A bound for setting 1 is given in Theorem F.8.
Moreover, When the receiver and transmitter message functions and the update functions are bounded,
so is the signal at each layer.

Bounds for setting 2.

Next we show boundedness when the receiver and transmitter message and update functions are only
assumed to be Lipschitz.

Define the formal bias Bξ of a function ξ : Rd1 → Rd2 to be ξ(0) [26]. We note that the formal bias
of an affine-linear operator is its classical bias.
Lemma F.10. Let (W, f) ∈ WLr, and suppose that for every y ∈ {r, t} and k = 1, . . . ,K∣∣ξky (0)∣∣ ≤ B, Lξky

< L.

Then,
∥ξky ◦ f∥∞ ≤ Lr +B

and
∥Agg(W,Φf )∥∞ ≤ K(Lr +B)2.

Proof. Let y ∈ {r, t}. We have∣∣ξky (f(x))∣∣ ≤ ∣∣ξky (f(x))− ξky (0)
∣∣+B ≤ Lξky

|f(x)|+B ≤ Lr +B,

so,

|Agg(W,Φf )(x)| =

∣∣∣∣∣
K∑

k=1

∫ 1

0

ξkr (f(x))W (x, y)ξkt (f(y))dy

∣∣∣∣∣
≤ K(Lr +B)2.

■

Next, we have a direct result of Theorem F.8.
Corollary F.11. Suppose that for every y ∈ {r, t} and k = 1, . . . ,K∣∣ξky (0)∣∣ ≤ B, Lξky

< L.

Then, for every (W, f), (V, g) ∈ WLr,

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4K(L2r + LB)∥f − g∥□ + 4K(Lr +B)2∥W − V ∥□.

Bound for setting 3.
Lemma F.12. Let (W, f) ∈ WLr, and suppose that

|Φ(0, 0)| < B, LΦ < L.

Then,
∥Φf∥∞ ≤ Lr +B

and
∥Agg(W,Φf )∥∞ ≤ Lr +B.

Proof. We have

|Φ(f(x), f(y))| ≤ |Φ(f(x), f(y))− Φ(0, 0)|+B ≤ LΦ |(f(x), f(y))|+B ≤ Lr +B,

so,

|Agg(W,Φf )(x)| =
∣∣∣∣∫ 1

0

W (x, y)Φ(f(x), f(y))dy

∣∣∣∣
≤ Lr +B.

■
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Additional bounds.
Lemma F.13. Let f be a signal, W,V ∈ W0, and suppose that ∥Φf∥∞ ≤ ρ for every k = 1, . . . ,K,
and that ξkr and ξkt are non-negatively valued. Then

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ Kρ∥W − V ∥□.

Proof. The proof follows the steps of Lemma F.7 until (25), from where we proceed differently. Since
all of the functions qkr and qkt , k ∈ [K], and since ∥Φf∥∞ ≤ ρ, the product of each qkr (x)q

k
t (y) must

be also bounded by ρ for every x ∈ [0, 1] and k ∈ [K]. Hence, we may replace the normalization in
(25) with

vkr (x) =

{
qkr (x)/ρ

k
r x ∈ S

0 x /∈ S
, vkt (y) =

{
qkt (y)/ρ

k
t y ∈ S

0 y /∈ S,

where for every k ∈ [K], ρkr ρ
k
t = ρ. This guarantees that vkr , v

k
t ∈ L∞

1 [0, 1]. Hence,∫
S

Agg(T,Φf )(x)dx =

K∑
k=1

∫ 1

0

∫ 1

0

ρkr v
k
r (x)T (x, y)ρ

k
t v

k
t (y)dydx

≤
K∑

k=1

ρ

∣∣∣∣∫ 1

0

∫ 1

0

vkr (x)T (x, y)v
k
t (y)dydx

∣∣∣∣ ≤ Kρ∥T∥□.

■

Theorem F.14. Let (W, f), (V, g) ∈ WLr, and suppose that ∥Φ∥∞,∥ξkr ∥∞, ∥ξkt ∥∞ ≤ ρ, all message
functions ξ are non-negative valued, and Lξkt

, Lξkt
< L, for every k = 1, . . . ,K. Then,

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4KLρ∥f − g∥□ +Kρ∥W − V ∥□.

The proof follows the steps of Theorem F.8.

Corollary F.15. Suppose that for every y ∈ {r, t} and k = 1, . . . ,K

|Φ(0, 0)| ,
∣∣ξky (0)∣∣ ≤ B, Lϕ, Lξky

< L,

and ξ,Φ are all non-negatively valued. Then, for every (W, f), (V, g) ∈ WLr,

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4K(L2r + LB)∥f − g∥□ +K(Lr +B)∥W − V ∥□.

The proof follows the steps of Corollary F.11.

F.3 Lipschitz continuity theorems for MPNNs

The following recurrence sequence will govern the propagation of the Lipschitz constant of the
MPNN and the bound of signal along the layers.

Lemma F.16. Let a = (a1, a2, . . .) and b = (b1, b2, . . .). The solution to et+1 = atet + bt, with
initialization e0, is

et = Zt(a,b, e0) :=

t−1∏
j=0

aje0 +

t−1∑
j=1

j−1∏
i=1

at−ibt−j , (26)

where, by convention,
0∏

i=1

at−i := 1.

In case there exist a, b ∈ R such that ai = a and bi = b for every i,

et = ate0 +

t−1∑
j=0

ajb.
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Setting 1.
Theorem F.17. Let Θ be a MPNN with T layers. Suppose that for every layer and every y and k,

∥tξky∥∞, ∥ηt∥∞ ≤ ρ, Lηt , Ltξky
< L.

Let (W, f), (V, g) ∈ WLr. Then, for MPNN with no update function

∥Θt(W, f)−Θt(V, g)∥□ ≤ (4KLρ)t∥f − g∥□ +

t−1∑
j=0

(4KLρ)j4Kρ2∥W − V ∥□,

and for MPNN with update function

∥Θt(W, f)−Θt(V, g)∥□ ≤ (4KL2ρ)t∥f − g∥□ +

t−1∑
j=0

(4KL2ρ)j4Kρ2L∥W − V ∥□.

Proof. We prove for MPNNs with update function, where the proof without update function is similar.
We can write a recurrence sequence for a bound ∥Θt(W, f)−Θt(V, g)∥□ ≤ et, by Theorem F.8 and
Lemma F.9, as

et+1 = 4KL2ρet + 4Kρ2L∥W − V ∥□.
The proof now follows by applying Lemma F.16 with a = 4KL2ρ and b = 4Kρ2L. ■

Setting 2.
Lemma F.18. Let Θ be a MPNN with T layers. Suppose that for every layer t and every y ∈ {r, t}
and k ∈ [K], ∣∣ηt(0)∣∣ , ∣∣tξky (0)∣∣ ≤ B, Lηt , Ltξky

< L

with L,B > 1. Let (W, f) ∈ WLr. Then, for MPNN without update function, for every layer t,

∥Θt(W, f)∥∞ ≤ (2KL2B2)2
t

∥f∥2
t

∞,

and for MPNN with update function, for every layer t,

∥Θt(W, f)∥∞ ≤ (2KL3B2)2
t

∥f∥2
t

∞,

Proof. We first prove for MPNNs without update functions. Denote by Ct a bound on ∥tf∥∞, and let
C0 be a bound on ∥f∥∞. By Lemma F.10, we may choose bounds such that

Ct+1 ≤ K(LCt +B)2 = KL2C2
t + 2KLBCt +KB2.

We can always choose Ct,K, L > 1, and therefore,

Ct+1 ≤ KL2C2
t + 2KLBCt +KB2 ≤ 2KL2B2C2

t .

Denote a = 2KL2B2. We have

Ct+1 = a(Ct)
2 = a(aC2

t−1)
2 = a1+2C4

t−1 = a1+2(a(Ct−2)
2)4

= a1+2+4(Ct−2)
8 = a1+2+4+8(Ct−3)

16 ≤ a2
t

C2t

0 .

Now, for MPNNs with update function, we have

Ct+1 ≤ LK(LCt +B)2 +B

= KL3C2
t + 2KL2BCt +KB2L+B

≤ 2KL3B2C2
t ,

and we proceed similarly.

■
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Theorem F.19. Let Θ be a MPNN with T layers. Suppose that for every layer t and every y ∈ {r, t}
and k ∈ [K], ∣∣ηt(0)∣∣ , ∣∣tξky (0)∣∣ ≤ B, Lηt , Ltξky

< L,

with L,B > 1. Let (W, g), (V, g) ∈ WLr. Then, for MPNNs without update functions

∥Θt(W, f)−Θt(V, g)∥□ ≤
t−1∏
j=0

4K(L2rj + LB)∥f − g∥□

+

t−1∑
j=1

j−1∏
i=1

4K(L2rt−i + LB)4K(Lrt−j +B)2∥W − V ∥□,

where
ri = (2KL2B2)2

i

∥f∥2
i

∞,

and for MPNNs with update functions

∥Θt(W, f)−Θt(V, g)∥□ ≤
t−1∏
j=0

4K(L3rj + L2B)∥f − g∥□

+

t−1∑
j=1

j−1∏
i=1

4K(L3rt−i + L2B)4KL(Lrt−j +B)2∥W − V ∥□,

where
ri = (2KL3B2)2

i

∥f∥2
i

∞.

Proof. We prove for MPNNs without update functions. The proof for the other case is similar. By
Corollary F.11, since the signals at layer t are bounded by

rt = (2KL2B2)2
t

∥f∥2
t

∞,

we have
∥Θt+1(W, f)−Θt+1(V, g)∥□
≤ 4K(L2rt + LB)∥Θt(W, f)−Θt(V, g)∥□ + 4K(Lrt +B)2∥W − V ∥□.

We hence derive a recurrence sequence for a bound ∥Θt(W, f)−Θt(V, g)∥□ ≤ et, as

et+1 = 4K(L2rt + LB)et + 4K(Lrt +B)2∥W − V ∥□.
We now apply Lemma F.16. ■

Setting 3.
Lemma F.20. Suppose that for every layer t and every y ∈ {r, t} and k = 1, . . . ,K,∣∣ηt(0)∣∣ , ∣∣Φt(0, 0)

∣∣ , ∣∣tξky (0)∣∣ ≤ B, Lηt , LΦt , Ltξky
< L,

and ξ,Φ are all non-negatively valued. Then, for MPNNs without update function

∥Θt(W, f)∥∞ ≤ Lt∥f∥∞ +

t−1∑
j=1

LjB,

and for MPNNs with update function

∥Θt(W, f)∥∞ ≤ L2t∥f∥∞ +

t−1∑
j=1

L2j(LB +B),

Proof. We first prove for MPNNs without update functions. By Lemma F.10, there is a bound et of
∥Θt(W, f)∥∞ that satisfies

et = Let−1 +B.

Solving this recurrence sequence via Lemma F.16 concludes the proof.

Lastly, for MPNN with update functions, we have a bound that satisfies
et = L2et−1 + LB +B,

and we proceed as before. ■
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Lemma F.21. Suppose that for every y ∈ {r, t} and k = 1, . . . ,K∣∣ηt(0)∣∣ , |Φ(0, 0)| ,
∣∣ξky (0)∣∣ ≤ B, LΦ, Lξky

< L,

and ξ,Φ are all non-negatively valued. Let (W, g), (V, g) ∈ WLr. Then, for MPNNs without update
functions

∥Θt(W,Φf )−Θt(V,Φg)∥□ = O(KtL2t+t2rtBt)
(
∥W − V ∥□ + ∥f − g∥□

)
,

and for MPNNs with update functions

∥Θt(W,Φf )−Θt(V,Φg)∥□ = O(KtL3t+2t2rtBt)
(
∥W − V ∥□ + ∥f − g∥□

)
Proof. We start with MPNNs without update functions. By Corollary F.15 and Lemma F.20, there is
a bound et on the error ∥Θt(W,Φf )−Θt(V,Φg)∥□ at step t that satisfies

et = 4K(L2rt−1 + LB)et−1 +K(Lr +B)∥W − V ∥□

= 4K
(
L2
(
Lt∥f∥∞ +

t−1∑
j=1

LjB
)
+ LB

)
et−1 +K

(
L
(
Lt∥f∥∞ +

t−1∑
j=1

LjB
)
+B

)
∥W − V ∥□.

Hence, by Lemma F.16, and Z defined by (26),

et = Zt(a,b, ∥f − g∥□) = O(KtL2t+t2rtBt)
(
∥f − g∥□ + ∥W − V ∥□

)
,

where in the notations of Lemma F.16,

at = 4K
(
L2(Lt∥f∥∞ +

t−1∑
j=1

LjB) + LB
)

and

bt = K
(
L(Lt∥f∥∞ +

t−1∑
j=1

LjB) +B
)
∥W − V ∥□.

Next, for MPNNs with update functions, there is a bound that satisfies

et = 4K(L3rt−1 + L2B)et−1 +K(L2r + LB)∥W − V ∥□

= 4K
(
L3
(
L2t∥f∥∞ +

t−1∑
j=1

L2j(LB +B)
)
+ L2B

)
et−1

+K
(
L2
(
L2t∥f∥∞ +

t−1∑
j=1

L2j(LB +B)
)
+ LB

)
∥W − V ∥□.

Hence, by Lemma F.16, and Z defined by (26),

et = O(KtL3t+2t2rtBt)
(
∥f − g∥□ + ∥W − V ∥□

)
.

■

G Generalization bound for MPNNs

In this appendix we prove Theorem 4.2.

G.1 Statistical learning and generalization analysis

In the statistical setting of learning, we suppose that the dataset comprises independent random
samples from a probability space that describes all possible data P . We suppose that for each
x ∈ P there is a ground truth value yx ∈ Y , e.g., the ground truth class or value of x, where Y
is, in general, some measure space. The loss is a measurable function L : Y2 → R+ that defines
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similarity in Y . Given a measurable function Θ : P → Y , that we call the model or network, its
accuracy on all potential inputs is defined as the statistical risk Rstat(Θ) = Ex∼P

(
L(Θ(x), yx)

)
.

The goal in learning is to find a network Θ, from some hypothesis space T , that has a low statistical
risk. In practice, the statistical risk cannot be computed analytically. Instead, we suppose that a
dataset X = {xm}Mm=1 ⊂ P of M ∈ N random independent samples with corresponding values
{ym}Mm=1 ⊂ Y is given. We estimate the statistical risk via a “Monte Carlo approximation,” called
the empirical risk Remp(Θ) = 1

M

∑M
m=1 L(Θ(xm), ym). The network Θ is chosen in practice by

optimizing the empirical risk. The goal in generalization analysis is to show that if a learned Θ attains
a low empirical risk, then it is also guaranteed to have a low statistical risk.

One technique for bounding the statistical risk in terms of the empirical risk is to use
the bound Rstat(Θ) ≤ Remp(Θ) + E, where E is the generalization error E =
supΘ∈T |Rstat(Θ)−Remp(Θ)|, and to find a bound for E. Since the trained network Θ = ΘX
depends on the data X , the network is not a constant when varying the dataset, and hence the
empirical risk is not really a Monte Carlo approximation of the statistical risk in the learning set-
ting. If the network Θ was fixed, then Monte Carlo theory would have given us a bound of E2 of
order O

(
κ(p)/M

)
in an event of probability 1− p, where, for example, in Hoeffding’s inequality

Theorem G.2, κ(p) = log(2/p). Let us call such an event a good sampling event. Since the good
sampling event depends on Θ, computing a naive bound to the generalization error would require
intersecting all good sampling events for all Θ ∈ T . Uniform convergence bounds are approaches for
intersecting adequate sampling events that allow bounding the generalization error more efficiently.
This intersection of events leads to a term in the generalization bound, called the complexity/capacity,
that describes the richness of the hypothesis space T . This is the philosophy behind approaches such
as VC-dimension, Rademacher dimension, fat-shattering dimension, pseudo-dimension, and uniform
covering number (see, e.g., [34]).

G.2 Classification setting

We define a ground truth classifier into C classes as follows. Let C : W̃Lr → RC be a measur-
able piecewise constant function of the following form. There is a partition of WLr into disjoint
measurable sets B1, . . . , BC ⊂ W̃Lr such that

⋃C
i=1 Bi = W̃Lr, and for every i ∈ [C] and every

x ∈ Bi,

C(x) = ei,

where ei ∈ RC is the standard basis element with entries (ei)j = δi,j , where δi,j is the Kronecker
delta.

We define an arbitrary data distribution as follows. Let B be the Borel σ-algebra of W̃Lr, and ν be
any probability measure on the measurable space (W̃Lr,B). We may assume that we complete B
with respect to ν, obtaining the σ-algebra Σ. If we do not complete the measure, we just denote
Σ = B. Defining (W̃Lr,Σ, ν) as a complete measure space or not will not affect our construction.

Let S be a metric space. Let Lip(S, L) be the space of Lipschitz continuous mappings Υ : S → RC

with Lipschitz constant L. Note that by Theorem 4.1, for every i ∈ [C], the space of MPNN
with Lipschitz continuous input and output message functions and Lipschitz update functions,
restricted to Bi, is a subset of Lip(Bi, L1) which is the restriction of Lip(W̃Lr, L1) to Bi ⊂ W̃Lr,
for some L1 > 0. Moreover, Bi has finite covering κ(ϵ) given in (23). Let E be a Lipschitz
continuous loss function with Lipschitz constant L2. Therefore, since C|Bi

is in Lip(Bi, 0), for any
Υ ∈ Lip(W̃Lr, L1), the function E(Υ|Bi

, C|Bi
) is in Lip(Bi, L) with L = L1L2.

G.3 Uniform Monte Carlo approximation of Lipschitz continuous functions

The proof of Theorem 4.2 is based on the following Theorem G.3, which studies uniform Monte
Carlo approximations of Lipschitz continuous functions over metric spaces with finite covering.

Definition G.1. A metric space M is said to have covering number κ : (0,∞) → N, if for every
ϵ > 0, the space M can be covered by κ(ϵ) ball of radius ϵ.
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Theorem G.2 (Hoeffding’s Inequality). Let Y1, . . . , YN be independent random variables such that
a ≤ Yi ≤ b almost surely. Then, for every k > 0,

P
(∣∣∣ 1

N

N∑
i=1

(Yi − E[Yi])
∣∣∣ ≥ k

)
≤ 2 exp

(
− 2k2N

(b− a)2

)
.

The following theorem is an extended version of [26, Lemma B.3], where the difference is that we
use a general covering number κ(ϵ), where in [26, Lemma B.3] the covering number is exponential
in ϵ. For completion, we repeat here the proof, with the required modification.

Theorem G.3 (Uniform Monte Carlo approximation for Lipschitz continuous functions). Let X be a
probability metric space5, with probability measure µ, and covering number κ(ϵ). Let X1, . . . , XN

be drawn i.i.d. from X . Then, for every p > 0, there exists an event Ep
Lip ⊂ XN (regarding the choice

of (X1, . . . , XN )), with probability

µN (Ep
Lip) ≥ 1− p,

such that for every (X1, . . . , XN ) ∈ Ep
Lip, for every bounded Lipschitz continuous function F : X →

Rd with Lipschitz constant LF , we have∥∥∥∥∥
∫

F (x)dµ(x)− 1

N

N∑
i=1

F (Xi)

∥∥∥∥∥
∞

≤ 2ξ−1(N)Lf +
1√
2
ξ−1(N)∥F∥∞(1 +

√
log(2/p)), (27)

where ξ(r) = κ(r)2 log(κ(r))
r2 and ξ−1 is the inverse function of ξ.

Proof. Let r > 0. There exists a covering of X by a set of balls {Bj}j∈[J] of radius r, where
J = κ(r). For j = 2, . . . , J , we define Ij := Bj \ ∪i<jBi, and define I1 = B1. Hence, {Ij}j∈[J]

is a family of measurable sets such that Ij ∩ Ii = ∅ for all i ̸= j ∈ [J ],
⋃

j∈[J] Ij = χ, and
diam(Ij) ≤ 2r for all j ∈ [J ], where by convention diam(∅) = 0. For each j ∈ [J ], let zj be the
center of the ball Bj .

Next, we compute a concentration of error bound on the difference between the measure of Ij and its
Monte Carlo approximation, which is uniform in j ∈ [J ]. Let j ∈ [J ] and q ∈ (0, 1). By Hoeffding’s
inequality Theorem G.2, there is an event Eq

j with probability µ(Eq
j ) ≥ 1− q, in which∥∥∥∥∥ 1

N

N∑
i=1

1Ij (Xi)− µ(Ik)

∥∥∥∥∥
∞

≤ 1√
2

√
log(2/q)√

N
. (28)

Consider the event

EJq
Lip =

J⋂
j=1

Eq
j ,

with probability µN (EJq
Lip) ≥ 1− Jq. In this event, (28) holds for all j ∈ J . We change the failure

probability variable p = Jq, and denote Ep
Lip = EJq

Lip.

Next we bound uniformly the Monte Carlo approximation error of the integral of bounded Lipschitz
continuous functions F : χ → RF . Let F : χ → RF be a bounded Lipschitz continuous function
with Lipschitz constant LF . We define the step function

F r(y) =
∑
j∈[J]

F (zj)1Ij (y).

5A metric space with a probability Borel measure, where we either take the completion of the measure space
with respect to µ (adding all subsets of null-sets to the σ-algebra) or not.
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Then, ∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
1

N

N∑
i=1

F r(Xi)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

+

∥∥∥∥∫
χ

F r(y)dµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥
∞

=: (1) + (2) + (3).

(29)

To bound (1), we define for each Xi the unique index ji ∈ [J ] s.t. Xi ∈ Iji . We calculate,

∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
1

N

N∑
i=1

F r(Xi)

∥∥∥∥∥
∞

≤ 1

N

N∑
i=1

∥∥∥∥∥∥F (Xi)−
∑
j∈J

F (zj)1Ij (Xi)

∥∥∥∥∥∥
∞

=
1

N

N∑
i=1

∥F (Xi)− F (zji)∥∞

≤rLF .

We proceed by bounding (2). In the event of Ep
Lip, which holds with probability at least 1−p, equation

(28) holds for all j ∈ J . In this event, we get

∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑
j∈[J]

(
1

N

N∑
i=1

F (zj)1Ij (Xi)−
∫
Ij

F (zj)dy

)∥∥∥∥∥∥
∞

≤
∑
j∈[J]

∥F∥∞

∣∣∣∣∣ 1N
N∑
i=1

1Ij (Xi)− µ(Ij)

∣∣∣∣∣
≤ J∥F∥∞

1√
2

√
log(2J/p)√

N
.

Recall that J = κ(r). Then, with probability at least 1− p∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

≤ κ(r)∥F∥∞
1√
2

√
log(κ(r)) + log(2/p)√

N
.

To bound (3), we calculate

∥∥∥∥∫
X
F r(y)dµ(y)−

∫
X
F (y)dµ(y)

∥∥∥∥
∞

=

∥∥∥∥∥∥
∫
χ

∑
j∈[J]

F (zj)1Ijdµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥∥
∞

≤
∑
j∈[J]

∫
Ij

∥F (zj)− F (y)∥∞ dµ(y)

≤ rLF .
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By plugging the bounds of (1), (2) and (3) into (29), we get∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤ 2rLF + κ(r)∥F∥∞
1√
2

√
log(κ(r)) + log(2/p)√

N

≤ 2rLF +
1√
2
κ(r)∥F∥∞

√
log(κ(r)) +

√
log(2/p)√

N

≤ 2rLF +
1√
2
κ(r)∥F∥∞

√
log(κ(r))√

N
(1 +

√
log(2/p)).

Lastly, choosing r = ξ−1(N) for ξ(r) = κ(r)2 log(κ(r))
r2 , gives κ(r)

√
log(κ(r))√
N

= r, so∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤ 2ξ−1(N)Lf +
1√
2
ξ−1(N)∥F∥∞(1 +

√
log(2/p)).

Since the event Ep
Lip is independent of the choice of F : χ → RF , the proof is finished. ■

G.4 A generalization theorem for MPNNs

The following generalization theorem of MPNN is now a direct result of Theorem G.3.

Let Lip(W̃Lr, L1) denote the space of Lipschitz continuous functions Θ : WLr → RC with
Lipschitz bound bounded by L1 and ∥Θ∥∞ ≤ L1. We note that the theorems of Appendix F.2 prove
that MPNN with Lipschitz continuous message and update functions, and bounded formal biases, are
in Lip(W̃Lr, L1).
Theorem G.4 (MPNN generalization theorem). Consider the classification setting of Appendix G.2.
Let X1, . . . , XN be independent random samples from the data distribution (W̃Lr,Σ, ν). Then,

for every p > 0, there exists an event Ep ⊂ W̃Lr

N
regarding the choice of (X1, . . . , XN ), with

probability

νN (Ep) ≥ 1− Cp− 2
C2

N
,

in which for every function Υ in the hypothesis class Lip(W̃Lr, L1), with we have∣∣∣R(ΥX)− R̂(ΥX,X)
∣∣∣ ≤ ξ−1(N/2C)

(
2L+

1√
2

(
L+ E(0, 0)

)(
1 +

√
log(2/p)

))
, (30)

where ξ(r) = κ(r)2 log(κ(r))
r2 , κ is the covering number of W̃Lr given in (23), and ξ−1 is the inverse

function of ξ.

Proof. For each i ∈ [C], let Si be the number of samples of X that falls within Bi. The ran-
dom variable (S1, . . . , SC) is multinomial, with expected value (N/C, . . . , N/C) and variance
(N(C−1)

C2 , . . . , N(C−1)
C2 ) ≤ (NC , . . . , N

C ). We now use Chebyshev’s inequality, which states that for
any a > 0,

P
(
|Si −N/C| > a

√
N

C

)
< a−2.

We choose a
√

N
C = N

2C , so a = N1/2

2C1/2 , and

P (|Si −N/C| > N

2C
) <

2C

N
.

Therefore,

P (Si >
N

2C
) > 1− 2C

N
.
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We intersect these events of i ∈ [C], and get an event Emult of probability more than 1− 2C2

N in which
Si >

N
2C for every i ∈ [C]. In the following, given a set Bi we consider a realization M = Si, and

then use the law of total probability.

From Theorem G.3 we get the following. For every p > 0, there exists an event Ep
i ⊂ BM

i regarding
the choice of (X1, . . . , XM ) ⊂ Bi, with probability

νM (Ep
Lip) ≥ 1− p,

such that for every function Υ′ in the hypothesis class Lip(W̃Lr, L1), we have∣∣∣∣∣
∫

E
(
Υ′(x), C(x)

)
dν(x)− 1

M

M∑
i=1

E
(
Υ′(Xi), C(Xi)

)∣∣∣∣∣ (31)

≤ 2ξ−1(M)L+
1√
2
ξ−1(M)∥E

(
Υ′(·), C(·)

)
∥∞(1 +

√
log(2/p)) (32)

≤ 2ξ−1(N/2C)L+
1√
2
ξ−1(N/2C)(L+ E(0, 0))(1 +

√
log(2/p)), (33)

where ξ(r) = κ(r)2 log(κ(r))
r2 , κ is the covering number of W̃Lr given in (23), and ξ−1 is the inverse

function of ξ. In the last inequality, we use the bound, for every x ∈ ˜WLr,∣∣E(Υ′(x), C(x)
)∣∣ ≤ ∣∣E(Υ′(x), C(x)

)
− E(0, 0)

∣∣+ |E(0, 0)| ≤ L2 |L1 − 0|+ |E(0, 0)| .

Since (31) is true for any Υ′ ∈ Lip(W̃Lr, L1), it is also true for ΥX for any realization of X, so we
also have∣∣∣R(ΥX)− R̂(ΥX,X)

∣∣∣ ≤ 2ξ−1(N/2C)L+
1√
2
ξ−1(N/2C)(L+ E(0, 0))(1 +

√
log(2/p)).

Lastly, we denote

Ep = Emult ∩
( C⋃

i=1

Ep
i

)
.

■

G.5 Experiments

The nontrivial part in our construction of the MPNN architecture is the choice of normalized sum
aggregation as the aggregation method of the MPNNs. We hence show the accuracy and generalization
gap of this aggregation scheme in practice in Table 1.

Most MPNNs typically use sum, mean or max aggregation. Intuitively, normalized sum aggregation
is close to average aggregation, due its “normalized nature.” For example, normalized sum and mean
aggregations are well behaved for dense graphs with number of nodes going to infinity, while sum
aggregation diverges for such graphs. Moreover, sum aggregation cannot be extended to graphons,
while normalized sum and mean aggregations can. In Table 2, we first show that MPNNs with
normalized sum aggregation perform well and generalize well. We then compare the normalized sum
aggregation MPNNs (in rows 1 and 3 of Table 2) to baseline MPNNs with mean aggregation (rows 2
and 4 in Table 2), and show that normalized sum aggregation is not worse than mean aggregation.

The source code, courtesy of Ningyuan (Teresa) Huang, is available as part of https://github.
com/nhuang37/finegrain_expressivity_GNN .

H Stability of MPNNs to graph subsampling

Lastly, we prove Theorem 4.3.
Theorem H.1. Consider the setting of Theorem 4.2, and let Θ be a MPNN with Lipschitz constant L.
Denote

Σ =
(
W,Θ(W, f)

)
, and Σ(Λ) =

(
G(W,Λ),Θ

(
G(W,Λ), f(Λ)

))
.

Then
E
(
δ□
(
Σ,Σ(Λ)

))
<

15√
log(k)

L.
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Table 2: Standard MPNN architectures with normalized sum aggregation (nsa) and mean aggregation
(ma), 3-layers with 512-hidden-dimension, and global mean pooling, denoted by “MPNN-nsa” and
“MPNN-ma.” We use the MPNNs GIN [34] and GraphConv [28], and report the mean accuracy ± std
over ten data splits. Nsa has good generalization and better performance than ma.

Accuracy ↑ MUTAG IMDB-BINARY IMDB-MULTI NCI1 PROTEINS REDDIT-BINARY

GIN-nsa (train) 83.94 ± 3.25 70.54 ± 0.79 47.01 ± 0.8 83.12 ± 0.59 74.06 ± 0.44 90.43 ± 0.53
GIN-nsa (test) 79.36 ± 2.93 69.83 ± 0.93 46.01 ± 1.01 78.55 ± 0.3 73.11 ± 0.81 89.38 ± 0.57

GIN-ma (trained) 74.63 ± 2.93 49.48 ± 1.56 33.70 ± 1.35 73.74 ± 0.45 71.53 ± 0.93 50.04 ± 0.70
GIN-ma (untrained) 72.46 ± 2.56 49.18 ± 1.83 33.03 ± 1.12 77.16 ± 0.39 70.33 ± 0.95 49.90 ± 0.83

GraphConv-nsa (train) 82.48 ± 0.99 59.34 ± 2.34 40.53 ± 1.85 63.14 ± 0.55 71.07 ± 0.5 82.4 ± 0.19
GraphConv-nsa (test) 82.04 ± 1.05 59.03 ± 2.77 40.25 ± 1.59 63.16 ± 0.32 70.92 ± 0.7 82.38 ± 0.26

GraphConv-ma (trained) 65.87 ± 3.24 49.32 ± 1.35 33.15 ± 1.19 54.39 ± 1.25 66.76 ± 0.96 49.68 ± 0.82
GraphConv-ma (untrained) 63.30 ± 3.55 48.80 ± 1.91 32.51 ± 0.90 55.84 ± 0.53 70.73 ± 0.69 49.39 ± 0.48

Proof. By Lipschitz continuity of Θ,

δ□
(
Σ,Σ(Λ)

)
≤ Lδ□

((
W, f

)
,
(
G(W,Λ), f(Λ)

))
.

Hence,

E
(
δ□
(
Σ,Σ(Λ)

))
≤ LE

(
δ□

((
W, f

)
,
(
G(W,Λ), f(Λ)

)))
,

and the claim of the theorem follows from Theorem 3.7. ■

As explained in Section 3.5, the above theorem of stability of MPNNs to graphon-signal sampling
also applies to subsampling graph-signals.

I Notations

[n] = {1, . . . , n}.

Lp(X ) or Lp: Lebesgue p space over the measure space X .

µ: standard Lebesgue measure on [0, 1].

Pk = {P1, . . . , Pk}: partition (page 3)

G = {V,E}: simple graph with nodes V and edges E.

A = {ai,j}mi,j=1: graph adjacency matrix (page 4).

eG(U, S): the number of edges with one end point at U and the other at S, where U, S ⊂ V (page 3).

eP(U,S): density of of edges between U and S (page 3).

irregG(P): irregularity (1).

W0: space of graphons (page 4).

W : graphon (page 4).

WG: induced graphon from the graph G (page 4).

∥W∥□: cut norm (page 4).

d□(W,V ): cut metric (page 4).

δ□(W,V ): cut distance (page 4).

S[0,1]: the space of measure preserving bijections [0, 1] → [0, 1] (page 4).

S′
[0,1]: the set of measurable measure preserving bijections between co-null sets of [0, 1] (page 5).

V ϕ(x, y) = V (ϕ(x), ϕ(y)) (page 4).

W̃0: space of graphons modulo zero cut distance (page 4).

L∞
r [0, 1]: signal space (2).
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∥f∥□: cut norm of a signal Definition 3.1.

WLr: graphon-signal space (page 5).

∥(W, f)∥□: graphon-signal cut distance (page 5).

δ□
(
(W, f), (V, g)

)
: graphon-signal cut distance (4).

W̃Lr: graphon-signal space modulo zero cut distance (page 5).

(W, f)(G,f) = (WG, ff ): induced graphon-signal Definition 3.2.

Sd
Pk

: the space of step functions of dimension d over the partition PkDefinition 3.3.

W0 ∩ S2
Pk

: the space of step graphons/ stochastic block models (page 6).

L∞
r [0, 1] ∩ S1

Pk
: the space of step signals (page 6).

[WLr]Pk
: the space of graphon-signal stochastic block models with respect to the partition Pk (page

6).

W (Λ): random weighted graph (page 7).

f(Λ): random sampled signal (page 7).

G(W,Λ): random simple graph (page 7).

Φ(x, y): message function (page 8).

ξkr , ξ
k
t : Rd → Rp: receiver and transmitter message functions (page 8).

Φf : [0, 1]2 → Rp: message kernel (page 8).

Agg(W,Q): aggregation of message Q with respect to graphon W (page 8).

f (t): signal at layer t (page 8).

µ(t+1): update function (page 8).

Θt(W, f): the output of the MPNN applied on (W, f) ∈ WLr at layer t ∈ [T ] (page 8).

Lip(W̃Lr, L1): the space of Lipschitz continuous mappings Υ : W̃Lr → RC with Lipschitz constant
L1 (page 9).
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