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In this supplementary material, we provide more information about our data collection, implementa-
tion details, and network architectures. We also show additional results on our CAR-LUMINAIRE
dataset and in-the-wild data.

8 Appendix

8.1 Details on the CAR-LUMINAIRE Dataset

When calculating the object’s local coordinate system Oo, we assume that Xc ∥ Xo, that is to say, we
assume that the ground is approximately horizontally level, which is satisfied at most times.

We divide the car into 35 classes of parts, of which the hierarchy and color coding are shown
in Fig. 11.
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Figure 11: The hierarchy and color coding of the part labels used in the CAR-LUMINAIRE dataset.

The attribute of car models is also manually annotated when labeling the parts of models. We mark
Nc = 6 major part-related attributes (car type, wind glass darkness, door glass darkness, roof glass
darkness, car paint color, and car paint type) with Nv = 81 available choices. The Ng is set as 35
following our hierarchical labeling. The relationship between parts and corresponding attributes is
represented as an association matrix [14] A ∈ LNc×Ng .

We use a randomly chosen camera pitch in [−15◦, 15◦] and FoV in [25◦, 66◦] for the background
image cropping. The same FoV is used in image rendering for view consistency. For each combination
of the background image and geometry condition, we render one image of the original car model
and two images of variants with randomly chosen enhanced car paint materials. When splitting the
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Figure 12: Data examples of our CAR-LUMINAIRE dataset.

dataset, we assure the images of each combination are only shown in one set. We only use images
with the pixel ratio of the foreground between 10% and 50%, leaving 58,521 images (41,058 for the
training set, 12,141 for the testing test, and 5,322 for the validation set). Each set of data contains
a background image (256 × 256), a lighting annotation (128 × 64 envmap), a rendered reference
image (256× 256), a geometry annotation (256× 256), a parsing mask (256× 256), and an attribute
annotation. Here we give more data examples of our CAR-LUMINAIRE dataset in Fig. 12.

8.2 Details on the Parametric Lighting Representation

As stated in Sec. 5.1 of the main paper, we use a combination of 2-nd order SH lighting and directional
lighting as our parametric lighting representation, where the low-frequency SH lighting is designed
to fit the ambient lighting in the environment and the high-frequency directional lighting is used to
describe the sunlight. Since the original lighting annotations in our CAR-LUMINAIRE dataset are
envmaps, therefore, conversions have to be made to get the training labels in our parametric lighting
representation.

The part of directional light is represented as Ldir = {zvis, zint, zang, csun, lsun} in our representation.
For each envmap, if the maximum grey-sacle intensity zint is larger than a threshold δsun = 100,
the sun visibility zvis is set as 1 otherwise 0 (and other parameters treated as invalid). Then we use
a manually set ratio rsun = 0.1 and only keep pixels with grey-scale intensity larger than rsunzint.
We calculate the intensity-weighted mass center of the connected area Asun containing the pixel of
maximum intensity, as the direction of the sun lsun ∈ R2 in the spherical coordinates. The diameter
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of Asun in pixels is used as zang and the mean RGB values divided by the mean intensity values over
Asun is used as the RGB weights csun ∈ R3.

The ideal directional light has no corresponding solid angle ω and thus can not be directly used in
Eq. (10) of the main paper, we approximately “assign” a small solid angle ωdir corresponding to a pixel
(minimum visible unit) in the envmap. To calculate the equivalent intensity idir corresponding to the
pixel in the envmap, we assume the intensity from the sun center to the surroundings approximately
fits the Gaussian distribution fG(x) = αG exp (− x2

2σ2
G
), and therefore we have:

fG(0.5) = zint, fG(zang/2) = rsunzint, (11)

and we can solve αG = zintr
− 1

z2ang−1

sun and σG =
√

z2
ang−1

8 ln (1/rsun)
from Eq. (11) and therefore we have:

idir =

∫ zang/2

0

fG(r)dω(r)/ωdir ≈
∫ zang/2

0

fG(r)2πrdr/ωdir. (12)

We use 2-nd order SH coefficients σSH = {σR
SH, σ

G
SH, σ

B
SH} to represent low-frequency light in each

RGB color channel, where each σ*
SH = {σ*

0,0, σ
*
1,-1, σ

*
1,0, ..., σ

*
2,2} are the corresponding coefficients

for the 2-nd order spherical harmonics basis {Y0,0, Y1,-1, Y1,0, ..., Y2,2}. Due to the orthogonality of
the spherical harmonics basis, the coefficients for low-frequency lighting iSH(θ, φ) are computed as:

σ*
l,m =

∫ 2π

0

∫ π

0

i*
SH(θ, φ)Yl,m(θ, φ) sin θdθdφ, (13)

where we use the envmap annotation (clipped into [0, rsunzint] if zvis is 1) as iSH(θ, φ). The recon-
structed îSH(θ, φ) is simply the weighted sum of the spherical harmonics basis:

î*
SH(θ, φ) =

l∑
i=0

l∑
j=−l

σ*
i,jYi,j(θ, φ). (14)

8.3 Details on the Illumination Image Rendering

The rendering of the illumination (candidate) images is conducted by applying Eq. (10) of the main
paper pixel-wisely. Since the actual camera FoV is unknown, here we assume the camera viewing
directions of all pixels are the same v = (0, 0,−1) (orthogonal camera model), which is shown in
Fig. 5 of the main paper to be a reasonable approximation for lighting-realistic generation tasks.

Since we use the normal map as the representation of geometry, which is not a complete 3D shape
model (such as meshes, or signed distance functions), we only calculate single-bounce light effects,
ignoring complex light transport effects such as self-cast shadow or inter-reflections. This is a
trade-off between using the costly (and maybe more unreliable) single-view full 3D reconstruction or
ignoring inconspicuous indirect light bounces.

The integration over the hemisphere Ωn in Eq. (10) can be done discretely on an envmap. Therefore,
the most intuitive way for the calculation is converting our parametric lighting representations back to
envmaps before applying Eq. (10). However, a more efficient computation can be done utilizing the
properties of our parametric representation, where we use ρ ∈ {1, 2, 4, 8, 16, 32, 64, 128} for {Ic}.

Specifically, we divide I as the sum of two parts ISH and Idir corresponding to our representation.
Then each pixel p of Idiff,dir and Iρspec,dir can be calculated without integration as idircsun(np · ldir)ωdir

and idircsun(np · hdir)
ρωdir, where ldir is the Cartesian coordinate representation of lsun and hdir =

ldir−v/||ldir−v|| is the half vector introduced in Sec. 5.2 of the main paper. The negative dot product is
clipped to 0 to avoid underflow. Besides, we also clip the minimums of ISH to 0.

For Idiff,SH, each pixel p is fast calculated by using Yl,m(θ, φ) to describe the distribution of l [13]:

Ipdiff,SH = [c1σ2,2(n
p
x
2 − np

y
2) + c3σ2,0n

p
z
2 + c4σ0,0 − c5σ2,0 (15)

+ 2c1(σ2,−2n
p
xn

p
y + σ2,1n

p
xn

p
z + σ2,−1n

p
yn

p
z) + 2c2(σ1,1n

p
x + σ1,−1n

p
y + σ1,0n

p
z)]/π,

with weights c1 = 0.429043, c2 = 0.511664, c3 = 0.743125, c4 = 0.886227, and c5 = 0.247708.

17



For Iρspec,SH, we have θl = 2θh and φl = φh. Similarly, Ŷl,m(θ, φ) = Yl,m(2θ, φ) is used to describe
the distribution of h [22], which gives the fast approximation of pixel p with Blinn-Phong model [2]:

Iρ,pspec,SH ≈ {σ0,0(c4)
ρ + σ1,−1(4c2n

p
yn

p
z)

ρ + σ1,0[2c2(2n
p
z
2 − 1)]ρ + σ1,1(4c2n

p
xn

p
z)

ρ (16)

+ σ2,−2(8c1n
p
xn

p
yn

p
z
2)ρ + σ2,−1[2c1(4n

p
yn

p
z
3 − 2np

yn
p
z)]

ρ + σ2,0[c5(12n
p
z
4 − 12np

z
2 + 2)]ρ

+ σ2,1[2c1(4n
p
xn

p
z
3 − 2np

xn
p
z)]

ρ + σ2,2[c1(4n
p
x
2np

z
2 − 4np

y
2np

z
2)]ρ}(ρ+ 4)/8π.

8.4 Details on the User Study

We randomly sample 200 sets of results of compared methods and ask volunteers to choose one in
each set that best matches the following description: (i) “The repainted region which seems most
realistic”; (ii) “the whole repainted image which seems most harmonized in lighting”; (iii) “the whole
repainted image which seems most realistic overall”.

The volunteers are shown with the masked repainted foreground images, i.e., without the background
context when asked about the realistic question. Then the full repainted images are shown and the
harmonized question is asked on the same set of results, where we use our repainted background region
for all results to prevent our method to be identified or guessed out by only noticing the difference in
the background. The original results of compared methods are shown to the volunteers when asking
about the realistic overall question. We first ask the realistic question, then the harmonized question,
and at last the realistic overall question. We have reported the results of the first two questions in
Tab. 1 of the main paper while the results for the realistic overall question are: Ours: 77.32%,
Pavllo et al. [12]: 14.50%, UniCoRN [6]: 7.03%, Weng et al. [18]: 0.92%, MISC [19]: 0.23%.

The order of sets and images in each set is randomized, and we deliberately duplicate 5 sets of the
samples as the quality control questions to judge whether the volunteers have paid attention when
finishing the questionnaires. Questionnaires that failed in the quality control questions are discarded.

8.5 Training Details

Experimental settings. Our pipeline is implemented in PyTorch [11] and trained step-wise. We
first train our NetL on the held-out background images with a batch size of 64 and an initial learning
rate of 1× 10−4 (which halves every 20 epochs) for 60 epochs, where we estimate the sun position
lsun in the form of an 8 × 32 classification task and we apply log-compressed tone mapping [8]
T = log (1+16H)/log (1+16) for the HDR sun intensity zint. Our NetS and NetB are separately trained
on our CAR-LUMINAIRE dataset with a batch size of 32 and a fixed learning rate of 2× 10−4 for 60
epochs. Then we run our full pipeline optimization (one discriminator step after each generator step)
with fixed NetL, NetS, and NetB to learn the network parameters of NetF, with a batch size of 24 and
a fixed learning rate of 2× 10−4 for 30 epochs. During the training of NetS and NetF, we use the
hierarchical labeling enhancement at the probability of 0.5, where each part label has a probability
of 0.5 to be coarsened to its upper-level label. Before illumination injection, the illumination image
I is clipped by an empirically set threshold δI = 2.0 to simulate the over-exposure of highlights
in LDR images and avoid extremely high inputs to network layers. For cross-modality conditional
consistency constraints, we pretrain the image encoder Enci (omitted in the main paper) and the
attribute encoder Encc (Fig. 3) on our CAR-LUMINAIRE dataset following previous work [21].

The baseline methods are trained on our CAR-LUMINAIRE dataset with the same batch size of 24 as
our NetF for 30 epochs using their default settings in their released code. We use Adam optimizer [9]
in all of our experiments, and all experiments are conducted on 4 NVIDIA Tesla V100 graphic cards.

Training losses. Our full pipeline is trained with the following losses:

L = LL + LS + LB + LF, (17)

where LL, LS, LB, and LF are the loss terms for our NetL, NetS, NetB, and NetF, respectively.

For our NetL, LL consists of two parts LL = LSH + Ldir corresponding to our lighting modeling:

LSH = Lcoeff + Lpano, Ldir = Lvis + Lpos + Lparam, (18)

where Lcoeff is an L2 loss for σSH with σ*
l,m from Eq. (13), Lpano is an L1 loss for envmaps recon-

structed by SH coefficients î*
SH(θ, φ) from Eq. (14) with iSH(θ, φ), Lvis is a binary cross-entropy loss
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for zvis, Lpos is a cross-entropy loss for the 8 × 32 classification results of lsun, and Lparam are L2

losses for the remaining parameters (log-compressed zint, zang, and csun). For images with the sun not
visible (zvis = 0) in the lighting annotations, we set Lpos = Lparam = 0.

For our NetS, LS is defined as:
LS = Lsp + Ls-smooth, (19)

where Lsp is an L2 loss for G, and Ls-smooth =
∑

[(∇iG)2 + (∇jG)2] is the smoothness loss for G.

For our NetB, LB is defined as:

LB = Lbg + Lb-smooth + Lb-dis, (20)

where Lbg is an L1 loss for yb, Lb-smooth =
∑

[(∇i(y
b/xb))2 + (∇j(y

b/xb))2] is the smoothness
loss for yb, and Lb-dis is the discriminator loss for yb with the background regions of reference images.

For our NetF, LF is defined following UniCoRN [14] as:

LF = Lfg + Lr + Lbc + Lfm + Lper + Lcm, (21)

where Lfg and Lr are discriminator losses judging whether yf is real and whether yr is composited,
Lbc is an L1 loss enforcing (1−m)⊙ yf close to xb, Lfm and Lper are the feature matching loss [17]
and the perceptual loss [3] for yr, and Lcm is the cross-modality conditional matching loss [21].

8.6 Implementations of Baseline Methods

We use the released code of UniCoRN [14], MISC [19], Weng et al. [18], and Pavllo et al. [12] as the
implementations of our baseline method. As mentioned in the main paper, modifications have been
made to the released code of Weng et al. [18] and Pavllo et al. [12] for taking attributes as the input
color condition xc. Besides, for Pavllo et al. [12], since their generated background is not conditioned
on either the original background or other conditions and thus is not controllable, we discard their
generated background and replace it with the input background image to fit the formulation of CIR.

8.7 Additional Results

Lighting and shape estimations. Our LuminAIRe pipeline consists of lighting and shape estimations
which will inevitably introduce errors. As stated in Sec. 5.1 of the main paper, the low-frequency
part (SH lighting) and high-frequency part (directional light) of the lighting are separately estimated.
Here we report the lighting estimation errors from masked background images (foreground regions
masked by zeros) in each part: (i) directional (sun) light: mean angular error (MAE): 28.37◦, mean
azimuth error: 3.84◦, and mean elevation error: 27.74◦; (ii) SH lighting: mean absolute error of SH
coefficients: 0.0488, mean square error of SH coefficients: 0.0054, mean absolute error of envmaps
reconstructed by SH coefficients: 0.0435, and mean square error of envmaps reconstructed by SH
coefficients: 0.0043. Similarly, we report the estimation errors on normalized normal maps in the
shape estimation: mean angular error (MAE): 9.83◦, mean absolute error: 0.0167, and mean square
error: 0.0039. These errors would prevent us from recovering the exact lighting effects, however, are
tolerable for the demand of lighting-realistic repaintings.

More comparisons and ablation variants. We conduct a breakdown evaluation on how our method
and compared methods work on foreground regions (noted as “fg.”) and how repainted background
regions (noted as “bg.”) by our method contribute to the realistic perception. We also compare our
method with more ablation variants (Ours-A and Ours-AI) for the completeness of the ablation study.
Despite that we can not compare our method with image harmonization methods in an exact fair
setting, as an intuitive reference, we choose two of the latest methods (DHT+ [5] and PCT-Net [4])
and use the repainting results from Ours-AI as their inputs. The quantitative results are shown
in Tab. 2 and the qualitative comparisons are shown in Fig. 13, where the harmonized images show
better integrity than input as M-score indicates, however, do not show better lighting effects and may
have severe color-shifting issues as R-prcn and SSIM scores indicate.

More results on our CAR-LUMINAIRE dataset. More qualitative results on our CAR-LUMINAIRE
dataset are shown in Fig. 14 and Fig. 15. Our LuminAIRe generally performs better qualitatively
than baseline methods in generating realistic, harmonized, and consistent lighting effects.

In-the-wild performance. To test the generalization ability of the compared methods, we show
qualitative results of in-the-wild data which are collected from the Waymo dataset [15] and the
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Table 2: Additional quantitative eval-
uation results. Separated evaluations
of foreground and background regions
are shown. Qualitative results of addi-
tional ablation variants and image har-
monization baselines are also shown.
↑ (↓) means higher (lower) is better.
“fg.” stands for “foreground” and “bg.”
stands for “background”. Please note
that “original bg.” corresponds to the
background regions of all compared
baseline methods since they leave the
background untouched.

Method FID ↓ R-prcn ↑ M-score ↓ SSIM ↑
MISC fg. 76.26 — — 0.8228
Weng et al. fg. 44.14 — — 0.8306
Pavllo et al. fg. 6.14 — — 0.8671
UniCoRN fg. 9.53 — — 0.8541
Ours fg. 4.30 — — 0.8689

Original bg. 21.43 — — 0.8309
Ours bg. 4.94 — — 0.8494

Ours-A 5.04 74.29% 13.76 0.7167
Ours-AI 5.72 74.73% 15.36 0.7106
DHT+ [5] 5.94 67.34% 9.02 0.7057
PCT-Net [4] 5.31 69.59% 7.85 0.7035

0º/+180ºConditions +30º/+210º +60º/+240º +90º/+270º +120º/+300º +150º/+330º

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

No light/Normal

PCT-NetDHTOurs-AIOurs-AOursReference

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

a liftback with normal wind glass, normal door glass, dark roof glass, and light grey metallic carpaint

Conds.

IlluminationParsing mask Repainting

a liftback with light wind glass, light door glass, dark roof glass, and 
light green clearcoat carpaint

Normal IlluminationParsing mask Repainting

a liftback with light wind glass, light door glass, light roof glass, and 
night blue clearcoat carpaint

Normal

Figure 13: Qualitative results of additional ablation variants and image harmonization baselines.

UASOL dataset [1] in Fig. 16. Although their data distribution is far different from our synthetic data,
our LuminAIRe still gives reasonable lighting-realistic results compared with baseline methods.

Failure cases. Here we analyze examples of failure cases in Fig. 17. When the repainted region
is across the boundary of the shadows (the first row), the global lighting assumption may lead to
unrealistic lighting effects. A too-coarse parsing mask (the second row) would raise serious geometry
ambiguity and renders a failed repainting. The lighting effects would become less realistic if the
accumulated errors in lighting and shape estimations were too large (the third row). The occasionally
badly repainted background (the fourth row) would also do harm to the lighting-realistic perception.

8.8 Detailed Network Architectures

We show the detailed network architectures of the NetL, NetS, NetB, and NetF from Fig. 19 to Fig. 21,
with the structures and default settings of common blocks shown in Fig. 18.

The network architectures of the image encoder Enci and the attribute encoder Encc for measuring
cross-modality conditional consistency remain the same with the HCMSM proposed in UniCoRN [14].
We adopt the network backbone of their FG for our NetF, where we inject the illumination images
I as the illumination condition xi in 2D image space from the resolutions of 32× 32 to 256× 256.
Specifically, we replace the batch normalization layers with instance normalization layers in FABN
module and ignore the texture condition xp when injecting the illumination image I .
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a hatchback with normal wind glass, normal door glass, normal roof glass, and taupe clearcoat carpaint

ReferenceLuminAIReUniCoRNPavllo et al. Weng et al. MISCConds.

a sedan with mirror-like wind glass, mirror-like door glass, and green flake carpaint

a liftback with normal wind glass, normal door glass, normal roof glass, and dark grey clearcoat carpaint

a hatchback with mirror-like wind glass, mirror-like door glass, and champagne frosted carpaint

a hatchback with normal wind glass, normal door glass, and pink clearcoat carpaint

a sedan with normal wind glass, normal door glass, and red metallic carpaint

a CUV with normal wind glass, normal door glass, and grey metallic carpaint

a hatchback with normal wind glass, normal door glass, and white metallic carpaint

Figure 14: More qualitative comparisons on our CAR-LUMINAIRE dataset.
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a sports with light wind glass, light door glass, and aqua green flake carpaint

ReferenceLuminAIReUniCoRNPavllo et al. Weng et al. MISCConds.

a pickup with normal wind glass, normal door glass, normal roof glass, and sky blue frosted carpaint

a hatchback with light wind glass, normal door glass, dark roof glass, and light grey metallic carpaint

a sedan with normal wind glass, normal door glass, and night blue clearcoat carpaint

a sports with dark wind glass, dark door glass, and light red clearcoat carpaint

a coupe with mirror-like wind glass, mirror-like door glass, and orange diffuse carpaint

a CUV with normal wind glass, normal door glass, and dark yellow clearcoat carpaint

a CUV with light wind glass, light door glass, light roof glass, and taupe flake carpaint

Figure 15: More qualitative comparisons on our CAR-LUMINAIRE dataset.
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Weng et al.Pavllo et al.UniCoRNLuminAIReIlluminationGeometryConds.

a CUV with normal wind glass, normal door glass, and brown frosted carpaint

MISC

a hatchback with normal wind glass, normal door glass, and white metallic carpaint

a liftback with normal wind glass, normal door glass, normal roof glass, and lime flake carpaint

a CUV with normal wind glass, normal door glass, normal roof glass, and blue grey frosted carpaint

a sedan with light wind glass, light door glass, and grey clearcoat carpaint

a coupe with mirror-like wind glass, mirror-like door glass, and orange diffuse carpaint

a van with normal wind glass, normal door glass, and light blue clearcoat carpaint

a coupe with mirror-like wind glass, mirror-like door glass, and blue grey flake carpaint

a hatchback with normal wind glass, normal door glass, dark roof glass, and yellow metallic carpaint

Figure 16: More qualitative comparisons on in-the-wild data.
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a liftback with light wind glass, light door glass, and light grey clearcoat carpaint

ReferenceLuminAIReUniCoRNPavllo et al. Weng et al. MISCConds.

a sedan with light wind glass, light door glass, and dark orange clearcoat carpaint

a sedan with mirror wind glass, mirror door glass, and sky blue flake carpaint

a roadster with light wind glass, and red diffuse carpaint

Figure 17: Failure cases on our CAR-LUMINAIRE dataset.

(a) Convolutional Layer (ConvL) (b) Residual Convolutional Layer (ConvR)

Conv IN ReLU

Conv IN ReLU Conv IN

(c) Residual Block I (ResBlk-I)

LeakyReLU
(0.2)

Conv

Conv GN ReLU Conv GN ReLU Conv GN ReLU

Conv
(1x1) GN ReLU

(d) Residual Block II (ResBlk-II)

Plus

Concat

GN

FABN SN Conv FABN SN Conv

FABN SN Conv
(1x1)

(e) FABN Residual Block (FABN ResBlk)

Figure 18: Common blocks used in the network architectures. Notations: BN = Batch Normal-
ization [7], IN = Instance Normalization [16], GN = Group Normalization [20], SN = Spectral
Normalization [10], FABN = Feature Adaptive Batch Normalization [14].
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ConvL
IN, LReLU

256 × 64 × 64

ResBlk-I

256 × 64 × 64

MaxPool
4x4

256 × 64 × 64

ConvL
IN, LReLU

256 × 16 × 16

MaxPool
4x4

128 × 16 × 16

Linear
Reshape

SoftMax, Reshape

128 × 4 × 4

𝑙𝑙sun
8 × 32

ConvL
7x7, IN, LReLU

𝑥𝑥b
3 × 256 × 256

ResBlk-I
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Figure 19: Network architectures of our pipeline.
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Figure 20: Network architectures of our pipeline (cont’d).
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Figure 21: Network architectures of our pipeline (cont’d).
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