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Abstract

We present the ilLumination-Aware conditional Image Repainting (LuminAIRe)
task to address the unrealistic lighting effects in recent conditional image repainting
(CIR) methods. The environment lighting and 3D geometry conditions are explic-
itly estimated from given background images and parsing masks using a parametric
lighting representation and learning-based priors. These 3D conditions are then
converted into illumination images through the proposed physically-based illumina-
tion rendering and illumination attention module. With the injection of illumination
images, physically-correct lighting information is fed into the lighting-realistic
generation process and repainted images with harmonized lighting effects in both
foreground and background regions can be acquired, whose superiority over the
results of state-of-the-art methods is confirmed through extensive experiments. For
facilitating and validating the LuminAIRe task, a new dataset CAR-LUMINAIRE
with lighting annotations and rich appearance variants is collected.

1 Introduction

Advanced image editing is in high demand across a multitude of applications, e.g., old photo
colorization [78, 32, 68], damaged image restoration [48, 73, 72], and artistic style transfer [22, 35,
70]. Recently, conditional image repainting (CIR) [67, 66, 58] has emerged as an innovative research
topic, proven effective in controllable image editing while “freeing” users from the necessity of expert
proficiency and retaining the “freedom” to actualize their creative visions for image modification.
By utilizing provided attributes or textual descriptions, fine-grained strokes, and Gaussian noise to
separately represent colors, contours, and texture conditions, users could insert generative objects
with desired appearances in specified image positions, as shown in the blue line of Fig. 1.

Although CIR methods have made great progress in synthesizing photo-realistic and visually-pleasing
conditional images by avoiding gradient vanishing pitfall [67], adopting flexible condition representa-
tion [66], and designing condition fusion modules [58], there is still a crucial element missing from
the CIR task: making the synthesized results harmonized with the illumination of the scene, e.g.,
spatially-varying dark and bright regions in accordance to the lighting condition in the background,
physically-accurate highlight effects for highly-specular surfaces (shining objects), and perceptually-
realistic shadow avoiding “floating objects” artifacts, as shown in the lower right example of Fig. 1.

Specifically, existing CIR methods handle image harmonization purely in 2D image space by esti-
mating a pixel-wise color tone transformation of the repainted regions from the background regions.
Current approaches use semantic parsing maps as “geometry” representations and do not exploit
the lighting information contained in given background images, which prevents them from having
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Figure 1: Illustration of proposed LuminAIRe task and result. Compared with the previous CIR
task [58] (blue line) which takes all condition inputs2 at once conducting a conditional image-to-image
generation purely in 2D image space, LuminAIRe (orange line) exploits 3D lighting and geometry
information and repaints both foreground (fg.) and background (bg.) regions via a lighting-realistic
generation process. The 3D information is transformed back to 2D image space in the form of an
illumination image, with the desired reflective properties obtained from an illumination attention
module. LuminAIRe handles (i) surface shading, (ii) highlight effects, and (iii) realistic shadow in
the repainted image (top right).

awareness of physically-based lighting in 3D space. To introduce physically-correct 3D lighting
instead of hallucinated lighting effects into CIR results, there remain some major challenges: (i) The
lighting condition in 3D space should be extracted from the limited field of view (limited-FoV) 2D
LDR images; (ii) the lighting condition should be physically-correctly transformed back into 2D
image space; (iii) a dataset suitable for learning-based solutions to the proposed task is needed.

To achieve lighting-realistic generation within the CIR pipeline in an illumination-aware manner,
we hereby propose the task of ilLumination-Aware conditional Image Repainting, denoted as
LuminAIRe. We first lift geometry conditions from 2D parsing maps to 3D1 normal maps using
learning-based shape priors and estimate lighting conditions from limited-FoV LDR background
images by designing a proper parametric representation. Then, we use physically-based reflection
models to render illumination candidate images to capture possible lighting effects in 2D image space.
With the help of illumination attention module, surface regions with different reflective properties
are learned to adopt correct lighting effects in the resulting appearance. A dataset containing
rich geometry and lighting annotations with abundant object variants is collected to facilitate the
learning-based solution of the LuminAIRe task. As far as we know, we are the first to emphasize
illumination-awareness in the image editing task of conditional image repainting.

Our contributions can be summarized as follows:

• introducing a new task of ilLumination-Aware conditional Image Repainting (LuminAIRe)
by exploiting the lighting information from background images;

• designing a full LuminAIRe pipeline that represents, extracts, converts, and injects lighting
information to acquire more realistically repainted results; and

• collecting a new dataset CAR-LUMINAIRE with rich material and lighting condition variants
for facilitating and validating the LuminAIRe task.

2 Related Work

Our method aims at introducing physical lighting constraints into generative image synthesis pipelines.
In this section, we briefly review relevant works first and then discuss the relationships to our task.

Controllable image synthesis. Researchers have presented numerous works to synthesize images
under the guidance of diverse user-provided conditions, e.g., synthesizing specific object with category
label [10, 43, 45, 75], transferring the texture from paintings to daily photos [22, 16, 35, 70], restoring

1Strictly speaking, the normal maps are in 2.5D. Here we use 3D to simply distinguish it from 2D.
2In this paper, attributes are shown in templated sentences for formatting, and texture is omitted for simplicity.
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the colors of old photos [11, 12, 69, 68], and directly generating images from text descriptions [51,
50, 55, 56]. Recently, with the development of the condition injection mechanism [31, 47, 80, 34],
researchers explore to control synthesized images with multiple cross-modality conditions, e.g.,
condition guided image inpainting [44, 55], controllable person synthesis [54, 65], and inversion-
based style transfer [79]. However, few works focus on synthesizing images strictly following
lighting conditions. Following DIH-GAN [6] that considers introducing illumination estimation in
harmonization task that adjusts the highlight of the inserted given object, we further explore the
lighting condition in synthesizing illumination-consistent objects under the guidance of multiple
cross-modality conditions.

Conditional image repainting and image harmonization. Conditional image repainting (CIR)
aims at synthesizing reasonable visual content on an existing image, where the generated visual
content should both meet the requirement of the user-provided conditions (e.g., color, geometry, and
texture) and in harmonization with the existing background image. The first CIR task is proposed
in MISC [67] for person image synthesis, where the foreground person image is synthesized first
and then composited with the background. Weng et al. [66] design the semantic-bridge attention
mechanism which allows more freely expressed color conditions by the users in text. UniCoRN [58]
breaks the two-stage dependency and proposes a unified architecture that achieves more visually
pleasing results. Despite recent achievements made by previous works in condition consistency,
existing CIR models suffer from the issue of illumination inconsistency: although techniques such as
color tone transform are applied, the lighting from the given background and on the generated visual
contents often differ a lot, making lighting effects in the image rather unrealistic, such as incorrect
shading, highlights, and shadows. In this paper, we address this issue by exploiting lighting and shape
constraints in 3D space, which allows a more physically-correct rendering processing for generating
lighting effects. Image harmonization methods [23, 24, 25, 14, 42, 62, 59], with a similar goal of CIR
to realistically composite image foreground and background regions, have focused on illumination
harmonization recently [6, 8]. However, this thread of works has poor control of visual content in
foreground regions and may fail to preserve the color tone in background regions as they were.

Lighting representation and estimation. Achieving illumination-aware synthesis/repainting re-
quires appropriate lighting representation and estimation from images. Lalonde et al. [37] is the
first to use shadows, shading, and sky appearance variations observed in the image to infer outdoor
lighting. A physics-based Hošek-Wilkie (HW) sky model [29, 30] is proposed to recover HDR
parameters for deep outdoor lighting estimation [28]. A more weather-robust Lalonde-Matthews
(LM) model [38, 77] is then proposed to cover more comprehensive lighting conditions in the outdoor
environment. More recently, a learning-based lighting representation [27] is used on a large sky
panorama dataset [36] with an autoencoder network. The encoder-decoder framework is further
proposed [39] to estimates lighting as a spherical HDR lighting map. HDSky [74] and SOLD-Net [60]
disentangle several physically meaningful attributes into separate learned latent spaces by hierarchical
autoencoders and make the estimation editable. Parametric models such as spherical harmonic (SH)
coefficients [7, 21] and spherical Gaussian (SG) [19, 40] are also widely used, especially in indoor
scenes. Gardner et al. [20], NeurIllum [57], and SOLID-Net [81] design sophisticated networks
to hallucinate the missing parts in the panoramic view and predict lighting as environment maps.
3D volumetric lighting representations are also widely used in recent works, which facilitate the
lighting-realistic scene editing for indoor [41] and outdoor [64] scenes, however heavily require
computation resources. Considering the demand for lighting-realistic generation, we propose a
parametric lighting representation for outdoor scenes that is both easy to predict and simple to use.

3 Problem Formulation

For self-containedness, we briefly review the CIR formulation before introducing ours.

3.1 Preliminaries about CIR

The previous CIR tasks [66, 67, 58] aim at generating the repainted image yr by repainting certain
regions in an image x ∈ R3×H×W according to user-specified conditions in different modalities: xg,
xp, xc, and xb for the “geometry”, “texture”, “color”, and background conditions respectively.

In their works, the “geometry” condition xg ∈ LNg×H×W is a binary semantic parsing mask, where
Ng is the number of possible parts of the visual content to be repainted and L = {0, 1}; the “texture”
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condition xp ∼ N (0, 1) is a Gaussian noise; the “color” condition can be represented as attributes
xc ∈ LNc×Nv or text descriptions xc = {xc

t}
NL
t=1, where Nc, Nv, and NL represent the numbers

of attributes and available choices, and the length of the user-inputted sentences, respectively; the
background condition xb ∈ R3×H×W is the image of background region with respect to the repainted
region as foreground region, i.e., xb = (1−m)⊙ x, where the binary mask m indicating foreground
region can be directly acquired from the parsing mask xg, as shown in lower left of Fig. 1.

The repainted image yr can be further decomposed as a blending of repainted foreground image yf

and repainted background image yb:

yr = m⊙ yf + (1−m)⊙ yb. (1)

Previous works assume unchanged background region, i.e., yb = xb, leaving the key question of CIR
tasks as generating realistic foreground region yf constrained by given conditions:

yf = FG(xg, xp, xc, xb), (2)

where previous works ignore clues in 3D space and implement the generation pipeline FG as a
conditional image-to-image generation purely in 2D image space. To make the repainted image
harmonized as a whole, previous works [58, 67] design additional harmonization modules to adjust
the color tone of intermediate repainting result based on clues in xb.

3.2 Formulation of LuminAIRe

However, the image-based harmonization modules have limited representation ability for complex
lighting effects (e.g., varying shading and shiny surfaces) due to a lack of 3D representation. Besides,
directly using xb as yb in Eq. (1) may neglect possible light transport effects (e.g., shadows) introduced
by the repainted region as its corresponding behaviors in the 3D real world might be.

As illustrated by the rendering equation [33], a physically-correct and -realistic appearance of an
object is derived from its geometry, reflective property, and omnidirectional environment lighting in
3D space. Therefore, to make the repainted image yr more lighting-realistic, the repainted foreground
yf should also be conditioned by the lighting condition L and geometry condition G in 3D space:

yf = FF(xg, xp, xc, xb, L,G). (3)

Given L and G in 3D space, a proper 2D representation xi containing both the information from L
and G should be derived for compatibility with current image generation architectures:

xi = Ri(L,G), (4)

and then the lighting-realistic generation for foreground yf can be rewritten as:

yf = FF(xg, xp, xc, xb, xi). (5)

Similarly, the repainted background yb should also be conditioned on xi to recover lighting effects:

yb = FB(xb, xi). (6)

The limited-FoV background image xb itself is a partial observation of environment lighting and thus
can provide clues about L. Therefore, the lighting condition L can be inferred in the form of:

L = FL(xb). (7)

Similarly, by finding the shape priors of certain types of objects, the 3D geometry condition G can be
lifted from its “2D flattened version”, i.e., parsing mask xg:

G = FGeo(xg). (8)

Moreover, in our LuminAIRe formulation, we extend the attributes xc beyond colors, which allows
the users to describe the reflective property and have control over the lighting effects of repainting
results. A sample of attributes is shown as the bold text in the lower left of Fig. 1.

As aforementioned, both the repainted foreground yf and background yb are given by the lighting-
realistic generation in our LuminAIRe formulation, which leads to more realistic and harmonized
results than traditional CIR pipelines [58], as shown in Fig. 1.
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Figure 2: Data preparation process of the CAR-LUMINAIRE dataset.

4 Data Preparation

To tackle the data shortage issue, we create the first dataset suitable for the LuminAIRe task, named
CAR-LUMINAIRE, with its data preparation process and data sample shown in Fig. 2.

3D car models with hierarchical semantic labeling. Collecting large-scale real data for learning-
based LuminAIRe methods is infeasible since the geometry and lighting capture in 3D space requires
specialized equipment and extensive human labor. Therefore, here we resort to computer graphics
techniques to create photo-realistic synthetic data. The cars are chosen as the foreground objects for
the obviousness of lighting effects and the availability of high-quality synthetic models. We collect
198 detailed 3D car models in 17 different categories from online model stores [2, 4] and then label
the parts of the models in 3D space, which allows us to get the accurate parsing mask in 2D image
space from any viewpoint. Following the common structure of vehicles, we divide the car models into
35 semantic part labels. The part labels are organized in a hierarchical way (e.g., the door window is
a sub-part of the door) to accommodate car models in different granularity. Besides 3D labeling, we
manually adjust the scales of each model to fit the real-world dimensions.

Background images with lighting annotations. Then we prepare background images with known
lighting annotations. Here we use the SUN360-HDR dataset [27, 76], which contains HDR panoramic
environment maps (envmaps) corresponding to the LDR panoramas of outdoor scenes in the SUN360
dataset [71]. Limited field-of-view (limited-FoV) background images are cropped from the LDR
panoramas with virtual cameras of randomized FoVs and camera poses. For each cropped background
image, the corresponding HDR envmap in the SUN360-HDR dataset [27, 76] is warped to align
with the viewing direction of the virtual camera. Background images unsuitable for realistic object
insertion are manually filtered out, leaving 1,321 images of diverse scenes and lighting conditions.

Enhanced data rendering with realistic placement. For each background image, we randomly
select insertion points within the central region of the “placeable flat ground” marked by an off-
the-shelf segmentation toolbox [15]. Then, for each 2D insertion point in the image, we calculate
the relative transformation from the camera coordination Oc to the local coordination of the object
Oo from the depth d and the normal Zo estimated by depth [52, 53] and normal [5] estimation
methods. With the aligned envmaps and the ray-tracing based Blender [3] Cycles rendering engine,
physically-correct lighting effects can be rendered into the composited images. In the rendering
process, besides the original materials of the models, several physics-based rendering (PBR) car paint
materials are randomly applied for more appearance variants, especially in lighting effects; besides,
the inserted models are randomly rotated around Zo axis for more geometry variants. The rendered
images are filtered to ensure reasonable pixel portions of both foreground and background regions. At
last, 52,581 composited images at the resolution of 256× 256 are collected, accompanied by parsing
mask and normal map annotations, as shown in the data sample of Figure 2.

5 Method

To realize the LuminAIRe formulation, we first estimate 3D lighting and geometry from background
images and parsing masks (Sec. 5.1). Then the lighting information is injected into the lighting-
realistic generation process as illumination images (Sec. 5.2). By further introducing hierarchical
labeling enhancement (Sec. 5.3), our method can generate reasonable results even with coarse-level
parsing masks. Our pipeline is shown in Fig. 3, with detailed network architectures and loss functions
for network modules in supplementary materials.
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Figure 4: Our lighting representation can capture most of the lighting effects in all weather conditions.

5.1 Estimating 3D Information with Learning-based Priors

Our CAR-LUMINAIRE dataset consists of outdoor scene images, where the lighting can be ap-
proximately decomposed into the high-frequency sunlight and the low-frequency ambient light [60].
Accordingly, we model the lighting condition L as the addition of a directional light and a 2-nd order
spherical harmonics (SH) lighting, which can be specifically described as lighting parameters:

L = {zvis, zint, zang, csun, lsun, σSH}, (9)

where zvis ∈ {0, 1} is the sun visibility, zint is the intensity of sunlight, zang describes the “size” of
the sun (in solid angle formally), csun ∈ R3 is the normalized sun color in RGB channels, lsun ∈ R2

indicates the sun position, and σSH ∈ R3×9 is the 2-nd order SH coefficients for RGB channels.

As shown in Fig. 4, the parametric representation3 in Eq. (9) can well fit real-world lighting in sunny,
cloudy, and low light conditions. On the other hand, the proposed parametric lighting representation
is convenient for network prediction. Here we design a NetL to serve as FL in Eq. (7), where lsun is
estimated by a classification task and other parameters are estimated by regression tasks. To apply
our method to other types of background scenes, specifically tailored lighting representations can be
directly adopted, without modification to our underlying formulation of LuminAIRe.

For 3D geometry, we use the normal map G ∈ R3×H×W as the representation where each pixel
indicates the surface normal direction n at that surface point in 3D space. For certain types of objects,
there exist strong shape priors (such as sedans and hatchbacks), which can be learned in a supervised
way. Similarly, a NetS of encoder-decoder structure is further proposed to serve as FGeo in Eq. (8).

5.2 Injecting Lighting Information using Illumination Images

To bridge the 3D lighting and geometry with 2D images, the rendering equation [33] is a handy tool
to serve as Ri in Eq. (4), which physically models the image formation process as the light reflection:

Lo(ωr) =

∫
Ωn

Li(ωi)fr(ωi,ωr)(n · ωi)dωi, (10)

where Li(ωi) is the environment lighting from direction ωi, Lo(ωr) is the reflected lighting toward
direction ωr, Ωn is the visible hemisphere determined by surface normal n, and fr(ωi,ωr) describes
the reflective properties of all possible combination of incoming and outgoing directions.

3Lighting parameters are converted back to tone-mapped HDR environment maps for visualization.
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Figure 5: Our illumination candidate images can cover realistic lighting effects in appearance variants.

For a certain image pixel with the known camera viewing direction v, ideally, the pixel intensity can
be calculated as Lo(−v), and accurate lighting effects can be calculated as illumination images.

However, with L and G estimated from input conditions, fr(ωi,ωr) still remains unknown. Therefore,
in a similar spirit to Gao et al. [18] and Pandey et al. [46], instead of directly calculating the actual
illumination image, we use a set of uncolored “standard materials” as fr in Eq. (10) and render
corresponding illumination candidate images {Ic}. For the physics-based rendering of {Ic}, we
use the Lambertian refectance model fdiff(ωi,ωr) = 1/π and normalized Blinn-Phong model [9]
fspec(ωi,ωr) = (ρ+4)(n·h)ρ/8π with M different values of roughness ρ, where h = ωi+ωr/||ωi+ωr|| is
the half vector. At last, we have {Ic} = {Idiff} ∪ {Iρi

spec}Mi=1.

As shown in Fig. 5, most lighting effects in different appearance variants can be covered by the
linear combinations of the pre-computed {Ic}. However, it’s worth noting that the correspondence
of the appearance image and {Ic} may vary pixel-wisely (e.g., the tires, hood, and windshield have
different reflective properties thus different lighting effects). Accordingly, we design an illumination
attention module AI to estimate the combination coefficient maps CI = AI(E) for each image pixel,
where E is the feature embedding map containing information of both part labels and part-associated
attributes in a pixel-aligned way. After the illumination image I derived as I =

∑M+1
i=1 Ci

I ⊙ Iic ,
which covers lighting effects of parts with different materials , we use I as xi in Eq. (5) and conduct
lighting-realistic generations of foreground and background regions using our proposed NetF and
NetB respectively. For NetF, we adopt the network backbone of FG in UniCoRN [58], and the
illumination image I is injected in a similar way as other conditions in 2D image space at different
resolutions. The NetB is also an encoder-decoder architecture, serving as FB in Eq. (6). We adopt the
same loss functions for NetF as used in UniCoRN [58].

5.3 Generating Realistic Results from Coarse Parsing Masks

As mentioned in Sec. 4, the parsing masks in our CAR-LUMINAIRE dataset can be very coarse,
which also reflects the possible application scenarios when the user only specifies interested parts.
Previous CIR formulations may fail to generate realistic results in regions without fine-grained labels
since their generation follows a strictly pixel-wise semantic mapping between labels and images. We
hereby introduce a hierarchical labeling enhancement: randomly coarsening the input parsing mask
at training time (e.g., door glass label becomes door label) and encouraging the fine-grained parts
(door glass) to be generated. Besides, the part-associated attributes of lower-level parts (door glass)
should be also associated with their upper-level parts (door) to avoid loss of condition in attributes
xc, which can be done by modifying the association matrix [58] A ∈ LNc×Ng accordingly.

6 Experiments

In this section, we conduct comparisons with state-of-the-art methods and validate our design with an
ablation study and a robustness test. Please see supplementary materials for implementation details.

6.1 Comparison with State-of-the-art Methods

Baseline methods. We conduct quantitative and qualitative comparisons with three state-of-the-art
CIR methods (UniCoRN [58], Weng et al. [66], and MISC [67]) and a most-relevant conditional
image generation method (Pavllo et al. [49]). Among them, modifications are made for Pavllo et
al. [49] and Weng et al. [66] to accept conditions represented as attributes.

Quantitative metrics. Following previous work [58], we adopt Fréchet inception distance (FID) [26]
for assessment of perception quality, R-precision [66] for assessment of alignment between generated
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images yr and given attributes xc, and M-score [61] for assessment of authenticity. We use the latest
manipulation detection model [17, 13] for calculating the M-score [61]. We also report the structural
similarity index (SSIM) [63] for comparing the major image structure with the reference image.

Table 1: Comparison with
the state-of-the-art methods and
variants of our proposed method.
Quantitative evaluation scores
and user study results are shown.
↑ (↓) means higher (lower) is
better. “Real.” and “Har.” are
abbreviations of “Realistic” and
“Harmonized”.

Method
Quantitative Evaluation User Study

FID ↓ R-prcn ↑ M-score ↓ SSIM ↑ Real. ↑ Har. ↑

MISC [67] 53.84 34.94% 31.23 0.6660 0.25% 0.28%
Weng et al. [66] 38.12 46.66% 30.84 0.6697 0.85% 0.85%
Pavllo et al. [49] 9.29 56.98% 36.77 0.7050 43.00% 36.72%
UniCoRN [58] 11.55 62.13% 29.72 0.6940 7.78% 9.90%
LuminAIRe (Ours) 4.62 74.13% 13.68 0.7211 48.12% 52.25%

Ours-H 5.83 63.27% 13.97 0.7163 — —
Ours-HA 6.31 63.94% 13.95 0.7214 — —
Ours-HAI 8.00 62.13% 15.83 0.7054 — —

ReferenceLuminAIReUniCoRNPavllo et al. Weng et al. MISC

a hatchback with normal wind glass, normal door glass, normal roof glass, and sky blue diffuse carpaint

a sedan with normal wind glass, dark door glass, and sky blue metallic carpaint

a hatchback with normal wind glass, normal door glass, normal roof glass, and silver metallic carpaint

Conds.

Figure 6: Qualitative comparison with the state-of-the-art methods, with given conditions (conds.).

The scores in Tab. 1 and the second and the third columns of Fig. 6 show that results of MISC [67]
and Weng et al. [66] are far from lighting-realistic with “crayon-drawing-like” appearances, since
the color tone transform is not applied [66], or conducted in a two-phase manner [67]. As shown in
the fourth column of Fig. 6, Pavllo et al. [49] tend to generate foreground regions in flat shadings
with fewer texture patterns, which makes its results generally look reasonable when only focusing
on foreground regions or in low light or cloudy scenes (as indicated by the FID and user study
results), but computer vision models can easily find the disharmony due the sharp boundaries between
foreground and background regions [58], as also indicated by the worst M-score. UniCoRN [58]
fails to generate correct lighting effects from its unified color tone transform (the first row), therefore
tends to hallucinate highlights at the top of cars regardless of lighting in background regions (the
second row). The hallucinated lighting effects along with the undesired texture pattern on car bodies
drastically damage the perceptual preferences, as confirmed by the FID score and user study results
in Tab. 1. LuminAIRe generates realistic lighting effects close to the reference images in both sunny
(the first and the third rows) and cloudy (the second row) scenes of specified materials and even when
a coarse-level parsing mask is given (the third row), with a large margin in all quantitative metrics
compared with baseline methods. LuminAIRe also learns to avoid the undesired texture pattern with
the hints of the smoothly varied shading in the illumination images (Fig. 7).
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Ours-HAIOurs-HAOurs-HOursIlluminationGeometry

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

a liftback with normal wind glass, normal door glass, dark roof glass, and light grey metallic carpaint

Conds.

Figure 7: Ablation study for three variants of our proposed method, with given conditions (conds.).

Material editing

a CUV with normal wind glass, dark door glass, dark roof glass, and 
light grey diffuse / brown clearcoat car paint 

Lighting consistency

a CUV with light wind glass, light door glass, light roof glass, and 
grey metallic car paint

Figure 8: Our method can generate realistic lighting effects with given materials (left), which are
consistent across different geometry conditions (right). Green and blue boxes mark individual cases.

6.2 Evaluations

Ablation study. We conduct an ablation study with three variants of Ours: (i) Ours-H, (ii) Ours-HA,
and (iii) Ours-HAI, where “-H”, “-A”, and “-I” mean disabling the hierarchical labeling enhancement,
the illumination attention, and the illumination injection for the foreground, respectively.

The hierarchical labeling enhancement is confirmed helpful in generating realistic results with coarse-
level parsing masks, as shown in Fig. 7 and the third row of Fig. 6, where Ours generates more
consistent and better repaintings at regions with no specified part labels (marked in blue purple),
which is also demonstrated by the FID and R-prcn score in Tab. 1. The second row of Fig. 7 shows
an example where the lack of illumination attention module wrongly renders a diffuse appearance,
with further evidence from the drop of FID from Ours-H to Ours-HA in Tab. 1. It’s quite obvious
from Tab. 1 and Fig. 7 that the illumination injection helps foreground generation by comparaing
Ours-HA and Ours-HAI. From UniCoRN to Ours-HAI, the improvements in FID score and
M-score validate the contribution of the lighting-realistically generated background.

Besides, Ours-HA gets an unexpectedly good SSIM score. It’s possibly because a slight misalignment
of lighting effects (especially highlights) due to errors in lighting or geometry estimation would lead
to a considerable drop in the SSIM score (which honestly measures the pixel-wise difference) but
with very little harm to the lighting-realistic perception (as indicated by the FID and M-score).

User study. We also conduct a user study with 20 volunteers on the Amazon Mechanical Turk [1]
platform, where 200 sets of results randomly drawn from the test set are shown and volunteers are
asked to choose one in each set with (i) the most realistic foreground and (ii) the most harmonized
lighting. The results of the user study in Tab. 1 are basically aligned with the trending of FID and
SSIM scores in quantitative evaluation, showing that repainting results of our LuminAIRe are most
favored subjectively, with a greater lead in realistic and harmonized lighting perception.

Robustness Test. Fig. 8 shows the robustness of our method to varying materials and geometry
conditions, where different materials and geometry conditions are correctly handled with realistic
lighting effects accordingly and consistently generated. To test the robustness of our method to
varying parsing masks (e.g., casually-drawn parsing masks), we compare in Fig. 9 the repainting
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results of from the input parsing masks before and after the disturbing, where the boarders are
randomly extended and the inner structures are coarsened. To test the robustness of our method to
varying lighting conditions, we conduct an experiment where the estimated lighting conditions are
rotated clockwise while all other conditions are left unchanged. The results in Fig. 10 show that
our method correctly handles most of the lighting rotations in the sense of the lighting effects on
the foreground objects and the shadow effects in the background regions. The repainting results in
the second column with no lighting conditions given (“No light”) further validate the effectiveness
of our illumination injection module. To test the robustness of our method to varying background
conditions, we also show the results of in-the-wild examples in the supplemental material.

0º/+180ºConditions +30º/+210º +60º/+240º +90º/+270º +120º/+300º +150º/+330º

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

No light/Normal

PCT-Net [II]DHT+ [I]Ours-AIOurs-AOursReference

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

a liftback with normal wind glass, normal door glass, dark roof glass, and light grey metallic carpaint

Conds.

IlluminationParsing mask Repainting

a liftback with light wind glass, light door glass, dark roof glass, and 
light green clearcoat carpaint

Normal IlluminationParsing mask Repainting

a liftback with light wind glass, light door glass, light roof glass, and 
night blue clearcoat carpaint

Normal

Figure 9: Qualitative results of normal maps, illumination images and repaintings using original (first
row) and disturbed (second row) parsing masks as input conditions. Backgrounds are omitted here.

0º/+180ºConditions +30º/+210º +60º/+240º +90º/+270º +120º/+300º +150º/+330º

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

No light/Normal

PCT-Net [II]DHT+ [I]Ours-AIOurs-AOursReference

a liftback with normal wind glass, normal door glass, normal roof glass, and blue grey metallic carpaint

a liftback with normal wind glass, normal door glass, dark roof glass, and light grey metallic carpaint

Conds.

IlluminationParsing mask Repainting

a liftback with light wind glass, light door glass, dark roof glass, and 
light green clearcoat carpaint

Normal IlluminationParsing mask Repainting

a liftback with light wind glass, light door glass, light roof glass, and 
night blue clearcoat carpaint

Normal

Figure 10: Qualitative results of repaintings and illumination images as the estimated lighting rotates.

7 Conclusion

In this paper, we introduce the task of LuminAIRe for the realistic generation of lighting effects.
The synthetic CAR-LUMINAIRE dataset is collected for the newly proposed task. Extensive experi-
ments and the user study confirm that our method achieves perceptually more lighting-realistic and
harmonized repainting results compared with the state-of-the-art methods. The effectiveness and
consistency of our illumination-aware design are shown in the robustness test.

Limitations and future works. In this paper, only the results of cars as foreground objects are
shown, resulting from the inadequate feasibility of data collection. Besides, our model can not handle
complex thin structures and some translucent glass materials very well, which are not well covered by
our synthetic data for now. As a single-image-based method for generic outdoor scenes, our method
currently ignores the non-local inter-reflections with other objects and focuses on the shadows cast
directly on the ground. Therefore, datasets of richer object categories and finer details will be helpful
to boost the training of learning-based methods. Combining the lighting constraints with the newly
emerged latent diffusion models [55] would also be an interesting direction for our future work.

Acknowledgement. This work is supported by the National Natural Science Foundation of China
under Grant No. 62136001, 62088102.
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