Occ3D: A Large-Scale 3D Occupancy Prediction
Benchmark for Autonomous Driving
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Figure 1: Our Occ3D dataset demonstrates rich semantic and geometric expressiveness. (a)
Diversity of scenes in the Occ3D dataset; (b) Out-of-vocabulary objects, also known as General
Objects (GOs), that cannot be extensively enumerated in the real world; (c) Irregularly-shaped objects
that 3D bounding boxes fail to represent their accurate geometry.

Abstract

Robotic perception requires the modeling of both 3D geometry and semantics.
Existing methods typically focus on estimating 3D bounding boxes, neglecting
finer geometric details and struggling to handle general, out-of-vocabulary ob-
jects. 3D occupancy prediction, which estimates the detailed occupancy states
and semantics of a scene, is an emerging task to overcome these limitations. To
support 3D occupancy prediction, we develop a label generation pipeline that
produces dense, visibility-aware labels for any given scene. This pipeline com-
prises three stages: voxel densification, occlusion reasoning, and image-guided
voxel refinement. We establish two benchmarks, derived from the Waymo Open
Dataset and the nuScenes Dataset, namely Occ3D-Waymo and Occ3D-nuScenes
benchmarks. Furthermore, we provide an extensive analysis of the proposed
dataset with various baseline models. Lastly, we propose a new model, dubbed
Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior per-
formance on the Occ3D benchmarks. The code, data, and benchmarks are released
athttps://tsinghua-mars—-lab.github.io/Occ3D/.
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1 Introduction

3D perception is a crucial component in vision-based robotic systems like autonomous driving. One
of the most popular visual perception tasks is 3D object detection, which estimates the 3D locations
and dimensions of objects defined in a pre-determined ontology tree [48, 22]. While the resulting 3D
bounding boxes are compact, the level of expressiveness they provide is restricted, as illustrated in
Figure 1: (1) 3D bounding box representation erases the geometric details of objects, a construction
vehicle has a mechanical arm that protrudes from the main body; (2) uncommon categories, like trash
cans on the streets, are often ignored and not labeled in the datasets [4, 43] since object categories in
the open world cannot be extensively enumerated.

These limitations call for a general and coherent representation that can model the detailed geometry
and semantics of objects both within and outside of the ontology tree. 3D Occupancy Prediction, i.e.
understanding every voxel in the 3D space, is an important task to achieving this goal. We formalize
the 3D occupancy prediction task as follows: a model needs to jointly estimate the occupancy state
and semantic label of every voxel in the scene from images [2, 24, 5]. The occupancy state of each
voxel can be categorized as free, occupied, or unobserved. For occupied voxels, semantic labels are
assigned. For objects that are not in the predefined categories, they are labeled as General Objects
(GOs). Although GOs are rare, they are essential for perception tasks with safety considerations since
they are typically undetected by 3D object detection with predefined categories.

Despite recent advancements in 3D occupancy prediction [5, 16, 53], there is a notable absence of
high-quality datasets together with benchmarks. Constructing such a dataset is challenging due to
three major issues: sparsity, occlusion and 3D-2D misalignment. To overcome these hurdles, we
create a semi-automatic label generation pipeline that consists of three steps: voxel densification,
occlusion reasoning, and image-guided voxel refinement. Each step within our pipeline is validated
through a 3D-2D consistency metric, demonstrating that our proposed label generation pipeline
effectively generates dense and visibility-aware annotations.

Building upon the public Waymo Open Dataset [43], nuScenes [4] and Panoptic nuScenes [11]
Dataset, we produce two benchmarks for our task accordingly, Occ3D-Waymo and Occ3D-nuScenes.
Compared to conventional datasets such as SemanticKITTI [2] and KITTI-360 [24], our Occ3D is the
first dataset to offer the surround-view images and high-resolution 3D voxel occupancy representation
with the most diverse scenarios.

A series of recent occupancy prediction models are reproduced and benchmarked on Occ3D. Ad-
ditionally, we propose CTF-Occ, a transformer-based Coarse-To-Fine 3D Occupancy prediction
network. CTF-Occ achieves superior performance by aggregating 2D image features into 3D space
via cross-attention in an efficient coarse-to-fine fashion.

The contributions of this work are as follows: (1) We introduce Occ3D, a high-quality 3D occupancy
prediction benchmark to facilitate research in this emerging area; (2) We put forward a rigorous
automatic label generation pipeline for constructing the Occ3D benchmark, with comprehensive
validation of the effectiveness of the pipeline; (3) We benchmark existing model and propose a new
CTF-Occ network that achieves superior 3D occupancy prediction performance.

2 Related Work

3D detection. The goal of 3D object detection is to estimate the locations and dimensions of objects
within a predefined ontology. 3D object detection is often performed in LiDAR point clouds [55, 18,

, 34, 36, 10, 39]. More recently, vision-based 3D object detection has gained more attention
due to its low cost and rich semantic content [41, 46, , 26, 33, 28, 13, 27, 15, 21, 31, 25].
Several LiDAR-camera fusion methods are also proposed [ , 8, 28].

3D occupancy prediction. A related task of 3D occupancy prediction is Occupancy Grid Mapping
(OGM) [30, 44, 47], a classical task in mobile robots that aims to generate probabilistic maps from
sequential noisy range measurements. OGM can be solved within a Bayesian framework, some
recent works further combine semantic segmentation with OGM for downstream tasks [17, 42, 37].
Note that OGM requires range sensors, and also makes the assumption that the scene is static over
time. The 3D occupancy prediction task does not have these constraints and can be applied in



Table 1: Dataset comparison. Comparing Occ3D Datasets with other occupancy prediction datasets.
Surround = v" represents surround-view image inputs. C, D, L denote camera, depth and LiDAR.

Dataset | Type Surround Modality # Classes # Sequences # Frames  Volume Size Resolution (m)
NYUv2 [40] Indoor X C&D 11 464 1449 [240, 240, 14] -
ScanNet [Y] Indoor X C&D 11 1513 1513 [62, 62, 31] -
SemanticKITTI [2]| Outdoor X C&L 28 22 4,3000 [256, 256, 32] [0.2,0.2,0.2]
KITTI-360 [23] Outdoor Fisheye C &L 19 11 90,960  [256, 256, 32] [0.2,0.2,0.2]
Occ3D-nuScenes |Outdoor v C&L 16+GO 1000 40,000  [200, 200, 16] [0.4,0.4, 0.4]
Occ3D-Waymo  |Outdoor v C&L 14+GO 1000 200,000 [3200, 3200, 128] [0.05, 0.05, 0.05]

vision-only robotic systems in dynamic scenes. Recently, TPVFormer [ | 6] proposes a tri-perspective
view method to predict 3D occupancy. However, its output is sparse due to LiDAR supervision.

Semantic scene completion. Another related task is Semantic Scene Completion (SSC) [1, 6, 9,

, 24, 50, 38, , 50,32, 20, 29, 54], whose goal is to estimate a dense semantic space from
partial observatlons SSC differs from 3D occupancy prediction in two ways: (1) SSC focuses on
inferring occluded regions given visible parts, while occupancy prediction does not intend to estimate
the invisible regions; (2) existing SSC task typically deals with static scenes, whereas occupancy
prediction works with dynamic ones.

3  Occ3D Dataset

3.1 Task Definition

Given a sequence of sensor inputs, the goal of 3D occupancy prediction is to estimate the state of
each voxel in the 3D scene. Specifically, the input of the task is a T-frame historical sequence of
N surround-view camera images {Z;; € R#>Wix3} 'wherei = 1,...,Nandt = 1,...,T. We
also assume known sensor intrinsic parameters { K} and extrinsic parameters {[R;|¢;]} in each
frame. The ground truth labels are the voxel states, including occupancy state (“occupied”, “free”,
or “unobserved”) and semantic label (category, or “unknow”). For example, a voxel on a vehicle is
labeled as (“occupied”, “vehicle”), and a voxel in the free space is labeled as (“free”, None). Note
that the 3D occupancy prediction framework also supports extra attributes as outputs, such as instance
IDs and motion vectors; we leave them as future work.

3.2 Dataset Statistics

We generate two 3D occupancy prediction datasets, Occ3D-nuScenes and Occ3D-Waymo. Occ3D-
nuScenes contains 600 scenes for training, 150 scenes for validation, and 150 for testing, totaling
40,000 frames. It has 16 common classes with an additional general object (GO) class. Each sample
covers a range of [-40m, -40m, -1m, 40m, 40m, 5.4m] with a voxel size of [0.4m,0.4m,0.4m]. Occ3D-
Waymo contains 798 sequences for training, 202 sequences for validation, accumulating 200,000
frames. It has 14 known object classes with an additional GO class. Each sample covers a range of
[-80m, -80m, -1m, 80m, 80m, 5.4m], with an extremely fine voxel size of [0.05m, 0.05m, 0.05m].

Occ3D stands out when compared with other datasets, as shown in Table 1. The indoor datasets
NYUv2 and ScanNet lack surround images and consist of fewer sequences and frames. Se-
manticKITTI and KITTI-360, the two other outdoor datasets, also lack surround images, with
the exception of KITTI-360’s fisheye images. For the safety of autonomous driving, the general
object class is particularly important, a feature that is not available in the SemanticKITTI and KITTI-
360 datasets. Furthermore, Occ3D-Waymo is currently the 3D occupancy dataset with the most
diverse scenarios, comprehensive labels, and the highest resolution among all open-source datasets.

3.3 Dataset Construction Pipeline

Annotating 3D occupancy from images is impossible due to the lack of accurate depth and geome-
try. Therefore, we take advantage of LiDAR scans and their annotations to construct high-quality
occupancy labels. However, there are three primary hurdles: sparsity, occlusion, and 3D-2D mis-
alignment. Sparsity refers to the fact that LIDAR scans are sparse, thereby hindering the acquisition
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Figure 2: Overview of the label generation pipeline. The pipeline consists of three main steps:
voxel densification, occlusion reasoning, and image-guided voxel refinement.Voxel densification
consists of object segmentation, multi-frame aggregation, and label assignment.

of dense voxels. Occlusion, on the other hand, is concerned with the identification of voxels that,
once densified, become invisible in the current image view due to occlusion. 3D-2D misalignment
pertains to the disparities when projecting the 3D voxels onto 2D images, often induced by sensor
noises or pose errors.

Our proposed label generation pipeline addresses the above challenges, an overview is shown in
Figure 2. Initially, in voxel densification, we increase the density of the point clouds by performing
multi-frame aggregation for both static and dynamic objects separately. Then we employ a K-
nearest neighbor algorithm to assign labels to unlabeled points and utilize mesh reconstruction to
perform hole-filling. Subsequently, we carry out occlusion reasoning from both LiDAR and camera
perspectives, utilizing a ray-casting operation to label the occupancy state of each voxel. Finally,
misaligned voxels are eliminated through an image-guided voxel refinement process. We provide
pseudo-code and the hyper-parameters of each step in the Appendix.

3.3.1 Voxel Densification

LiDAR data is inherently sparse, to acquire dense point clouds: 1) We aggregate all points throughout
the frames, treating dynamic objects and static background points separately; 2) We take advantage
of unlabeled frames (which we’ll refer to as non-keyframes) and use a K-Nearest Neighbors (KNN)
algorithm to assign semantic labels; 3) In spite of frame aggregation, there persist holes on the object
surfaces, we fill these holes with mesh reconstruction.

Dynamic and static objects segmentation. Point clouds derived from individual frames are catego-
rized into “dynamic objects” and “static scenes”. The static scenes contain entities such as ground,
buildings, and road signs that do not exhibit positional change over time. Dynamic objects, such as
cars and pedestrians need to be segregated since naive temporal aggregation results in motion blur.

Multi-frame aggregation. After segregating dynamic objects from static scenes, multi-frame
aggregation is conducted separately on them. For dynamic objects, we extract the points located
within the annotated or tracked box and subsequently transform them from sensor coordinates to
box coordinates. By concatenating these transformed points, we densify the point cloud of dynamic
objects. For the static scene, we simply aggregate its points across time in the global coordinate
system. The static scene is then fused with the aggregated dynamic objects in the current frame,
thereby generating a single-frame dense point cloud.
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Figure 3: Visibility and refinement. (a) LiDAR visibility: a voxel is “occupied” if it reflects LIDAR
(red voxels), or “free” if it is traversed through by a ray (white voxels); Camera visibility: Any voxel
not scanned by camera rays is set to “unobserved” (blue and yellow voxels). (b) Image-guided voxel
refinement: during ray casting, when the first voxel with the same semantic label as the pixel label is
encountered, we set the previously traversed voxel states to “free” (green voxels).

KNN for label assignment. The task of directly annotating each point in every frame is labor-
intensive. Current datasets only annotate a selected portion of the frames - for instance, the Waymo
dataset proceeds at a rate of 2Hz, whereas Lidar scans operate at a 10Hz frequency. To utilize the
unlabeled frames, we employ the K-nearest neighbors (KNN) algorithm to assign semantic labels
to each unlabeled point. Specifically, for each point in the unlabeled frame, we find the K nearest
keyframe points and assign the majority semantic label.

Mesh reconstruction. After multi-frame aggregation, the density of point clouds is still not enough
to produce high-quality dense voxels: a smaller voxel size may lead to objects with many holes,
while a larger voxel size could induce excessive smoothness. To mitigate these issues, we perform
mesh reconstruction. For non-ground categories, we optimize surfaces through VDBFusion [45],
an approach for volumetric surface reconstruction based on truncated signed distance functions
(TSDF). The flexibility and efficacy of VDBFusion surpass traditional methods such as Poisson
surface reconstruction. For the ground, VDBFusion fails as small ray angles result in incorrect TSDF
values. We instead establish uniform virtual grid points and fit each local surface mesh using points
within a small region. After reconstructing the meshes, dense point sampling is performed, and KNN
is further adopted to assign semantic labels to the sampling points.

3.3.2 Occlusion Reasoning for Visibility Mask

We perform occlusion reasoning and introduce LiDAR visibility mask and camera visibility mask to
further enhance our 3D occupancy prediction benchmark.

Aggregated LiDAR visibility mask. To obtain a 3D occupancy grid from aggregated LiDAR point
clouds, a straightforward way is to set the voxels containing points to be “occupied” and the rest to
“free”. However, since LiDAR points are sparse, some occupied voxels are not scanned by LiDAR
beams, and can be mislabeled as “free”. To avoid this issue, we perform a ray casting operation to
determine the visibility of each voxel, as shown in Figure 3a. Concretely, we cast a ray from the
sensor origins to each LiIDAR point. A voxel is considered visible if it either reflects LIDAR points, or
if it is traversed through by a ray. If neither condition is met, the voxel is classified as “unobserved”.

Camera visibility mask. We connect each occupied voxel center with the camera origin, thereby
forming a ray. Along each ray, we set the first occupied voxel as “observed”, and the remaining as
“unobserved”. Any voxel not scanned by camera rays is set to “unobserved” as well. Determining the
visibility of a voxel is crucial for the evaluation of the 3D occupancy prediction task: evaluation is
only performed on the “observed” voxels in both the LiDAR and camera views.

3.3.3 Image-guided Voxel Refinement

Influences such as LiDAR noise and pose drifts can cause the 3D shape of objects to appear larger
than their actual physical dimensions. To rectify this, we further refine the dataset by eliminating
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Figure 4: 3D-2D consistency (a) 2D ROI within single-frame LiDAR scan range. (b) Semantic labels
of a single image within the 2D ROL. (c) The reprojection of 3D voxel semantic labels onto the image
within the 2D ROL.

incorrectly occupied voxels, guided by semantic segmentation masks of images. As shown in Figure
3b, to obtain the correspondence between 3D voxels and 2D pixels, we adopt a ray casting operation
similar to the one in the previous section: connecting each occupied voxel center with the camera
center to form a ray, and traverse the voxel that this ray passes through from near to far from the pixel
origin. When the first voxel with the same semantic label as the pixel label is encountered, we set the
previously traversed voxel states to “free”. This step greatly improves the shape at object boundaries.

4 Quality Check

Acquiring an occupancy representation that adheres to the complete shape of all objects is challenging.
Therefore, evaluating the quality of the dataset and ensuring the effectiveness of each step in our
pipeline is critical. To this end, we propose a method that evaluates the quality of occupancy by
checking semantic consistency between 2D pixels and their corresponding voxel.

4.1 3D-2D consistency

Compared to 3D occupancy semantic labels obtained through aggregation and reconstruction, 2D
semantic masks manually annotated by humans are highly accurate. Thus, we assess the quality
of the dataset by verifying the 3D-2D consistency between semantic labels of 3D voxels and their
corresponding 2D image pixels. We calculate 3D-2D consistently in three steps: filtering the 2D
pixel region involved in consistency calculation for the current frame, identifying the corresponding
3D voxels of this pixel region, and finally, computing their 3D-2D semantic consistency.

2D ROL. 2D images contain objects that are beyond the scanning range of the LiDAR sensor. When
calculating 3D-2D consistency, we use the maximum range covered by a single LiDAR frame as
the 2D Region of interest (ROI). Specifically, we project single-frame LiDAR points onto the 2D
image coordinate system using LiDAR-to-camera transformation. Then, our algorithm traverses in
the horizontal coordinate direction and selects the highest vertical coordinate of the projected points
in each vertical column as the height of that column. As shown in Figure 4a, all pixels below this
height are treated as the 2D valid region involved in the consistency calculation.

3D label query. After determining the 2D ROI in each image, we identify its corresponding 3D voxels
for these regions. Since each voxel has a certain volume, directly projecting them onto a 2D image
poses a multi-pixel association issue. Moreover, when the projection overlap occurs, determining
the corresponding occlusion relationship becomes complicated. We instead query corresponding 3D
voxels for each 2D image pixel. Specifically, for each pixel in the selected region, we perform ray
traversal and find the closest 3D voxel to the ray.

Metrics. To evaluate the dataset quality, for each pixel in an image, we compare its semantic label
with the semantic prediction of its corresponding 3D voxel. We adopt the standard Precision, Recall,
Intersection-over-Union(IoU), and mean Intersection-over-Union(mlIoU) metric.



Table 2: Quantitative results for design choices. SFP, single frame points; MFP, aggregating points
from unlabeled frames; VS, short for voxel size; Mesh, showcasing mesh reconstruction; and /GR,
denoting image-guided voxel refinement. The three numbers from top to bottom in each choice are
IoU, recall, and precision for the specific class.

SFP MFP VS Mesh IGR|vehicle bicyclist ped sign road pole cone bicycle building|mIOU

5.87 512 3.65 347 033 0.10 0.09 0.11 0.34
v - 8.53 6.61 481 3.85 033 0.10 0.09 0.11 0.34 | 13.32
95.38 58.66 60.13 61.44 92.78 34.90 25.35 60.12  66.93

37.89 3799 2825 12.57 11.70 548 351 6.01 15.49
v o vooo- 40.02 58777 37.21 14.80 12.06 6.32 3.99 6.45 17.69 | 17.65
87.48 51.79 53.98 45.45 79.72 29.25 2237 46.76  55.49

7523 38.66 30.78 33.77 56.30 30.58 24.03 31.36 49.85
v v ool 91.20 87.00 60.90 56.80 67.35 55.97 4222 37.00 68.66 |41.17
81.12 41.03 38.37 45.45 95.53 40.27 35.81 67.28 64.53

75.13 3797 30.36 32.88 82.79 16.63 17.48 32.46 52.27
v v o1 v 90.98  83.02 55.07 54.93 85.34 63.57 58.13 40.77 77.81 |41.99
81.17 41.17 40.36 45.02 96.52 18.38 19.99 61.43 61.43

78.76  46.33 34.04 34.85 64.56 18.28 20.57 42.59 52.27
v o v 00 v 89.20 8422 55.42 52.02 67.43 63.17 58.89 53.71 84.73 |43.58
87.06 50.74 46.87 51.36 93.80 20.46 24.02 67.28 57.71

88.82  76.89 47.54 50.18 71.97 31.77 32.09 66.40 60.90
v o v o 005 v v | 9134 9212 63.78 61.20 75.11 73.80 62.44 77.67 94.73 | 58.50
96.98 8231 65.11 73.59 94.51 35.80 39.76 82.07 63.04

4.2 Quantitative Results

Table 2 shows the performance gain of each proposed step of our auto-labeling pipeline. The 3D-2D
consistency is evaluated in a subset of Occ3D-Waymo. Single-frame points (SFP) means that we
only use a single-frame point cloud to calculate its 3D-2D consistency using the previously proposed
method. As shown in the table, our method achieves high SFP precision and low recall. In addition
to SFP, we aggregate points from multiple frames (MFP). Compared to SFP, MFP sees a significant
improvement in recall, but its precision decreases to a certain extent, which is caused by the LiDAR
noise and/or pose errors. Based on MFP, we study the effect of voxelization, which leads to better
precision and recall. This further validates the effect of correction on pose inaccuracies. As mentioned
before, a small voxel size results in objects containing many holes, while a larger voxel size leads
to over smoothness. The former results in low recall, while the latter results in low precision. We
use mesh reconstruction to alleviate the hole issue in objects caused by a small voxel size, which is
reflected by the comparison between third row and fifth row in the table. Finally, we demonstrate that
our proposed image-guided refinement indeed promotes the 3D-2D semantic consistency, shown in
the last row.

5 Coarse-to-Fine Occupancy Network

To deal with the challenging 3D occupancy prediction problem, we present a new transformer-based
model named Coarse-to-Fine Occupancy (CTF-Occ) network. An overview of CTF-Occ network is
shown in Figure 5. First, 2D image features are extracted from multi-view images with an image
backbone. Then, 3D voxel queries aggregate 2D image features into 3D space via a cross-attention
operation. Our approach involves using a pyramid voxel encoder that progressively improves voxel
feature representation through incremental token selection and spatial cross-attention in a coarse-
to-fine fashion. This approach enhances the spatial resolution and refines the detailed geometry of
objects, ultimately leading to more accurate 3D occupancy predictions.

Incremental token selection. The task of predicting 3D occupancy requires a detailed representation
of geometry, but this can result in significant computational and memory costs if all 3D voxel tokens
are used to interact with regions of interest in the multi-view images. Given that most 3D voxel grids
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Figure 5: The architecture of CTF-Occ network. CTF-Occ consists of an image backbone, a
coarse-to-fine voxel encoder, and an implicit occupancy decoder.

in a scene are empty, we propose an incremental token selection strategy that selectively chooses
foreground and uncertain voxel tokens in cross-attention computation. This strategy enables adaptive
and efficient computation without sacrificing accuracy. Specifically, at the beginning of each pyramid
level, each voxel token is fed into a binary classifier to predict whether this voxel is empty or not. We
use the binary ground-truth occupancy map as supervision to train the classifier. In our approach, we
select the K-most uncertain voxel tokens for the subsequent feature refinement.

Spatial cross attention. At every level of the pyramid, we first select the top-K voxel tokens and
then aggregate the corresponding image features. In particular, we apply 3D spatial cross-attention
[22] to further refine the voxel features.

Convolutional feature extractor. Once we apply deformable cross-attention to the relevant image
features, we proceed to update the features of the foreground voxel tokens. Then, we use a series of
stacked convolutions to enhance feature interaction throughout the entire 3D voxel feature maps. At
the end of the current level, we upsample the 3D voxel features using trilinear interpolation.

Occupancy decoder. The CTF voxel encoder generates voxelized feature output V,,; €
RWXHXLXC " Then the voxel features V,,; are fed into several MLPs to obtain the final occu-
pancy prediction O € RW*H XLxC' \where C' is the number of the semantic classes. Furthermore,
we introduce an implicit occupancy decoder that can offer arbitrary resolution output by utilizing
implicit neural representations. The implicit decoder is implemented as an MLP that outputs a
semantic label by taking two inputs: a voxel feature vector extracted by the voxel encoder and a 3D
coordinate inside the voxel.

6 Experiments

To benchmark our proposed Occ3D datasets and our CTF-Occ model, we evaluate existing 3D
occupancy prediction methods on Occ3D-nuScenes and Occ3D-Waymo.

6.1 Experimental Setup

Dataset and Metrics. Occ3D-Waymo contains 1,000 publicly available sequences in total, where
798 scenes are for training and 202 scenes are for validation. The scene range is set from -40m
to 40m along X and Y axis, and from -5m to 7.8m along Z axis. Occ3D-nuScenes contains 700
training scenes and 150 validation scenes. The occupancy scope is defined as -40m to 40m for
X and Y axis, and -1m to 5.4m for the Z axis. We choose a voxel size of 0.4m to conduct our
experiments on both two datasets. We adopt the metrics of Intersection-over-Union (IoU) and mean
Intersection-over-Union(mloU) to evaluate performance.



Table 3: 3D occupancy prediction performance on the Occ3D-nuScenes dataset. Cons. Veh represents
construction vehicle and Dri. Sur is for driveable surface.
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MonoScene [5] | 1.75 723 426 493 938 567 398 301 590 445 7.7 1491 632 7.92 743 101 7.65 | 6.06
TPVFormer [16] |7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78|27.83
BEVDet [14] |4.39 30.31 0.23 32.26 3447 12.97 1034 1036 626 893 23.65 5227 24.61 26.06 2231 15.04 15.1019.38
OccFormer [53] |5.94 3029 12.32 34.40 39.17 14.44 1645 17.22 927 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97 |21.93
BEVFormer [22] |5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69|26.88

CTF-Occ (Ours) [8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0 |28.53

Table 4: 3D occupancy prediction performance on the Occ3D-Waymo dataset. Cons. Cone represents
the construction cone.
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BEVDet [14] 0.13 13.06 2.17 10.15 7.80 5.85 4.62 094 149 0.0 7.27 10.06 2.35 48.15 34.12| 9.88
TPVFormer [16] 3.89 17.86 12.03 5.67 13.64 8.49 890 9.95 14.79 0.32 13.82 11.44 5.8 733 51.49|16.76
BEVFormer [22] 348 17.18 13.87 59 13.84 2.7 9.82 122 13.99 0.0 13.38 11.66 6.73 74.97 51.61|16.76
CTF-Occ (Ours) [6.26 28.09 14.66 8.22 15.44 10.53 11.78 13.62 16.45 0.65 18.63 17.3 8.29 67.99 42.98|18.73
LiDAR-Only 1.01 57.41 35.31 20.33 11.7 13.01 36.21 7.81 0.13 0.0 57.83 54.71 27.07 69.15 54.47|29.74

BEVFormer-Fusion |5.11 64.61 52.35 21.52 32.74 17.1 42.62 27.75 13.36 0.05 63.65 60.51 35.64 81.89 66.84|39.05

Architecture. We extend two main-stream BEV models — BEVDet [14] and BEVFormer [22] to
the 3D occupancy prediction task. We replace their original detection decoders with the occupancy
decoder adopted in our CTF-Occ network and remain their BEV feature encoders. We employ
ResNet-101 [12] pretrained on FCOS3D [46] as the image backbone and the image size is resized
to (640 x 960) for Occ3D-Waymo and (928 x 1, 600) for Occ3D-nuScenes. We also evaluate three
existing 3D occupancy prediction methods — MonoScene [5], TPVFormer [16], and OccFormer [53]
on our proposed Occ3D datasets. Additionally, we conduct experiments using LiDAR as an input on
the Waymo dataset. “LiDAR-Onl” refers to adopting single frame LiDAR as input. Voxelization is
applied with a voxel size of [0.1, 0.1, 0.4] on the X, y, and z axes respectively. Subsequently, a ResNet
is employed to extract dense voxel features, which are then fed to the occupancy prediction head.
The “BEVFormer-Fusio” method incorporates both camera and LiDAR inputs. We extract features
from the same LiDAR branch and fuse them with the camera features captured by BEVFormer in the
BEV space.

Our proposed CTF-Occ adopts a learnable voxel embedding with a shape of 200 x 200 x 256. The
voxel embedding will first pass through four encoder layers without token selection. There are three
pyramid stage levels for the Occ3D-Waymo dataset, and the resolution of the z-axis in each stage is
8, 16, and 32. The resolution of the z-axis in each stage for the Occ3D-nuScenes dataset is 8 and 16
for the two pyramid stages. Each stage contains one SCA layer and an incremental token selection
module to choose K non-empty voxels with the highest scores. The top-k ratio for the incremental
token selection strategy is set to 0.2 for all pyramid stages.

Loss function. To optimize the occupancy prediction, we use the OHEM loss for model training
Loce = > 1 WiL(9k,pr), where Wi, g, and p;, represent the loss weight, the label, and the
prediction result for the k-th semantic class. In addition, we supervise the binary classification head
in each pyramid level with binary voxel masks. The binary voxel masks are generated by processing
the semantic occupancy label at each spatial resolution s; using f(g, s;), and the output of the binary
classification head in the ¢-th level is denoted as p;. The loss for the binary classification is defined as
Liin =Y, L(f(9, s:),p:), where ¢ represents the i-th pyramid level.



6.2 Comparing with previous methods

Occ3D-nuScenes. Table 3 shows the performance of 3D occupancy prediction compared to related
methods on the Occ3D-nuScenes dataset. It can be observed that our method performs better in all
classes than previous baseline methods under the IoU metric. Our CTF-Occ surpass BEVFormer by
1.65 mloU. The observations are consistent with those in the Occ3D-Waymo dataset.

Occ3D-Waymo. We compare the performance of our CTF-Occ network with state-of-the-art models
on our newly proposed Occ3D-Waymo dataset. Results are shown in Table 4. Our method outperforms
previous methods by remarkable margins, increasing the mIoU by 1.97. Especially for some objects
such as traffic cone and vehicle, our method surpasses the baseline method by 2.88 and 10.23 ToU
respectively. This is because we capture the features in the 3D voxel space without compressing the
heigh, which will preserve the detailed geometry of objects. The results indicate the effectiveness of
our coarse-to-fine voxel encoder.

6.3 Ablation study

In this section, we ablate the choices of incremental token selection and OHEM loss. Table 5 shows
the results. CC represents traffic cones and PED represents pedestrians. We focus on CC and PED to
verify the effectiveness of our implementation on small objects. Both techniques improve performance.
Using OHEM loss and top-k token selection produces the best performance. Without the OHEM loss,
we only get 14.06 mloU. Combining the OHEM loss with a random token selection strategy achieves
16.62 mloU. Using an uncertain token selection strategy with OHEM loss achieve 17.37 mloU. For
token selection, uncertain selection and top-k selection are on par and they significantly outperform
the random selection as expected.

Table 5: Ablation study on our model components, performed on the Occ3D-Waymo dataset.

OHEM Loss Token Selection Strategy ToU mloU
random uncertain top-k PED cC

v 4.16 10.03 14.06

v v 5.07 12.95 16.62

' v 6.27 13.85 17.37

v ' 7.04 14.16 18.43

7 Conclusion

We present Occ3D, a large-scale high-quality 3D occupancy prediction benchmark for visual percep-
tion. Meanwhile, we present a rigorous label generation protocol and a new model CTF-Occ network
for the 3D occupancy prediction task. They are publicly released to facilitate future research.

Limitations. Although we meticulously design the dataset generation pipeline to significantly
enhance its quality, there are several ways to achieve further improvement:

i. Sensor Calibration Error: Since we use LiDAR scans to construct high-quality occupancy labels
for camera perception, the calibration between LiDAR and cameras becomes critical. Conducting
multi-frame aggregation also relies on precise sensor calibration.

ii. Dynamic and Deformable Objects: For dynamic objects, we extract the points located within the
box and aggregate them. However, some dynamic objects may not have box annotations, such
as running animals, and some objects may not satisfy the rigid body assumption, like a person
swinging their arms. There will be motion blur problems in these cases.

iii. General Objects: Both the nuScenes and Waymo datasets only annotate limited categories.
Out-of-vocabulary objects such as trash cans and traffic cones are all regarded as general objects.
Further human annotation to provide fine-grained details will help in reproducing an intelligence
with unbounded understanding and benefit auto-driving research.

Acknowledgments. This work is supported by the National Key R&D Program of China
(2022ZD0161700).
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