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1 Proof of Proposition 1 and Theorem 1 from the paper

Proposition 1. Minimizing Lsub is equivalent to jointly minimizing a lower bound on the distance
between the representation of a simplex σi

k ∈ X (1) and the aggregate representation of σi′

k ∈ X (2)

that is adjacent to σi
k and the distance between the representation of σi′

k ∈ X (2) and the aggregate of
representations of σi′

k ∈ X (2) that is adjacent to σi
k.

Proof. Assume that X (1) and X (2) are two augmented simplicial complexes obtained from the given
simplicial complex X using the simplicial complex augmentation method described in Algorithm 1.
We can express Lsub,k, the kth summand in Equation 1 in main paper, as
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where the set N (1)
k (i) = {l | [Wk]i,l > 0} collects the k-simplices in X (2) surrounding the ith

k-simplex in X (1) as described by the weight matrix. The simplices not in N (1)
k (i) do not contribute

to the sum as the corresponding entries in Wk are zero.
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where (a) is due to the triangle inequality and (b) is due to row stochasticity of Wk. 2

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Theorem 1. Minimizing the expected loss Lsub (expectation is with respect to the random variable
X) is equivalent to maximizing the MI between Z

(i)
k and Xk, i.e.,

minimize
θ

Lsub,k ≡ maximize
θ

I(Z
(i)
k , Xk), (S3)

for k = 0, 1, . . . ,K, where Lsub,k is the kth summand in (S1), I(Z(i)
k , Xk) is the MI between the

representations of the augmented k-simplices Z(i)
k and the k-simplicies in the originial data Xk.

Proof. Assume that X (1) ∼ p(·|X ) and X (2) ∼ p(·|X ). The two views come from a probability
distribution conditioned on original data distribution X , and X is as distributed as X . The sample
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where (c) follows from (a) in Equation (S2).

Suppose we have T -dimensional features. Then the first term simplifies to
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Since X (1) and X (2) are independently drawn from an identical distribution, the expectations of their
encoded features are the same. Hence we have
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This suggests that minimizing Lsub,k reduces the variance of the representations of simplicies from
one augmented simplicial complex and representations of its neighbors in the other augmented
simplicial complex conditioned on the input. A similar result can be established for the second
term in Equation (S4), which will reduce the variance of representations of simplices and their
neighborhoods within the same augmented simplicial complex.

It is known that H(Z
(1)
k |Xk) =

∑
d H([Z

(1)
k ]d|Xk) when the entries of Z(1)

k are independent. For
the one-dimensional Gaussian distribution with variance σ2, the entropy is equal to 1

2 log(2π expσ2).
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Dataset Simplex #0-simplicies #1-simplicies #2-simplicies
contact-high-school Group of people 327 5818 2370

contact-primary-school Group of people 242 8317 5139
senate-bills Co-sponsors 294 6974 3013
email-Enron Email groups 142 1655 6095

Table S1: Dataset statistics.

In our case, H(Z
(1)
k |Xk) =

∑
d

1
2 log(2π exp(variance[[Z

(1)
k ]d])). Consequently, minimizing the

variance of features in each dimension reduces its entropy conditioned on the input. For mutual
information (MI), we know that I(Z(1)

k , Xk) = H(Z
(1)
k )−H(Z

(1)
k |Xk).

Therefore, by minimizing Equation 1 from the main paper, the MI I(Z(1)
k , Xk) is maximized. 2

2 Details related to experiments

Datasets. In Table S1, we provide details about the datasets used in the experiments in
the paper, namely, contact-high-school, contact-primary-school, senate-bills, and
email-Enron. A simplex in contact-high-school and contact-primary-school represent a
group of people who were in close proximity, and the classes are the classrooms that the students are
in. In senate-bills, a simplex is the set of co-sponsors of bills that are put forth in the Senate, and
the classes are the political party the sponsors belong to. In email-Enron, a simplex represents a set
of users in an email group.

Feature Initialization. To initialize features for the simplices in both the simplicial complexes X (1)

and X (2), we follow the procedure described next.

Every simplicial complex has an underlying graph, which is a collection of 1-simplicies. Firstly, we
determine the diameter D of this underlying graph, where the diameter is defined as the shortest path
length between the most distant nodes in the graph. Subsequently, choose D random nodes from the
graph and designate them as anchor nodes. If the mean distance between all the pairs of anchor nodes
is not greater than a threshold ϵ, repeat the above step. Next, we calculate the distance of each node
from the anchor nodes, identifying the closest anchor node for all nodes. We assign a one-hot vector
of the nearest anchor node as the features. Finally, to obtain the features of a simplex, we perform an
elementwise OR operation on the features of all nodes within the simplex.

Anchor nodes serve as fixed reference points within a simplicial complex, anchoring its structure
and providing stability. They can serve as important anchor points for capturing and encoding the
underlying patterns and relationships in the simplicial complex. By ensuring that the anchor nodes
are far enough from each other, we ensure that the initial features H, represent distinct discriminative
information about different parts of a simplicial complex. Furthermore, anchor nodes can also
represent important entities. For example, in social networks, anchor nodes could be influential
individuals or key opinion leaders. With this initialization method, a simplex can represent the group
of influential individuals a user group follows, embedding the semantic information in the initial
features.

Setup. To ensure a fair comparison, we use three (message passing) layers for all the neural models
(i.e., SNNs and GNNs). The encoder parameters θ are optimized using the Adam optimizer [1] with
a constant learning rate of 10−3 and a weight decay of 10−4 across all experiments. We train the
encoder for 20 epochs on every dataset for the proposed model. We maintain a consistent approach
for setting the feature dimensions across all datasets, setting the hidden dimensions output to 10 times
the graph’s diameter and the output layer’s output dimension to 20 times the graph’s diameter in a
self-supervised setting or equal to the number of classes. In self-supervised experiments, we first
encode the simplicial complex using the learned encoder. We subsequently train a logistic regression
classifier or a single-layer MLP to obtain performance metrics. We use ρ = 0.1 for simplicial
complex augmentation for all the datasets.

To construct the weight matrix Wk, we use η0 = 5, η1 = 3, and η2 = 1. Moreover, calculating
the term Lrel for all the entries of Wk matrices is not needed (more discussion on this is provided
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(a) contact-high-school (b) contact-high-school (c) contact-primary-school

Figure S1: Performance comparison plots for varying δ and number of epochs.

contact-high-school contact-primary-school senate-bills
α = 1 0.80±0.07 0.65±0.08 0.67±0.06

α = 0.75 0.87±0.04 0.61±0.1 0.64±0.05
α = 0.5 0.92±0.05 0.61±0.05 0.72±0.06
α = 0.25 0.8±0.05 0.57±0.08 0.66±0.04
α = 0 0.78±0.08 0.48±0.07 0.62±0.07

Table S2: Results with varying alpha on node classification datasets.

later on). Hence, to reduce training complexity, we fix the number of randomly sampled values δ for
computing Lrel to δ = 300 for all encoders. The runtime of TopoSRL is depends upon the original
simplicial complex X size, epoch number, and sampled indices δ. Typically, our setup necessitates
approximately 2 to 3 hours of training time for all datasets on a single NVIDIA Quadro RTX 8000.

3 Additional experimental results

As illustrated in Figures S1a, S1b, and S1c, we find a positive correlation between an increase
in δ and the improvement in classification accuracy for datasets contact-high-school and
senate-bills, but after it crosses a value of 300, the performance decreases significantly for
the dataset contact-high-school. The results provided in the paper are with δ = 300. This
observation suggests that the choice of δ plays a crucial role in the performance of our model.
Additionally, we notice an interesting pattern during training, where the performance reaches its
peak at approximately 20 epochs. Beyond this point, the performance either experiences a decline or
yields diminishing gains, indicating the possibility of overfitting or convergence. In light of these
observations, we decided to train the encoder for 20 epochs.

Furthermore, we conducted additional experiments to analyze the impact of the parameter α in
total loss on the model’s performance. Specifically, we test the model with five distinct values
of α to observe any variations in the results. These additional experiments reported in Table S2
provide valuable insights about the sensitivity of the model to the choice of α. As can be seen, only
minimizing the term Lrel with α = 0 does not offer any benefits. For contact-primary-school,
focusing solely on minimizing the Lsub term yields superior results compared to others minimizing
both. However, it is worth noting that there exists a notable performance gap between the supervised
method and our proposed TopoSRL approach for this particular dataset. In essence, simultaneous
minimization of both terms in our objective function generally leads to superior outcomes on the
contact-high-school and senate-bills datasets.

Furthermore, we also report the performance of TopoSRL with other SNN models for the encoder
functions such as SAN[2] and SCNN[3] in Table S3. The SCNN model being a less expressive
model, might not completely capture the inherent complexities and higher-order interactions in the
contact-high-school and contact-primary-school datasets, leading to its lower performance.
Conversely, the SAN model, which relies on attention mechanisms, might be overwhelmed by the
high density of connections in contact-primary-school, causing its performance to suffer due to
imbalances in the attention weights assigned to different nodes.
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Data MPSN SAN SCNN
contact-high-school 0.92±0.05 0.93±0.05 0.86±0.05

contact-primary-school 0.71±0.05 0.57±0.06 0.48±0.08
senate-bills 0.72±.06 0.64±0.06 0.71±0.06

Table S3: Node classification using different encoder models in TopoSRL.

(a) TopoSRL (b) MPSN (c) CCA-SSG (d) GCN

Figure S2: Comparison of TSNE plots of representations learned by various encoders.

Figure S2 compares T-SNE plots for four different methods: TopoSRL, CCA-SSG, MPSN, and
GCN. The dataset used is contact-high-school simplicial complex, and the node classes are
the prediction target. Each point in the plot corresponds to the representations of a node from the
contact-high-school dataset. To restate what is mentioned in the manuscript, MPSN can cluster most
nodes in a confined space and create clear class boundaries except for a few. Meanwhile, GCN and
CCA-SSG methods can not capture higher-order information and show similar artifacts. TopoSRL
manages to cluster some classes, but nodes in clusters are far from the center as in MPSN, which
preserves more information. For example, the two clusters on the bottom and one from the right
(corresponding to classes 1,2,3) are students from the same year but in different divisions. This
information is preserved with TopoSRL as we can see three different clusters with some separation.
However, there are a few overlaps as well, aligning with the nature of real-world data as students
from the same year are often good friends (either due to extracurricular activities or study groups).

We present the comparison of TSNE plots for the senate-bills and contact-primary-school
datasets in Figures S3 and S4. As we can see, the representations learned from supervised encoders
such as MPSN, GCN, or self-supervised graph encoders trained with the CCA-SSG method show
some artifacts while trying to classify the samples, as opposed to TopoSRL, which learns more sparse
and distributed representations, conserving the topology.

(a) TopoSRL (b) MPSN (c) CCA-SSG (d) GCN

Figure S3: Comparison of TSNE plots of representations learned by various encoders for
senate-bills dataset.
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(a) TopoSRL (b) MPSN (c) CCA-SSG (d) GCN

Figure S4: Comparison of TSNE plots of representations learned by various encoders
contact-primary-school dataset.
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