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Abstract

In this paper, we introduce TopoSRL, a novel self-supervised learning (SSL) method
for simplicial complexes to effectively capture higher-order interactions and pre-
serve topology in the learned representations. TopoSRL addresses the limitations
of existing graph-based SSL methods that typically concentrate on pairwise re-
lationships, neglecting long-range dependencies crucial to capturing topological
information. We propose a new simplicial augmentation technique that generates
two views of the simplicial complex that enriches the representations while being
efficient. Next, we propose a new simplicial contrastive loss function that contrasts
the generated simplices to preserve local and global information present in the
simplicial complexes. Extensive experimental results demonstrate the superior
performance of TopoSRL compared to state-of-the-art graph SSL techniques and su-
pervised simplicial neural models across various datasets corroborating the efficacy
of TopoSRL in processing simplicial complex data in a self-supervised setting.

1 Introduction

Simplicial complexes are mathematical structures that explicitly capture higher-order relationships
between entities (as nodes) using simplicies of different orders (as edges, triangles, and so on).
There has been a growing interest in developing simplicial representation learning models, such as
simplicial neural networks (SNN) [1–6], as simplicial complexes are generally more expressive than
graphs, which only capture pairwise relations. SNNs incorporate topological information available
in simplicial complexes while learning representations of simplicies of different orders, which are
useful for various downstream tasks such as node, graph, higher-order link, and trajectory prediction
tasks [1, 4–6]. However, a significant challenge in learning representations for simplicial complexes
using existing SNN models is the need for task-specific labels required for training. Acquiring
meaningful labels for real-world, high-dimensional, and complex data is difficult due to intricate
structures, multiple valid labeling schemes, or privacy and ethical concerns.

Self-supervised learning (SSL) schemes learn expressive and powerful representations without
requiring labeled data. Specifically, the main goal in SSL is to model an encoder, which is learned
using an objective function and unlabelled training data. This paper proposes an SSL method
for simplicial complex data that preserves topological and geometric information while learning
representations. Although no existing studies focus on SSL for simplicial complex data, a closely
related field of SSL for graph data has been extensively studied. SSL for simplicial complex data
is an important generalization as every simplicial complex inherently includes an underlying graph,
making SSL on graphs a specialized subset of SSL on simplicial complexes.

The general idea behind SSL on graphs is to augment a graph to create two views of the available graph
and then maximize the mutual information (MI) between the augmented graphs. So, the research
focus thus far has been on designing augmentation techniques and objective functions that maximize
MI. However, existing methods of SSL on graphs require complex augmentation [7], negative
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sampling algorithms [8], or require components to empirically avoid degenerative solutions [9–12].
This leads to a more complex neural model, hindering their direct extension for SSL on simplicial
complexes. For instance, deep graph infomax (DGI) [9] maximizes MI between a node and its sub-
graph by learning two MLPs: one for the subgraph readout and another as a discriminator function
classifying if a node exists in the given subgraph or not. Extending DGI to simplicial complexes
would necessitate training k + 1 discriminators for a simplicial complex of order k (see Section 3 for
the definition of the order of a simplicial complex), drastically increasing the training complexity.
Similarly, graph contrastive representation learning (GRACE) [8] and graph contrastive representation
learning with adaptive augmentation (GCA) [7] need the selection of effective negative samples and
require additional storage by selecting all the other nodes in the graph as negative samples. Directly
extending these methods to simplicial complexes would lead to prohibitive computational complexity
going up to O(2N ) for a simplicial complex with N nodes. To mitigate the need for negative
samples or additional networks, recent approaches like bootstrapped graph representation learning
(BGRL) [11], SelfGNN [12], and canonical correlation analysis inspired self-supervised learning on
graphs (CCA-SSG) [13] attempt to learn representations by contrasting corresponding node pairs
in the two augmented graphs. Self-supervised masked graph autoencoders (GraphMAE) [14] is an
alternative approach that uses a reconstruction loss rather than the commonly used contrastive loss in
the graph-based SSL methods. However, these methods focus only on contrasting or reconstructing
local information and do not account for global long-distance information available in the network.

Motivated by the aforementioned limitations of SSL methods on graphs, we introduce TopoSRL, a
self-supervised learning pipeline for simplicial complex data that preserves topology information in
the representation space. Preserving topology information is crucial because it allows the learned
representations to capture higher-order interactions and relationships unique to simplicial complexes.
TopoSRL comprises an intuitive technique to generate stochastically augmented views of a simplicial
complex. We introduce a new contrastive loss function to preserve topology information of simplicial
complexes in the geometric space to learn more expressive representations. In sum, our major
contributions in TopoSRL are as follows:

• Simplicial augmentation: We introduce a simple and effective augmentation technique
for simplicial complexes that captures the inherent relationships between simplices. In
particular, the augmentation method stochastically removes closed simplicies and adds
open simplicies guided by the topological structure of a simplicial complex, where a closed
simplex is a simplex that is part of the simplicial complex, while an open simplex is a
simplex that itself is not a part of the simplicial complex, but all of its subsets are. This
procedure is computationally efficient and leads to superior performance than randomly
adding simplicies without accounting for the topological structure of a simplicial complex.

• Simplicial contrastive loss: We propose a loss function for SSL on simplicial complexes
that contrasts pairs of corresponding simplicies as well as considers the relational distance
between pairs of simplicies and their augmented counterparts, where the relational distance
refers to a measure of dissimilarity between pairs of simplices. We also provide theoretical
evidence that the proposed loss function implicitly maximizes MI between a simplex and its
neighborhood within the same augmented simplex and the other augmented simplex, helping
the model capture the inherent structures and patterns in the data, thereby improving the
model’s performance and adaptability to various tasks without the requirement of training
additional components such as MI estimators.

We conduct experiments demonstrating our proposed method on downstream tasks such as node
classification, simplicial closure, graph classification, and trajectory prediction. We also highlight the
effectiveness of TopoSRL in learning expressive representations for simplicial complexes with the
proposed augmentation technique as opposed to the random augmentation technique. Experiments
show that without any complex architectures or expensive augmentation techniques, our method
outperforms existing state-of-the-art graph representation learning methods while being competitive
with supervised simplicial representation learning methods.

2 Related works

This section briefly discusses a few popular SNN models, one of which can be used in TopoSRL. The
first step of TopoSRL’s learning phase is simplicial augmentation. Hence, we also discuss existing
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augmentation techniques used in graph SSL and how they can not be extended (due to computationally
or empirical limitations) for simplicial complexes. Then, we move on to discussing SSL on graphs, a
specialized version of SSL on simplicial complexes.

Simplicial representation learning. SNN models learn representations of simplices of different
orders (e.g., nodes, edges, triangles, and so on) in a simplicial complex [2, 3], and are based on an
extension of graph convolutions to convolutions over simplicial complexes. Simplicial attention
networks (SAN) [1] extends graph attention networks (GAT) [15] for simplicial complexes. Message
passing simplicial networks (MPSN) [5] proposes a framework to design more expressive SNN
models related to the so-called simplicial Weisfeiler-Lehman isomorphism test. TopoSRL is free from
the choice of a specific SNN encoder, and any one of the SSN models can be used as an encoder.

Graph augmentation. Most of the graph SSL methods described in Section 1, namely, GRACE,
GCA, and BGRL, use an augmentation technique that includes two steps: (i) add and remove
edges at random to generate two graphs from an input graph, and (ii) randomly mask dimensions
of initial node features. GCA [7] proposes an adaptive data augmentation technique that models
the edge-removal probability differently for each edge in the graph based on the importance of the
edge. However, this method requires more expensive augmentations to attain peak performance [11].
Applying an identical augmentation technique to simplicial complexes necessitates modeling removal
probabilities for each simplex. This increases the augmentation process’s complexity and mandates
the development of innovative metrics for measuring simplex importance. Other than this, most
methods use uniform probability to add and remove edges. Although adding and removing simplicies
uniformly at random is a naive and simple extension, we empirically show that TopoSRL performs
considerably better than random augmentation. In contrast, TopoSRL uses a simpler augmentation
technique that only requires the addition of open simplicies, which are inherently rich in information
as discussed later in Section 4.1, and is very easy to implement.

SSL on graphs. Contrastive learning methods for images have recently been adapted for graphs. This
includes DGI [9], which contrasts node-local patches with global graph representations was inspired
by Deep InfoMax [16]. GMI [17] maximizes a concept of graphical mutual information inspired by
MINE [18], enabling a more granular contrastive loss than DGI. GRACE [8] and its derivatives, such
as GCA [7], which rely on more complex data adaptive enhancements, have adapted the SimCLR [19]
algorithm for graphs. GraphCL [20] also adapts SimCLR to learn graph-level representations with a
contrastive objective. Multi-view graph representation learning (MVGRL) [10] extends contrastive
multi-view coding to graphs. All these methods suffer from considerable computational complexities
because they rely heavily on negative samples. BGRL [11] and SelfGNN [12] extend Bootstrap
you own latent (BYOL) [21], which uses different online and target encoders, wherein the target
encoder is updated as an exponential moving average of the online encoder while the online encoder
is updated by optimizing a loss function. The difference between BGRL and SelfGNN is that BGRL
uses different online and target encoders, but SelfGNN utilizes the same encoder as online and target.
Lastly, CCA-SSG[13] uses CCA-based loss. BGRL, SelfGNN, and CCA-SSG are methods free from
negative samples and incur lower computational complexity than previous methods. Inspired by these
graph SSL methods, TopoSRL aims at a negative sampling-free approach focusing on preserving
topology and implicitly maximizing MI.

3 Background

A simplicial complex X is a collection of a finite number of simplicies. A simplex of order k (or, a
k-simplex) is a (k + 1)-cardinality subset of the vertex set V so that if a simplex σk ∈ X then all
the non-empty subsets of σk also belong to the simplicial complex X . The order, K, of a simplicial
complex X is the order of the maximally ordered simplex in the simplicial complex.

Suppose σk, τk and ρk are some k-simplices in a simplicial complex. A k-simplex σk has the fol-
lowing neighbors in the simplicial complex, namely, lower-adjacent neighbors L(σk) = {τk|ρk−1 ⊂
σk ∧ ρk−1 ⊂ τk}, upper-adjacent neighbors U(σk) = {τk|σk ⊂ ρk+1 ∧ τk ⊂ ρk+1}, boundary
B(σk) = {τk−1|τk−1 ⊂ σk}, and co-boundary C(σk) = {τk+1|σk ⊂ τk+1}.
An open k-simplex is defined as a k-simplex σk such that all its boundaries B(σk) ⊂ X , but σk /∈ X .
In other words, if all the boundaries of a simplex are present in the simplicial complex, but the
simplex itself is not part of the simplicial complex, it is considered an open simplex.
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Figure 1: (a) The TopoSRL pipeline. Here, W is a weight matrix that emphasizes the relations
between simplices in the two augmented simplicial complexes. (b) Simplicial augmentation example.
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where t is the layer index of the SNN model, ϕn is the transformation function with adjacency of
type n (We use one layer MLP), ht

σk
is the representation of the simplex σk at layer t with h0

σk
being

the initial embedding. We write the final representations of all the simplices in the simplicial complex
X obtained from such an SNN model with L layers compactly as

Z = Eθ(X ,H),

where θ denotes the set of learnable parameters and H is the initial feature matrix of all the simplices
in X . Although the above SNN model is based on MPSN, different SNN variants can be derived from
the above model by choosing different AGGREGATE and COMBINE operators and which neighborhoods
to aggregate.

4 The proposed TopoSRL pipeline

The main aim of the proposed approach is to learn an SNN encoder function Eθ(·) to compute
expressive representations for simplices in a simplicial complex X in a self-supervised manner.
Towards this end, we first compute two augmented views of a simplicial complex X , namely, X (1)

and X (2) (as described later on Section 4.1). Then we learn the representations of the two simplicial
complexes through the encoder Eθ(·) as Z(1) = Eθ(X (1),H(1)) and Z(2) = Eθ(X (2),H(2)), where
Z(i) = {Z(i)

1 ,Z
(i)
2 , . . . ,Z

(i)
K } is the set embedding matrices and Z

(i)
k ∈ RN

(i)
k ×D being the D-

dimensional embedding matrix of all the k-simplicies in the simplicial complex X (i) and N
(i)
k

being the total number of k-simplicies in X (i). We contrast these representations and learn Eθ(·) by
optimizing the simplicial contrastive loss (developed in Section 4.2). An illustration of the TopoSRL
pipeline is shown in Figure 1(a).

4.1 Simplicial augmentation

We introduce a novel stochastic augmentation technique for simplicial complexes to generate two
simplicial complexes X (1) and X (2) from X by adding open simplices and removing closed simplices
at random via Bernoulli sampling. To begin with, we compute1 all the open simplices in X . Next,

1Identifying open simplices of order k + 1 in a simplicial complex X costs O(N2
k ), where Nk is the total

number of k-simplices. We only compute it once outside the training process.
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Algorithm 1 Simplicial complex augmentation

1: procedure SIMPLICIALAUGMENTATION(X , ρ)
2: Xopen ← OpenSimplices(X ) ▷ Compute open k-simplices in X with k ≥ 2
3: for i = 1 and 2 do
4: X (i) ← X
5: for each σk ∈ X with k > 1 do
6: Draw r ∼ Bernoulli(ρ)
7: if r = 1 then ▷ remove a closed simplex
8: X (i) ← {X (i) \ σk}
9: for each σ ∈ Xopen do

10: Draw a ∼ Bernoulli(ρ)
11: if a = 1 then ▷ add a open simplex
12: X (i) ← {X (i) ∪ σ}
13: return X (1) and X (2)

we draw a Bernoulli random variable for each open simplex to determine whether to include the
open simplex in X (i) for i = 1, 2. Similarly, we draw another Bernoulli random variable for each
k-simplex (k > 1) in X to determine whether to retain the closed simplex in X (i) for i = 1, 2. This
procedure is summarized as Algorithm 1.

The proposed augmentation method preserves the inherent structure and relationships within the
simplicial complex as illustrated in Figure 1(b). For example, consider the walmart-trips simplicial
complex dataset2, wherein a set of items purchased together by a customer in one trip to Walmart
is a simplex. Now, if a customer purchases {peanut butter and jam}, {bread and jam}, and
{peanut butter and bread} on three separate occasions, it is highly probable that the customer
will buy {peanut butter, jam, bread} together on a subsequent trip. Adding the simplex
{peanut butter, jam, bread} as in view 2 of Figure 1(b) will represent an instance of the
simplicial complex if the data were sampled at a later point in time, and hence it still retains and
provides better information to contrast compared to adding random simplices.

In contrast, in a random sampling method, where we add simplices at random, we need to include
all the subsets of the simplex that is to be added, which costs O(2k) for each k-order simplex for
k ∈ {2, . . . K}. As opposed to this, in the proposed simplicial augmentation technique, since we are
adding an open simplex, all the subsets of this simplex are present in the simplicial complex, making
the additional cost only O(1) and thereby making it computationally more efficient.

4.2 Simplicial contrastive loss

The proposed method aims to learn simplex representations by capturing topological information in
higher-order simplices and their distant neighbors. In contrast, most of the existing self-supervised
graph representation learning approaches primarily focus on contrasting corresponding nodes in
augmented graphs and do not preserve topological information as the objective function does not
focus on the relational distance between pairs of two nodes that are not neighbors.

Cost matrices. We define the following cost matrices to compute the TopoSRL loss function:
the intra-view cost matrix, denoted by C

(i)
k ∈ RN

(i)
k ×N

(i)
k for i = 1, 2, measures the distance

between representations of two simplices in the simplicial complex X (i) and the inter-view cost
matrix, denoted by C

(1,2)
k ∈ RN

(1)
k ×N

(2)
k , measures the distance between the k-simplex in the two

views. The intra-view cost matrix is used to minimize the relational distance between pairs of
simplices from two augmented simplicial complexes. Specifically, the (p, q)th entry of C(i)

k , is
defined as [C(i)

k ]p,q = ∥[Z(i)
k ]p − [Z

(i)
k ]q∥22, where [Z

(i)
k ]p is the representation of the k-simplex p in

X (i). On the other hand, the inter-view cost matrix is used to minimize the distance between the
representation of a simplex and an aggregate representation of a sub-simplicial complex surrounding

2https://www.cs.cornell.edu/~arb/data/walmart-trips/
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this simplex in the other augmented simplicial complex. The (p, q)th entry of C(1,2)
k is defined as

[C
(1,2)
k ]p,q = ∥[Z(1)

k ]p − [Z
(2)
k ]q∥22.

Weight matrix. We also construct a weight matrix Wk ∈ RN
(1)
k ×N

(2)
k for each k-simplex to capture

the relation of a simplex σ
(1)
k ∈ X (1) and σ

(2)
k ∈ X (2), which will be used to calculate the aggregate

representation of sub-simplicial complexes by assigning different importance weights that depend on
how many hops σ(2)

k is away from σ
(1)
k in the simplicial complex X (1). We assign the entries of Wk

as follows. If σ(2)
k = σ

(1)
k , we assign a higher value η0 to [Wk]σ(1)

k ,σ
(2)
k

. If σ(2)
k ∈ L(σ(1))∪U(σ(1)),

i.e., if σ(2)
k is in one-hop neighborhood of σ(1)

k inX (1), then we assign it a lower value η1. Similarly, if
σ
(2)
k is in the two-hop neighborhood of σ(1)

k in X (1), we assign a value of η2, such that η0 > η1 > η2
and then we apply row-wise softmax to Wk to normalize it. By construction, Wk is a row-stochastic
matrix.

Loss function. The proposed simplicial contrastive loss is a convex combination of two terms,
namely, the sub-simplicial complex loss Lsub and the relative simplicial complex loss Lrel. The term
Lsub measures the cumulative (over all the simplicies) weighted distance between the representation
of a k-simplex σi

k ∈ X (1) and k-simplices σi′

k ∈ X (2) with appropriate weights in the matrix Wk,
and is given by

Lsub =

K∑
k=0

N
(1)
k∑

i=1

N
(2)
k∑

j=1

[C
(1,2)
k ]i,j [Wk]i,j . (1)

The term Lrel calculates the relational distance between pairs of simplices and is given by

Lrel =

K∑
k=0

N
(1)
k∑

i,j=1

N
(2)
k∑

i′,j′=1

(
[C

(1)
k ]i,j − [C

(2)
k ]i′,j′

)2

[Wk]i,i′ [Wk]j,j′ . (2)

For instance, consider two pairs of simplices (σi
k, σ

j
k) and (σi′

k , σ
j′

k ) such that σi
k, σ

j
k ∈ X

(1)
k ,

σi′

k , σ
j′

k ∈ X
(2)
k , [Wk]σi

k,σ
i′
k

> 0, and [Wk]σj
k,σ

j′
k

> 0, that is, (σi
k, σ

i′

k ) and (σj
k, σ

j′

k ) are distant
neighbors (not necessarily one-hop). Hence, minimizing Lrel minimizes the squared difference of
the distance between the representations of (σi

k, σ
j
k) and (σi′

k , σ
j′

k ), which leads to similar pairs of
simplices from two distinct simplicial complexes maintaining an equal distance. In other words,
if σj

k is m-hop away from σi
k and σj′

k is m-hop away from σi′

k , then minimizing Lrel will reduce
the difference between the distance of the pairs and preserve the m-hop information present in X .
Finally, the overall loss is

L = αLsub + (1− α)Lrel,

where α ∈ [0, 1] is a tunable parameter. The overall loss preserves the topological properties as
adjacent simplices will be embedded more closely in the Euclidean space because of the Lsub term,
capturing the local information. The difference in distance of contrasting simplex pairs will be
minimized by minimizing Lrel, capturing the global information.

We end this section with two interesting theoretical results3 about the simplicial contrastive loss
function and an overview of the TopoSRL pipeline in Algorithm 2. In the next proposition, we show
that Lsub preserves the local information in a simplicial complex.

Proposition 1. Minimizing Lsub is equivalent to jointly minimizing a lower bound on the distance
between the representation of a simplex σi

k ∈ X (1) and the aggregate representation of σi′

k ∈ X (2)

that is adjacent to σi
k and the distance between the representation of σi′

k ∈ X (2) and the aggregate of
representations of σi′

k ∈ X (2) that is adjacent to σi
k ∈ X (1).

Most graph SLL methods maximize MI between augmented graphs using MI estimators [9]. In the
next theorem, we show that optimizing the proposed loss function is also related to optimizing MI
between representations of simplicies in one augmented simplicial complex and representations of

3Proofs are available in the supplementary material.
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Algorithm 2 TopoSRL

1: procedure TOPOSRL(X , ρ, κ,H) ▷ κ is the maximum order of the simplices of interest
2: Initialize θ
3: e← 1
4: while e ≤ #epochs do
5: X (1),X (2) ← SimplicialAugmentation(X , ρ)
6: Calculate Wk for k = 0, . . . , κ
7: Z(1) ← Eθ(X (1),H(1)) and Z(2) ← Eθ(X (2),H(2)).
8: Calculate C

(1)
k ,C

(2)
k ,C

(12)
k for k = 0, · · · , κ

9: Minimize L = αLsub + (1− α)Lrel

10: e = e+ 1
11: Z← Eθ(X ,H)
12: return Z

its neighbors in the other augmented simplicial complex and representations of simplices and their
neighborhoods within the same augmented simplicial complex conditioned on the input data.

Suppose X represents the random variable corresponding to the input data, Xk represents the k-
simplices in X , and X(i) represents an augmented view of X , sharing the same sample space as X ,
and the input simplicial complex data X ∼ X . TopoSRL is designed to learn representations, denoted
as Z for the input data and Z(i) for its augmentation. We also denote H(A) and I(A,B) as the
entropy of the random variable A and the MI between the random variables A and B, respectively.

Theorem 1. Minimizing the expected loss Lsub (expectation is with respect to the random variable
X) is equivalent to maximizing the MI between Z

(i)
k and Xk, i.e.,

minimize
θ

Lsub,k ≡ maximize
θ

I(Z
(i)
k , Xk), (3)

for k = 0, 1, . . . ,K, where Lsub,k is the kth summand in (1), I(Z(i)
k , Xk) is the MI between the

representations of the augmented k-simplices Z(i)
k and the k-simplicies in the originial data Xk.

The above theorem shows that in expectation, minimizing the term Lsub is equivalent to mini-
mizing the variance between representations in the augmented simplicial complexes, which leads
to minimization of the conditional entropy H(Z

(i)
k |XK), implying the maximization of MI as

I(Z
(i)
k , Xk) = H(Z

(i)
k ) −H(Z

(i)
k |Xk). The proof also shows that minimizing the simplicial con-

trastive loss implicitly maximizes MI between simplicies from one augmented simplicial complex
and representations of its neighbors in the other augmented simplicial complex conditioned on the
input and representations of simplices and their neighborhoods within the same augmented simplicial
complex. This result is along the lines of earlier methods like DGI [9] and InfoGraph [22]. However,
TopoSRL does not require additional components in DGI or InfoGraph for MI maximization.

5 Experiments

We follow the standard setting of self-supervised learning methods. Firstly, we train the encoder with
the proposed simplicial contrastive loss. Next, we freeze the encoders’ model parameters, extract
representations for all the simplicies, and train a classifier for the following two downstream tasks.
The code is available at https://github.com/HirenMadhu/TopoSRL.

Downstream tasks. We focus on node classification, simplicial closure, trajectory prediction and
graph classification tasks. Node classification focuses on predicting labels for 0-simplicies (aka
nodes) in a given simplicial complex. We perform node classification on the following publicly
available datasets4, namely, contact-primary-school, contact-high-school, senate-bills.
We use classification accuracy as the performance metric. In simplicial closure, the aim is to predict
the closure of open simplicies in a time series of simplicial complex data. We perform simplicial

4Dataset details are presented in the supplementary material. Datasets are available at https://www.cs.
cornell.edu/~arb/data/
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Method Type high-school primary-school senate-bills
GCN S 0.4±0.04 0.30±0.04 0.67±0.06

GraphSage S 0.27±0.05 0.37±0.05 0.54±0.03
GIN S 0.18±0.04 0.16±0.02 0.53±0.04
GAT S 0.34±0.05 0.19±0.06 0.5±0.04

CCA-SSG SSL 0.68±0.16 0.14±0.07 0.62±0.04
GCA SSL 0.18±0.08 0.12±0.05 0.5±0.0

BGRL SSL 0.11±0.01 0.09±0.01 0.5±0.0
GraphMAE SSL 0.78±0.05 0.2±0.02 0.57±0.01

SAN S 0.86± 0.04 0.29± 0.06 0.53 ± 0.09
SCNN S 0.81 ± 0.01 0.67±0.04 0.615 ± 0.05
MPSN S 0.89 ± 0.01 0.79± 0.06 0.75± 0.05
TopoSRL SSL 0.92± 0.05 0.61 ± 0.05 0.72± 0.06

Table 1: Node classification accuracies on simplicial complex datasets; S stands for supervised
setting, and SSL stands for self-supervised setting. (Best accuracy is bold and second best accuracy
is underline)

closure on email-Eu, email-Enron, contact-high-school datasets. We first split the data across
time on these temporal datasets and then train the encoder on the first 80% of the data. The last
20% is used for inference. Since the class distribution is very skewed, we use F1-macro to evaluate
the performance. Trajectory prediction focuses on predicting the next node in a trajectory, given a
sequence of nodes. We perform experiments on two datasets, namely, Ocean and the Synthetic
dataset generated using the method described in [6]. We use accuracy as the metric for comparison. In
graph classification, the focus is on learning representations for the whole graph and classifying them.
Clique lifting is used to convert a graph to a simplicial complex and then use an SNN model to extract
representations for the whole graph. We evaluate TopoSRL’s performance in graph classification
task on PROTEINS, NCI1, REDDIT-B, REDDIT-M and IMDB-B datasets from the TUDatasets [23]
repository.

Baselines. We compare TopoSRL against several supervised techniques employing architectures
such as SAN [1], SCNN [3], and MPSN [5]. This comparison builds confidence in the expressive
capabilities of TopoSRL and solidifies its usefulness in learning simplex representations in settings
with less-labeled or unlabeled data. Additionally, we conduct experiments involving various graph
neural network models, including graph convolutional network (GCN) [24], GAT[15], GIN [25],
and GraphSage[26]. Furthermore, we also compare our method with the current state-of-the-art
graph SSL methods CCA-SSG[13], BGRL [11], GraphMAE [14] and GCA [7]. This comparison
also clarifies that in the SSL setting, the proposed simplicial SSL method (i.e., TopoSRL) performs
better than graph SSL methods, as demonstrated by the existing supervised simplicial representation
learning methods. For TopoSRL, we use a 3-layer MPSN as the encoder network Eθ(·). Details about
the experimental setup, hyperparameters, and results with other SNN encoder models are available in
the supplementary material. We follow the standard practice where all the results are averaged over
ten different seeds, and one run is performed for each seed.

Results and discussion. Our results demonstrate that TopoSRL consistently outperforms state-of-
the-art graph SSL methods. In Table 1, we see that TopoSRL surpasses supervised methods on
graphs and state-of-the-art graph SSL techniques while being competitive with supervised approaches
for the node classification task. TopoSRL has a superior performance compared to MPSN on the
contact-high-school dataset while being competitive with MPSN on the other two datasets. As
can be seen in experiments reported in the supplementary material, contact-primary-school,
being a denser dataset, does not benefit significantly from minimizing both the terms, but minimizing
only Lrel (i.e., α = 1) improves performance.

Table 2 showcases experimental results on simplicial closure datasets. On this task, we see that the
less parameterized SCNN model outperforms both TopoSRL and MPSN on the email-Enron and
contact-primary-school datasets, while TopoSRL performs better than MPSN and is competitive
overall. These results can be attributed to the skewed nature of simplicial closure datasets, where
models with large parameters like MPSN and SAN are prone to overfitting labels. Although TopoSRL
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Method Type email-Enron contact-primary-school contact-high-school
SAN S 0.57±0.12 0.39±0.03 0.3±0.07

SCNN S 0.61±0.08 0.49±0.09 0.41±0.11
MPSN S 0.43±0.07 0.43±0.05 0.47±0.20
TopoSRL SSL 0.59±0.05 0.46±0.01 0.43±0.0

Table 2: Simplicial closure performance using F1 scores; S stands for supervised setting and SSL stands for
self-supervised setting.

Method Type Ocean Synthetic
Projection S 27.15±0.0 52.0±0.0

SCoNe S 30.0±0.6 55.4±1.1
SCNN S 28.5±0.6 50.5±1.0

TopoSRL SSL 42.0±3.0 50.0±1.0
Table 3: Trajectory prediction performance using accuracy scores; S stands for supervised setting, and SSL
stands for self-supervised setting.

focuses on preserving topology rather than concentrating on a specific downstream task, it has
improved performance compared to these models.

Table 3 presents the results on trajectory prediction. As we can see, the results indicate that TopoSRL
outperforms SCNN and ScoNe when applied to the Ocean dataset. When tested on the synthetic
dataset, TopoSRL demonstrates performance on par with a supervised SCNN. These results further
highlight the expressive representation capabilities of TopoSRL on oriented simplicial complexes
and its use cases in practical applications. As we can see in Table 4, TopoSRL performs on par with
supervised graph baselines and simplicial baselines. Further, TopoSRL outperforms or performs on
par with graph SSL baselines, showing the advantages of TopoSRL on a standard graph dataset with
clique lifting compared to graph SSL methods.

Method Type PROTEINS NCI1 REDDIT-B REDDIT-M IMDB-B
GCN S 0.58 0.53 0.71 0.49 0.69

GraphSage S 0.61 0.48 0.69 0.5 0.68
GIN S 0.61 0.702 0.73 0.57 0.71
GAT S 0.57 0.45 0.53 0.5 0.6

CCA-SSG SSL 0.64 0.67 0.72 0.58 0.675
BGRL SSL 0.62 0.63 0.72 0.61 0.66
SAN S 0.64 0.702 0.71 0.59 0.72

SCNN S 0.61 0.370 0.69 0.57 0.67
MPSN S 0.63 0.702 0.71 0.59 0.67
TopoSRL SSL 0.75 0.700 0.72 0.606 0.695

Table 4: Graph classification accuracies on TUDatasets; S stands for supervised setting, and SSL
stands for self-supervised setting.

To further validate the efficacy of our augmentation technique, we conduct an ablation study, compar-
ing TopoSRL with and without the proposed augmentation strategy. The results indicate a significant
performance improvement when incorporating the proposed simplicial augmentation, underlining its
crucial role in capturing long-range dependencies and higher-order interactions. Table 5 shows that
our augmentation technique results in considerable performance gains over random augmentation
methods. We observe that only adding open simplices and not removing closed simplices is a better
augmentation technique than random augmentation, but its performance deteriorates compared to the
proposed augmentation technique. This occurs because the contrastive objective function is more ef-
fective when there is more information to contrast. Removing closed simplices allows the contrastive
loss and encoder to contrast more information, resulting in higher performance instead of only adding
open simplices. Additionally, we have observed that incorporating higher-order information from
simplices with more than three vertices leads to reduced performance. This reduction is due to the
limited presence of higher-order simplices in these datasets, which causes overparameterization of
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Dataset Order R OO O
contact-high-school 3 0.62±0.05 0.81±0.04 0.92±0.05
contact-high-school 4 0.6±0.05 0.78±0.03 0.85±0.06

contact-primary-school 3 0.36±0.06 0.51±0.04 0.61±0.05
contact-primary-school 4 0.4±0.09 0.44±0.08 0.52±0.06

senate-bills 3 0.52±0.07 0.66±0.05 0.72±0.06
Table 5: Performace on node classification using random augmentation; R stands for random
augmentation, OO stands for adding only open simplices augmentation, and O stands for augmentation
with open simplicies using Algorithm 1.

the model and a slight decline in performance. More experimental results comparing different SNN
encoders and different values of alpha are reported in the supplementary material.

To test the ability of TopoSRL to learn expressive representations, we perform the following experi-
ment: 1) Use the pre-trained TopoSRL encoders to extract representations and 2) Use only a partially
labeled (e.g., 20% train and 80% test, 40% train and 60% test, etc.) data to train a logistic regression
classifier for node classification task in the contact-high-school dataset. MPSN and GCN are
trained with cross-entropy loss on the train set. Since the weights for the TopoSRL encoder trained
without labels have been saved, no new encoders were trained to produce the results. As we can see in
Table 6, with an increase in the size of the train set, the performance increases across all the methods.
Furthermore, TopoSRL has a significantly improved performance of about 5% over supervised MPSN
in the 20-80 and 40-60 split. This provides empirical evidence about the expressive capabilities of
TopoSRL and its efficacy with less-labeled data. Hence, TopoSRL would be preferable over standard
supervised models in the less-labeled data setting.

Method Type 20-80 40-60 60-40 80-20
GCN S 0.31±0.04 0.34±0.03 0.36±0.04 0.4±0.04

CCA-SSG SSL 0.39±0.04 0.45±0.04 0.53±0.04 0.68±0.16
BGRL SSL 0.48±0.00 0.49±0.00 0.48±0.00 0.51±0.00
SCNN S 0.71±0.02 0.74±0.02 0.81±0.04 0.86±0.04
MPSN S 0.74±0.02 0.80±0.02 0.86±0.01 0.89±0.01
TopoSRL SSL 0.79±0.02 0.84±0.01 0.86±0.02 0.92±0.05

Table 6: Node classification accuracies on contact-high-school; S stands for supervised setting, and SSL
stands for self-supervised setting, 20-80 refers to 20% data for training, 80 percent for test.

6 Conclusions

We have introduced a novel framework for SSL on simplicial complexes by leveraging topological
properties underlying a simplicial complex. In particular, we have proposed two key components:
a stochastic simplicial augmentation method and a simplicial contrastive loss function, which col-
lectively provide a mechanism for learning representations that retain local and global topological
information in the simplicial complex. The proposed simplicial augmentation method offers the
advantage of generating topologically consistent views of the original simplicial complex, allowing
the model to learn a rich set of features efficiently. The contrastive loss function comprises two
primary terms: the sub-simplicial complex loss and the relative simplicial complex loss. The former
focuses on minimizing the distance between the representation of a simplex and its adjacent simplices
in the augmented complex, thereby preserving local information. The latter aims to maintain relative
spatial relationships present in the original simplicial complex, thereby capturing global information.
We have also theoretically proved that the proposed loss function is related to the MI objective
function, which is commonly used in SSL on graphs. Our model outperforms state-of-the-art graphs
SSL methods on a variety of datasets. We believe this work lays a solid foundation for further
exploration of SSL methods for simplicial complexes, e.g., via alternative augmentation methods,
contrastive loss functions, scalable models, and new applications, potentially opening up new avenues
for topological data analysis.
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