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Abstract

Pre-training datasets are critical for building state-of-the-art machine learning
models, motivating rigorous study on their impact on downstream tasks. In this
work, we study the impact of the trade-off between the intra-class diversity (the
number of samples per class) and the inter-class diversity (the number of classes)
of a supervised pre-training dataset. Empirically, given a fixed pre-training dataset
size, we find that the best downstream performance comes with a balance on the
intra-/inter-class diversity. To understand the underlying mechanism, we show
theoretically that downstream performance depends monotonically on both types
of diversity. Notably, our theory reveals that the optimal class-to-sample ratio
( #classes

#samples per class ), i.e., the ratio of the number of pre-training classes to the number
of samples per class, is invariant to the size of the pre-training dataset, enabling
the prediction of the optimal number of pre-training classes. We demonstrate the
effectiveness of this application by an improvement of approximately 2 points on
average on downstream tasks when pre-training on ImageNet.

1 Introduction

Many state-of-the-art deep neural network models are pre-trained on large datasets before being
finetuned for downstream tasks [13, 17, 23, 1]. While the composition of their pre-training dataset
has been shown to be a key factor in the performance of these models [7, 9, 14, 8, 12, 26], how
best to design these pre-training datasets still remains underexplored. In this work, we focus on
supervised pre-training, one of the most popular pre-training paradigms, and study two key quantities
of a supervised pre-training dataset: intra-class diversity (the number of different samples within each
pre-training class) and inter-class diversity (the number of different pre-training classes). Intuitively,
both diversities are beneficial for supervised pre-training [13]. Yet when the size of the pre-training
dataset is fixed, these diversities trade off, since increasing one will decrease the other. Our work
studies the impact of this dataset diversity trade-off on downstream performance, as well as how to
balance them to design a supervised pre-training dataset with the best downstream performance.

Empirically, with ImageNet [24] as the pre-training dataset and the pre-training dataset size fixed, we
show that the optimal performance on the downstream tasks occurs when a balance on the intra-/inter-
class diversity is achieved. We then offer a theoretical explanation for this effect by first modeling the
dataset generation process through a two-step sampling framework, and then demonstrating that the
test error of the downstream task displays a rational relationship with respect to the class-to-sample
ratio, i.e., the ratio of the number of pre-training classes to the number of samples per class, or, in
other words, the ratio between inter-/intra-class diversity. The established analytical relationship
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between downstream performance and the class-to-sample ratio can serve as a guiding principle in
designing a supervised pre-training dataset by estimating the optimal class-to-sample ratio rather than
the grid search.

Notably, our theory shows that given a source of a pre-training dataset and a downstream task, the
optimal class-to-sample ratio is invariant to the size of the pre-training dataset. Based on such an
invariance, one could estimate the optimal class-to-sample ratio with small pre-training datasets and
then leverage it to build a large-scale pre-training dataset. In particular, the optimal number of pre-
training classes K̄ and the number of examples per class n are proportional to the square root of the
size of the pre-training dataset N , i.e., K̄ ∝

√
N , which leads to an invariant optimal class-to-sample

ratio. We empirically verify our theoretical findings on ImageNet [24] and present the effectiveness
of its application in predicting the optimal number of classes for pre-training datasets with different
sizes. In addition, we conducted experiments with different pre-trained datasets, different model
backbones, and downstream tasks of different domains to demonstrate that our findings are consistent
across many scenarios.

Our major findings and contributions are as follows:

• In supervised pre-training, we observe that with a fixed pre-training dataset size, there exists a
trade-off between intra-class and inter-class diversities. This balance between diversities plays a
crucial role in shaping the downstream performance, underscoring the significance of considering
both aspects when designing the pre-training dataset;

• We then theoretically explain this effect by first modeling the dataset generation process through a
two-step sampling framework and then showing that the test error of the downstream task displays
a convex relationship with respect to the class-to-sample ratio, serving as a guiding principle in
designing a supervised pre-training dataset.;

• Our theory also uncovers the invariance of the optimal class-to-sample ratio with respect to the
size of the pre-training dataset, allowing us to predict the optimal number of classes with a small
number of pre-training data before building a larger pre-training dataset for a downstream task.

2 Empirical Observations

The goal of this work is to study the trade-off of intra-/inter-class diversity in a supervised pre-training
dataset and its impact on the pre-trained model’s performance on downstream tasks. Specifically, the
inter-class diversity refers to the diversity of classes in pre-training dataset, i.e., how many different
classes we have (K); while the intra-class diversity refers to the diversity of samples within each class,
i.e., how many different samples in each class (n). When the size of the pre-training dataset is fixed,
increasing either type of diversity will by definition decrease the other, leading to a dataset diversity
trade-off. To study the impact of such dataset diversity trade-off, we experiment with pre-training
datasets with varying numbers of classes and number of samples per class. The experimental details
can be found in Appendix A.2.

Evaluation protocol. Following common practice [13], we use the ImageNet [24] as the dataset for
supervised pre-training. In this work, we mainly use ResNet-18 [10] as the backbone model. For
evaluating the performance of the pre-trained model on downstream tasks, we perform linear probing
(tuning the head but freezing the lower layers). We repeat each individual experiment five times and
report the averaged top-1 accuracy.

Downstream tasks. We adopt the following six datasets as the downstream classification tasks:
Stanford40 dataset [25] for action recognition, StanfordDogs [15] for fine-grained object recognition,
MIT67 [22] for scene classification, CIFAR10 [16] for image recognition datasets, Flowers102 [20]
for image classification dataset, FGVCAircraft [18] for aircraft classification dataset.

While having all the other configurations fixed, during pre-training, we vary the number of classes
and the number of samples per class. Specifically, given N as the size of the pre-training dataset
and K as the number of classes, we randomly sample K classes from ImageNet and then uniformly
sample n = N

K samples from each class to compose the dataset. We experiment with the following
N and K values: {1K, 2K, 5K, 10K, 20K, 50K, 100K} and {2, 5, 10, 20, 50, 100, 200, 500, 1000}
respectively. Note that with larger N (e.g., N = 10K), we cannot evaluate smaller values of K (e.g.,
K = 2), since in ImageNet each class has at most 1300 samples.
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Figure 1: Test error rate (the darker, the better) as a function of intra-class diversity on the y-axis
(log n) and inter-class diversity on the x-axis (logK). Each plot represents a different dataset. The
red dashed anti-diagonal lines indicate fixed pre-training dataset sizes (logK + log n = logN is
constant), from which we can see that obtaining the best downstream performance given a fixed
pre-training dataset size requires balancing both diversities.

Results and observations. We visualize the results in Figure 1. In the contour plot, the z-value is the
error rate on the test set, thus lower is better. The x-axis and y-axis are inter-class diversity (logK)
and intra-class diversity (log n) in the log space, respectively. The values on anti-diagonal lines
(y = −x+ c) share the same pre-training dataset size as logN = logK + log n. From the results,
we have two observations: 1) Both intra-/inter-class diversity are beneficial for downstream tasks:
We can see that increasing either inter-class diversity ((logK) or intra-class diversity (log n), given
the other is fixed, would lead to a better test error rate. This is intuitive and as expected, since the
size of the pre-training dataset N would increase accordingly, which is known to be beneficial for
downstream tasks [11, 7, 13]. 2) A trade-off of intra-/inter-class diversity on downstream task
performance: More importantly, by looking at the anti-diagonal lines where logN is fixed and
equals logK + log n, we can see a trade-off between intra-/inter-class diversity on the test error rate
of downstream tasks: either cases of 1) high inter-class diversity, low intra-class diversity and 2) low
inter-class diversity and high intra-class diversity would not render the best performance. Instead,
some point in the middle of the anti-diagonal line leads to the lowest test error rate.

3 Theoretical Understanding

In this section, we first present the theoretical setup and notations and then provide a theory on the
impact of the pre-training dataset diversity on downstream performance. We also show that the
optimal class-to-sample ratio (Kn ) is invariant to the size of the pre-training dataset; such a property
can be leveraged to predict the optimal number of classes for building a large pre-training dataset
with a small number of data samples first.

3.1 Setup and notations

Dataset. To be consistent with our experimental setup, we consider the supervised pre-training
task. Specifically, we can access two datasets, one for the pre-training task (denoted as Sp) and
another for the downstream task (denoted as Sd). Each example in the pre-training dataset consists
of input features x ∈ X = Rd1 (where d1 is the dimension of data) and a label y ∈ [K] (where
K is the number of classes). Specifically, we denote Sp = {(x1, y1), · · · , (xN , yN )}, where N is
the size of Sp, and assume that Sp is sampled according to some underlying distribution P (we do
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not specify P here because we will analyze cases with different P latter). Every example in the
downstream dataset consists of input features x̃ ∈ X and a label ỹ ∈ [K̃] (note that K̃ does not
necessarily equal-to K), and is sampled i.i.d. according to an underlying distribution P̃ . We denote
Sd = {(x̃1, ỹ1), · · · , (x̃N , ỹÑ )} and thus Sd ∼ P̃Ñ .

Model. The models for both pre-training and downstream tasks consist of two components: the
feature extractor and the classifier. Specifically, the model for the pre-training task is given as
fSp ◦ hSp , where fSp : Rd2 → RK is the pre-training classifier (d2 is the dimension of feature) and
hSp : Rd1 → Rd2 is the feature extractor. We denote the set of all possible fSp as F , and the set of all
possible h as H. The model for the downstream task is given as fSd ◦ hSd , where fSd : Rd2 → RK̃

is the downstream classifier and h is the feature extractor shared with the pre-training task. We set all
possible fSp as F̃ .

Loss. To measure the correctness of model’s predictions, we use the cross-entropy loss. Specifically,
given an example (x, y) and pre-training/downstream model f ◦ h, the corresponding cross-entropy
loss is defined as

ℓ(f ◦ h(x), y) = − log
efy◦h(x)∑
i e

fi◦h(x)
,

where fi ◦ h(x) is the i-th coordinate of f ◦ h(x). We make the following assumption about the
complexity of the model.

Assumption 1. There exist a positive constant Mℓ, such that ∀i, ∀f ∈ F ∪ F̃ , h ∈ H, x ∈ X ,

ℓ(f ◦ h(x), i) ≤ Mℓ.

Furthermore, for any distribution Q over the feature space Rd1 , any m ∈ N, and any F ′ ∈ {F , F̃},
define the Gaussian complexity of function class F ′ ◦H over the marginal distribution Q with sample
number m as

GQ
m(F ′ ◦ H) ≜ E(xi)mi=1∼QmE(σi,j)i∈[N],j∈K′∼N (0,1n×K′ ) sup

f∈F,h∈H

m∑
i=1

K′∑
j=1

σi,jfj ◦ h(xi).

Here K ′ = dim(F ′). We assume that GQ
m(F ◦ H) ≤ G

√
m, where G is independent of Q and m. 2

Assumption 1 constrains the dependence of model complexity over the number of sample N , which
is a standard assumption in generalization analysis [19].

Risks and corresponding minimizers. We first define the empirical risk R̄p(f◦h, Sp) and population
risk Rp(f ◦ h,P) over the pre-training task as

R̄p(f ◦ h, Sp) ≜
1

N

N∑
i=1

[ℓ(f ◦ h(xi), yi)],Rp(f ◦ h,P) ≜ ESp∼PR̄p(f ◦ h, Sp).

The corresponding feature extractor and classifier of the empirical risk minimizer over the pre-training
task as

hSp ≜ argmin
h∈H

(
min
f∈F

R̄p(f ◦ h, Sp)

)
, fSp ≜ argmin

f∈F

(
min
h∈H

R̄p(f ◦ h, Sp)

)
.

Given a feature extractor h ∈ H, we measure its performance over the pre-training task through a
classifier agnostic approach by considering

Rp(h,P) ≜ min
f∈F

Rp(f ◦ h,P).

Note here we slightly abuse the notation of Rp without causing confusion as f ◦ h and h have
different image spaces. The representation error of h over P is then defined as the gap between the
risk of h and the smallest possible risk

Ep(h,P) ≜ Rp(h,P)−min
h̃∈H

Rp(h̃,P).

2This inequality holds for a wide range of models, including deep neural networks [2].
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Similarly, the empirical risk R̄d(f ◦ h, Sd) and population risk Rd(f ◦ h, P̃) over the downstream
task are defined as

R̄d(f ◦ h, Sd) ≜
Ñ∑
i=1

ℓ(f̃ ◦ h(x̃i), ỹi), Rd(f ◦ h, P̃) ≜ ESd∼P̃Ñ R̄d(f ◦ h, Sd).

The learned classifier from the downstream task can then be defined as

fSd ≜ argmin
f∈F̃

(
min
h∈H

R̄d(f ◦ hSp , Sd)

)
.

The corresponding performance and excess risk of h over the downstream task can then be defined as

Rd(h, P̃) ≜ min
f̃∈F̃

Rd(f̃ ◦ h, P̃), Ed(h, P̃) ≜ Rd(h, P̃)−min
h̃∈H

Rd(h̃, P̃).

Finally, we are interested in the excess risk of the obtained model fSd ◦ hSp over the downstream
task, i.e.,

Ed(fSd ◦ hSp
, P̃) ≜ Rd(fSd ◦ hSp

, P̃)−min
h̃∈H

Rd(h̃, P̃).

3.2 A theory on the impact of intra-/inter-class diversity trade-off

In this work, we focus on a common practice of collecting the pre-training dataset: one first sample
K classes and then collect n samples for each class. We start with a detailed characterization of such
data generation process, followed by assumptions and the main result.

Data generation process 1. We assume the pre-training data is generated through a two-step sampling
process. Specifically, suppose that there is a distribution D over ∆(X ) (the set consisting of all
distributions on X ). Then, Sp is generated by the following procedure (and P is naturally induced)

• Sample K classes by i.i.d. sampling K distributions {Pi}Ki=1 according to D. These are respec-
tively the underlying distributions of K classes;

• For each i ∈ [K], i.i.d. sample n data {xi,1, · · · , xi,n} according to Pi and denote Si =
{(xi,1, i), · · · , (xi,n, i)}. Note here xi,j does not contain the information of label, as its label
information is already contained in i. The whole dataset is obtained by putting all Si together, i.e.,
Sp = {S1, · · · , SK}.

We make the following assumption on the correlation between the representation powers of the
pre-training and the downstream task.

Assumption 2. Given P , there exists non-negative coefficients νP̃0 (P) and νP̃1 (P), such that ∀h ∈ H,

Ed(h, P̃) ≤ νP̃1 (P)Ep(h,P) + νP̃0 (P).

We further assume that νP̃0 (P) and νP̃1 (P) are stable, that is, there exist two P̃-dependent positive
constants M P̃

0 and M P̃
1 , such that for any P = ΠK

i=1(Pi, i)
n and P ′ = ΠK−1

i=1 (Pi, i)
n × (P ′

K ,K)n

which differ by only one component, we have that |νP̃0 (P) − νP̃0 (P ′)| ≤ M P̃
0

K and |νP̃1 (P) −

νP̃1 (P ′)| ≤ M P̃
1

K . Moreover, we assume that νP̃0 (P) and νP̃1 (P) concentrate around their means,

i.e., there exist νP̃0 (D), νP̃1 (D), CP̃
0 and CP̃

1 , such that |E{Pi}K
i=1∼DKνP̃0 (P)− νP̃0 (D)| ≤ CP̃

0√
K

and

|E{Pi}K
i=1∼DKνP̃1 (P)− νP̃1 (D)| ≤ CP̃

1√
K

.

Assumption 2 assumes that the pre-training representation error can bound the downstream represen-
tation error, which is a common assumption in existing works [6, 26, 3]. Also, as P is derived by
sampling K distributions according to D, we make mild assumptions that the coefficients νP̃0 (P) and
νP̃1 (P) is robust when changing the underlying distribution of only one class, and when K grows,
the expectation of νP̃0 (P) and νP̃1 (P) converge to some limits.
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Theorem 3.1. Let Assumptions 1 and 2 hold. For data generation process 1, with probability over
the sampling of the datasets at least 1− δ, we have

Ed(fSd ◦ hSp , P̃) ≤

νP̃
1 (D) +M1

√
log 4

δ

2K
+

C1√
K

5Mℓ

√
log 6

δ

2n
+

2G
√
2√

n

+ νP̃
0 (D)

+M0

√
log 6

δ

2K
+

C0√
K

+ 5Mℓ

√
log 6

δ

2Ñ
+ 2

√
2G

1√
Ñ

. (1)

The detailed proof is deferred to Appendix A.8.1. Below we simplify the right-hand-side of Equation
1 and show that the empirically observed downstream performance trade-off can be explained by
such a result.

Simplifying the Theorem 3.1. Denote the RHS of Equation 1 as U , we have

U =νP̃
1 (D)

5Mℓ

√
log 6

δ

2
+ 2G

√
2

 1√
n
+

M0

√
log 6

δ

2
+ C0

 1√
K

+

M1

√
log 6

δ

2
+ C1


×

5Mℓ

√
log 6

δ

2
+ 2G

 1√
N

+ νP̃
0 (D) + 5Mℓ

√
log 6

δ

2Ñ
+ 2

√
2G

1√
Ñ

.

We can see that the above equation can be simplified as

U =
A√
n
+

B√
K

+
C√
N

+D, (2)

where A,B,C,D do not depend on N,K, n, but instead only depend on the properties of the
underlying pre-training and the downstream task data distribution.

Explaining downstream performance trade-off given a fixed N . From Equation 2 we can see that
the performance on the target task would increase when we increase 1) intra-class diversity n, 2) inter-
class diversity K, and 3) the size of pre-training dataset N . When N is fixed, however, increasing
either intra-class diversity or inter-class diversity would decrease the other (since N = n×K) and
therefore eventually lead to a performance drop. Another way to see this is to parameterize U as a
function of K without n:

U(K) =
A
√
K√
N

+
B√
K

+
C√
N

+D, (3)

From this we can clearly see that both extremes of K (too large or too small) would not lead to
optimal performance. A similar conclusion can be drawn regarding n when parametrizing U as a
function of n without K.

3.3 Balancing intra-/inter-class diversity: the optimal class-to-sample ratio

When N is fixed, by leveraging the fact that N = n×K, we can express U as

U =
1

N
1
4

(
Ax

1
4 +B

1

x
1
4

)
+ c, (4)

where c = C√
N

+D is a constant and x = K
n is the class-to-sample ratio. To minimize U , we have

the optimal class-to-sample ratio x̄ = B2

A2 . Notably, because both A and B have no dependency on N ,
the optimal class-to-sample ratio for a specific downstream task is invariant to the size of the
pre-training dataset. Motivated by this, one could estimate the optimal class-to-sample ratio using
a small N and then use it to predict the optimal number of classes for building a large pre-training
dataset. In particular, given the optimal class-to-sample ratio x̄, the optimal number of classes is
K̄ = B

A

√
N . Based on Equation 4, one only needs three (class-to-sample ratio, performance) tuples

to estimate the constants (A, B, c) with a fixed N for computing the optimal class-to-sample ratio.
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3.4 When no need to balance intra-/inter-class diversity: a contrasting case

So far, we have studied a common practice of collecting the pre-training dataset, i.e., first sample K
classes and then collect n samples for each class, and showed that when the size of the pre-training
dataset N is fixed, neither too large nor too small K is optimal. However, there exist other ways
of collecting the pre-training dataset. For example, one could collect a fixed set of data samples
and then manipulate the value of K by clustering the samples into any number of clusters. This
raises a natural question: is our conclusion still valid for this case? To answer this question and
further understand the condition for our theory, in this section, we study a contrasting case of the
data generation process corresponding to the aforementioned example, with which the trade-off no
longer exists and, instead, K dominates the downstream performance. Concretely, the data generation
process is given as follows:

Data generation process 2. The pre-training dataset is generated by first i.i.d. sampling data
{x1, x2, · · · , xN} according to some distribution PX ∈ ∆(X ). We then obtain the label
yi ∈ [K] of each xi by performing clustering. The final pre-training dataset is given as
S = {(x1, y1), · · · , (xN , yN )} (and P is naturally induced).

The new data generation process is different from the one in Section 3.2. In particular, with different
K, the new data generation process would not introduce new data samples as we manipulate the
label by clustering the current sampled data, while for the data generation process in Section 3.2, the
sampled data change according to the classes we picked.

As an analogy to Assumption 2, we make the following assumption on the correlation between the
representation powers of the pre-training and the downstream task and then present the theorem.

Assumption 3. We assume the pre-training representation error can bound the downstream rep-
resentation error. Specifically, there exists non-negative constants νP̃0 (P) and νP̃1 (P), such that
∀h ∈ H,

Ed(h,P) ≤ νP̃1 (P)Ep(h) + νP̃0 (P).

We further assume that νP̃0 (P) and νP̃1 (P) concentrate to their means, i.e., there exist νP̃0 (PX ),

νP̃1 (PX ), CP̃
0 and CP̃

1 , such that |νP̃0 (P)− νP̃0 (PX )| ≤ CP̃
0√
K

and |νP̃1 (P)− νP̃1 (PX )| ≤ CP̃
1√
K

.

Theorem 3.2. Let Assumptions 1 and 3 hold. For data generation process 2, with probability at least
1− δ,

Ed(fSd ◦ hSp , P̃) ≤

(
νP̃
0 (PX ) +

CP̃
0√
K

)5Mℓ

√
log 4

δ

2N
+

2G
√
2√

N

+ νP̃
1 (PX ) +

CP̃
1√
K

+ 5Mℓ

√
log 4

δ

2Ñ
+ 2

√
2G

1√
Ñ

.

According to Theorem 3.2, we can see that there is no longer a trade-off between the inter-class
diversity K and the intra-class diversity n. Instead, the bound gets smaller when K is larger. To
verify this, we conduct experiments under this setting (Figure 4 in the Appendix A.3), and observe a
tendency of lower error rate with increasing K.

Discussion. The classes and data samples correspond to two dimensions of diversity. When the
size of the pre-training dataset is fixed, in the case of Theorem 3.1, both diversities would vary in a
see-saw-like way with different K, but for Theorem 3.2, since we fix the data samples used, only one
dimension of diversity varies when K is different and therefore the downstream performance only
depends on the varying diversity (K). This difference reveals the underlying cause of the downstream
performance trade-off rather than relying solely on K and n values.

4 Justification and Application

In this section, we first verify our theoretical findings via empirical results. Then, we show the
effectiveness of using the optimal class-to-sample ratio, which is estimated based on our theory with
a relatively small number of data samples, to build larger pre-training datasets.
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4.1 Are the trade-off curves for different N aligned?

According to our findings in Section 3.3, the test error on a downstream task is a convex function
with respect to the class-to-sample ratio (Equation 4) and the optimal class-to-sample ratio x̄ = B2

A2 is
invariant to the size of pre-training dataset N . To empirically verify this, we visualize the performance
on downstream tasks as a function of the class-to-sample ratio with different N in Figure 2.
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Figure 2: Test error rate across class-to-sample ratio. The vertical bar is the standard deviation.

From the figures, we can see that the curves of different N for a specific downstream task are aligned,
as well as the optimal class-to-ratios, which follows our theoretical findings. This indicates that
empirically, one could extrapolate the optimal class-to-ratio estimated with a small N for building a
large-scale pre-training dataset. Note that the rightmost point of each curve corresponds to using all
the classes in ImageNet, i.e., K = 1000, and we can see that such a standard design choice does not
lead to optimal downstream performance, especially with small pre-training datasets. In addition, we
conducted experiments with different pre-trained datasets (Appendix A.4), different model backbones
(Appendix A.6), and downstream tasks of different domains (Appendix A.5) to demonstrate that our
findings are consistent across many scenarios.

4.2 Predicting the optimal number of pre-training classes

As a direct application of our theoretical and empirical findings, one could estimate the optimal
class-to-sample ratio with a small N and use it to decide the optimal number of classes when building
a larger pre-training dataset. In particular, denoted by x̄ the optimal class-to-sample ratio, the optimal
number of classes for a given N is K̄ =

√
x̄N . We refer to this approach as Extrapolation. We

empirically compare it against the following methods of deciding the number of classes when building
a pre-training dataset: 1) Standard: the number of classes equals 1000 as the standard design choice
of ImageNet; 2) Grid Search: the number of classes corresponding to the data point with the lowest
error rate for each curve in Figure 2; 3) Fitting: given the target size, we use the corresponding
data points in Figure 2 to fit the theoretically-derived performance function (Equation 4), and then
analytically calculate the optimal number of classes. We use the calculated number of classes to build
a pre-training dataset and measure the performance of a model trained with it. In reality, the latter two
baselines require repeatedly training models on pre-training datasets with the target size yet different
numbers of classes and are therefore time-consuming and data-intensive.

We set the target size of pre-training dataset as {50K, 100K} and round the number of classes to
an integer if needed. For our Extrapolation method, we only use three data points with N being
much smaller than the target size to estimate the optimal class-to-sample ratio: N = 5000 and
K = {10, 50, 200}. We use the estimated optimal class-to-sample ratio for both target sizes. The
results as well as the number of classes selected by the above methods can be found in Table 1. From
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Table 1: Test error rate on downstream tasks (the first row of each task, lower is better), and the
number of classes in the pre-training dataset (the second row).

N Method Target Dataset
CIFAR10 FGVCAircraft Flowers102 MIT67 Stanford40 StanfordDogs

50K

Standard (K=1000) 29.19±0.14 77.80±0.28 34.08±0.35 57.51±0.18 62.45±0.36 64.96±0.38

Grid Search 26.24±0.44 75.96±0.43 32.70±0.21 54.10±0.4 57.05±0.44 59.12±0.2

(200) (200) (500) (200) (100) (200)

Fitting 26.25±0.47 76.00±0.44 32.13±0.10 53.60±0.39 57.10±0.3 59.76 ±0.26

(169) (293) (415) (161) (138) (260)

Extrapolation 26.27±0.21 76.18±0.14 32.60±0.06 53.01±0.23 57.25±0.14 60.15±0.27

(190) (168) (296) (163) (134) (158)

100K

Standard (K=1000) 25.04±0.26 75.21±0.48 27.69±0.45 52.79±0.36 54.69±0.39 54.70±0.45

Grid Search 23.13±0.06 73.70±0.50 27.15±0.44 50.30±0.46 51.45±0.33 51.98±0.30

(500) (500) (500) (200) (200) (500)

Fitting 22.67±0.33 73.45±0.33 26.67±0.33 50.82±0.33 52.24±0.33 52.24±0.33

(276) (372) (655) (249) (207) (392)

Extrapolation 23.12±0.13 73.30±0.17 26.98±0.41 50.42±0.25 52.32±0.06 53.17±0.26

(269) (238) (418) (231) (190) (233)

Table 2: Total number of samples used for building the pre-training dataset.
N Method Target Dataset

CIFAR10 FGVCAircraft Flowers102 MIT67 Stanford40 StanfordDogs

50K

Standard (K=1000) 50K

Grid Search 150K (5 trials)

Fitting 158.164K 161.570K 159.403K 158.694K 159.268K 160.538K

Extrapolation 55.418K 55.183K 55.830K 55.117K 54.598K 55.045K

100K

Standard (K=1000) 100K

Grid Search 260K (4 trials)

Fitting 272.336K 271.836K 268.164K 269.878K 261.981K 270.579K

Extrapolation 103.937K 103.608K 104.517K 103.515K 103.049K 103.401K

the results, we can see that although the ImageNet dataset is widely used, its number of classes
(K = 1000) is not optimal for building a pre-training dataset of 50K/100K samples, since the
Standard underperforms other methods. Besides, methods except for the Standard all render similar
test error rate even though their number of classes are different, which reveals that the performance is
not sensitive to the number of classes as long as we pick a reasonable number. Thus, our Extrapolation
method is superior to Grid Search and Fitting, since it needs much fewer samples to estimate the
number of classes, while both Grid Search and Fitting require building the pre-training dataset of
target size multiple times.

4.3 Extra data needed for estimating the optimal class-to-sample ratio

One advantage of the Standard method is that it does not require extra data for estimating the optimal
number of classes. In contrast, other methods would introduce extra data unused in the final pre-
training dataset. For example, when estimating the optimal class-to-sample ratio, one may sample
data from 1000 classes but eventually find the optimal number of classes is 600, then the data of
the additional 400 classes would not be used in the final pre-training dataset. We then investigate
how much data is needed by different methods to build the final pre-training dataset. We list the
total number of samples used by different methods in Table 2. From the table, we can see that Grid
Search and Fitting require much more samples than the target size of the pre-training dataset, since
they involve building the pre-training dataset of the target size multiple times, while the number of
extra data needed by Extrapolation is relatively small, because it estimates the optimal number of
classes using a small N of 5000. In addition, using Extrapolation, one only needs to estimate the
optimal class-to-sample ratio once and then use it for building pre-training datasets with different
sizes without re-estimation.

As the Extrapolation requires more data than the Standard, a fairer comparison between them needs
to ensure the total number of data used is similar, and the Standard would have a slightly larger
pre-training dataset since it does not spend any data budget for estimation. In Figure 3, we compare
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the Extrapolation to the Standard whose pre-training dataset size is slightly larger than the total
number of data used by the Extrapolation. Each bar plot represents a specific downstream task, and
the number in parentheses indicates the size (N ) of the corresponding pre-training dataset. We can
observe that in most cases, the Extrapolation demonstrates improved performance over the Standard
even when the latter uses a larger pre-training dataset, which further justifies the effectiveness of the
Extrapolation method.
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Figure 3: Each bar plot visualizes the error rates of different methods on a specific downstream task.
The number in parentheses is N , i.e. the size of the corresponding pre-training dataset.

5 Related Work

We briefly review recent studies on supervised pre-training from data-centric perspectives. First, on
the composition of the pre-training dataset, [9] presents a scaling law that predicts the test loss on
downstream tasks under varying source dataset compositions, while [14] studies the performance on
downstream tasks when subsets of the pre-training dataset are removed. Second, on the label space of
supervised pre-training, [26] offers a statistical analysis explaining pre-training techniques’ success
in NLP, showing that class diversity in pre-training tasks substantially enhances sample efficiency in
downstream tasks, while the study by [12] explores the impact of pre-training label granularity on
downstream tasks, emphasizing the importance of selecting an appropriate level of label granularity.
Lastly, [7] explores the impact of pre-training data distribution on transfer performance, finding
the choice of the pre-training dataset to be crucial. In contrast, we dive into the trade-off of the
intra-/inter-class diversity in the supervised pre-training dataset. The study related the most to ours is
[13], where the authors empirically examined the importance of pre-training data characteristics on
downstream performance. While covering a wide range of pre-training data characteristics, this study
only briefly explores the trade-off of intra-/inter-class diversity in the pre-training dataset (Section 5.5
in [13]). Specifically, the authors only considered two different cases of intra-/inter-class diversity,
i.e., K = {500, 1000} for ImageNet. In contrast, we, both empirically and theoretically, show how
such a trade-off would impact the downstream performance and our theory uncovers a surprising
property of the optimal class-to-sample ratio: it is invariant to the size of the pre-training dataset.

6 Conclusion

In this study, we explore the trade-off of the intra-/inter-class diversity in supervised pre-training
datasets of fixed size. We discovered that the optimal downstream performance is achieved through a
balance of intra-/inter-class diversity. Our theory demonstrates that downstream performance depends
on both diversities, and the optimal class-to-sample ratio remains constant regardless of the dataset
size. We apply this finding to predict the optimal number of classes in pre-training datasets and
provide evidence of its effectiveness across many scenarios.
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A Appendix

A.1 Limitation and Potential Negative Social Impact

Some potential negative societal impacts might arise from this research, such as:

Bias Amplification: When the research discusses the optimal class-to-sample ratio in pre-training
datasets, it does not discuss how these classes are determined. There’s a risk that the choice of classes
and the samples within these classes could reflect and perpetuate existing biases in society. For
instance, if the classes are determined by stereotypical or biased criteria, models trained on these
datasets could amplify these biases in their predictions or recommendations.

Overemphasis on Quantity over Quality: This research might also create an overemphasis on the
quantity (size and diversity) of the data at the expense of its quality. Poor data quality could lead to
the development of inaccurate or unreliable machine learning models.

A.2 Experimental Details

A.2.1 Training Details

We build our code on Python and Pytorch. We fix the model to be the ResNet-18 [10]. For pre-training,
we set the number of epochs to be 100 and the batch size to be 64. We use the Adam optimizer
for training with a learning rate of 0.1, a momentum of 0.9, and a weight decay of 1e-4. We repeat
each experiment 3 times with different seeds and report the mean and variance of the results. All
experiments ran on a machine with an Intel(R) Xeon(R) CPU E5-2678 v3 with 512G memory and
two 48G NVIDIA RTX A6000 GPUs.

A.2.2 Details of Dataset

The Pre-training Dataset:

• ImageNet [4]. It is an image dataset organized according to the WordNet hierarchy. Each
meaningful concept in WordNet, possibly described by multiple words or word phrases, is
called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet; the
majority of them are nouns (80,000+).

• Place365 [25]. It has 1,803,460 training images with the image number per class varying
from 3,068 to 5,000. The validation set has 50 images per class and the test set has 900
images per class.

The Downstream Tasks Dataset

• Stanford Actions 40 [25]. It contains images of humans performing 40 actions. There
are about 180-300 images per class. We do not use bounding boxes and other annotation
information for training. There are a total of 9,532 images, making it the smallest dataset in
our benchmark experiments.

• Stanford Dogs 120 [15]. It contains images of 120 breeds of dogs worldwide. There are
precisely 100 examples per category in the training set. It is used for the task of fine-grained
image categorization. We do not use the bounding box annotations. There are a total of
20,580 images.

• MIT Indoors 67 [22]. It is a scene classification dataset containing 67 indoor scene
categories, each consisting of 80 images for training and 20 for testing. Indoor scene
recognition is challenging because spatial properties, background information, and object
characters are expected to be extracted. There are 15,620 images in total.

• CIFAR10 [16]. It is a collection of images commonly used to train machine learning and
computer vision algorithms. It contains 60,000 32x32 color images in 10 different classes.
The ten classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. There are 6,000 images of each class.

• Flowers102 [20]. It is an image classification dataset consisting of 102 flower categories.
The flowers are chosen to be flowers commonly occurring in UK. Each class consists of
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between 40 and 258 images. The images have large scale, pose and light variations. In
addition, some categories have significant variations within the category and several very
similar categories.

• FGVCAircraft [18]. It contains 10,200 images of aircraft, with 100 images for each of 102
different aircraft model variants, most of which are airplanes. Each image’s (main) aircraft
is annotated with a tight bounding box and a hierarchical airplane model label. Aircraft
models are organized in a four-level hierarchy.

• DomainNet-real and DomainNet-painting [21]. DomainNet-real and DomainNet-painting
belong to real and painting domains, respectively, and both comprise 345 categories.
DomainNet-real contains over 170k images, while DomainNet-painting has more than
70k images.

A.3 Empirical Verification of Theorem 3.2
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Figure 4: Test error rate across class-to-sample ratio. The vertical bar at each point is the standard
deviation.

As shown in Figure 4, we can find that, across all datasets, the results generally showed a decreasing
trend in test error rate as the class-to-sample ratio increased. This empirically supports the theoretical
assertion that there is no downstream performance trade-off caused by the inter-class diversity K
and the intra-class diversity n. Instead, the downstream performance improves with increasing K, as
suggested in Theorem 3.2.

A.4 Experiments on Places365 as Pre-training Dataset

We use the Places3653 [27] for our pre-training and the result is represented in Figure 5. We then
performed evaluations on the same batch of downstream tasks as in the main body of the paper to
demonstrate the trade-off between intra- and inter-class diversity is consistent with our main findings.
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Figure 5: Test error rate across class-to-sample ratio. ResNet-18 pre-trained on the Places365 dataset.
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Figure 6: Test error rate across class-to-sample ratio. ResNet-18 pre-trained on ImageNet and tested
on two datasets of different domains from the DomainNet benchmark.

A.5 Experiments on Downstream Tasks of Different Domains

As illustrated in Figure 6, we test models trained on ImageNet on two distinct domains (painting
and real images) sourced from the DomainNet benchmark4 [21] and the result indicates that our
conclusions do not change with different downstream task datasets.

A.6 Experiments on ViT as Model Backbone

To ensure our conclusions are not restricted to specific model architecture, we use ViT-B-16 model [5]
as the backbone model. The results in Figure 7 show that different model backbone does not change
the conclusions we derived.
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(c) Flowers102

e 6 e 4 e 2 e0 e2 e4 e6

Class-to-sample ratio

76

78

80

82

84

86

Te
st

 e
rro

r r
at

e 
(%

)

N=5K
N=10K
N=20K

(d) MIT67
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(f) StanfordDogs

Figure 7: Test error rate across class-to-sample ratio. ViT-B-16 pre-trained on the ImageNet dataset.

Table 3: Actual v.s. predicted test error rate on downstream tasks according to Equation 4.

N Method Target Dataset
CIFAR10 FGVCAircraft Flowers102 MIT67 Stanford40 StanfordDogs

50K
Predicted 26.13±0.1 75.95±0.4 32.96±0.48 53.99±0.43 56.72±0.16 58.87±0.35

Actual 26.25±0.47 76.00±0.44 32.13±0.10 53.60±0.39 57.10±0.3 59.76 ±0.26

100K
Predicted 22.84±0.40 73.52±0.41 27.33±0.40 50.15±0.43 51.74±0.36 51.69±0.23

Actual 22.67±0.33 73.45±0.33 26.67±0.33 50.82±0.33 52.24±0.33 52.24±0.33

A.7 Actual v.s. Predicted Performance of Fitting Equation 4

In Section 4.2, we study the performance of the Fitting method, i.e., using the optimal number of
classes derived from the function fitting Equation 4. Given the fitted function, one can also predict
the test error given a specific value of the number of classes. Here, we compare the actual test error
of the derived number of classes (the Fitting entry of Table 1) with the one predicted by the fitted
function, in order to see whether our theory offers an accurate prediction of performance. From the
results presented in Table 3, we can see that the actual test error (Actual) is similar to the test error
predicted by the fitted function (Predicted), this further proves the utility of our theory.

A.8 Proofs of Theoretical Results

A.8.1 Proof of Theorem 3.1

Before we formally state the proof of Theorem 3.1, we define several notations as follows:

hP ≜ argmin
h∈H

Rp(h,P),

fP ≜ argmin
f

Ei∼Unif[K],x∼Pi
[ℓ(f ◦ hP(x), i)].

Proof of Theorem 3.1. Step I. Bound Ep(hSp ,P).

3http://places2.csail.mit.edu/
4http://ai.bu.edu/M3SDA/
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Ep(hSp ,P) can be decomposed into

Ep(hSp ,P) =Rp(hSp ,P)−min
h̃∈H

Rp(h̃,P)

=

Rp(hSp ,P)− 1

nK

K∑
i=1

n∑
j=1

ℓ(fSp ◦ hSp(xi,j), i)


+

 1

nK

K∑
i=1

n∑
j=1

ℓ(fSp ◦ hSp(xi,j), i)−
1

nK

K∑
i=1

n∑
j=1

(ℓ(fP ◦ hP(xi,j), i))


+

 1

nK

K∑
i=1

n∑
j=1

(ℓ(fP ◦ hP(xi,j), i))−Rp(hP ,P)

 .

We tackle the three terms of the RHS of the above inequality respectively. As for the first term, since

Rp(hSp ,P) =min
f∈F

Ei∼Unif[K],x∼Pi
[ℓ(f ◦ hSp(x), i)]

≤Ei∼Unif[K],x∼Pi
[ℓ(fSp ◦ hSp(x), i)],

we have that the first term can be bounded by

Rp(hSp ,P)− 1

nK

K∑
i=1

n∑
j=1

ℓ(fSp ◦ hSp(xi,j), i)

≤Ei∼Unif[K],x∼Pi
[ℓ(fSp ◦ hSp(x), i)]− 1

nK

K∑
i=1

n∑
j=1

ℓ(fSp ◦ hSp(xi,j), i)

≤ sup
f∈F,h∈H

[
Ei∼Unif[K],x∼Pi

[ℓ(f ◦ h(x), i)]− 1

nK

K∑
i=1

n∑
j=1

ℓ(f ◦ h(xi,j), i)

]
.

Applying Gaussian complexity to 1
n

∑n
j=1(

1
K

∑K
i=1 ℓ(f ◦h(xi,j), i)), we obtain that with probability

at least 1− δ, the RHS of the above inequality is smaller than

Mℓ

√
9 log 1

δ

2n
+ 2E((xi,j)

K
i=1)

n
j=1∼(ΠK

i=1P
n
i )E(σi)

n
i=1∼N (0,1n×n) sup

f∈F,h∈H

1

n

n∑
j=1

σj

(
1

K

K∑
i=1

ℓ(f ◦ h(xi,j), i)

)

≤Mℓ

√
9 log 1

δ

2n
+

2

K

K∑
i=1

E(xi,j)
n
j=1∼Pn

i
E(σi)

n
i=1∼N (0,1n×n) sup

f∈F,h∈H

1

n

n∑
j=1

σjℓ(f ◦ h(xi,j), i)

≤Mℓ

√
9 log 1

δ

2n
+

2
√
2

K

K∑
i=1

E(xi,j)
n
j=1∼Pn

i
E(σj,l)j∈[n],l∈[K]∼N (0,1nK) sup

f∈F,h∈H

1

n

n∑
j=1

K∑
l=1

σj,lfl ◦ h(xi,j)

≤Mℓ

√
9 log 1

δ

2n
+ 2G

√
2

1√
n
.

Here the second inequality is due to Slepian’s Lemma, and the last inequality is due to Assumption 1.
All in all, with probability at least 1− δ, the first term can be bounded as

Rp(hSp ,P)− 1

nK

K∑
i=1

n∑
j=1

ℓ(fSp ◦ hSp(xi,j), i) ≤ Mℓ

√
9 log 1

δ

2n
+ 2G

√
2

1√
n
.

Meanwhile, the second term is non-positive due to the optimality of fSp and hSp .
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Finally, the third term can be bounded as 1

nK

K∑
i=1

n∑
j=1

(ℓ(fP ◦ hP(xi,j), i))−Rp(hP ,P)


=

 1

nK

K∑
i=1

n∑
j=1

(ℓ(fP ◦ hP(xi,j), i))− Ei∼Unif[K],x∼Pi
[ℓ(fP ◦ hP(x), i)]


w.p.1−δ

≤ Mℓ

√
2 log 1

δ

n
,

where the last inequality is due to Hoeffding’s inequality. As a conclusion of Stage I, we obtain that
with probability at least 1− 2δ,

Ep(hSp ,P) ≤ 5Mℓ

√
log 1

δ

2n
+

2G
√
2√

n
.

Step II. Bound Ed(hSp). Applying Assumption 2, we obtain that with probability at least 1− 2δ,

Ed(hSp , P̃) ≤ νP̃1 (P)Ep(hSp ,Pi1 ,Pi2) + νP̃0 (P) ≤ νP̃1 (P)

5Mℓ

√
log 1

δ

2n
+

2G
√
2√

n

+ νP̃0 (P).

By McDiarmid’s inequality, we obtain that with probability at least 1− δ,

νP̃0 (P) ≤ EP∼DKνP̃0 (P) +M0

√
log 1

δ

2K
≤ νP̃0 (D) +M0

√
log 1

δ

2K
+

C0√
K

.

Similarly, with probability at least 1− δ,

νP̃1 (P) ≤ EP∼DKνP̃1 (P) +M1

√
log 1

δ

2K
≤ νP̃1 (D) +M1

√
log 1

δ

2K
+

C1√
K

.

As a conclusion, we obtain that with probability at least 1− 4δ,
Ed(hSp , P̃)

≤

νP̃
1 (D) +M1

√
log 1

δ

2K
+

C1√
K

5Mℓ

√
log 1

δ

2n
+

2G
√
2√

n

+ νP̃
0 (D) +M0

√
log 1

δ

2K
+

C0√
K

.

Step III. Bound R̄d(fSd ◦ hSp
, Sp)−Rd(hSp

, P̃) Finally, denote fP̃ ≜ argminf̃ minf̃∈F̃ Rd(f̃ ◦
h, P̃) based on Hoeffding’s inequality, we obtain that with probability at least 1− δ,

R̄d(fSd ◦ hSp , Sp)−Rd(hSp , P̃) ≤Rd(fP̃ ◦ hSp , P̃)−Rd(hSp , P̃)

≤Mℓ

√
2 log 1

δ

Ñ
.

Meanwhile, applying Gaussian’s inequality, we have that with probability at least 1− δ,

Rd(fSd ◦ hSp
, P̃)− R̄d(fSd ◦ hSp

, Sp)

≤2E
(xi,yi)Ñi=1∼P̃ÑE

(σi)Ñi=1∼N (0,1Ñ×Ñ )
sup

f∈F̃,h∈H

1

Ñ

Ñ∑
i=1

σiℓ(f ◦ h(xi), yi) +Mℓ

√
9 log 1

δ

2Ñ

≤2
√
2E

(xi,yi)Ñi=1∼P̃ÑE(σi,j)i∈[Ñ],j∈[K̃]∼N (0,1ÑK̃×ÑK̃) sup
f∈F̃,h∈H

1

Ñ

Ñ∑
i=1

K̃∑
j=1

σi,jfj ◦ h(xi) +Mℓ

√
9 log 1

δ

2Ñ

≤2G
√
2

1√
Ñ

+Mℓ

√
9 log 1

δ

2Ñ
,
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where the second inequality is due to Slepian’s Lemma, and the last inequality is due to Assumption
1.

All in all, we have with probability at least 1− 6δ,

Ed(fSd ◦ hSp
, P̃)

=Ed(hSp , P̃) +Rd(fSd ◦ hSp
, P̃)− R̄d(fSd ◦ hSp

, Sp) + R̄d(fSd ◦ hSp
, Sp)−Rd(hSp

, P̃)

≤

νP̃1 (D) +M1

√
log 1

δ

2K
+

C1√
K

5Mℓ

√
log 1

δ

2n
+

2G
√
2√

n

+ νP̃0 (D) +M0

√
log 1

δ

2K
+

C0√
K

+ 5Mℓ

√
log 1

δ

2Ñ
+ 2

√
2G

1√
Ñ

.

The proof is completed.

A.8.2 Proof of Theorem 3.2

Proof. Denote

hP ≜ argmin
h∈H

Rp(h),

fP ≜ argmin
f

E(x,y)∼P [ℓ(f ◦ hP(x), y)].

Step I. Bound Ep(hSp).

Denote Ep(hSp) can be decomposed into

Ep(hSp) =Rp(hSp)−min
h̃∈H

Rp(h̃)

=

(
Rp(hSp)− 1

N

N∑
i=1

ℓ(fSp ◦ hSp(xi), yi)

)

+

(
1

N

N∑
i=1

ℓ(fSp ◦ hSp(xi), yi)−
1

N

N∑
i=1

(ℓ(fP ◦ hP(xi), yi))

)

+

(
1

N

N∑
i=1

(ℓ(fP ◦ hP(xi), yi))−Rp(hP)

)
.

We tackle the three terms of the RHS of the above inequality respectively. As for the first term, since

Rp(hSp) = min
f∈F

E(x,y)∼P [ℓ(f ◦ hSp(x), y)] ≤ E(x,y)∼P [ℓ(fSp ◦ hSp(x), y)],

we have that the first term can be bounded by

Rp(hSp)− 1

N

N∑
i=1

ℓ(fSp ◦ hSp(xi), yi)

≤E(x,y)∼P [ℓ(fSp ◦ hSp(x), i)]− 1

N

N∑
i=1

ℓ(fSp ◦ hSp(xi), yi)

≤ sup
f∈F,h∈H

[
E(x,y)∼P [ℓ(f ◦ h(x), i)]− 1

N

N∑
i=1

ℓ(f ◦ h(xi), yi)

]
.

19



Applying Gaussian complexity to 1
N

∑N
i=1 ℓ(f ◦ h(xi), yi), we obtain that with probability at least

1− δ, the RHS of the above inequality is smaller than

Mℓ

√
9 log 1

δ

2N
+ 2E(xi)Ni=1∼PNE(σi)Ni=1∼N (0,1N ) sup

f∈F,h∈H

1

N

n∑
i=1

σiℓ(f ◦ h(xi), yi)

≤Mℓ

√
9 log 1

δ

2N
+ 2

√
2E(xi)Ni=1∼PNE(σi,j)i∈[N],j∈[dim(Y)]∼N (0,1N dim(Y)) sup

f∈F,h∈H

1

N

n∑
i=1

K∑
j=1

σi,jfj ◦ h(xi)

≤Mℓ

√
9 log 1

δ

2N
+ 2G

√
2

1√
N

.

Here the first inequality is due to Slepian’s lemma, and the last inequality is due to Assumption 1. All
in all, with probability at least 1− δ, the first term can be bounded as

Rp(hSp)− 1

N

N∑
i=1

ℓ(fSp ◦ hSp(xi), yi) ≤ Mℓ

√
9 log 1

δ

2N
+ 2G

√
2

1√
N

.

Meanwhile, the second term is non-positive due to the optimality of fSp and hSp .

Finally, the third term can be bounded as

1

N

N∑
i=1

ℓ(fP ◦ hP(xi), yi)−Rp(hP)

=
1

N

N∑
i=1

ℓ(fP ◦ hP(xi), yi)− E(x,y)∼P [ℓ(fP ◦ hP(x), y)]

w.p.1−δ

≤ Mℓ

√
2 log 1

δ

N
,

where the last inequality is due to Hoeffding’s inequality. As a conclusion of Stage I, we obtain that
with probability at least 1− 2δ,

Ep(hSp ,P) ≤ 5Mℓ

√
log 1

δ

2N
+

2G
√
2√

N
.

Step II. Bound Ed(hSp). Applying Assumption 3, we obtain that with probability at least 1− 2δ,

Ed(hSp , P̃) ≤ νP̃1 (P)Ep(hSp) + νP̃0 (P) ≤ νP̃1 (P)

5Mℓ

√
log 1

δ

2N
+

2G
√
2√

N

+ νP̃0 (P).

Furthermore, as |νP̃0 (P) − νP̃0 (PX )| ≤ CP̃
0√
K

and |νP̃1 (P) − νP̃1 (PX )| ≤ CP̃
1√
K

, we obtain that with
probability at least 1− 2δ

Ed(hSp , P̃) ≤

(
νP̃0 (PX ) +

CP̃
0√
K

)5Mℓ

√
log 2

δ

2N
+

2G
√
2√

N

+ νP̃1 (PX ) +
CP̃

1√
K

.

The rest of the proof flows exactly the same as that of Theorem 3.1.
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