
S1 Energy Consumption Analysis Details

We show the theoretical energy consumption estimation method of the proposed Spike-driven
Transformer in Table 1 of the main text. Compared to the vanilla Transformer counterpart, the spiking
version requires information on timesteps T and spike firing rates (R). Therefore, we only need to
evaluate the FLOPs of the vanilla Transformer, and T and R are known, we can get the theoretical
energy consumption of spike-driven Transformer.

The FLOPs of the n-th Conv layer in ANNs [91] are:

FLConv = (kn)
2 · hn · wn · cn−1 · cn, (S1)

where kn is the kernel size, (hn, wn) is the output feature map size, cn−1 and cn are the input and
output channel numbers, respectively. The FLOPs of the m-th MLP layer in ANNs are:

FLMLP = im · om, (S2)

where im and om are the input and output dimensions of the MLP layer, respectively.

The spike firing rate is defined as the proportion of non-zero elements in the spike tensor. In Table S1,
we present the spike firing rates for all spiking tensors in spike-driven Transformer-8-512. In addition,
R in Table 1 indicates the average of the spike firing rates of QS , KS , and VS . R̂ is the sum of the
spike firing rates of QS and KS .

Refer to previous works[92, 71, 93, 27], we assume the data for various operations are 32-bit floating
point implementation in 45nm technology [94], in which EMAC = 4.6pJ and EAC = 0.9pJ .
Overall, for the same operator (Conv, MLP, Self-attention), as long as EAC × T × R < EMAC ,
SNNs are theoretically more energy efficient than counterpart ANNs. EAC × T is usually a constant,
thus sparser spikes (smaller R) result in lower energy cost.

S2 Experiment Details

Datasets. We employ two types of datasets: static image classification and neuromorphic classifica-
tion. The former includes ImageNet-1K [77], CIFAR-10/100 [78]. The latter contains CIFAR10-DVS
[79] and DVS128 Gesture [80].

ImageNet-1K is the most typical static image dataset, which is widely used in the field of image
classification. It offers a large-scale natural image dataset of 1.28 million training images and 50k
test images, with a total of 1,000 categories. CIFAR10 and CIFAR100 are smaller datasets in image
classification tasks that are often used for algorithm testing. The CIFAR-10 dataset consists of 60,000
images in 10 classes, with 6,000 images per class. The CIFAR-100 dataset has 60,000 images divided
into 100 classes, each with 600 images.

CIFAR10-DVS is an event-based neuromorphic dataset converted from CIFAR10 by scanning each
image with repeated closed-loop motion in front of a Dynamic Vision Sensor (DVS). There are a
total of 10,000 samples in CIFAR10-DVS, with each sample lasting 300ms. The temporal and spatial
resolutions are µs and 128×128, respectively. DVS128 Gesture is an event-based gesture recognition
dataset, which has the temporal resolution in µs level and 128 × 128 spatial resolution. It records
1342 samples of 11 gestures, and each gesture has an average duration of 6 seconds.

Data Preprocessing. SNNs are a kind of spatio-temporal dynamic network that can naturally deal
with temporal tasks. When working with static image classification datasets, it is common practice in
the field to repeatedly input the same image at each timestep. As our results in Table 3 show, multiple
timesteps lead to better accuracy, but also require more training time and computing hardware
requirements, as well as greater inference energy consumption.

By contrast, neuromorphic datasets (i.e., event-based datasets) can fully exploit the energy-efficient
advantages of SNNs with spatio-temporal dynamics. Specifically, neuromorphic datasets are produced
by event-based (neuromorphic) cameras, such as DVS [95]. Compared with conventional cameras,
DVS poses a new paradigm shift in visual information acquisition, which encode the time, location,
and polarity of the brightness changes for each pixel into event streams with a µs level temporal
resolution. Events (spike signals with address information) are generated only when the brightness of
the visual scene changes. This fits naturally with the event-driven nature of SNNs. Only when there
is an event input, some spiking neurons of SNNs will be triggered to participate in the computation.
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Typically, event streams are preprocessed into frame sequences as input to SNNs. Details can be
referred to previous work [34].

Experimental Steup. The experimental setup in this work generally follows [20]. The experimental
settings of ImageNet-1K have been given in the main text. Here we mainly give the network settings
on four small datasets. As shown in Table 5, we employ timesteps T = 4 on static CIFAR-10 and
CIFAR-100, and T = 16 on neuromorphic CIFAR10-DVS and Gesture. The training epoch for these
four datasets is 200. The batch size is 32 for CIFAR10/100, 16 for Gesture and CIFAR10-DVS. The
learning rate is initialized to 0.0005 for CIFAR10/100, 0.0003 for Gesture, and 0.01 for CIFAR10-
DVS. All of them are reduced with cosine decay. We follow [20] to apply data augmentation on
Gesture and CIFAR10-DVS. In addition, the network structures used in CIFAR-10, CIFAR-100,
CIFAR10-DVS, and Gesture are: spike-driven Transformer-2-512, spike-driven Transformer-2-512,
spike-driven Transformer-2-256, spike-driven Transformer-2-256.

S3 Attention Map

Spike-Driven Self-Attention (SDSA). Here we first briefly review the proposed spike-driven self-
attention. Given a single head spike input feature sequence S ∈ RT×N×D, float-point Q, K, and
V in RT×N×D are calculated by three learnable linear matrices, respectively. A spike neuron layer
SN (·) follows, converting float-point Q, K, V into spike tensor QS , KS , and VS . Spike-driven
self-attention is presented as:

V̂S = SDSA(Q,K, V ) = g(QS ,KS)⊗ VS = SN (SUMc (QS ⊗KS))⊗ VS , (S3)

where ⊗ is the Hadamard product, g(·) is used to compute the attention map, SUMc(·) represents the
sum of each column. The outputs of both g(·) and SUMc(·) are D-dimensional row vectors. The
Hadamard product between spike tensors is equivalent to the mask operation. We denote the output
of SDSA(Q,K, V ) as V̂S .

Self-attention mechanism allows the model to capture long-range dependencies by attending to
relevant parts of the input sequence regardless of the distance between them. In Eq. S3, SDSA adopts
hard attention. The output of attention map g(QS ,KS) is a vector containing only 0 or 1. Therefore,
the whole spike-driven self-attention can be understood as masking unimportant channels in the Value
tensor VS . Note, instead of scale and softmax operations, we exploit Hadamard product, column
element sum, and spiking neuron layer to generate binary attention scores. QS and KS are very
sparse (typically less than 0.01, see Table S1), the value of summing QS ⊗KS column by column
does not fluctuate much, thus the scale operation is not needed here.

Attention Map. In a spike-driven self-attention layer, the VS and V̂S of T timesteps and H heads are
averaged. The new VS and V̂S output is the spike firing rate, which we plot in Fig. S1. This allows us
to observe how the attention score modulates spike firing.
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Table S1: Spike Firing Rates in Spike-driven Transformer-8-512.

T = 1 T = 2 T = 3 T = 4 Average

SPS

Conv1 0.0665 0.1260 0.1004 0.1451 0.1095

Conv2 0.0465 0.0689 0.0597 0.0541 0.0573

Conv3 0.0333 0.0453 0.0368 0.0394 0.0387

Conv4 0.0948 0.1864 0.1792 0.1885 0.1622

Block 1

SDSA

Input 0.2873 0.3590 0.3630 0.3625 0.3430

VS 0.2629 0.3094 0.3011 0.3104 0.2959

QS 0.0142 0.0202 0.0218 0.0219 0.0195

KS 0.0144 0.0227 0.0234 0.0246 0.0213

g(QS ,KS) 0.0792 0.1143 0.1294 0.1328 0.1139

Output of SDSA(·), V̂S 0.0297 0.0414 0.0456 0.0508 0.0419

MLP
Layer 1 0.3675 0.4263 0.4505 0.4555 0.4250

Layer 2 0.0463 0.0532 0.0520 0.0541 0.0514

Block 2

SDSA

Input 0.3493 0.4002 0.4320 0.4391 0.4051

VS 0.2582 0.2761 0.2476 0.2237 0.2514

QS 0.0147 0.0191 0.0195 0.0190 0.0181

KS 0.0128 0.0172 0.0186 0.0199 0.0171

g(QS ,KS) 0.1033 0.1347 0.1357 0.1202 0.1235

Output of SDSA(·), V̂S 0.03318 0.04373 0.03913 0.0324 0.0371

MLP
Layer 1 0.3484 0.3944 0.4259 0.4340 0.4007

Layer 2 0.0317 0.0404 0.0417 0.0433 0.0393

Block 3

SDSA

Input 0.3454 0.3890 0.4240 0.4292 0.3969

VS 0.3018 0.3055 0.2614 0.2193 0.2720

QS 0.0108 0.0151 0.0158 0.0160 0.0144

KS 0.0113 0.0152 0.0151 0.0144 0.0140

g(QS ,KS) 0.1273 0.1600 0.1569 0.1375 0.1454

Output of SDSA(·), V̂S 0.0446 0.0562 0.0462 0.0344 0.0453

MLP
Layer 1 0.3436 0.3825 0.4147 0.4203 0.3903

Layer 2 0.0261 0.0334 0.0347 0.0352 0.0323

Block 4

SDSA

Input 0.3458 0.3855 0.4191 0.4283 0.3947

VS 0.2112 0.2241 0.1941 0.1728 0.2005

QS 0.0062 0.0101 0.0113 0.0117 0.0099

KS 0.0061 0.0095 0.0107 0.0120 0.0096

g(QS ,KS) 0.0762 0.0979 0.0981 0.0967 0.0922

Output of SDSA(·), V̂S 0.0214 0.0289 0.0245 0.0220 0.0242

MLP
Layer 1 0.3460 0.3837 0.4146 0.4228 0.3918

Layer 2 0.0208 0.0258 0.0261 0.0259 0.0247

Continued on next page
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Table S1 – continued from previous page

T = 1 T = 2 T = 3 T = 4 Average

Block 5

SDSA

Input 0.3491 0.3908 0.4228 0.4306 0.3984

VS 0.1493 0.1654 0.1491 0.1395 0.1508

QS 0.0048 0.0080 0.0090 0.0093 0.0078

KS 0.0042 0.0071 0.0081 0.0082 0.0069

g(QS ,KS) 0.0473 0.0698 0.0740 0.0749 0.0665

Output of SDSA(·), V̂S 0.0102 0.0169 0.0157 0.0147 0.0144

MLP
Layer 1 0.3541 0.3935 0.4231 0.4302 0.4002

Layer 2 0.0169 0.0205 0.0205 0.0206 0.0196

Block 6

SDSA

Input 0.3614 0.3957 0.4201 0.4258 0.4007

VS 0.0729 0.0791 0.0767 0.0778 0.0766

QS 0.0012 0.0021 0.0027 0.0032 0.0023

KS 0.0008 0.0018 0.0024 0.0026 0.0019

g(QS ,KS) 0.0128 0.0227 0.0260 0.0286 0.0225

Output of SDSA(·), V̂S 0.0018 0.0040 0.0043 0.0045 0.0036

MLP
Layer 1 0.3690 0.4027 0.4264 0.4317 0.4074

Layer 2 0.0147 0.0180 0.0183 0.0186 0.0174

Block 7

SDSA

Input 0.3619 0.4069 0.4192 0.4218 0.4025

VS 0.0379 0.0359 0.0371 0.0406 0.0379

QS 0.0001 0.0002 0.0003 0.0004 0.0003

KS 0.0001 0.0003 0.0004 0.0005 0.0003

g(QS ,KS) 0.0022 0.0046 0.0058 0.0073 0.0050

Output of SDSA(·), V̂S 0.0001 0.0005 0.0005 0.0006 0.0004

MLP
Layer 1 0.3575 0.4035 0.4156 0.4180 0.3987

Layer 2 0.0140 0.0184 0.0186 0.0189 0.0175

Block 8

SDSA

Input 0.2865 0.3888 0.4019 0.4106 0.3720

VS 0.0200 0.0342 0.0380 0.0419 0.0335

QS 0.00001 0.0001 0.0001 0.0002 0.0001

KS 1e−5 1e−5 0.0001 0.0001 1e−5

g(QS ,KS) 2e−5 0.0001 0.0020 0.0024 0.0015

Output of SDSA(·), V̂S 1e−5 0.0002 0.0002 0.0002 0.0001

MLP
Layer 1 0.2716 0.3721 0.3827 0.3899 0.3541

Layer 2 0.0056 0.0111 0.0110 0.0115 0.0098

Head FC 0.0002 0.3876 0.3604 0.4843 0.3081
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Figure S1: Attention Map Based on Spike Firing Rate (SFR). Attention map 1 and 2 are generated by
the Grad-CAM method [96]. VS is the Value tensor. V̂S is the output of SDSA(·). The spike-driven
self-attention mechanism masks unimportant channels in VS to obtain V̂S . Each pixel on VS and V̂S

represents the SFR at a patch. The spatial resolution of each attention map is 14× 14 (196 patches).
The redder the higher the SFR, the bluer the smaller the SFR. We can see that the SDSA(·) regulation
of spike firing is basically consistent with the focused points in the attention map.
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