S1 Energy Consumption Analysis Details

We show the theoretical energy consumption estimation method of the proposed Spike-driven Transformer in Table 1 of the main text. Compared to the vanilla Transformer counterpart, the spiking version requires information on timesteps T and spike firing rates (R). Therefore, we only need to evaluate the FLOPs of the vanilla Transformer, and T and R are known, we can get the theoretical energy consumption of spike-driven Transformer.

The FLOPs of the *n*-th Conv layer in ANNs [91] are:

$$FL_{Conv} = (k_n)^2 \cdot h_n \cdot w_n \cdot c_{n-1} \cdot c_n, \tag{S1}$$

where k_n is the kernel size, (h_n, w_n) is the output feature map size, c_{n-1} and c_n are the input and output channel numbers, respectively. The FLOPs of the *m*-th MLP layer in ANNs are:

$$FL_{MLP} = i_m \cdot o_m,\tag{S2}$$

where i_m and o_m are the input and output dimensions of the MLP layer, respectively.

The spike firing rate is defined as the proportion of non-zero elements in the spike tensor. In Table S1, we present the spike firing rates for all spiking tensors in spike-driven Transformer-8-512. In addition, \overline{R} in Table 1 indicates the average of the spike firing rates of Q_S , K_S , and V_S . \widehat{R} is the sum of the spike firing rates of Q_S and K_S .

Refer to previous works[92, 71, 93, 27], we assume the data for various operations are 32-bit floating point implementation in 45nm technology [94], in which $E_{MAC} = 4.6pJ$ and $E_{AC} = 0.9pJ$. Overall, for the same operator (Conv, MLP, Self-attention), as long as $E_{AC} \times T \times R < E_{MAC}$, SNNs are theoretically more energy efficient than counterpart ANNs. $E_{AC} \times T$ is usually a constant, thus sparser spikes (smaller R) result in lower energy cost.

S2 Experiment Details

Datasets. We employ two types of datasets: static image classification and neuromorphic classification. The former includes ImageNet-1K [77], CIFAR-10/100 [78]. The latter contains CIFAR10-DVS [79] and DVS128 Gesture [80].

ImageNet-1K is the most typical static image dataset, which is widely used in the field of image classification. It offers a large-scale natural image dataset of 1.28 million training images and 50k test images, with a total of 1,000 categories. CIFAR10 and CIFAR100 are smaller datasets in image classification tasks that are often used for algorithm testing. The CIFAR-10 dataset consists of 60,000 images in 10 classes, with 6,000 images per class. The CIFAR-100 dataset has 60,000 images divided into 100 classes, each with 600 images.

CIFAR10-DVS is an event-based neuromorphic dataset converted from CIFAR10 by scanning each image with repeated closed-loop motion in front of a Dynamic Vision Sensor (DVS). There are a total of 10,000 samples in CIFAR10-DVS, with each sample lasting 300ms. The temporal and spatial resolutions are μ s and 128 × 128, respectively. DVS128 Gesture is an event-based gesture recognition dataset, which has the temporal resolution in μ s level and 128 × 128 spatial resolution. It records 1342 samples of 11 gestures, and each gesture has an average duration of 6 seconds.

Data Preprocessing. SNNs are a kind of spatio-temporal dynamic network that can naturally deal with temporal tasks. When working with static image classification datasets, it is common practice in the field to repeatedly input the same image at each timestep. As our results in Table 3 show, multiple timesteps lead to better accuracy, but also require more training time and computing hardware requirements, as well as greater inference energy consumption.

By contrast, neuromorphic datasets (i.e., event-based datasets) can fully exploit the energy-efficient advantages of SNNs with spatio-temporal dynamics. Specifically, neuromorphic datasets are produced by event-based (neuromorphic) cameras, such as DVS [95]. Compared with conventional cameras, DVS poses a new paradigm shift in visual information acquisition, which encode the time, location, and polarity of the brightness changes for each pixel into event streams with a µs level temporal resolution. Events (spike signals with address information) are generated only when the brightness of the visual scene changes. This fits naturally with the event-driven nature of SNNs. Only when there is an event input, some spiking neurons of SNNs will be triggered to participate in the computation.

Typically, event streams are preprocessed into frame sequences as input to SNNs. Details can be referred to previous work [34].

Experimental Steup. The experimental setup in this work generally follows [20]. The experimental settings of ImageNet-1K have been given in the main text. Here we mainly give the network settings on four small datasets. As shown in Table 5, we employ timesteps T = 4 on static CIFAR-10 and CIFAR-100, and T = 16 on neuromorphic CIFAR10-DVS and Gesture. The training epoch for these four datasets is 200. The batch size is 32 for CIFAR10/100, 16 for Gesture and CIFAR10-DVS. The learning rate is initialized to 0.0005 for CIFAR10/100, 0.0003 for Gesture, and 0.01 for CIFAR10-DVS. All of them are reduced with cosine decay. We follow [20] to apply data augmentation on Gesture and CIFAR10-DVS. In addition, the network structures used in CIFAR-10, CIFAR-100, CIFAR10-DVS, and Gesture are: spike-driven Transformer-2-512, spike-driven Transformer-2-512, spike-driven Transformer-2-256.

S3 Attention Map

Spike-Driven Self-Attention (SDSA). Here we first briefly review the proposed spike-driven selfattention. Given a single head spike input feature sequence $S \in \mathbb{R}^{T \times N \times D}$, float-point Q, K, and V in $\mathbb{R}^{T \times N \times D}$ are calculated by three learnable linear matrices, respectively. A spike neuron layer $S\mathcal{N}(\cdot)$ follows, converting float-point Q, K, V into spike tensor Q_S , K_S , and V_S . Spike-driven self-attention is presented as:

$$\hat{V}_S = \text{SDSA}(Q, K, V) = g(Q_S, K_S) \otimes V_S = \mathcal{SN}\left(\text{SUM}_c\left(Q_S \otimes K_S\right)\right) \otimes V_S, \quad (S3)$$

where \otimes is the Hadamard product, $g(\cdot)$ is used to compute the attention map, $\text{SUM}_c(\cdot)$ represents the sum of each column. The outputs of both $g(\cdot)$ and $\text{SUM}_c(\cdot)$ are *D*-dimensional row vectors. The Hadamard product between spike tensors is equivalent to the mask operation. We denote the output of SDSA(Q, K, V) as \hat{V}_S .

Self-attention mechanism allows the model to capture long-range dependencies by attending to relevant parts of the input sequence regardless of the distance between them. In Eq. S3, SDSA adopts hard attention. The output of attention map $g(Q_S, K_S)$ is a vector containing only 0 or 1. Therefore, the whole spike-driven self-attention can be understood as masking unimportant channels in the Value tensor V_S . Note, instead of scale and softmax operations, we exploit Hadamard product, column element sum, and spiking neuron layer to generate binary attention scores. Q_S and K_S are very sparse (typically less than 0.01, see Table S1), the value of summing $Q_S \otimes K_S$ column by column does not fluctuate much, thus the scale operation is not needed here.

Attention Map. In a spike-driven self-attention layer, the V_S and \hat{V}_S of T timesteps and H heads are averaged. The new V_S and \hat{V}_S output is the spike firing rate, which we plot in Fig. S1. This allows us to observe how the attention score modulates spike firing.

			T = 1	T=2	T = 3	T = 4	Average
SPS	Conv1		0.0665	0.1260	0.1004	0.1451	0.1095
	Conv2		0.0465	0.0689	0.0597	0.0541	0.0573
	Conv3		0.0333	0.0453	0.0368	0.0394	0.0387
	Conv4		0.0948	0.1864	0.1792	0.1885	0.1622
Block 1	SDSA	Input	0.2873	0.3590	0.3630	0.3625	0.3430
		V_S	0.2629	0.3094	0.3011	0.3104	0.2959
		Q_S	0.0142	0.0202	0.0218	0.0219	0.0195
		K_S	0.0144	0.0227	0.0234	0.0246	0.0213
		$g(Q_S, K_S)$	0.0792	0.1143	0.1294	0.1328	0.1139
		Output of $\text{SDSA}(\cdot), \hat{V}_S$	0.0297	0.0414	0.0456	0.0508	0.0419
	MLP	Layer 1	0.3675	0.4263	0.4505	0.4555	0.4250
		Layer 2	0.0463	0.0532	0.0520	0.0541	0.0514
	SDSA	Input	0.3493	0.4002	0.4320	0.4391	0.4051
Block 2		V_S	0.2582	0.2761	0.2476	0.2237	0.2514
		Q_S	0.0147	0.0191	0.0195	0.0190	0.0181
		K_S	0.0128	0.0172	0.0186	0.0199	0.0171
		$g(Q_S, K_S)$	0.1033	0.1347	0.1357	0.1202	0.1235
		Output of $\text{SDSA}(\cdot), \hat{V}_S$	0.03318	0.04373	0.03913	0.0324	0.0371
	MLP	Layer 1	0.3484	0.3944	0.4259	0.4340	0.4007
		Layer 2	0.0317	0.0404	0.0417	0.0433	0.0393
	SDSA	Input	0.3454	0.3890	0.4240	0.4292	0.3969
		V_S	0.3018	0.3055	0.2614	0.2193	0.2720
Block 3		Q_S	0.0108	0.0151	0.0158	0.0160	0.0144
		K_S	0.0113	0.0152	0.0151	0.0144	0.0140
		$g(Q_S, K_S)$	0.1273	0.1600	0.1569	0.1375	0.1454
		Output of $SDSA(\cdot)$, \hat{V}_S	0.0446	0.0562	0.0462	0.0344	0.0453
	MLP	Layer 1	0.3436	0.3825	0.4147	0.4203	0.3903
		Layer 2	0.0261	0.0334	0.0347	0.0352	0.0323
	SDSA	Input	0.3458	0.3855	0.4191	0.4283	0.3947
Block 4		V_S	0.2112	0.2241	0.1941	0.1728	0.2005
		Q_S	0.0062	0.0101	0.0113	0.0117	0.0099
		K_S	0.0061	0.0095	0.0107	0.0120	0.0096
		$g(Q_S, K_S)$	0.0762	0.0979	0.0981	0.0967	0.0922
		Output of $SDSA(\cdot)$, \hat{V}_S	0.0214	0.0289	0.0245	0.0220	0.0242
	MLP	Layer 1	0.3460	0.3837	0.4146	0.4228	0.3918
		Layer 2	0.0208	0.0258	0.0261	0.0259	0.0247

Table S1: Spike Firing Rates in Spike-driven Transformer-8-512.

Continued on next page

			T = 1	T=2	T = 3	T = 4	Average
Block 5		Input	0.3491	0.3908	0.4228	0.4306	0.3984
	SDSA	V_S	0.1493	0.1654	0.1491	0.1395	0.1508
		Q_S	0.0048	0.0080	0.0090	0.0093	0.0078
		K_S	0.0042	0.0071	0.0081	0.0082	0.0069
		$g(Q_S, K_S)$	0.0473	0.0698	0.0740	0.0749	0.0665
		Output of $\text{SDSA}(\cdot), \hat{V}_S$	0.0102	0.0169	0.0157	0.0147	0.0144
	MLP	Layer 1	0.3541	0.3935	0.4231	0.4302	0.4002
		Layer 2	0.0169	0.0205	0.0205	0.0206	0.0196
Block 6	SDSA	Input	0.3614	0.3957	0.4201	0.4258	0.4007
		V_S	0.0729	0.0791	0.0767	0.0778	0.0766
		Q_S	0.0012	0.0021	0.0027	0.0032	0.0023
		K_S	0.0008	0.0018	0.0024	0.0026	0.0019
		$g(Q_S, K_S)$	0.0128	0.0227	0.0260	0.0286	0.0225
		Output of $\text{SDSA}(\cdot), \hat{V}_S$	0.0018	0.0040	0.0043	0.0045	0.0036
	MIP	Layer 1	0.3690	0.4027	0.4264	0.4317	0.4074
	WILF	Layer 2	0.0147	0.0180	0.0183	0.0186	0.0174
Block 7	SDSA	Input	0.3619	0.4069	0.4192	0.4218	0.4025
		V_S	0.0379	0.0359	0.0371	0.0406	0.0379
		Q_S	0.0001	0.0002	0.0003	0.0004	0.0003
		K_S	0.0001	0.0003	0.0004	0.0005	0.0003
		$g(Q_S, K_S)$	0.0022	0.0046	0.0058	0.0073	0.0050
		Output of $\text{SDSA}(\cdot), \hat{V}_S$	0.0001	0.0005	0.0005	0.0006	0.0004
	MLP	Layer 1	0.3575	0.4035	0.4156	0.4180	0.3987
		Layer 2	0.0140	0.0184	0.0186	0.0189	0.0175
Block 8	SDSA	Input	0.2865	0.3888	0.4019	0.4106	0.3720
		V_S	0.0200	0.0342	0.0380	0.0419	0.0335
		Q_S	0.00001	0.0001	0.0001	0.0002	0.0001
		K_S	$1e^{-5}$	$1e^{-5}$	0.0001	0.0001	$1e^{-5}$
		$g(Q_S, K_S)$	$2e^{-5}$	0.0001	0.0020	0.0024	0.0015
		Output of $\text{SDSA}(\cdot)$, \hat{V}_S	$1e^{-5}$	0.0002	0.0002	0.0002	0.0001
	MLP	Layer 1	0.2716	0.3721	0.3827	0.3899	0.3541
		Layer 2	0.0056	0.0111	0.0110	0.0115	0.0098
Head	FC		0.0002	0.3876	0.3604	0.4843	0.3081

Table S1 – continued from previous page

Figure S1: Attention Map Based on Spike Firing Rate (SFR). Attention map 1 and 2 are generated by the Grad-CAM method [96]. V_S is the Value tensor. \hat{V}_S is the output of $\text{SDSA}(\cdot)$. The spike-driven self-attention mechanism masks unimportant channels in V_S to obtain \hat{V}_S . Each pixel on V_S and \hat{V}_S represents the SFR at a patch. The spatial resolution of each attention map is 14×14 (196 patches). The redder the higher the SFR, the bluer the smaller the SFR. We can see that the $\text{SDSA}(\cdot)$ regulation of spike firing is basically consistent with the focused points in the attention map.