
A Appendix: Experiments (Continue)

A.1 Further Details for the Experiment Settings

For the data partitioning, we have the Mini-ImageNet and CIFAR-100 data sets divided into the
partitions 64 : 16 : 20, which correspond to the training set, validation set and the testing set
respectively. Each class is corresponding to a task. Then, for the Drug data set, we partition the tasks
into 4100 : 76 : 100 representing the training set, validation set and the testing set.

For our BASS, we apply two 2-layer FC networks for f1(·;✓1), f2(·;✓2) respectively, and set network
width m = 200. For deriving approximated arm rewards, we let |⌦valid

k | = 5. Recall that we apply
the approximation approach mentioned in Remark 3 to reduce the space complexity and time
complexity in practice for the experiments. Here, we tune the pooling step such that the inputs
of f1(·;✓1), f1(·;✓1) are approximately 50 and 20 respectively. For the learning rate, we find the
learning rate for BASS with grid search from {0.01, 0.001, 0.0001}, and choose the learning rates for
the meta-model ⌘1 = 0.01, ⌘2 = 0.001. The meta-model architecture as well as its learning rates will
stay the same for all the baselines and our proposed BASS. For the CIFAR-100 and Mini-ImageNet
data sets, we use the the meta-model with four convolutional blocks where the network width of
each block is 32, followed by an FC layer as the output layer. For the Drug data set, we apply a
meta-model with two FC layers, where the network width is 500. All the experiments are performed
on a Linux machine with Intel Xeon CPU, 128GB RAM, and Tesla V100 GPU. Code will be made
available at https://github.com/yunzhe0306/Bandit_Task_Scheduler.

A.2 Effect of the Task Noise Magnitude

We conduct the experiments to show the effects of the noise magnitude factor ✏ on the Drug and
CIFAR-100 data sets. The experiment results are shown in Table 4.

Table 4: Comparison with baselines with different noise magnitude [data set (noise magnitude ✏) ;
final results ± standard deviation].

Algo. \ Data Drug (0.3) Drug (0.5) CIFAR100 (0.3) CIFAR100 (0.5)
Uniform 0.218±0.007 0.220±0.001 0.655±0.009 0.526±0.011

SPL 0.243±0.008 0.236±0.004 0.625±0.017 0.367±0.039
FOCAL 0.224±0.019 0.223±0.003 0.638±0.010 0.485±0.006
DAML 0.182±0.025 0.177±0.003 0.543±0.017 0.414±0.025
GCP N/A N/A 0.653±0.005 0.508±0.009

PAML 0.186±0.006 0.205±0.009 0.537±0.009 0.316±0.022
ATS 0.239±0.011 0.237±0.014 0.651±0.001 0.505±0.015

BASS (Ours) 0.258±0.003 0.245±0.006 0.657±0.005 0.553±0.008

With increasing noise magnitude ✏, the performances of the meta-model trained by baselines and our
BASS tend to drop, which is intuitive. In particular, for the CIFAR-100 data set, when we increase ✏,
the performance difference between BASS and the other baselines tends to increase. This can be the
reason that the greedy baselines with no exploration strategies can be more susceptible to the task
noise perturbation, which can lead to the sub-optimal performances of the meta-model.

Table 5: Experiment results of noise-free settings on three real data sets (5-way, 5-shot).

Data \ Algo. Uniform SPL FOCAL-LOSS DAML GCP PAML ATS BASS
Drug 0.206±0.012 0.234±0.006 0.240±0.003 0.190±0.002 N/A 0.220±0.010 0.233±0.001 0.256±0.003

M-ImageNet 0.576±0.016 0.554±0.004 0.582±0.005 0.437±0.015 0.564±0.002 0.467±0.007 0.561±0.004 0.586±0.008
CIFAR 0.681±0.010 0.681±0.008 0.692±0.023 0.662±0.027 0.681±0.016 0.640±0.011 0.695±0.035 0.697±0.029

From the Table 5, we can see that when there is no noise, the overall performance does not differ
significantly across different methods. The reason could be that since the meta-learning backbone
remains the same for all the methods, the meta-model performance upper bound can be similar
for different scheduling algorithms, without the presence of other confounding factors (e.g., noise,
task distribution skewness). In the practical application scenarios with noisy data, BASS-guided
meta-models tend to perform well in presence of task noise and skewness compared with baselines,
as presented by our experiments in the main body.

15

https://github.com/yunzhe0306/Bandit_Task_Scheduler

A.3 Parameter Study for Exploration Coefficient

As in Eq. 7 and Eq. 9, BASS involves an exploration coefficient ↵ to balance the exploitation-
exploration and the two exploration objectives. Here, we conduct the parameter study for the
exploration coefficient ↵, and include the results with no exploration (i.e., removing f2).

Table 6: Comparison among different ↵ values [dataset (shot) ; final results ± standard deviation].

Algo. \ Data Drug (1) Drug (5) CIFAR100 (1) CIFAR100 (5)
No Exploration 0.234±0.003 0.239±0.012 0.256±0.027 0.537±0.012

↵ = 0.1 0.231±0.005 0.233±0.013 0.264±0.051 0.522±0.024
↵ = 0.3 0.228±0.013 0.231±0.008 0.268±0.047 0.528±0.014
↵ = 0.5 0.236±0.004 0.245±0.006 0.272±0.025 0.553±0.008
↵ = 0.7 0.242±0.012 0.227±0.006 0.241±0.005 0.543±0.021
↵ = 1.0 0.236±0.002 0.235±0.013 0.266±0.006 0.537±0.005

From the results in Table 6, we see that the exploration module can indeed improve the performance
of BASS compared with the performance with no exploration. This also fits our initial argument
that the greedy algorithm alone can lead to sub-optimal performances of meta-model. By properly
choosing the ↵ value, we will be able to achieve a good balance between exploitation and exploration,
as well as between the two exploration objectives. Here, setting ↵ 2 [0.5, 0.7] will be good enough
to achieve satisfactory performances. Meanwhile, we also note that even with no exploration, our
BASS still achieves good performances by directly learning the correlation between the adapted
meta-parameter and the generalization score, and refining the scheduling strategy based on the status
of the meta-model.

A.4 Running Time Comparison

In Figure 5, we include the running time comparison with baselines. We can see that BASS can
achieve significant improvement in terms of the running time, and can take as little as 50% of ATS’s
running time. The intuition is that our proposed BASS only needs one round of the optimization
process to update the meta-model and BASS. On the other hand, from Algorithm 1 of the ATS paper
[50], we see that ATS requires two optimization rounds for each meta-training iteration to (1) update
the scheduler with the temporal meta-model, and (2) update the actual meta-model respectively.
Based on the figure on the RHS, we also see that BASS can achieve a relatively good balance between
computational cost and performance.

Figure 5: Running time results (including training both the scheduler and the meta-model). "D", "M"
and "C" refer to the "Drug", "Mini-ImageNet", "CIFAR-100" data sets respectively. BASS can take
as little as approximately 50% of ATS’s running time. On the RHS, we have the scatter plot in terms
of running time vs. performance on the Mini-ImageNet dataset.

A.5 Performances with Different Task Skewness Settings

In Table 7, we include the experiments with different levels of skewness. Here, we see that with less
skewness levels (the skewness level reduces from Setting 1 to Setting 3), the accuracy of BASS as
well as the baselines will continue to improve, while BASS still maintains decent performances.

16

Skewness Setting \ Algo. Uniform ATS BASS
Skewness Setting 1 0.375±0.009 0.382±0.007 0.408±0.008
Skewness Setting 2 0.429±0.012 0.448±0.006 0.460±0.013
Skewness Setting 3 0.497±0.008 0.502±0.010 0.539±0.009

Table 7: Results for different skewness levels on CIFAR-100 data set (5-shot). (1) Setting 1 is
the original setting in paper Subsec. 5.2. (2) For Setting 2, we assign 5 tasks with 8% sampling
probability, 5 tasks with 3%, and the rest of the tasks equally share the 45% probability. (3) For
Setting 3, we assign 5 tasks with 5%, 5 tasks with 2%, while the rest of the tasks equally share the
65% probability.

A.6 Performances with Different Batch Size

With Table 8, we include additional experiments with different batch sizes B, in comparison with the
ATS and the uniform sampling approach. Here, we see that with larger B values, the accuracy of
BASS as well as the baselines will generally improve.

B (batch size) \ Algo. Uniform ATS BASS
1 0.459±0.009 0.449±0.010 0.472±0.012
2 0.526±0.011 0.515±0.015 0.553±0.008
3 0.570±0.012 0.563±0.007 0.588±0.010
5 0.581±0.005 0.571±0.007 0.586±0.009

Table 8: Results for different B values (batch sizes) on CIFAR-100 data set (5-shot).

A.7 Performances with Different Embedding Approaches of Arm Contexts

In Table 9, we include additional experiments with different levels of average pooling, such that
after the average pooling, the dimensionality of the pooled vector representation will fall into
{20, 100, 500}. We see that overly small dimensionality of the average-pooled vector representation
(e.g., 20) can lead to sub-optimal performance of the BASS framework. In addition, we see that
setting the dimensionality to 50 can generally lead to good enough performance.

Dimensionality 20 50 100 500
Accuracy 0.541±0.008 0.553±0.008 0.558±0.006 0.555±0.010

Table 9: With CIFAR-100 (5-shot), different dimensionality of the average-pooled vector representa-
tion (Remark 3) of the meta-parameters.

Here, we also include additional experimental results using MLP to map the original context into
the lower dimensional space instead of using our proposed average pooling (Remark 3). Results
are shown in Table 10. Here, we use the one-layer MLP with the ReLU activation to embed the
original meta-parameters to the low-dimensional vector representations. We can see that the MLP-
based method can indeed lead to some performance improvement. But in general, the performance
difference between MLP-based embedding and the average-pooling vector representation is subtle.
We also note that the MLP-based mapping approach is more time consuming compared with the
average pooling approach, since we also need to train the additional embedding layer, which has a
considerable number of trainable parameters.

Dimensionality Original avg-pooled (50) 50 100 200
Accuracy 0.553±0.008 0.558±0.013 0.560±0.012 0.553±0.015

Table 10: With CIFAR-100 (5-shot), different dimensionality of the one-layer MLP(with ReLU)-
embedded vector representation of the meta-parameters. "original avg-pooled (50)" refers to the
average-pooled vector representation (Remark 3) with dimensionality of 50.

17

A.8 Additional Experiments on the "DomainNet" data set

In Table 11, we include additional experiments on the new "DomainNet" data set [36]. Within the
"real" domain, we filter 100 classes that have at least 600 images. In this way, with each class being a
task with 600 images, we will have a total of 100 tasks. Compared with image data sets in our paper
(Mini-ImageNet and CIFAR-100), we increase the image resolution of "DomainNet" by resizing
its images to 128⇥128 pixels. Following the settings in our paper, we divide tasks into 64 : 16 :
20 portions that correspond to the training set, validation set and the test set respectively. For the
few-shot settings, we formulate the problem to be 5-shot, 5-way / 7-way with uniform sampling
and ATS as baselines. With a higher image resolution of the "DomainNet" data set, BASS can still
maintain the good performance compared with the baselines.

Setting \ Algo. Uniform ATS BASS
5-way 0.475±0.002 0.483±0.006 0.511±0.012
7-way 0.411±0.005 0.372±0.009 0.435±0.008

Table 11: Results for the "DomainNet" data set (noise level 0.5, 5-shot settings).

B Appendix: Additional Discussion on the Necessity of Assumption 5.1

We would like to mention that in order to finish the convergence and generalization analysis for the
neural Contextual Bandit works (e.g., [53, 2, 9]), the separateness assumption of the arm context is
the minimum requirement of the data set. This is because the training data needs to be non-degenerate
(i.e., every pairs of samples are distinct) to ensure that the neural network can consistently converge,
as indicated by Assumption 2.1 in [3]. Therefore, our Assumption 5.1 regarding the arm separateness
aims to ensure that the BASS is able to adequately learn the underlying reward mapping function
with sufficient information. Comparing with the existing works, in the convergence analysis works
on meta-learning [46, 47], they measure the arm separateness in terms of the minimum eigenvalue
�0 (with �0 > 0) of the Neural Tangent Kernel (NTK) [22] matrix, which is comparable with our
Euclidean separateness ⇢. For existing neural bandit works, Assumption 5.1 in [9] is similar to our
separateness assumption. Meanwhile, Assumption 4.2 in [53] and Assumption 3.4 from [52] also
imply that no two arms are the same in terms of the minimum NTK matrix eigenvalue �0 > 0.

C Appendix: Limitation

One potential limitation of BASS is that its improvement over baselines may not be significant
when dealing with noise-free settings and non-skewed task distributions (Table 5). Meanwhile, the
non-adaptive FOCAL-LOSS [29] tends to achieve a similar performance comparing with the adaptive
method ATS [50], while enjoying an advantage in terms of the computational cost. In practical terms,
although BASS can generally achieve the decent performance and enjoys a smaller computational
cost than ATS, the practitioner still needs to consider whether their task distribution is noisy or skewed
in order to strike a good balance between the computational resource needed and the meta-model
performance, as BASS can achieve a more significant advantage over baselines given the noisy or
skewed task distribution.

D Appendix: Theoretical Analysis

In this section, we present the proof for Theorem 5.2. Here, instead of directly going for the batch
setting where we adopt training task batch ⌦k for each iteration k 2 [K] (|⌦k| = |⌦⇤

k| = B), we first
introduce the results of the single-task setting (Subsec. D.1), i.e., |⌦k| = |⌦⇤

k| = 1. Then, the results
will be extended to the batch settings as in Subsec. D.2. Recall that for the meta-model, we first
consider it to be a LF -layer fully-connected (FC) network (of width mF for the theoretical analysis
(lines 237-239). In particular, we follow the settings in [3] for the Gaussian initialization of weight
matrices. For the weight matrix elements in meta-model’s first (LF � 1) layers, we draw each of
them from the Gaussian distribution N (0, 2/mF). Then, for the weight matrix elements of the last
layer (LF -th layer), we draw each of them from the Gaussian distribution N (0, 1).

18

D.1 Single-task settings

For the brevity of notation, we denote the scheduler output f(⇥(K�1)[Tk,i];✓
(k�1)) =

f1(�
q
k,i;✓

(k�1)
1) + f2

�
[r✓f1(�s

k,i);r✓f1(�
q
k,i)];✓

(k�1)
2

�
, which corresponds to the definition in

Eq. 7. In this case, T (K) = {T1, . . . , TK} refer to the chosen tasks and T
⇤(K) = {T

⇤
1 , . . . , T

⇤
K}

are the optimal ones. Based on the problem definition, we will have

Rsingle(K) = ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K))

��
� ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K),⇤)

��

= ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K�1)[TK])

��
� ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K�1),⇤[T ⇤

K])
��

= h(⇥(K�1),⇤[T ⇤
K])� h(⇥(K�1)[TK])

= h(⇥(K�1),⇤[T ⇤
K])� f(�⇤

K ; ✓̃
(K�1)

) + f(�⇤
K ; ✓̃

(K�1)
)� f(�K ;✓(K�1))

+ f(�K ;✓(K�1))� h(⇥(K�1)[TK])

 h(⇥(K�1),⇤[T ⇤
K])� f(�⇤

K ; ✓̃
(K�1)

) + f(�⇤
K ; ✓̃

(K�1)
)� f(⇥(K�1)[T ⇤

K];✓(K�1))

+ f(�K ;✓(K�1))� h(⇥(K�1)[TK])

= h(⇥(K�1),⇤[T ⇤
K])� f(⇥(K�1),⇤[T ⇤

K]; ✓̃
(K�1)

) + f(⇥(K�1),⇤[T ⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1)[T ⇤

K];✓(K�1))

+ f(⇥(K�1)[TK];✓(K�1))� h(⇥(K�1)[TK])

 |h(⇥(K�1),⇤[T ⇤
K])� f(⇥(K�1),⇤[T ⇤

K]; ✓̃
(K�1)

)|+ |f(⇥(K�1),⇤[T ⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1)[T ⇤

K];✓(K�1))|| {z }
I0

+ |f(⇥(K�1)[TK];✓(K�1))� h(⇥(K�1)[TK])|

where the first inequality is due to the arm pulling mechanism, i.e., f(⇥(K�1)[T ⇤
K];✓(K�1)) 

f(⇥(K�1)[TK];✓(K�1)). Here, f(·; ✓̃
(K�1)

) is defined as the "shadow" bandit model that are
trained on optimal tasks {T ⇤

1 , T
⇤
2 , . . . , T

⇤
K�1} and the corresponding meta-model parameters. Here,

denote �K = ⇥(K�1)[TK] 2 Rp as the arm context given the arm TK and the meta-model parameter
⇥(K�1); similarly, we have �⇤

K = ⇥(K�1),⇤[T ⇤
K] 2 Rp being the arm context given the arm T

⇤
K and

the meta-model parameter ⇥(K�1),⇤. Thus, for the term I0 on the RHS, we have

I0 = |f(�⇤; ✓̃
(K�1)

)� f(⇥(K�1)[T ⇤
K];✓(K�1))|

= |f(⇥(K�1),⇤[T ⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1),⇤[T ⇤

K];✓(K�1))

+ f(⇥(K�1),⇤[T ⇤
K];✓(K�1))� f(⇥(K�1)[T ⇤

K];✓(K�1))|

 |f(⇥(K�1),⇤[T ⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1),⇤[T ⇤

K];✓(K�1))|

+ |f(⇥(K�1),⇤[T ⇤
K];✓(K�1))� f(⇥(K�1)[T ⇤

K];✓(K�1))|.

Then, inserting the inequality will lead to

R(K)  |h(⇥(K�1)[TK])� f(�K ;✓(K�1))|| {z }
I1

+ |f(�⇤
K ; ✓̃

(K�1)
)� h(⇥(K�1),⇤[T ⇤

K])|| {z }
I2

+ |f(⇥(K�1),⇤[T ⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1),⇤[T ⇤

K];✓(K�1))|| {z }
I3

+ |f(⇥(K�1),⇤[T ⇤
K];✓(K�1))� f(⇥(K�1)[T ⇤

K];✓(K�1))|| {z }
I4

.

Here, the terms I1, I2 refer to the approximation error for the two bandit models (our possessed
model f(·;✓(K�1)) and the pseudo model f(·; ✓̃

(K�1)
)). Then, the third term I3 bounds the output

difference when given the same input ⇥(K�1),⇤[TK] to two separate bandit models, and the final

19

term I4 refers to the difference of the meta-model parameters when adapted to the same task with two
individual sets of parameters. Here, the terms I1, I2 can be bounded by Lemma D.1, Corollary D.2.
Then, the point is to bound the difference term I4 when given different inputs to the bandit model.

D.1.1 Bounding error terms and assembling the regret bound

[Bounding term I3] For error term I3, it focuses on bounding the output difference between two
bandit models f(·; ✓̃

(K�1)
), f(·;✓(K�1)) given the same input ⇥(K�1),⇤[T ⇤

K], and we have

I3 = |f(⇥(K�1),⇤[T ⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1),⇤[T ⇤

K];✓(K�1))| = |f(�⇤
K ; ✓̃

(K�1)
)� f(�⇤

K ;✓(K�1))|

 |f1(�
⇤
K ; ✓̃

(K�1)

1)� f1(�
⇤
K ;✓(K�1)

1)|
| {z }

I3.1

+ |f2

✓
[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)]; ✓̃

(K�1)

2

◆
� f2

✓
[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)];✓(K�1)

2

◆
|

| {z }
I3.2

.

With the defined ⇠L, applying Lemma D.11 as well as Corollary D.12, we will have

I3.1 

✓
1 +O(

KL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(

K
3
L

⇢
p
m

log(m)) +O

✓
K

4
L
2 log11/6(m)

⇢4/3m1/6

◆

Then, for term I3.2, we have

I3.2 = |f2

✓
[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)]; ✓̃

(K�1)

2

◆
� f2

✓
[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)];✓(K�1)

2

◆
|

 |f2

✓
[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)]; ✓̃

(K�1)

2

◆
� f2

✓
[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)];✓(K�1)

2

◆
|

+ |f2

✓
[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)];✓(K�1)

2

◆
� f2

✓
[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)];✓(K�1)

2

◆
|.

Here, for the first term on the RHS, we apply Lemma D.11 as well as Corollary D.12 to bound.

Then, for the second term, with Gaussian initialization of weight matrices, for the over-parameterized
FC network f with Lipschitz-smooth activation functions (e.g., Sigmoid), we can have |f(x) �
f(x0)|, krf(x) � rf(x0)k  ⇠ · kx � x0

k due to its Lipschitz continuity / smoothness property
[46, 17]. Meanwhile, we also have the Lipschitz continuity property for over-parameterized FC
network f

0 with ReLU activation [3], such that |f 0(x)� f
0(x0)|  ⇠

0
· kx� x0

k. By the Gaussian
initialization of BASS’s weight matrices and the properties of over-parameterized neural networks
[3, 46, 17], we have ⇠L = max{⇠, ⇠0}  O(cL⇠) being the Lipschitz constant for our f1, f2, where
c⇠ > 1 is a small constant. Applying the conclusion above, we will have

��f2
✓
[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)];✓(K�1)

2

◆
� f2

✓
[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)];✓(K�1)

2

◆��

 ⇠L ·
��[r✓̃f1(�

s,⇤
K); r✓̃f1(�

q,⇤
K)]� ⇠L · [r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)]

��

 ⇠L ·
��r✓̃f1(�

s,⇤
K)�r✓f1(�

s,⇤
K)

��+ ⇠L ·
��r✓f1(�

q,⇤
K)�r✓̃f1(�

q,⇤
K)

��

 ⇠L ·
KL

4 log5/6(m)

⇢1/3m1/6

where the last inequality is by Theorem 5 in [3] and the proof of Lemma D.11. With the above
results, it will give us

I3 

✓
1 +O(

KL
3 log5/6(m)

⇢1/3m1/6
)

◆
O(

K
3
L

⇢
p
m

log(m)) +O

✓
K

4
L
2 log11/6(m)

⇢4/3m1/6

◆
+

⇠LKL
4 log5/6(m)

⇢1/3m1/6

20

[Bounding term I4] On the other hand, applying the analogous procedure for term I4, denoting
�⇤

K = ⇥(K�1),⇤[T ⇤
K] and �̄⇤

K = ⇥(K�1)[T ⇤
K] for the brevity of notation, we can have

I4 = |f(⇥(K�1),⇤[T ⇤
K];✓(K�1))� f(⇥(K�1)[T ⇤

K];✓(K�1))|

 ⇠L · k⇥(K�1),⇤[T ⇤
K]�⇥(K�1)[T ⇤

K]k2| {z }
I4.1

+ |f2

✓
[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)];✓(K�1)

2

◆
� f2

✓
[r✓f1(�̄

s,⇤
K); r✓f1(�̄

q,⇤
K)];✓(K�1)

2

◆
|

| {z }
I4.2

.

where �s,⇤
K ,�q,⇤

K respectively represents the support set and query set for task T
⇤
K and the meta-

parameters ⇥(K�1),⇤. Similar notation also applies to �̄⇤
K = ⇥(K�1)[T ⇤

K]. And the inequality is
due to the fact that ReLU networks are naturally Lipschitz continuous w.r.t. some coefficient ⇠L when
they are wide enough [3], as we have discussed above.

[Bounding term I4.1] Based on the meta-optimization procedure (inner-loop optimization + outer-
loop optimization), we have

I4.1 = ⇠L · k⇥(K�1),⇤[T ⇤
K]�⇥(K�1)[T ⇤

K]k2

= ⇠L · k

✓
⇥(K�1),⇤

� ⌘2 ·r⇥L(Dq,⇤
K ;⇥(J),⇤

K)

◆
�

✓
⇥(K�1)

� ⌘2 ·r⇥L(Dq,⇤
K ;⇥(J)

K)

◆
k2

where ⇥(J),⇤
K is the task-specific parameter of T

⇤
K after adapting on ⇥(K�1),⇤ with inner-loop

optimization, and the ⇥(J)
K is the similar parameter after adapting on ⇥(K�1). Here, we simplify

the formula by representing the gradient derivation (inner-loop + outer-loop) with the mapping
H : T ⇥⇥ 7! Rp, which leads to

k⇥(K�1),⇤[T ⇤
K]�⇥(K�1)[T ⇤

K]k2

= k

✓
⇥(K�1),⇤

� ⌘2 ·r⇥L(Dq;⇥(J),⇤
K)

◆
�

✓
⇥(K�1)

� ⌘2 ·r⇥L(Dq;⇥(J)
K)

◆
k2

= k(⇥(K�1),⇤
�⇥(K�1))� ⌘2 ·

✓
H(T ⇤

K ,⇥(K�1),⇤)�H(T ⇤
K ,⇥(K�1))

◆
k2

= k(⇥(K�2),⇤
�⇥(K�2))� ⌘2 ·

✓
H(T ⇤

K ,⇥(K�1),⇤)�H(T ⇤
K ,⇥(K�1))

◆

� ⌘2 ·

✓
H(T ⇤

K�1,⇥
(K�2),⇤)�H(T ⇤

K�1,⇥
(K�2))

◆
k2



X

k2[K]

⌘2 ·
��H(T ⇤

k ,⇥(k�1),⇤)�H(T ⇤
k ,⇥(k�1))

��
2

Recall that the past arms, including the actual chosen arms {T1, T2, . . . , TK} as well as the opti-
mal ones {T

⇤
1 , T

⇤
2 , . . . , T

⇤
K} are all from the candidate pool where each candidate arm is drawn

i.i.d. from the task distribution P(T). Therefore, denoting the bound as kH(T ⇤
K ,⇥(K�1),⇤) �

H(T ⇤
K ,⇥(K�1))k2  S1(K), we can have the upper bound as I4.1  ⌘2 · ⇠LK · S1(K).

Then, for the term S1(K), by definition we have kH(T ⇤
K ,⇥(K�1),⇤)�H(T ⇤

K ,⇥(K�1))k  S1(K),
applying mean-reduction for the sample loss will further leads to

kH(T ⇤
K ,⇥(K�1),⇤)�H(T ⇤

K ,⇥(K�1))k = kr⇥L(Dq,⇤
K ;⇥(J),⇤

K)�r⇥L(Dq,⇤
K ;⇥(J)

K)k2

= k
1

|D
q,⇤
K |

X

x2Dq,⇤
K

r⇥L(x;⇥(J),⇤
K)�

1

|D
q,⇤
K |

X

x2Dq,⇤
K

r⇥L(x;⇥(J)
K)k2


1

|D
q,⇤
K |

X

x2Dq,⇤
K

kr⇥L(x;⇥(J),⇤
K)�r⇥L(x;⇥(J)

K)k2.

This inequality essentially bound the gradient difference when given the same input task T
⇤
K w.r.t.

different sets of model parameters. Based on the conclusion from Lemma 9 of [46] and Lemma

21

B.3 of [10], we have kr⇥lf(x;⇥K)kF , kr⇥lL(x;⇥K)kF  O(
p
mF), 8l 2 [LF] for any set of

parameters within the sphere ⇥K 2 B(⇥0,!) where ⇥0 is the center and ! is the corresponding
radius (which is a small value). With a total of LF layers for the meta-model and each layer of mF
hidden units, this will give us kr⇥L(x;⇥(J),⇤

K)k2, kr⇥L(x;⇥(J)
K)k2  O(

p
mFLF) (Lemma

D.15). And this makes S1(K)  O(
p
mFLF). Since we have ⌘1, ⌘2  O(1

mF
), summarizing the

results above, the upper bound can then be derived.

[Bounding term I4.2] Next, we proceed to bound I4.2, which will be

I4.2 = |f2

✓
[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)];✓(K�1)

2

◆
� f2

✓
[r✓f1(�̄

s,⇤
K); r✓f1(�̄

q,⇤
K)];✓(K�1)

2

◆
|

 ⇠L ·
��[r✓f1(�

s,⇤
K); r✓f1(�

q,⇤
K)]� [r✓f1(�̄

s,⇤
K); r✓f1(�̄

q,⇤
K)]

��
2

 ⇠L ·
��r✓f1(�

s,⇤
K)�r✓f1(�̄

s,⇤
K)

��
2
+ ⇠L ·

��r✓f1(�
q,⇤
K)�r✓f1(�̄

q,⇤
K)

��
2

 ⇠
2
L ·

���s,⇤
K � �̄s,⇤

K

��
2
+ ⇠

2
L ·

���q,⇤
K � �̄q,⇤

K

��
2

where the inequalities are due to the Lipschitz continuity / smoothness properties of over-
parameterized FC networks as we discussed above. Here, we notice that the second term on the RHS
can be bounded by directly applying the proving procedure of term I4.1. Then, for the first term on
the RHS, we can following a similar procedure as for I4.1, by
���s,⇤

K � �̄s,⇤
K

��
2
=

��I(T ⇤
k , ⇥(k�1),⇤)� I(T ⇤

k , ⇥(k�1))
��
2

= k

✓
⇥(K�1),⇤

� ⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
K ;⇥(j),⇤

K)

◆
�

✓
⇥(K�1)

� ⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
K ;⇥(j)

K)

◆
k2

= k
�
⇥(K�2),⇤

�⇥(K�2))
�
�
�
⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
K�1;⇥

(j)
K�1)� ⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
K�1;⇥

(j),⇤
K�1

�

�
�
⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
K ;⇥(j)

K)� ⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
K ;⇥(j),⇤

K

�
k2

 ⌘1 ·

X

k2[K]

k

X

j2[J]

r⇥L(Ds,⇤
k ;⇥(j)

k)� ⌘1 ·

X

j2[J]

r⇥L(Ds,⇤
k ;⇥(j),⇤

k)k2

 O(⌘1 ·KJ

p
mFLF)

where the last inequality is due to Lemma D.15 and by iterating through K meta-training iterations.
Summing up the results above, we will have I4.2  O(⌘2⇠2L ·K

p
mFLF)+O(⌘1⇠2L ·KJ

p
mFLF).

[Summing up the results] Then, combining all the results, we would have

Rsingle(K)  O(
1

p
K

) ·

✓p
2⇠1 +

3L
p
2
+ (1 + 2�1)

r
2 log(

K

�
)

◆
+O(

⇠
2
LKJ

p
LF

p
mF

) + �m

where

�1 = 2 +O

✓
K

3
L

⇢
p
m

logm

◆
+O

✓
L
2
K

4

⇢4/3m1/6
log11/6(m)

◆

�m =

✓
1 +O(

KL
3 log5/6(m)

⇢1/3m1/6
)

◆
O(

K
3
L

⇢
p
m

log(m)) +O

✓
K

4
L
2 log11/6(m)

⇢4/3m1/6

◆
+

⇠LKL
4 log5/6(m)

⇢1/3m1/6

Note that the majority of the terms above can be cancelled to O(1) with proper networks width m

indicated in Theorem 5.2. With increasingly large network width m, these terms will also become
diminutive enough to achieve our regret bound in the main body.

D.2 Extending the result to the batch settings (Proof of Theorem 5.2)

With the results and conclusions from Subsection D.1, we proceed to provide the proof of Theo-
rem 5.2 under the batch settings. Recall that in our original problem formulation and Algorithm 1, we
are expected to select a batch of B arms in each meta-training iteration, denoted by {⌦k}k2[K]. Note
that each of the candidate arms from ⌦(k)

task are drawn i.i.d. from the task distribution P(T). Meantime,

22

we will have the corresponding optimal arm batches, denoted by {⌦⇤
k}k2[K], which minimizes the

loss objective in Eq. 5. Recall that we update the meta-model parameters with

⇥(k) = ⇥(k�1)
� ⌘2 ·r⇥

✓
1

|⌦k|

X

Tk,i2⌦k

L(Dq
k,i;⇥

(J)
k,i)

◆
= ⇥(k�1)

�
⌘2

|⌦k|

X

Tk,i2⌦k

r⇥

✓
L(Dq

k,i;⇥
(J)
k,i)

◆

where ⇥(J)
k,i is the task-specific parameter for Tk,i after the inner-loop optimization for J steps.

Analogously, for the notation brevity and the sake of analysis, we denote f(⇥(K�1)[⌦K];✓(k�1)) =

f1(�
q
k;✓

(k�1)
1) + f2

✓
[r✓f1(�s

k);r✓f1(�
q
k)];✓

(k�1)
2

◆
where we have �q

k := ⇥(K�1)[⌦K] being

the meta-parameters adapted to batch of tasks ⌦K , and the batch-specific parameter is defined as
�s

k := 1
|⌦K |

P
Tk,bi2⌦K

[⇥(J)

k,bi
]. Then, the regret under the batch setting can be denoted by

R(K) = Rbatch(K) = ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K))

��
� ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K),⇤)

��

= ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K�1)[⌦K])

��
� ET ⇠P(T),x⇠DT


L
�
x; I(T ,⇥(K�1),⇤[⌦⇤

K])
��

= h(⇥(K�1),⇤[⌦⇤
K])� h(⇥(K�1)[⌦K])

= h(⇥(K�1),⇤[⌦⇤
K])� f(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

) + f(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f(⇥(K�1)[⌦K];✓(K�1))

+ f(⇥(K�1)[⌦K];✓(K�1))� h(⇥(K�1)[⌦K]),

and after applying properties of the arm pulling mechanism, it is equivalent to

R(K)  h(⇥(K�1),⇤[⌦⇤
K])� f(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

)

+ f(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f̂(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

)

+ f̂(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f̂(⇥(K�1)[⌦⇤

K];✓(K�1))

+ f̂(⇥(K�1)[⌦K];✓(K�1))� f(⇥(K�1)[⌦K];✓(K�1)) + f(⇥(K�1)[⌦K];✓(K�1))� h(⇥(K�1)[⌦K])

 |h(⇥(K�1),⇤[⌦⇤
K])� f(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

)|| {z }
I5

+ |f(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f̂(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

)|| {z }
I6

+ |f̂(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f̂(⇥(K�1)[⌦⇤

K];✓(K�1))|| {z }
I7

+ |f̂(⇥(K�1)[⌦K];✓(K�1))� f(⇥(K�1)[⌦K];✓(K�1))|| {z }
I8

+ |f(⇥(K�1)[⌦K];✓(K�1))� h(⇥(K�1)[⌦K])|| {z }
I9

where the average value of estimated benefit scores for individual tasks TK,i 2 ⌦K is represented
as bf(⇥(K�1)[⌦K]) = 1

|⌦K | ·
P

TK,i2⌦K
f(⇥(K�1)[TK,i]) = 1

|⌦K | ·
P

TK,i2⌦K
f
�
⇥(k�1)

� ⌘2 ·

r⇥L(Dq
K,i;⇥

(J)
K,i);✓

(K�1)�
, and the inequality is due to the pulling mechanism of BASS. Here,

I5, I9 individually correspond to I1, I2 in the single-task setting and can be bounded by Lemma D.3,
Corollary D.4. Term I7 can be upper bounded by I3 + I4 from the single-task setting above. Then,
for the rest terms I6, I8, we proceed to bound them separately.

D.2.1 Bounding error terms and assembling the regret bound

We begin with the term I8, and then proceed to I6. For the chosen batch of tasks ⌦K in the round K,
we will have f1(⇥(K�1)[⌦K]) = f1

�
⇥(K�1)

�⌘2·r⇥

�
1

|⌦K |
P

TK,i2⌦K
L(Dq

K,i;⇥
(J)
K,i)

�
;✓(K�1)

1

�
,

In this case, the average value of estimation sampling probabilities for tasks TK,i 2 ⌦K is

bf(⇥(K�1)[⌦K]) = bf1(⇥(K�1)[⌦K]) + bf2(⇥(K�1)[⌦K])

=
1

|⌦K |

X

TK,i2⌦K


f1(⇥

(K�1)[TK,i];✓
(K�1)
1) + f2

�
[r✓f1(�

s
K,i); r✓f1(�

q
K,i)];✓

(K�1)
2

��

23

[Bounding the f1 output difference] Next, let us first proceed to bound the output difference with
respect to the exploitation module f1, where we can transform this term into

f1(⇥
(K�1)[⌦K])� bf1(⇥(K�1)[⌦K])

= f1

✓
⇥(k�1)

1 � ⌘2 ·r⇥

� 1

|⌦K |

X

TK,i2⌦K

L(Dq
K,i;⇥

(J)
K,i)

�
;✓(K�1)

1

◆

�
1

|⌦K |
·

X

TK,j2⌦K

f1

✓
⇥(k�1)

� ⌘2 ·r⇥L(Dq
K,j ;⇥

(J)
K,j);✓

(K�1)
1

◆

=
1

|⌦K |
·

X

TK,j2⌦K

✓
f1

�
⇥(k�1)

� ⌘2 ·r⇥

� 1

|⌦K |

X

TK,i2⌦K

L(Dq
K,i;⇥

(J)
K,i)

�
;✓(K�1)

1

�

� f1

�
⇥(k�1)

� ⌘2 ·r⇥L(Dq
K,j ;⇥

(J)
K,j);✓

(K�1)
1

�◆
.

Then, applying the Lipschitz continuity property will lead to

f1(⇥
(K�1)[⌦K])� bf1(⇥(K�1)[⌦K])


⌘2 · ⇠L

|⌦K |
·

X

TK,i2⌦K

kr⇥

� 1

|⌦K |

X

TK,j2⌦K

L(Dq
K,j ;⇥

(J)
K,j)

�
�r⇥L(Dq

K,i;⇥
(J)
K,i)k2.

Here, by the definition of the outer-loop optimization of first-order meta-learning, we will have an
alternative form the inequality, denoted by

f1(⇥
(K�1)[⌦K])� bf1(⇥(K�1)[⌦K]) 

⌘2 · ⇠L

|⌦K |
·

✓ X

TK,i2⌦K

k
1

|⌦K |

X

TK,j2⌦K

r⇥

�
L(Dq

K,j ;⇥
(J)
K,j)

�
�r⇥L(Dq

K,i;⇥
(J)
K,i)k2

◆
.

For the term in the parentheses on the RHS, substituting the backward operation with the H(·, ·)
mapping function, we have

X

TK,i2⌦K

k
1

|⌦K |

X

TK,j2⌦K

r⇥

�
L(Dq

K,j ;⇥
(J)
K,j)

�
�r⇥L(Dq

K,i;⇥
(J)
K,i)k2

=
X

TK,i2⌦K

k
1

|⌦K |

X

TK,j2⌦K

r⇥

�
L(Dq

K,j ;⇥
(J)
K,j)

�
�

1

|⌦K |

X

TK,j2⌦K

r⇥L(Dq
K,i;⇥

(J)
K,i)k2


1

|⌦K |

X

TK,i2⌦K

X

TK,j2⌦K

kr⇥L(Dq
K,j ;⇥

(J)
K,j)�r⇥L(Dq

K,i;⇥
(J)
K,i)k2

=
1

|⌦K |

X

TK,i2⌦K

X

TK,j2⌦K

kH(TK,i,⇥
(K�1))�H(TK,j ,⇥

(K�1))k2

 |⌦K | · S1(K).

with |⌦K | = B. Therefore, the f1 part of error term I8 could be bounded by f1(⇥
(K�1)[⌦K]) �

bf1(⇥(K�1)[⌦K])  ⌘2 · ⇠L · B · S1(K). where the upper bound S1(K)  O(
p
mFLF) can be

found in the procedure bounding term I4.1.

[Bounding the f2 output difference] Then, with �K = ⇥(K�1)[⌦K], we proceed to bound the
output difference with respect to the exploration module, which is represented by

f2(⇥
(K�1)[⌦K])� bf2(⇥(K�1)[⌦K])

= f2

�
[r✓f1(�

s
K); r✓f1(�

q
K)];✓(K�1)

2

�
�

1

|⌦K |
·

X

TK,j2⌦K

f2

�
[r✓f1(�

s
K,j); r✓f1(�

q
K,j)];✓

(K�1)
2

�

=
1

|⌦K |
·

X

TK,j2⌦K

✓
f2

�
[r✓f1(�

s
K); r✓f1(�

q
K)];✓(K�1)

2

�
� f2

�
[r✓f1(�

s
K,j); r✓f1(�

q
K,j)];✓

(K�1)
2

�◆

24

By adopting the Lipschitz continuity property of f2, we will have

f2(⇥
(K�1)[⌦K])� bf2(⇥(K�1)[⌦K])


⇠L

|⌦K |
·

X

TK,j2⌦K

��[r✓f1(�
s
K); r✓f1(�

q
K)]� [r✓f1(�

s
K,j); r✓f1(�

q
K,j)]

��
2


⇠L

|⌦K |
·

X

TK,j2⌦K

��r✓f1(�
s
K)�r✓f1(�

s
K,j)

��
2
+
��r✓f1(�

q
K)�r✓f1(�

q
K,j)

��
2


⇠
2
L

|⌦K |
·

X

TK,j2⌦K

���s
K � �s

K,j

��
2
+
���q

K � �q
K,j

��
2

=
⇠
2
L · ⌘2

|⌦K |
·

X

TK,j2⌦K

kr⇥

� 1

|⌦K |

X

TK,i2⌦K

L(Dq
K,i;⇥

(J)
K,i)

�
�r⇥L(Dq

K,j ;⇥
(J)
K,j)k2

+
⇠
2
L

|⌦K |
·

X

TK,j2⌦K

���s
K � �s

K,j

��
2

 ⌘2 · ⇠
2
LB · S1(K) +

⇠
2
L · ⌘1

|⌦K |
·

X

TK,j2⌦K

k
1

|⌦K |

X

TK,i2⌦K

⇥(J)
K,i �

1

|⌦K |

X

TK,i2⌦K

⇥(J)
K,jk2

where the last inequality is by applying the conclusion when bounding the output difference w.r.t. the
exploitation module f1. Then, for the second term on the RHS,

X

TK,j2⌦K

k
1

|⌦K |

X

TK,i2⌦K

⇥(J)
K,i �

1

|⌦K |

X

TK,i2⌦K

⇥(J)
K,jk2 

1

|⌦K |

X

TK,j2⌦K

X

TK,i2⌦K

k⇥(J)
K,i �⇥(J)

K,jk2


1

|⌦K |

X

TK,j2⌦K

X

TK,i2⌦K

k
�
⇥K�1

�

X

⌧2[⌧]

r⇥L(Ds
K,i;⇥

(⌧)
K,i)

�
�

�
⇥K�1

�

X

⌧2[J]

r⇥L(Ds
K,j ;⇥

(⌧)
K,j)

�
k2

=
1

|⌦K |

X

TK,j2⌦K

X

TK,i2⌦K

k

X

⌧2[J]

r⇥L(Ds
K,i;⇥

(⌧)
K,i)�

X

⌧2[J]

r⇥L(Ds
K,j ;⇥

(⌧)
K,j)k2

 |⌦K |J · O(
p
mFLF)

where the last inequality is due to Lemma D.15. Summing up all the results above will give us
the upper bound for f2 output difference f2(⇥

(K�1)[⌦K]) � bf2(⇥(K�1)[⌦K])  O(⌘2 · ⇠
2
LB ·

p
mFLF + ⌘1 ·BJ ·

p
mFLF).

[Similar procedure for term I6] Analogously, we can apply the same derivation for the error term
I6, which leads to

I6 = f(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f̂(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

)

= f1

✓
⇥(k�1),⇤

� ⌘2r⇥

� 1

|⌦⇤
K |

X

Ti⇤2⌦⇤
K

L(Dq
i⇤ ;⇥

(J)
i⇤)

�
; ✓̃

(K�1)

1

◆

�
1

|⌦⇤
K |

·

X

Ti⇤2⌦⇤
K

f1

✓
⇥(k�1),⇤

� ⌘2r⇥L(Dq
i⇤ ;⇥

(J)
i⇤); ✓̃

(K�1)

1

◆
.

Following a similar procedure as that of term I8 will give us a similar bound as

I6 = f(⇥(K�1),⇤[⌦⇤
K]; ✓̃

(K�1)
)� f̂(⇥(K�1),⇤[⌦⇤

K]; ✓̃
(K�1)

)

 O(⌘2 · ⇠
2
LB ·

p
mFLF +BJ ·

p
mFLF⌘1).

where the learning rate ⌘1, ⌘2  O(1
mF

) is a small value. Then, the upper bounds for error terms
I6, I8 are given as desired.

[Assembling the results] Then, combining all the results, we would have

R(K)  O(
1

p
K

) ·

✓p
2⇠1 +

3L
p
2
+ (1 + 2�1)

r
2 log(

K

�
)

◆
+O(

⇠
2
LKBJ

p
LF

p
mF

) + �m

25

where

�1 = 2 +O

✓
K

3
L

⇢
p
m

logm

◆
+O

✓
L
2
K

4

⇢4/3m1/6
log11/6(m)

◆

�m =

✓
1 +O(

KL
3 log5/6(m)

⇢1/3m1/6
)

◆
O(

K
3
L

⇢
p
m

log(m)) +O

✓
K

4
L
2 log11/6(m)

⇢4/3m1/6

◆
+

⇠LKL
4 log5/6(m)

⇢1/3m1/6

Similarly, with proper networks width m as in Theorem 5.2, the majority of the terms above can
be cancelled to O(1). With increasingly large network width m under the over-parameterization
settings, �1, �m will also become diminutive.

D.3 Performance Guarantee for the Exploitation and Exploration Modules

In this subsection, we would like to give the performance guarantee for the proposed BASS framework,
and the corresponding performance bound can be applied to derive an upper bound for the error terms
I1, I2 for the single-task settings and I5, I9 under the batch settings. Up to meta-training iteration
k 2 [K] (before updating the meta-parameters and BASS), we denote all the past records received as
Pk�1. Before presenting the main lemmas, we first introduce the following operator. Inspired by [3],
with two arbitrary vectors �̃,� such that k�̃k2  1, k�k2 = 1, we have the following operator

�(�̃,�) = (
�̃
p
2
,
�

2
, c) (11)

as the concatenation of the two vectors �̃p
2
,
�
2 and one constant c, where c =

q
3
4 � (k�̃k2p

2
)2 �

1
2 .

And this operator transforms the transformed vector into unit norm, k�(�̃,�)k2 = 1. The idea of
this operator is to make the gradients r✓f1(·;✓1) of the exploitation model, which is the input of
the exploration model f2(·;✓2), comply with the normalization requirement and the separateness
assumption (Assumption 5.1). For the sake of analysis, we will adopt this operation in the following
proof. Note that this operator is just one possible solution, and our results could be easily generalized
to other forms of input gradients under the unit-length and separateness assumption. Similar ideas
are also applied in previous works [9]. We begin to bound the single-task settings with the following
lemma.
Lemma D.1. For the constants c

0
g > 0, 0 < ⇢  O(1

L) and ⇠1 2 (0, 1), given the past records
Pk�1, we suppose m, ⌘1, ⌘2 satisfy the conditions in Theorem 5.2, and randomly draw the parameter

{✓(k)
1 ,✓(k)

2 } ⇠ {e✓
(⌧)

1 , e✓
(⌧)

2 }⌧2[k]. Consider the past records Pk�1 up to round k are generated by
a fixed policy when witness the candidate arms {⌦(⌧)

task}⌧2[k]. Then, with probability at least 1� �

given an arm-reward pair (Tk,bi, rk,bi), we have

ETk,i⇠P(T)


|f2

✓
�(

[r✓f1(�s
k,bi); r✓f1(�

q

k,bi
)]

c0gL
,�q

k,bi
);✓(k�1)

2

◆
�

✓
r⌧ � f1(�

q

k,bi
;✓(k�1)

1)

◆
|
��⌦(k)

task,Pk�1

�


1
p
k
·

✓p
2⇠1 +

3L
p
2
+ (1 + 2�1)

r
2 log(

k

�
)

◆

where

�1 = 2 +O

✓
k
3
L

⇢
p
m

logm

◆
+O

✓
L
2
k
4

⇢4/3m1/6
log11/6(m)

◆
.

Proof. The proof of this lemma is inspired by Lemma C.1 from [9]. First, we can derive the output
upper bound

����f2
✓
�(

[r✓f1(�s
k,bi); r✓f1(�

q

k,bi
)]

c0gL
,�q

k,bi
);✓(k�1)

2

◆
�

✓
rk � f1(�

q

k,bi
;✓(k�1)

1)

◆����



����f2
✓
�(

[r✓f1(�s
k,bi); r✓f1(�

q

k,bi
)]

c0gL
,�q

k,bi
);✓(k�1)

2

◆����+
����f1(�

q

k,bi
;✓(k�1)

1)

����+ 1

 1 + 2�1

26

by triangle inequality and applying the generalization result of FC networks (Lemma D.5) on
f1(·;✓1), f2(·;✓2).

For the brevity of notation, we use rf1(Tk,bi) to denote �(
[r✓f1(�

s
k,bi); r✓f1(�

q

k,bi
)]

c0gL
,�q

k,bi
) and apply

(�k, rk) as (�q

k,bi
, rk,bi) for the following proof. Define the difference sequence as

V
(1)
⌧ = E

����f2
✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�

�

����f2
✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����.

Since the past rewards and the received arm-reward pairs (�⌧ , r⌧) are generated by the same reward
mapping function, we have the expectation

E[V (1)
⌧

��F⌧] =E
����f2

✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�

� E
����f2

✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����
��F⌧

�
= 0.

where F⌧ denotes the filtration given the past records P⌧ , up to round ⌧ 2 [k]. This also gives the
fact that V (1)

⌧ is a martingale difference sequence. Then, after applying the martingale difference
sequence over [k], we have

1

k

X

⌧2[k]

V
(1)
⌧ =

1

k

X

⌧2[k]

E
����f2

✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�

�
1

k

X

⌧2[k]

����f2
✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����.

Then, by applying the Azuma-Hoeffding inequality, it leads to

P

1

k

X

⌧2[k]

V
(1)
⌧ �

1

k

X

⌧2[k]

E[V (1)
⌧] � (1 + 2�1)

r
2 log(1/�)

k

�
 �

Since the expectation of V
(1)
⌧ is zero, with the probability at least 1 � � and an existing set of

parameters ✓2 s.t. k✓2 � ✓(0)
2 k  O

⇣
k3

⇢
p
m
logm

⌘
, the above inequality implies

1

k

X

⌧2[k]

V
(1)
⌧  (1 + 2�1)

r
2 log(1/�)

k
=)

ETk,i⇠P(T)E{✓(k�1)
1 ,✓(k�1)

2 }

����f2
✓
rf1(T⌧,bi);✓

(k�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(k�1)
1)

◆����

�

=
1

k

X

⌧2[k]

E
����f2

✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
rk � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�


1

k

X

⌧2[k]

����f2
✓
rf1(T⌧,bi);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����+ (1 + 2�1)

r
2 log(1/�)

k


(i)

1

k

X

⌧2[k]

����f2
✓
rf1(T⌧,bi);✓2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����+
3L
p
2k

+ (1 + 2�1)

r
2 log(1/�)

k


1
p
k

vuut
X

⌧2[k]

����f2
✓
rf1(T⌧,bi);✓2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����
2

+
3L
p
2k

+ (1 + 2�1)

r
2 log(1/�)

k


(ii)

r
2⇠1
k

+
3L
p
2k

+ (1 + 2�1)

r
2 log(1/�)

k
.

27

where the first equality is due to the sampling of candidate tasks and the model parameters. Here,
the upper bound (i) is derived by applying the conclusions of Lemma D.6 and Lemma D.10,
and the inequality (ii) is derived by adopting Lemma D.6 while defining the empirical loss to be
1
2

P
⌧2[k]

����f2
✓
rf1(T⌧,bi);✓2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����
2

 ⇠1. Finally, applying the union bound

would give the aforementioned results.

Here, analogous to the trained parameters, we consider the shadow parameters as {✓(k),⇤
1 ,✓(k),⇤

2 } ⇠

{e✓
(⌧),⇤
1 , e✓

(⌧),⇤
2 }⌧2[k]. Similarly, each pair {e✓

(⌧),⇤
1 , e✓

(⌧),⇤
2 } is separately trained on past received

rewards of the optimal arm(s) {r⌧ 0,i⇤}⌧ 02[⌧],T⌧0,i⇤2⌦⇤
k

and past exploration scores of the optimal arm(s)

{e⌧ 0,i⇤}⌧ 02[⌧],T⌧0,i⇤2⌦⇤
k

with J✓-iteration GD, starting from the random initialization {✓(0)
1 ,✓(0)

2 }.

Corollary D.2. For the constants 0 < ⇢  O(1/L) and ⇠1 2 (0, 1), given the past records Pk�1,
we suppose m, ⌘1, J satisfy the conditions in Theorem 5.2, and randomly draw the parameters
{✓(k),⇤

1 ,✓(k),⇤
2 } ⇠ {e✓

(⌧),⇤
1 , e✓

(⌧),⇤
2 }⌧2[k]. For the optimal arm Tk,i⇤ 2 ⌦k

task, consider its union set
with the the collection of past optimal arms P⇤

k�1 [{Tk,i⇤ , rk,i⇤} are generated by a fixed policy
when witness the candidate arms {⌦(⌧)

task}⌧2[k], with P
⇤
k�1 being the collection chosen by this policy.

Then, with probability at least 1� �, we have

ETk,i⇠P(T)


|f2

✓
�(

[r✓f1(�
s,⇤
k); r✓f1(�

q,⇤
k)]

c0gL
,�q,⇤

k);✓(k�1),⇤
2

◆
�

✓
r⌧ � f1(�

q,⇤
k ;✓(k�1),⇤

1)

◆
|
��⌦(k)

task,P
⇤
k�1

�


1
p
k
·

✓p
2⇠1 +

3L
p
2
+ (1 + �1)

r
2 log(

k

�
)

◆
+ �k

where r⌧,i⇤ is the corresponding reward generated by the mapping function given an arm �⌧,i⇤ , and

�k =

✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(

k
4
L

⇢
p
m

log(m)) +O

✓
k
5
L
2 log11/6(m)

⇢4/3m1/6

◆
.

Proof. This corollary is the direct application of Lemma D.1 by following a similar proof procedure.
First, suppose the shadow models f1(·;✓2), f2(·;✓2) are trained on the alternative trajectory P

⇤
k�1.

Analogous to the proof of Lemma D.1, we can define the following martingale difference sequence
with regard to the previous records P⇤

k�1 up to round ⌧ 2 [t] as

V
(1),⇤
⌧ = E

����f2
✓
rf1(T⌧,i⇤);✓

(⌧�1),⇤
2

◆
�

✓
r
⇤
⌧ � f1(�

⇤
⌧ ;✓

(⌧�1),⇤
1)

◆����

�

�

����f2
✓
rf1(T⌧,i⇤);✓

(⌧�1),⇤
2

◆
�

✓
r
⇤
⌧ � f1(�

⇤
⌧ ;✓

(⌧�1),⇤
1)

◆����.

Since the records in set P⇤
k�1 are sharing the same reward mapping function, we have the expectation

E[V (1),⇤
⌧

��F ⇤
⌧] =E

����f2
✓
rf1(T⌧,i⇤);✓

(⌧�1),⇤
2

◆
�

✓
r
⇤
⌧ � f1(�

⇤
⌧ ;✓

(⌧�1),⇤
1)

◆����

�

� E
����f2

✓
rf1(T⌧,i⇤);✓

(⌧�1),⇤
2

◆
�

✓
r
⇤
⌧ � f1(�

⇤
⌧ ;✓

(⌧�1),⇤
1)

◆����
��F ⇤

⌧

�
= 0.

where F ⇤
⌧ denotes the filtration given the past records P⇤

k�1. The mean value of V (1),⇤
⌧ across different

time steps will be

1

k

X

⌧2[k]

V
(1),⇤
⌧ =

1

k

X

⌧2[k]

E
����f2

✓
rf1(T⌧,i⇤);✓

(⌧�1),⇤
2

◆
�

✓
r
⇤
⌧ � f1(�

⇤
⌧ ;✓

(⌧�1),⇤
1)

◆����

�

�
1

k

X

⌧2[k]

����f2
✓
rf1(T⌧,i⇤);✓

(⌧�1),⇤
2

◆
�

✓
r
⇤
⌧ � f1(�

⇤
⌧ ;✓

(⌧�1),⇤
1)

◆����.

28

with the expectation of zero. Afterwards, applying the Azuma-Hoeffding inequality, with a constant
� 2 (0, 1), it leads to

P

1

k

X

⌧2[k]

V
(1),⇤
⌧ �

1

k

X

⌧2[k]

E[V (1),⇤
⌧] � (1 + 2�1)

r
2 log(1/�)

k

�
 �

To bound the output difference between the shadow model f1(·;✓
(k�1),⇤
1), f2(·;✓

(k�1),⇤
2) and the

model we trained based on received records f1(·;✓
(k�1)
1), f2(·;✓

(k�1)
2), we apply the conclusion

from Lemma D.11, which leads to that given arbitrary input vectors x,x0, we have

|f1(x;✓
(k�1),⇤
1)� f1(x;✓

(k�1)
1)|, |f2(x

0;✓(k�1),⇤
2)� f2(x

0;✓(k�1)
2)| 

✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(

k
3
L

⇢
p
m

log(m)) +O

✓
k
4
L
2 log11/6(m)

⇢4/3m1/6

◆
.

Finally, combining all the results will finish the proof.

We will also be able to have the performance guarantee under the batch settings. Recall that given
a batch of chosen tasks ⌦k ⇢ ⌦(k)

task, k 2 [K], we have the meta-parameters adapted to this batch of
tasks being ⇥(K�1)[⌦K], which we consider as the input for the f1(·;✓1) model, where the tasks
within each collection are sampled from the task distribution. Thus, chosen task batches from different
iterations are also independent from each other. Intuitively, we can also define the corresponding
reward for arm batch ⌦k as rk = h(⇥(k�1)[⌦k]). Then, we bound the batch settings with the
following lemma and corollary.
Lemma D.3. For the constants c

0
g > 0, ⇢ 2 (0,O(1

L)) and ⇠1 2 (0, 1), given the past records
Pk�1, we suppose m, ⌘1, ⌘2 satisfy the conditions in Theorem 5.2, and randomly draw the parameter

{✓(k)
1 ,✓(k)

2 } ⇠ {e✓
(⌧)

1 , e✓
(⌧)

2 }⌧2[k]. Consider the past records Pk�1 up to round k are generated by
a fixed policy when witness the candidate arms {⌦(⌧)

task}⌧2[k]. Then, with probability at least 1� �

given the pair of chosen arm batch and the reward (⌦k, rk) in round k, we have

ETk,i⇠P(T)


|f2

✓
�(

[r✓f1(�s
k); r✓f1(�

q
k)]

c0gL
,�q

k);✓
(k�1)
2

◆
�

✓
r⌧ � f1(�

q
k;✓

(k�1)
1)

◆
|
��⌦(k)

task,Pk�1

�


1
p
k
·

✓p
2⇠1 +

3L
p
2
+ (1 + 2�1)

r
2 log(

k

�
)

◆

where

�1 = 2 +O

✓
k
3
L

⇢
p
m

logm

◆
+O

✓
L
2
k
4

⇢4/3m1/6
log11/6(m)

◆
.

Proof. The proof of this lemma is analogous to the proof of Lemma D.1. First, we can derive the
output upper bound����f2

✓
�(

[r✓f1(�s
k); r✓f1(�

q
k)]

c0gL
,�q

k);✓
(k�1)
2

◆
�

✓
rk � f1(�

q
k;✓

(k�1)
1)

◆����



����f2
✓
�(

[r✓f1(�s
k); r✓f1(�

q
k)]

c0gL
,�q

k);✓
(k�1)
2

◆����+
����f1(�

q
k;✓

(k�1)
1)

����+ 1

 1 + 2�1
by triangle inequality and applying the generalization result of FC networks (Lemma D.5) on
f1(·;✓1), f2(·;✓2), where c

0
g > 0 is a positive number to scale the concatenated gradient vector.

For the brevity of notation, we use rf1(⌦k) to denote �([r✓f1(�
s
k); r✓f1(�

q
k)]

c0gL
,�q

k) and apply (�k, rk)

as (�q
k, rk) for the following proof. Define the difference sequence as

V
(2)
⌧ = E

����f2
✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�

�

����f2
✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����.

29

Since the past rewards and the received arm batch-reward pairs (�⌧ , r⌧) are generated by the same
reward mapping function, we have the expectation

E[V (2)
⌧

��F⌧] =E
����f2

✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�

� E
����f2

✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����
��F⌧

�
= 0.

where F⌧ denotes the filtration given the past records P⌧ , up to round ⌧ 2 [k]. This also gives the
fact that V (2)

⌧ is a martingale difference sequence. Then, after applying the martingale difference
sequence over [k], we have

1

k

X

⌧2[k]

V
(2)
⌧ =

1

k

X

⌧2[k]

E
����f2

✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�

�
1

k

X

⌧2[k]

����f2
✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����.

By the Azuma-Hoeffding inequality, it leads to P

1
k

P
⌧2[k] V

(2)
⌧ �

1
k

P
⌧2[k] E[V

(2)
⌧] � (1 +

2�1)
q

2 log(1/�)
k

�
 �. As we have discussed, the tasks within each collection are sampled from the

task distribution, which makes chosen task batches from different iterations ⌦k, k 2 [K] are also
independent from each other. Since the expectation of V (2)

⌧ is zero, with the probability at least
1� � and an existing set of parameters ✓2 s.t. k✓2 � ✓(0)

2 k  O

⇣
k3

⇢
p
m
logm

⌘
, the above inequality

implies

1

k

X

⌧2[k]

V
(1)
⌧  (1 + 2�1)

r
2 log(1/�)

k
=)

ETk,i⇠P(T)E{✓(k�1)
1 ,✓(k�1)

2 }

����f2
✓
rf1(⌦);✓

(k�1)
2

◆
�

✓
r � f1(�;✓

(k�1)
1)

◆����

�

=
1

k

X

⌧2[k]

E
����f2

✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
rk � f1(�⌧ ;✓

(⌧�1)
1)

◆����

�


1

k

X

⌧2[k]

����f2
✓
rf1(⌦⌧);✓

(⌧�1)
2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����+ (1 + 2�1)

r
2 log(1/�)

k


(i)

1

k

X

⌧2[k]

����f2
✓
rf1(⌦⌧);✓2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����+
3L
p
2k

+ (1 + 2�1)

r
2 log(1/�)

k


1
p
k

vuut
X

⌧2[k]

����f2
✓
rf1(⌦⌧);✓2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����
2

+
3L
p
2k

+ (1 + 2�1)

r
2 log(1/�)

k


(ii)

r
2⇠2
k

+
3L
p
2k

+ (1 + 2�1)

r
2 log(1/�)

k
.

where the first equality is due to the sampling of candidate tasks and the model parameters. Here,
the upper bound (i) is derived by applying the conclusions of Lemma D.6 and Lemma D.10,
and the inequality (ii) is derived by adopting Lemma D.6 while defining the empirical loss to be
1
2

P
⌧2[k]

����f2
✓
rf1(⌦⌧);✓2

◆
�

✓
r⌧ � f1(�⌧ ;✓

(⌧�1)
1)

◆����
2

 ⇠2. Finally, applying the union bound

would give the aforementioned results.

30

Analogously, we consider the shadow parameters as {✓(k),⇤
1 ,✓(k),⇤

2 } ⇠ {e✓
(⌧),⇤
1 , e✓

(⌧),⇤
2 }⌧2[k] where

each pair {e✓
(⌧),⇤
1 , e✓

(⌧),⇤
2 } is separately trained on past received rewards of the optimal arm(s)

{r⌧ 0,i⇤}⌧ 02[⌧],T⌧0,i⇤2⌦⇤
k

and past exploration scores of the optimal arm(s) {e⌧ 0,i⇤}⌧ 02[⌧],T⌧0,i⇤2⌦⇤
k

with J✓-iteration GD starting from the random initialization {✓(0)
1 ,✓(0)

2 }.

Corollary D.4. For the constants ⇢ 2 (0,O(1
L)) and ⇠1 2 (0, 1), given the past records Pk�1,

we suppose m, ⌘1, J satisfy the conditions in Theorem 5.2, and randomly draw the parameters
{✓(k),⇤

1 ,✓(k),⇤
2 } ⇠ {e✓

(⌧),⇤
1 , e✓

(⌧),⇤
2 }⌧2[k]. For the optimal arm batch ⌦⇤

k ⇢ ⌦k
task, consider its union

set with the the collection of past optimal arms P⇤
k�1 [{⌦⇤

k, r
⇤
k} are generated by a fixed policy when

witness the candidate arms {⌦(⌧)
task}⌧2[k], with P

⇤
k�1 being the collection chosen by this policy. Then,

with probability at least 1� �, we have

ETk,i⇠P(T)


|f2

✓
�(

[r✓f1(�
s,⇤
k); r✓f1(�

q,⇤
k)]

c0gL
,�q,⇤

k);✓(k�1),⇤
2

◆
�

✓
r⌧ � f1(�

q,⇤
k ;✓(k�1),⇤

1)

◆
|
��⌦(k)

task,P
⇤
k�1

�


1
p
k
·

✓p
2⇠2 +

3L
p
2
+ (1 + �1)

r
2 log(

k

�
)

◆
+ �k

where r⌧,i⇤ is the corresponding reward generated by the mapping function given an arm �⌧,i⇤ , and

�k =

✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(

k
4
L

⇢
p
m

log(m)) +O

✓
k
5
L
2 log11/6(m)

⇢4/3m1/6

◆
.

This corollary is a directly application of Lemma D.3 and can be obtained with a similar proof as in
Corollary D.2.

D.4 Ancillary Lemmas

Applying Pk�1 as the training data, we have the following properties for the over-parameterized FC
network f(·;✓) after GD.
Lemma D.5. For the constants ⇢ 2 (0,O(1

L)) and ⇠1 2 (0, 1), given the past records Pk�1 up to
time step k, we suppose m, ⌘1, J1 satisfy the conditions in Theorem 5.2. Then, with probability at
least 1� �, given a sample-label pair (x, r), we have

|f(x;✓(k))|  �1 = 2 +O

✓
k
3
L

⇢
p
m

logm

◆
+O

✓
L
2
k
4

⇢4/3m1/6
log11/6(m)

◆
.

Proof. The LHS of the inequality could be written as

|f(x;✓)| |f(x;✓)� f(x;✓(0))� hr✓(0)f(x;✓(0)),✓ � ✓(0)
i|

+ |f(x;✓(0)) + hr✓(0)f(x;✓(0)),✓ � ✓(0)
i|.

Here, we could bound the first term on the RHS with Lemma D.7. Applying Lemma D.8 on the
second term, and recalling k✓ � ✓(0)

k2  !, would give

|f(x;✓)|  2 + kr✓(0)f(x;✓(0))k2k✓ � ✓(0)
k2+

O(!1/3
L
2
p
m log(m)) · k✓ � ✓(0)

k2

 2 +O(L) · k✓ � ✓(0)
k2 +O(L2

p
m log(m))(k✓ � ✓(0)

k2)
4
3 .

Then, applying the conclusion of Lemma D.6 would lead to

|f(x;✓)|  2 +O(L) · O

✓
k
3

⇢
p
m

logm

◆
+O(L2

p
m log(m))

✓
O(

k
3

⇢
p
m

logm)

◆ 4
3

= 2 +O

✓
k
3
L

⇢
p
m

logm

◆
+O

✓
L
2
k
4

⇢4/3m1/6
log11/6(m)

◆
= �1.

31

Lemma D.6 (Theorem 1 from [3]). For any 0 < ⇠1  1, 0 < ⇢  O(1
L). Given the past records

Pk�1, suppose m, ⌘1, J satisfy the conditions in Theorem 5.2, then with probability at least 1� �,
we could have

1. L(✓)  ⇠1 after J iterations of GD.

2. For any j 2 [J], k✓(j)
� ✓(0)

k  O

⇣
k3

⇢
p
m
logm

⌘
.

In particular, Lemma D.6 above provides the convergence guarantee for f(·;✓) after certain rounds
of GD training on the past records Pk�1.
Lemma D.7 (Lemma 4.1 in [10]). Assume a constant ! such that
O(m�3/2

L
�3/2[log(TnL2

/�)]3/2)  !  O(L�6[logm]�3/2) and n training samples.
With randomly initialized ✓(0), for parameters ✓,✓0 satisfying k✓ � ✓(0)

k, k✓ � ✓(0)
k  !, we have

|f(x;✓)� f(x;✓0)� hr✓0f(x;✓0),✓ � ✓0
i|  O(!1/3

L
2
p
m log(m))k✓ � ✓0

k

with the probability at least 1� �.
Lemma D.8. Assume m, ⌘1, J satisfy the conditions in Theorem 5.2 and ✓(0) is randomly initialized.
Then, with probability at least 1� � and given an arm kxk2 = 1, we have

1. |f(x;✓(0))|  2,

2. kr✓(0)f(x;✓(0))k2  O(L).

Proof. The conclusion (1) is a direct application of Lemma 7.1 in [3]. Suppose the parameters of the
L-layer FC network are ✓ = {✓1, . . . ,✓L}. For conclusion (2), applying Lemma 7.3 in [3], for each
layer ✓l 2 {✓1, . . . ,✓L}, we have

kr✓lf(x;✓
(0))k2 = k(✓LDL�1 · · ·Dl+1✓l+1) · (Dl+1✓l+1 · · ·D1✓1) · x

|
k2 = O(

p

L).

where D is the diagonal matrix corresponding to the activation function. Then, we could have the
conclusion that

kr✓(0)f(x;✓(0))k2 =
sX

l2[L]

kr✓lf(x;✓
(0))k22 = O(L).

Lemma D.9 (Theorem 5 in [3]). Assume m, ⌘1, J satisfy the conditions in Theorem 5.2 and ✓(0)

being randomly initialized. Then, with probability at least 1� �, and for all parameter ✓ such that
k✓ � ✓(0)

k2  !, we have

kr✓f(x;✓)�r✓(0)f(x;✓(0))k2  O(!1/3
L
3
p

log(m))

Lemma D.10. Assume m, ⌘1 satisfy the condition in Theorem 5.2. For notation brevity, suppose the
training sample-label pairs are {x⌧ , r⌧}⌧2[k]. With the probability at least 1� �, we have

X

⌧2[k]

|f(x⌧ ;✓
(⌧))� r⌧ | 

X

⌧2[k]

|f(x⌧ ;✓
(k))� r⌧ |+

3L
p
2k

2

Proof. With the notation from Lemma 4.3 in [10], set R = k3 log(m)
� , ⌫ = R

2, and ✏ = LRp
2⌫k

. Then,
considering the loss function to be L(✓) :=

P
⌧2[k]|f(x⌧ ;✓)� r⌧ | would complete the proof.

Lemma D.11. Consider a randomly initialized L-layer ReLU fully-connected network f(·;✓0). For
any 0 < ⇠2  1, 0 < ⇢  O(1

L). Let there be two sets of training samples Pk,P
0
k with the unit-length

and the ⇢-separateness assumption, and let ✓ be the trained parameter on Pk while ✓0 is the trained
parameter on P

0
k. Suppose the conditions in Theorem 5.2 are satisfied. Then, with probability at

least 1� �, we have

|f(x;✓)�f(x;✓0)| 

✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(

k
3
L

⇢
p
m

log(m)) +O

✓
k
4
L
2 log11/6(m)

⇢4/3m1/6

◆

when given a new sample x 2 Rd.

32

Proof. First, based on the conclusion from Theorem 1 from [3] and regarding the t samples, the
trained the parameters satisfy k✓ � ✓0k2, k✓

0
� ✓0k2  O(k3

⇢
p
m
log(m)) = ! where ✓0 is the

randomly initialized parameter. Then, we could have

kr✓f(x;✓)k2  kr✓0f(x;✓0)k2 + kr✓f(x;✓)�r✓0f(x;✓0)k2



✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(L)

w.r.t. the conclusion from Theorem 1 and Theorem 5 of [3]. Then, regarding the Lemma 4.1 from
[10], we would have

|f(x;✓)� f(x;✓0)� hr✓0f(x;✓0),✓ � ✓0
i|  O(!1/3

L
2
p
m log(m)) · k✓ � ✓0

k2.

Therefore, the our target could be reformed as

|f(x;✓)� f(x;✓0)|  kr✓0f(x;✓0)k2k✓ � ✓0
k2 +O(!1/3

L
2
p
m log(m)) · k✓ � ✓0

k2



✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(L) · ! +O(!4/3

L
2
p
m log(m))

Substituting the ! with its value would complete the proof.

Corollary D.12. Following a similar settings as in Lemma D.11, consider a randomly initialized
L-layer fully-connected network f(·;✓0) with Sigmoid activation. For any 0 < ⇠2  1, 0 < ⇢ 

O(1
L). Let there be two sets of training samples Pk,P

0
k with the unit-length and the ⇢-separateness

assumption, and let ✓ be the trained parameter on Pk while ✓0 is the trained parameter on P
0
k.

Suppose the conditions in Theorem 5.2 are satisfied. Then, with probability at least 1� �, we have

|f(x;✓)�f(x;✓0)| 

✓
1 +O(

kL
3 log5/6(m)

⇢1/3m1/6
)

◆
· O(

k
3
L

⇢
p
m

log(m)) +O

✓
k
4
L
2 log11/6(m)

⇢4/3m1/6

◆

when given a new sample x 2 Rd.

Proof. This corollary is an intuitive extension of Lemma D.11. Since the result from Theorem 1
of [3] also applies to Lipschitz-smooth (i.e., Sigmoid) activation functions, combining the proof of
Lemma D.11 and the result from Lemma 7 in [46] will give the conclusion.

D.5 Regret Bound for Uniform Sampling

Lemma D.13 (Regret Bound for the Uniform Sampling Approach). When applying the uniform
sampling as in most meta-learning frameworks, we denote the corresponding sampled task series as

⌦u(K). We will have Ru(K) = ET ⇠P(T),x⇠DT


L(x; I(T ,⇥(K)

u))�L(x; I(T ,⇥(K),⇤))

�
. where

⇥(K)
u refer to the meta-parameters trained with uniform sampling. With k⇥(K)

u �⇥(K),⇤
k2  !,

we have the regret bound for the uniform sampling as

Ru(K) = ET ⇠P(T),x⇠DT


L(x; I(T ,⇥(K)

u))� L(x; I(T ,⇥(K),⇤))

�



p
mFLF · ! +O(!4/3

L
3
F
p
mF log(mF)) +O(

r
LF
mF

)

 min

⇢
O

✓
KLF +

K
4/3

L
11/3
F

p
log(mF)

m
1/6
F

+

r
LF
mF

◆
, 1

�

Proof. Here, for the simplicity of notation, we denote ⇥ = I(T ,⇥), and neglect the expectation
terms. Note that the difference between adapted meta-parameters and the original meta-parameters is

33

small enough and can be well-bounded. We will then have

Ru(K) = ET ⇠P(T),x⇠DT


L(x; I(T ,⇥(K)

u))� L(x; I(T ,⇥(K),⇤))

�

= eL(e⇥
(K)

u)� eL(e⇥
(K),⇤

)

where the two sets of meta-parameters are trained with uniformly sampled tasks and the optimal tasks,
and e⇥ is used to denote the adapted meta-parameters I(T ,⇥) for simplicity. With any convex loss
function (e.g., L2 loss or cross-entropy loss) under the over-parameterization settings, we will have
the generalization loss being almost convex w.r.t. the meta-parameters as in Lemma D.14, which
leads to

eL(e⇥
(K)

u)� eL(e⇥
(K),⇤

)  hre⇥
eL(e⇥

(K)

u), e⇥
(K)

u � e⇥
(K),⇤

i+ ✏

 kre⇥
eL(e⇥

(K)

u)k2k e⇥
(K)

u � e⇥
(K),⇤

k2 + ✏

 kre⇥
eL(e⇥

(K)

u)k2k⇥
(K)
u �⇥(K),⇤

k2 + ⌘1 · O(
p
mFLF) + ✏

(i)


p
mFLF · ! +O(!4/3

L
3
F
p

mF log(mF)) +O(

r
LF
mF

)

(ii)
 O

✓
KLF +

K
4/3

L
11/3
F

p
log(mF)

m
1/6
F

+

r
LF
mF

◆

(iii)
=) eL(e⇥

(K)

u)� eL(e⇥
(K),⇤

)  min

⇢
O

✓
KLF +

K
4/3

L
11/3
F

p
log(mF)

m
1/6
F

+

r
LF
mF

◆
, 1

�

where ✏ = O(!4/3
L
3
F
p
mF log(mF)) > 0, and k⇥(K),⇤

u � ⇥(K)
u k2  !. Here, the first in-

equality is due to Lemma D.14 and the convexity of the loss function. The third inequality is
due to the upper bound for meta-model gradients (Lemma D.15). The (i) is due to Lemma
D.16 and sufficiently small learning rate ⌘1  O(1

mF
). Based on Lemma D.15, we will have

kr⇥L(x;⇥(J),⇤
K)k2, kr⇥L(x;⇥(J)

K)k2  O(
p
mFLF). Since we have ⌘1, ⌘2  O(1

m), start-
ing from randomly initialized ⇥(0), the parameter shift caused by GD can be upper bounded by
k⇥(K),⇤

u �⇥(K)
u k2  ! = O(K ·

q
LF
mF

). The implication (iii) is because the loss function L(·; ·)

has the value range [0, 1].

Here, we notice that the RHS of the regret bound in Lemma D.13 has two terms. Although the second
term can be reduced to O(1) with sufficiently large meta-model width mF > O(Poly(K,L, ⇢

�1)),
the first term tends to grow along with more iterations K and the larger meta-model width mF . The
reason is that the radius for the parameter shift during meta-training ! can be as large as O(1p

mF
),

which means that it cannot cancel out the effects of gradient norms, which have the order of O(
p
mF).

In this case, we will not able to include a mF term to the denominator to scale down the regret with
mF , and make the upper bound narrower than 1.

Lemma D.14. Given an arbitrary sample x and its label, let eL(⇥) = L(x;⇥). Suppose mF , ⌘1, ⌘2
satisfy the conditions in Theorem 5.2. With probability at least 1�O(KL

2
F) · exp[�⌦(mF!

2/3
LF)]

over randomness of ⇥(0), for all k 2 [K], and ⇥,⇥0 satisfying k⇥ � ⇥(0)
k2  ! and k⇥0

�

⇥(0)
k2  ! with !  O(L�6

F [logmF]�3/2), it holds uniformly that

eL(⇥)� eL(⇥0)  hr⇥
eL(⇥),⇥�⇥0

i+ ✏.

with ✏ = O(!4/3
L
3
F
p
logmF)) being a small constant.

proof. This proof follows an analogous approach as the proof of Lemma 4.2 in [10]. Let rF eL(⇥0)
be the derivative of eL with respective to F(x;⇥). Then, it holds that |rF eL(⇥0)|  O(1) based on

34

Lemma D.15. Then, by convexity of eL, we have

eL(⇥0)� eL(⇥)
(i)
� rF eL(⇥) · (F(x;⇥0)� F(x;⇥))
(ii)
� rF eL(⇥0) · hr⇥F(x;⇥),⇥0

�⇥i

� |rF eL(⇥0)| · |F(x;⇥0)� F(x;⇥)� hrF(x;⇥),⇥0
�⇥i|

� hr⇥
eL(⇥),⇥0

�⇥i � |rF eL(⇥0)| · |F(x;⇥0)� F(x;⇥)� hrF(x;⇥),⇥0
�⇥i|

(iii)
� hr⇥

eL(⇥),⇥0
�⇥i �O(!4/3

L
3
F
p
mF log(mF))

� hr⇥
eL(⇥),⇥0

�⇥i � ✏

where (i) is due to the convexity of the loss function L, (ii) is an application of triangle inequality,
and (iii) is the application of and Lemma D.16. Finally, denoting ✏ = O(!4/3

L
3
F
p
mF logmF) will

complete the proof.

Lemma D.15. Suppose mF , ⌘1, ⌘2 satisfy the conditions in Theorem 5.2. With probability at least
1�O(KLF)·exp(�⌦(mF!

2/3
LF)) over the random initialization, ⇥ satisfying k⇥�⇥(0)

k2  !

with !  O(L�9/2
F [logmF]�3), it holds uniformly that

kr⇥F(x;⇥)k2  O(
p

mFLF),

kr⇥L(x;⇥)k2  O(
p

mFLF).

Proof. This lemma is a direct application of Lemma 9 of [46] and Lemma B.2, B.3 of [10].

Lemma D.16. Suppose mF , ⌘1, ⌘2 satisfy the conditions in Theorem 5.2. With probability at
least 1 � O(KLF) · exp(�⌦(mF!

2/3
LF)), for all t 2 [T], i 2 [k], ⇥,⇥0 (or ⇥,⇥0) satisfying

k⇥�⇥(0)
k2, k⇥

0
�⇥(0)

k2  ! with !  O(L�9/2
F [logmF]�3), it holds uniformly that

|F(x;⇥)� F(x;⇥0)� hO⇥0F(x;⇥0),⇥�⇥0
i|  O(w1/3

L
2
F
p
mF log(mF))k⇥�⇥0

k2.

Proof. The proof for this lemma directly follows the proof of Lemma 4.1 in [10] and Lemma 7 in
[46].

35

