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Abstract

Learning graphical conditional independence structures is an important machine
learning problem and a cornerstone of causal discovery. However, the accuracy and
execution time of learning algorithms generally struggle to scale to problems with
hundreds of highly connected variables—for instance, recovering brain networks
from fMRI data. We introduce the best order score search (BOSS) and grow-
shrink trees (GSTs) for learning directed acyclic graphs (DAGs) in this paradigm.
BOSS greedily searches over permutations of variables, using GSTs to construct
and score DAGs from permutations. GSTs efficiently cache scores to eliminate
redundant calculations. BOSS achieves state-of-the-art performance in accuracy
and execution time, comparing favorably to a variety of combinatorial and gradient-
based learning algorithms under a broad range of conditions. To demonstrate its
practicality, we apply BOSS to two sets of resting-state fMRI data: simulated
data with pseudo-empirical noise distributions derived from randomized empirical
fMRI cortical signals and clinical data from 3T fMRI scans processed into cortical
parcels. BOSS is available for use within the TETRAD project which includes
Python and R wrappers.

1 Introduction

We present a permutation-based algorithm, Best Order Score Search (BOSS), for learning a Markov
equivalence class of directed acyclic graphs (DAGs). A novel method for caching intermediate
calculations for permutation-based algorithms, Grow-Shrink Trees (GSTs), is also developed and
presented in this paper. Our implementation of BOSS using GSTs scales well in both accuracy and
time to higher numbers of variables and graph densities. We demonstrate that in particular, this
method scales at least to the complexity of dense cortical parcellations of fMRI data.
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In real world systems, it is not unusual to have hundreds or thousands of variables, each of which
may be causally connected to dozens of other variables. Models of functional brain imaging (fMRI),
functional genomics, electronic health records, and financial systems are just a few examples. In
order for structure learning methods to have an impact on these real world problems, they need to be
not only highly accurate but also highly scalable in both dimensions.

This work follows earlier research on permutation-based structure learning [12, 22, 24, 26]. A
previous permutation-based method, Greedy Relaxations of the Sparsest Permutation (GRaSP) [12],
demonstrated strong performance on highly connected graphs, but struggled to scale to sufficiently
large numbers of variables. By using BOSS and GSTs, we are able to overcome this challenge, while
maintaining nearly identical performance to GRaSP. As our simulations show, other popular methods
fall short on accuracy, scalability, or both, for such large, highly connected models.

In the remainder of this paper, we provide background for our approach in Section 2, followed by a
discussion of GSTs in Section 3. We then introduce BOSS in Section 4 and validate it by comparing
it to several alternatives. We show that BOSS using GSTs compares favorably to a number of best-
performing combinatorial and gradient-based learning algorithms under a broad range of conditions,
up to 1000 variables with an average degree of 20 in Section 5. Finally, to demonstrate its practicality,
we apply BOSS to two sets of resting-state fMRI data: simulated data with pseudo-empirical noise
distributions derived from randomized empirical fMRI cortical signals, and clinical data from 3T
fMRI scans processed into 379 cortical parcels in Section 6. Section 7 provides a brief discussion.

1.1 Our Contributions

Our novel contributions to the field include the following:

1. We present a new data structure, Grow-Shrink Trees (GSTs), for efficiently caching results
of permutation-based structure learning algorithms. Using GSTs dramatically speeds up
many existing permutation-based methods such as GRaSP.

2. We present a new structure learning algorithm, the Best Order Score Search (BOSS), which
has similar performance as GRaSP (and thus superior performance to other DAG-learning
methods), but is more convenient to use than GRaSP because it has fewer tuning parameters
and is faster and more scalable.

3. We prove that BOSS is asymptotically correct and provide an implementation within the
TETRAD project[17].

4. We present validations of BOSS’s finite sample performance via standard graphical model
simulations and on both real and simulated fMRI data.

2 Background

The following conventions are used throughout this paper: V denotes a non-empty finite set of
variables which double as vertices in the graphical context, lowercase letters a, b, c, . . . ∈ V denote
variables or singletons, uppercase letters A,B,C, . . . ⊆ V denote sets, and X denotes a collection
of random variables indexed by V whose joint probability distribution is denoted by P .

Probabilistic conditional independence between the members of X corresponding to disjoint sets
A,B,C ⊆ V is denoted A ⊥⊥ B | C [P ] and reads XA and XB are independent given XC .

2.1 Permutations

A permutation is a sequence of variables π = ⟨a, b, c, . . . ⟩. Let v ∈ V and i ∈ N (i ≤ |V |). If π is a
permutation of V , then π is equipped with two methods: π.index(v) which returns the index of v in
π, and π.move(v, i) which returns the permutation obtained by removing v from π and reinserted at
position i. Furthermore, preπ(v) ≡ {w ∈ V : π.index(w) < π.index(v)} is the prefix of v.

2.2 DAG Models

A directed acyclic graph (DAG) model is a set probabilistic models whose conditional independence
relations are described graphically by a DAG. In general, the vertices and edges of a DAG represent
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variables and conditional dependence relations, respectively. We use the notation G = (V,E) where
G is a graph, V is a vertex set, and E is an edge set. In a DAG, the edge set is comprised of ordered
pairs that represent directed edges1 and contains no directed cycles.

Let G = (V,E) be a DAG and v ∈ V :

paG(v) ≡ {w ∈ V : w → v in G}
chG(v) ≡ {w ∈ V : v → w in G}

are the parents and children of v, respectively.

Graphical conditional independence between disjoint subsets A,B,C ⊆ V can be read off of a DAG
using d-separation and is denoted A ⊥⊥ B | C [G ]. This criterion admits the concept of a Markov
equivalence class (MEC) which (in the context of this paper) is a collection of DAGs that represent
the same conditional independence relations.

2.3 Causal Discovery

DAGs are connected to causality by the causal Markov and causal faithfulness assumptions. A DAG
is causal if it describes the true underlying causal process by placing a directed edge between a pair
of variables if and only if the former directly causes the latter.

Causal Markov: If G = (V,E) is causal for a collection of random variables X indexed by V with
probability distribution P , then for disjoint subsets A,B,C ⊆ V :

A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | C [P ].

More generally, this implication is called the Markov property and we say DAGs satisfying this
property contains the distribution. Moreover, a DAG G is subgraph minimal2 if no subgraph of G
contains P .

Causal faithfulness: If G = (V,E) is causal for a collection of random variables X indexed by V
with probability distribution P , then for disjoint subsets A,B,C ⊆ V :

A ⊥⊥ B | C [P ] ⇒ A ⊥⊥ B | C [G ].

Accordingly, under the causal Markov and causal faithfulness assumptions, finding the MEC of
the causal DAG is equivalent to identifying the simplest model that contains the data generating
distribution. From this point of view, causal discovery is a standard model selection problem which
we address using the Bayesian information criterion (BIC) [7, 21].

Let G be a DAG and X
iid∼ P be a dataset drawn from a member of a curved exponential family:

BIC(G,X) =
∑
v∈V

BIC(Xv,XpaG(v))

=
∑
v∈V

ℓv|paG(v)(θ̂mle |X)− λ

2
|θ̂mle | log(n)

where λ > 0 is a penalty discount, ℓ is the log-likelihood function, and θmle is the maximum
likelihood estimate of the parameters; for details on curved exponential families, we refer reader to
[9]. Importantly, the BIC is consistent.

Proposition 1. Haughton [7] If P is a member of a curved exponential family and X
iid∼ P , then the

BIC is maximized in the large sample limit by DAG models containing P that minimize the dimension
of the parameters space.

Notably, Gaussian and multinomial DAG models form curved exponential families in which the
causal DAG minimizes the dimension of the parameters space, and thereby maximize the BIC [11].
For these distributions, DAG models belonging to the same MEC correspond to the same DAG model,

1The edge v ← w corresponds to the order pair (v, w).
2This concept is also known as SGS-minimality [28].
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so it is common for algorithms to return a graphical representation of the MEC called a CPDAG
rather than a DAG. Choosing between DAG models in a MEC requires additional information.

We greedily search over permutations of variables using grow-shrink (GS) [13] to project and score
DAGs from permutations. Algorithm 1 (grow) and Algorithm 2 (shrink) give the details of GS
while Algorithm 3 (project) details the process of projecting a permutation to a DAG.

Algorithm 1: grow(X, v, Z)

Input: data : X var : v prefix : Z
Output: parents : W
W ← ∅
repeat

w ← argmaxz∈ZBIC(Xv,XW∪z)
if w ̸= ∅ then

W ←W ∪ w

until w = ∅

Algorithm 2: shrink(X, v,W )

Input: data : X var : v parents : W
Output: parents : W
repeat

w ← argmaxw∈W BIC(Xv,XW\w)
if w ̸= ∅ then

W ←W \ w
until w = ∅

Algorithm 3: project(X, π)

Input: data : X perm : π
Output: DAG : G
E ← ∅
foreach v ∈ π do

Z ← preπ(v)
W ← grow(X, v, Z)
W ← shrink(X, v,W )
foreach w ∈W do

E ← E ∪ (v, w)

G← (V,E)

However, how do we know that the causal DAG will even be constructed by project? This is
guaranteed by the follow results. Let P is a member of a curved exponential family satisfying causal
Markov and causal faithfulness:

• If G is the causal DAG, then G is subgraph minimal [11, 28].

• If G is a DAG and X
iid∼ P then G is subgraph minimal if and only if there exists a

permutation π such that G = project(X, π) in the large sample limit [12].

These results admit the following strategy: (1) Search over permutations while using GS and the BIC
to construct and score subgraph minimal DAG from these permutations. (2) Return the MEC of the
subgraph minimal DAG that maximizes the BIC. The question is how to do so in a way that is both
comprehensive and efficient.

3 Grow-Shrink Trees

Grow-shrink trees (GSTs) are tree data structures for caching the results of the grow and shrink
subroutines of GS [13]. This data structure is compatible with many permutation-based structure
learning algorithms, including BOSS and GRaSP. As an initialization step, a GST is constructed for
each variable in the dataset which are then queried during search rather than running GS. Each tree
has a root node representing the empty parent set. Parents are accumulated by traversing edges of
the tree, with every node in the tree corresponding to a “grown” parent set. Each grown parent set
corresponds to running the grow subroutine for some prefix. The shrink subroutine is also run and
cached at each node of the tree.

The benefit of using GSTs is in how efficiently they store information needed for running GS. In the
grow subroutine, nodes are added to the GST one at a time and scored. A new child node is added to
the tree for each possible addition, and the child nodes are sorted in descending order relative to their
scores. After all candidate parents have been added to the tree, the first child in the sorted list that is
also in the prefix is chosen and the corresponding edge traversed. The shrink subroutine can then
be run and the removed parents and scores can be cached.
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Figure 1: Minimal subgraphs.
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Figure 2: A Grow-shrink Tree

3.1 An Example

This section walks through the usage of a GST applied to a toy example. Minimal subgraphs are
depicted in Figure 1 of which (1a) is the true DAG. Figure 2 outlines the process of growing a GST
for a while scoring permutations. In the following, we identify nodes in the GST by their path from
the root. All ambiguities in sorting the branches of a node are resolved in alphabetical order. We
proceed in sequence, but in theory some of these steps could be performed in parallel.

In what follows we run GS on a series of permutations while caching the results in a GST. We
describe the nodes of the tree by the sequence of variables traversed to reach them from the root. We
use colors to track our progress: light gray parts of the tree denote unexplored paths with no cached
scores, dark gray parts of the tree denote explored paths with cached scores. Colored edges denote
the paths considered during the execution of GS: red for rejected and blue for accepted. Colored
nodes denote the same, but are only colored if they do not have a cached value and require a new
score calculation. Numbered edges directed out of a parent node record the order of preference for
the children from high to low. To simplify this example, we do not cache the results of shrink. In (2a)
we initialize the tree by adding the root node a.

Our first permutation to evaluate is ⟨b, d, a, c⟩ which is shown in (2b) and whose minimal subgraph is
depicted in (1b). Node a has not been expanded, so we score and sort nodes ab, ac, and ad. Node
ab scored the highest and is contained in the prefix, so we travel to node ab. Node ab has not been
expanded, so we score and sort nodes abc and abd. Node abd scored the highest and is contained
in the prefix, so we travel to node abd. At this point no more variables are available in the prefix so
we have completed growing. We run shrink at node abd which removes nothing so the GS result is
{b, d}.
Our next permutation to evaluate is ⟨c, d, a, b⟩ which is shown in (2c) and whose minimal subgraph
is depicted in (1c). Node a has already been expanded so we check its outgoing edges. Node ab
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has the highest score but is not contained in the prefix. Node ad has the second highest score and is
contained in the prefix, so we travel to node ad. Node ad has not been expanded, so we score and
sort nodes adc. Node c has the highest score and is contained in the prefix, so we travel to node adc.
At this point no more variables are available in the prefix so we have completed growing. We run
shrink at node adc which removes nothing so the GS result is {c, d}.
Our next permutation to evaluate is ⟨c, a, b, d⟩ which is shown in (2d) whose minimal subgraph is
depicted in (1d). Node a has already been expanded so we check its outgoing edges. Node ab has
the highest score but is not contained in the prefix. Node ad has the second highest score but is not
contained in the prefix. Node ac has the third highest score and is contained in the prefix, so we travel
to node ac. At this point no more variables are available in the prefix so we have completed growing.
We run shrink at node ac which removes nothing so the GS result is {c}.
Our next permutation to evaluate is ⟨b, c, a, d⟩ which is shown in (2e) whose minimal subgraph is
depicted in (1e). Node a has already been expanded so we check its outgoing edges. Node ab has the
highest score and is contained in the prefix, so we travel to node ab. ab has already been expanded so
we check its outgoing edges. Node abd has the highest score but is not contained in the prefix. Node
abc has the second highest score and is contained in the prefix, so we travel to node abc. At this point
no more variables are available in the prefix so we have completed growing. We run shrink at node
abc which removes nothing so the GS result is {b, c}.
Our last permutation to evaluate is ⟨c, b, d, a⟩ which is shown in (2f) and whose minimal subgraph is
depicted in (1a). Node a has already been expanded so we check its outgoing edges. Node ab has
the highest score and is contained in the prefix, so we travel to node ab. Node ab has already been
expanded so we check its outgoing edges. Node d has the highest score and is contained in the prefix,
so we travel to node abd. Node abd has not been expanded, so we score node abdc. No scores result
in an improvement to the overall score so we have completed growing. We run shrink at node abd
which removes nothing so the GS result is {b, d}.

4 Best Order Score Search

Similar to GES, BOSS uses a two phase search procedure [5]. The first phase uses the best-move
method, which takes a variable as input and greedily moves it to the position in the current permutation
that maximizes the score. In this phase, best-move is repeatedly applied to each variable, one at
a time, until there are no more moves that increase the score. This phase concludes with the
find-compelled procedure of [4] which converts the DAG into a CPDAG. The second phase
of BOSS is BES which is exactly second phase of GES. The BES step is optional but guarantees
asymptotic correctness if executed.

Algorithm 4: BOSS(X, π, δ)

Input: data : X perm : π flag : δ
Output: graph : G
T ← GST(X)
repeat

best← T.score(π)
foreach v ∈ π do

π ← best-move(T, π, v)

until best = T.score(π)
G← T.project(π)
G← find-compelled(G)
if δ = true then

G← BES(G,X)

Algorithm 5: best-move(T, π, v)
Input: GSTs : T perm : π var : v
Output: perm : π
best← T.score(π)
for i← 1 to |π| do

j ← π.index(v)
π ← π.move(v, i)
if best < T.score(π) then

best← T.score(π)
else

π ← π.move(v, j)

Proposition 2. Let P be a member of a curved exponential family satisfying causal Markov and
causal faithfulness. If X iid∼ P then BOSS(X, π, true) returns the MEC of the causal DAG for all
initial permutation π in the large sample limit.

Proof. Since project returns a subgraph minimal DAG, it contains P . Accordingly, asymptotic
correctness follows from the correctness of BES.
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In Algorithm 4 (BOSS) and Algorithm 5, GST constructs a collection of GSTs, denoted T, which
contains one GST for each variable. The collection T is equipped with project and score methods
which runs the GS algorithm to project and score a permutation, respectively.

5 Simulations

We evaluated the speed and performance of BOSS on simulated data compared to other algorithms:
GRaSP, fGES, PC, DAGMA, and LiNGAM. Our evaluation used the performance metrics tabulated in
Table 1 which were originally proposed by [10]. All algorithms were run on an Apple M1 Pro
processor with 16G of RAM. The results reported in the main text are abridged but the complete
results are available in the Supplement.

Table 1: Metrics

True Estimated Adjacency Orientation

a← b

a← b tp tp, tn
a→ b tp fp, fn
a−− b tp fn
a . . . b fn fn

a . . . b

a← b fp fp
a→ b fp fp
a−− b fp
a . . . b tn

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

We evaluated our implementation of BOSS using a BIC score with λ = 2 and no BES step as it did
not appear to improve performance. For GRaSP, we modified (to use GSTs) and used the TETRAD
implementation with the same parameters as the authors and a BIC score with λ = 2. [12, 17]. For
fGES we used the TETRAD implementation with default parameters and a BIC score with λ = 2
[5, 15, 17]. We also used the implementation of PC in TETRAD with default parameters using a BIC
score with λ = 2 as a conditional independence oracle [17, 25]. For DAGMA we used the authors’
Python implementation with the parameters reported in their paper but changed the threshold to 0.1
[2] and used the technique described in [14] to resolve cycles. Moreover, the output of DAGMA was
converted to a CPDAG for linear Gaussian simulations. For LiNGAM we used the authors’ Python
implementation with default parameters [8, 22].

We generated Erdős-Rényi DAGs by applying an arbitrary order to vertices of an Erdős-Rényi graph.
For scale-free networks, first we generated an Erdős-Rényi DAG and then redrew the parents of each
vertex according to the Barabási-Albert model [1]. This resamples the out-degrees distribution to be
scale-free while keeping in-degree distribution constant. This procedure was motivated by the results
in Figure 5. Edge weights were sampled from a uniform distribution in the interval [-1.0, 1.0] and
error distributions were generated with standard deviations sampled from a uniform distribution in the
interval [1.0, 2.0]. The complete simulation details, including figures plotting the simulated scale-free
in/out degree distributions, are include in the Supplement. Additionally, the data are available for
download at: https://github.com/cmu-phil/boss.

Figure 3 compares BOSS against GRaSP, fGES, PC, and DAGMA on linear Gaussian data generated from
(3a) Erdős-Rényi and (3b) scale-free networks. The output of DAGMA was converted to a CPDAG for
these simulations. Lam et al. [12] attribute the excellent performance of GRaSP to it being robust
against the ubiquity of almost-violations of causal faithfulness [29, 27]. Due to the algorithmic and
performance parallels between GRaSP and BOSS, we conjecture that a similar argument could be
made for BOSS.

Figure 4a compares BOSS against DAGMA and LiNGAM on linear exponential and linear Gumbel data
from scale-free networks. Interestingly, LiNGAM, which takes advantage of non-Gaussian signal in
data, does not perform appreciably better than BOSS.

Figure 4b compares BOSS against GRaSP on linear Gaussian data generated from scale-free networks
with a focus on scalability; runs exceeding two hours were cancelled and are not reported. Here we
see that BOSS maintains a high level of accuracy while scaling much better than GRaSP. It is also
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Figure 3: Mean statistics over 20 repetitions: 100 variables and sample size 1,000.
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Figure 4: Mean statistics over 20 repetitions: scale-free, 100 variables, average degree 20 (when not
varied), and sample size 1,000.

important to note that nearly all of these simulations were infeasible for GRaSP before implementing
it with GSTs. Table 2, the corresponding table, only reports results for BOSS since the two algorithms
have nearly identical performance on all statistics except for running time. Full results are tabulated
in the Supplement.

6 Validation on fMRI

The high spatial coverage of fMRI’s has allowed researchers to study brain function at different scales,
from voxels to cortical parcellations to functional systems (such as default mode or visual systems).
Given the potential differences in spatial dimension, the expected connectivity density of functional
brain networks remains unclear. For example, even after keeping only the 75th percentile stronger
connections, structural connectivity networks from 90 cortical regions [23] had 1012 connections on
average. Since structural connectivity supports functional connectivity, we could expect empirical
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Table 2: Mean statistics over 10 repetitions: scale-free, average degree 20, and sample size 1,000.

Variables Algorithm BICλ Adj Pre Adj Rec Ori Pre Ori Rec

2 0.98 0.80 0.97 0.80
500 BOSS 4 1.00 0.72 0.99 0.72

8 1.00 0.57 0.99 0.57

2 0.97 0.80 0.97 0.80
1000 BOSS 4 1.00 0.73 1.00 0.72

8 1.00 0.59 1.00 0.58

Table 3: fMRI simulated data with pseudo-empirical errors

Algorithm Adj Pre Adj Rec Ori Pre Ori Rec ∆BIC Edges Seconds

BOSS 0.99 0.94 0.96 0.90 211.79 951.40 15.46
fGES 0.97 0.60 0.70 0.43 7784.48 617.35 5.16
DAGMA 1.00 0.69 0.98 0.67 3080.85 687.15 54.58
LiNGAM 0.54 0.94 0.35 0.62 3868.93 1752.75 582.03

functional connectivity networks to be in that order of magnitude. Previous studies applying causal
discovery methods to fMRI simulated networks with a high number of variables and connections have
shown that while the adjacency recovery precision of these methods can be very high, they usually
show a low adjacency recall [16, 20]. Despite possibly having low recall, the limited applications
of causal discovery methods to real world data [3, 18] often recover models with average degree
greater than 20. Considering this limitation and the likelihood that real fMRI brain networks have
high average connectivity (degree), causal discovery methods capable of reducing the number of
false-negative connections will substantially improve future analysis of fMRI data.

To demonstrate its practical utility in this important real-world domain, we apply BOSS to two types
of resting-state fMRI data: simulated data with pseudo-empirical noise distributions derived from
randomized empirical fMRI cortical signals and clinical data from 3T fMRI scans processed into
cortical parcels.

6.1 Simulated fMRI

We simulated fMRI data following the approach in [19]. Networks were based on a directed random
graphical model that prefers common causes and causal chains over colliders. 40 networks were
simulated with 200 variables and an average degree of 10. Edge weights were sampled from a
uniform distribution in the interval [0.1, 0.4], randomly setting 10% of the coefficients to their
negative value. Pseudo-empirical noise terms were produced by randomizing fMRI resting-state
data across data points, regions, and participants from the Human Connectome Project (HCP). Using
pseudo-empirical terms better captures the marginal distributional properties of the empirical fMRI.
One thousand data points were generated from this procedure. These data are available for download
at: https://github.com/cmu-phil/boss.

Accuracy and timing results are shown in Table 3 for BOSS, fGES, DAGMA, and LiNGAM. These results
show that BOSS has by far the best BIC score of the group, compared to the BIC score of the true
model, and that the running time of BOSS is very reasonable for a problem of this size. Precisions
and recalls for BOSS are quite high, for both adjacencies and orientations. The poor performance of
LiNGAM is due to insufficient non-Gaussian signal. More details are included in the Supplement.

6.2 Clinical fMRI

We applied BOSS to 171 3-Tesla resting state fMRI scans from patients beginning treatment for
alcohol use disorder [3]. Before applying BOSS, the data were cleaned and parcellated into 379
variables representing biologically interpretable and spatially contiguous regions [6]. More details on
the data collection, cleaning, and processing can be found in [3]. Figure 5 reports the in/out-degree
distributions of the resulting models. The solid line depicts the median degree across all graphs and
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Figure 5: In/out-degree distributions on clinical resting state fMRI data.

the color region shades in the area between the 2.5 and 97.5 percentiles. These plots indicate that
the models are scale-free, with a small number of hub vertices with much higher degree than other
vertices. Scale-free connectivity is consistent with biological expectations and prior connectivity
analysis on fMRI data [18]. More details are included in the Supplement.

7 Discussion

We have proposed a successor to the GRaSP algorithm [12] that retains its high accuracy but is faster
and more scalable. BOSS implemented with GSTs comfortably scales to least 1000 variables with an
average degree of at least 20. It can comfortably and informatively analyze data from 400 or even
1000 densely connected fMRI cortical parcellations. We show in simulations that our method is
highly accurate for Erdős-Rényi graphs as well as scale-free graphs. Despite being developed for the
linear Gaussian case, BOSS also performs well in the linear non-Gaussian case. BOSS is fast and
accurate on simulated fMRI data and can rapidly produce informative and plausible models from
clinical fMRI data. BOSS is available for use within the TETRAD project which includes Python
and R wrappers [17].

The success of BOSS presents an opportunity to pursue further theoretical work showing how BOSS
differs from GRaSP and what general lessons we may learn for constructing successor algorithms to
BOSS. There is substantial room for additional improvements, as BOSS does have several limitations.
For example, BOSS cannot handle most forms of unmeasured confounding, so it will be valuable to
explore ways of adding this functionality while maintaining its accuracy and scalability. It will also
be informative to apply BOSS to other types of data such as functional genomic data, financial data,
and electronic health records.
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