
A Missing Proofs from Section 3

A.1 Equivalence of Learning a Random Target and Sequential Spanning Problem

In this subsection, we show that when w∗ is drawn from Sd, we can equivalently formulate the
sell-directed linear regression problem as the Sequential Spanning Problem (SSP). In particular, we
will prove Proposition 3.4, which we restated here.

Proposition A.1 (Proposition 3.4). Let X = {x(1), . . . , x(m)} ⊆ Rd be a set of examples. For every
self-directed linear regression algorithm A over X , with expected learning loss L(A,Sd), we can use
it to get a randomized algorithm A′ for SSP over X with expected cost E(C(σ,m)) ≤ d L(A,Sd).
Moreover, given a randomized algorithm A′ for SSP over X , we can get a self-directed linear
regression algorithm A over X , with expected learning loss L(A,Sd) = E(C(σ,m))/d.

To start with, we show that when w∗ ∼ Sd, we can describe the Bayes optimal prediction. In particular,
we show that given the points x(1), . . . , x(i−1) the best possible prediction for the label y(i) of some
point x(i) is w∗

Li
· x(i), where Li is the subspace spanned by x(1), . . . , x(i−1). We remark that the

vector w∗
Li

can be efficiently estimated by the samples (x(1), y(1) = w∗ · x(1)), . . . (x(i−1), y(i−1) =

w∗ · x(i−1)) by solving a linear system. We show the following lemma.

Lemma A.2 (Lemma 3.2). Let X = {x(1), . . . , x(n)} ⊆ Rd be a set of n examples and w∗ be a
target vector drawn uniformly from Sd that labels y(i) = w∗ · x(i) for each x(i) ∈ X . Given any
set of labeled examples (x(1), y(1)), . . . , (x(i−1), y(i−1)), denote by Li−1 the subspace spanned by
x(1), . . . , x(i−1) and w∗

Li−1
the projection of w∗ onto Li−1. Let A be a self-directed learner, denote

by ŷ(i) be the prediction of A for the next example x(i), then we have Ew∗

(
(ŷ(i) − y(i))2 | w∗

Li−1

)
≥

Ew∗

(
(w∗

L⊥
i−1

· x(i))2 | w∗
Li−1

)
. Furthermore, the inequality holds with equality if ŷ(i) = w∗

Li−1
·

x(i).

Proof of Lemma 3.2. We first observe that y(i) = w∗ · x(i) = w∗
Li−1

· x(i) + w∗
L⊥

i−1
· x(i). We have

E
w∗

(
(ŷ(i) − y(i))2 | w∗

Li−1

)
= E

w∗

(
(ŷ(i) − w∗

Li−1
· x(i) − w∗

L⊥
i−1

· x(i))2 | w∗
Li−1

)
= E

w∗

(
(ŷ(i) − w∗

Li−1
· x(i))2 | w∗

Li−1

)
− 2 E

w∗

(
(ŷ(i) − w∗

Li−1
· x(i))(w∗

L⊥
i−1

· x(i)) | w∗
Li−1

)
+ E

w∗
((w∗

L⊥
i−1

· x(i))2 | w∗
Li−1

)

≥ E
w∗

(
(w∗

L⊥
i−1

· x(i))2 | w∗
Li−1

)
,

where the inequality holds because Ew∗

(
w∗

L⊥
i−1

· x(i) | w∗
Li−1

)
= 0, as w∗ is drawn uniformly from

the unit sphere.

With the Bayes optimal prediction rule, we are able to connect the self-directed learning problem
with SSP directly via the following Lemma. We show that the cost of any self-directed algorithm that
picks a sequence of d points x(1), . . . , x(d) of a dataset X is at least (1/d)

∑d
i=1 ∥x

(i)

L⊥
i−1

∥2, i.e., at

every step the algorithm pays for the (squared) length of x(i) that is not contained in the subspace
spanned by its first i− 1 choices x(1), . . . , x(i−1).

Lemma A.3. Let w∗ be a uniform random vector over Sd. Let {x(1), . . . , x(m)} be a sequence
of points in Rd. Denote by Li the subspace spanned by x(1), . . . , x(i), for i ∈ [d]. Every self-
directed learner A that learns w∗ with (random) sequence {x(1), . . . , x(d)} has an expected cost

L(A,Sd) ≥ 1
d E

(∑d
i=1

∥∥∥(x(i))L⊥
i−1

∥∥∥2) . Furthermore, the inequality holds for equality if A always

uses the prediction rule in Lemma 3.2.

14

Proof of Lemma A.3. We may assume that m = d and random points {x1, . . . , xd} are linearly
independent. By Lemma 3.2, we know that the optimal hypothesis we use to predict in each round is
w∗

Li−1
. Based on this observation, we obtain that

L(A,Sd) = E

d∑
i=1

(ŷ(i) − y(i))2 =

d∑
i=1

E
w∗

(
(ŷ(i) − y(i))2 | w∗

Li−1

)
≥

d∑
i=1

E
w∗

(
(w∗

L⊥
i−1

· x(i))2 | w∗
Li−1

)
=

d∑
i=1

E
w∗

(
(w∗

L⊥
i−1

· (x(i))L⊥
i−1

)2 | w∗
Li−1

)

=

d∑
i=1

E
w∗

∥∥∥w∗
L⊥

i−1

∥∥∥2 ∥∥∥(x(i))L⊥
i−1

∥∥∥2 (w∗
L⊥

i−1∥∥∥w∗
L⊥

i−1

∥∥∥ ·
(x(i))L⊥

i−1∥∥∥(x(i))L⊥
i−1

∥∥∥)2 | w∗
Li−1

= E

d∑
i=1

d− i+ 1

d

1

d− i+ 1

∥∥∥(x(i))L⊥
i−1

∥∥∥2 = E

d∑
i=1

1

d

∥∥∥(x(i))L⊥
i−1

∥∥∥2 .
Here, in the second last equality, we use the fact that for any fixed k dimensional subspace, the
expected square of the norm of w∗ (which is drawn uniformly from the unit sphere) projected onto
that subspace is k/d.

The proof of Proposition 3.4 can be obtained as a direct corollary of Lemma A.3.

Proof of Proposition 3.4. We first show how to construct a randomized algorithm A′ for SSP based
on a self-directed learner A. A′ works as follows. We draw some w∗ ∼ Sd run A over X to learn w∗.
A′ outputs σ, the order of the examples we select during the learning process. By Lemma A.3, we
know that EC(σ,m) ≤ dL(A,Sd).
Next, we show that given a randomized algorithm A′ for SSP over X , we can efficiently construct a
self-directed learner. We run A′ over X to obtain an order σ of examples in X . Learner A selects
examples according to σ and make a prediction according to Lemma A.3. By Lemma A.3, we know
that L(A,Sd) = EC(σ,m)/d.

A.2 Approximating k-SSP via Approximating SSP

In this subsection, we show that if we can compute an approximate solution to SSP over X efficiently,
then we can also compute an approximate solution to k-SSP over X efficiently for every k. In this
section, we will use α(d,m) : N × N 7→ R+ to denote the approximate ratio of an approximate
algorithm. Formally, we will prove Lemma 3.9, which we restate again here.
Lemma A.4 (Lemma 3.9). Assume that an algorithm for SSP in d dimensions exists that finds
an α(d,m)-approximate solution in poly(d,m) time. Then an algorithm that finds a 4α(m(d +
m),m(d+m))-approximate solution for k-SSP for every value of k in poly(d,m) time exists.

Let X ⊆ Rd be a set of m points. We say X is in general position if any subset of k points of X is
linearly independent. The proof of Lemma 3.9 can be broken down into two steps.

In the first step, we claim that given any set of examples X , we are able to put them to general
position efficiently while preserving the SSP-cost of every permutation of X within a factor of 2.
Claim A.5. Given X ⊆ Rd, a set of m points, we can efficiently construct a map f : X → Rd+m such
that f(X) is in general position. Furthermore, for every sequence of points σ = (x(1), . . . , x(m)),
denote by f(σ) = (f(x(1)), . . . , f(x(m))), then C(σ, k) ≤ C(f(σ), k) ≤ 2C(σ, k).

Proof of Claim. Assume X = {x(1), . . . , x(m)}. Without loss of generality, we assume
mini∈[m]

∥∥x(i)
∥∥ = 1. The mapping f is defined as follows. We map each x(i) to a vector

f(x(i)) = x(i)′ + ϵed+i in Rd+m for some ϵ ≤ 1/k2. Here, (x(i)′)j = x
(i)
j if j ≤ d, (x(i)′)j = 0

15

otherwise and ed+i is d+ i-th standard basis vector in Rd+m. It is easy to see that f(X) is linearly
independent and thus f(X) is in general position. It remains to show f preserve the cost of an
ordered sequence of points. Let σ be any sequence of points. Without loss of generality, we assume
that σ = (x(1), . . . , x(m)). To simplify the notation, we denote by f(Li) the subspace spanned by
{f(x(1)), . . . , f(x(i))}. Based on our construction, we have decomposition f(Li) = L′

i ⊕Ei, where
L′
i is the subspace spanned by x(1)′ , . . . , x(i)′ and Ei is the subspace spanned by ed+1, . . . , ed+i.

This implies that

projf(Li)⊥f(x
(i+1)′) = proj(L′

i)
⊥x(i+1)′ + ϵed+i+1.

Thus, we obtain that

C(σ, k) ≤ C(f(σ), k) = C(σ, k) + kϵ2 ≤ 2C(σ, k),

where the last inequality follows by C(σ, k) ≥ 1 and kϵ2 ≤ 1.

⋄

In the second step, we show that given any set of examples X in general position, we are able to
construct an efficient approximate algorithm for k-SSP over X via an efficient approximate algorithm
for SSP over X .
Claim A.6. Let X ⊆ Sd be a set of m points in general position. Let A be an α(d,m)-approximate al-
gorithm for geometry latency problem. We can efficiently use A to obtain a 2α(dk, dm)-approximate
solution to the k-SSP over X .

Proof of Claim. Without loss of generality, we assume k < d. Otherwise, if k ≥ d, we can run
A over X directly and pick the first k points in order in the output solution. This solution is an
α(d,m)-approximate solution. So in the rest of the proof, we assume k < d.

Let X ⊆ Sd be a set of m points in general position. We first construct a set of dm examples X ′ in
Rdk as an input to A. For i ∈ [m], we denote by x(i)′ the following vector in Rdk. (x(i)′)j = x

(i)
j

if j ≤ d, (x(i)′)j = 0 otherwise. For i ∈ [dk], denote by ei the ith standard basis in Rdk. For each
x(i) ∈ X , we create d examples x(ij) for j ∈ [d] such that x(ij) = x(i)′ + ϵξ(ij), where ξ(ij) is a
random vector drawn uniformly from the unit sphere, in the subspace spanned by ed+1, . . . , ekd and
ϵ > 0 is a tiny number we will determine later.

Next, we run A over the new dataset X ′ and get a solution σ′ = x(i1j1), x(i2j2), . . . to the SSP over
X ′. We construct a solution σ in the following way. For ℓ ∈ [dm], we write x(iℓjℓ) = x(iℓ)

′
+ ϵξ(iℓjℓ).

We go through σ′ and every time we see a point x(iℓjℓ) constructed from a new x(iℓ)
′
. We append xiℓ

to our solution σ. We output σ if we have appended k points to σ. Notice that for every i, j, x(i)′

and ξ(ij) are orthogonal to each other. So every time a point x(ij) constructed from some new x(i) is

included in σ′, we pay at least
∥∥∥projL⊥

i−1
x(i)
∥∥∥2, where Li−1 is the subspace spanned by the previous

i− 1 examples in X that we have used. This implies that

C(σ, k) ≤ C(σ′, dm).

Denote by σ∗ the optimal solution to the k-SSP over X . We will show σ is a good approximate
solution by constructing another solution σ̄ to the SSP over X ′ such that C(σ̄, dm) lower bounds
C(σ∗, k) within a factor of 2. We construct σ̄ in two stages. Assume σ∗ = (x(i1), . . . , x(ik)). In
the first stage, for ℓ ∈ [k], we append (x(iℓ1), . . . , x(iℓd)) to σ̄. In the second stage, we append the
remaining points in X ′ to σ̄ with arbitrary order. We first bound the cost in the first stage. Use the
fact that for every i, j, x(i)′ and ξ(ij) are orthogonal to each other again. It is not hard to see the cost
in the first stage is at most C(σ∗, k) + dkϵ2. As C(σ∗, k) ≥ 1, we have the cost in the first stage is at
most 2C(σ∗, k) by choosing ϵ2 ≤ 1/(dk).

It remains to show that with probability 1, the cost of the second stage is 0. Since
in the first stage, we added dk points to σ̄, it is sufficient to show that with
probability 1, these dk examples are linearly independent. Suppose we have added
(x(i11), . . . , x(i1d)), . . . , (x(iℓ−11), . . . , x(iℓ−1d)), (x(iℓ1), . . . , x(iℓj)) to σ̄ and these d(ℓ−1)+j points
are linearly independent. We show that with probability 1 if we add x(iℓ,j+1) to σ̄ they are still

16

linearly independent. Since X is in general position, we know that x(i1), . . . , x(iℓ) are linearly
independent. This implies if x(iℓ,j+1) is in the subspace spanned by the previous d(ℓ− 1) + j points
then x(iℓ,j+1) is in the subspace spanned by (x(iℓ1), . . . , x(iℓj)). Again, we use the fact that for
every i, j, x(i)′ and ξ(ij) are orthogonal to each other. This implies that ξ(iℓ,j+1) is in the subspace
spanned by (ξ(iℓ1), . . . , ξ(iℓj)). This probability is 0 because the noise vectors are drawn from a
d(k − 1)-dimensional sphere uniformly. This implies that with probability 1 the points we added in
the first stage are linearly independent.

So, we get C(σ̄, k) ≤ 2C(σ∗, k). To finish the proof, we have

C(σ, k) ≤ C(σ′, dm) ≤ α(dk, dm)C(σ̄, k) ≤ 2α(dk, dm)C(σ∗, k).

So we construct a 2α(dk, dm)-approximate solution σ to the k-SSP over X efficiently.

⋄

Proof of Lemma 3.9. Let A be an α(d,m)-approximate algorithm for SSP. Denote by opt the opti-
mum of the k-SSP over X . Assume that opt is achieved by some sequence σ∗ Since X may not be
in general position, we use Claim A.5 to obtain a dataset f(X) that is in general position. Let f(σ)
be an α-approximate solution to the k-SSP over f(X). Then σ is a 2α-approxiate solution to the
k-SSP over X . This is because

C(σ, k) ≤ C(f(σ), k) ≤ αC(f(σ∗), k) ≤ 2αC(σ∗, k).

Now we have a set of m points f(X) in Rd+m that is in general position. By Claim A.6, we know
that we can use A to obtain a 2α((d + m)k, (d + m)m)-approximate solution to the k-SSP over
f(X). Thus, we conclude that we can efficiently find a 4α((d + m)k, (d + m)m)-approximate
solution to the k-SSP over X .

A.3 Approximating k-edge Packing via Approximating k-SSP

In this subsection, we show that given an approximate algorithm for k-SSP, we can use it to design
an efficient approximate algorithm for k-edge packing.
Lemma A.7 (Lemma 3.8). If there is an α(d,m)-approxiate algorithm for k-SSP problem, then
there is a 2α(n,m)-approximate algorithm for k-edge packing problem

Proof of Lemma 3.8. Let G = (V,E) be an instance of k-edge packing problem, and let A be an
efficient algorithm for k-SSP. We will show we can use A to construct an efficient algorithm that
outputs a 2α-aprroximate solution to the k-edge packing problem. To do this, we first construct
an instance of k-SSP based on G. Recall that G contains n vertices and m edges. For every edge
e = (u,w), u < w, we construct a vector ve ∈ Rn such that (ve)u = 1, (ve)w = −1 and (ve)s = 0
for s ̸∈ {u,w}. We run A over X = {ve}e∈E and obtain a sequence σ = (ve1 , . . . , vek) of k points
in X . Our goal is to show S = {e1, . . . , ek} is a 2α-approximate solution to the k-edge packing
problem.

We first lower bound C(σ, k). Recall that C(X,σ) =
∑k

i=1 ∥projL⊥
i−1

vei∥22, where Li−1 is the
subspace spanned by ve1 , . . . , vei−1 . Now we only consider the cost for every ei such that when
we add ei to {e1, . . . , ei−1}, we introduce new vertices to the solution. There are two cases we
will consider. In the first case, adding ei will introduce two new vertices u,w. This implies that
(vej)u = (vej)w = 0 for every j ≤ i − 1. Thus vei ⊥ Li−1 and the cost of picking vei is 2. In
the second case, adding ei will only introduce one new vertex u. This implies that (vej)u = 0 for
every j ≤ i− 1 and thus we will pay at least 1 for picking vei . This gives the following lower bound
C(σ, k) ≥ |V (S)|, where V (S) is the set of vertices covered by S.

Next, let S∗ be the optimal solution to the k-edge packing problem. We will use S∗ to construct
a solution σ∗ to the k-SSP such that C(σ∗, k) ≤ 2opt, where opt is the optimum of the k-edge
packing problem. We first decompose S∗ into disjoint connected components C1, . . . , Cℓ. The order
σ∗ is constructed in two stages.

In the first stage, we start with an arbitrary edge e1 ∈ C1 and add ve1 to σ∗. Next, we keep adding
vei ∈ C1 so that we only introduce one new vertex by adding ei to σ∗. If adding one edge from e1

17

will not introduce new vertices in C1, then we start adding vectors whose corresponding edges are
from C2 in the same way. The first stage finishes when we will not introduce any new vertex by
adding any vector to S∗. In the second stage, we add vectors corresponding to the remaining edges
with an arbitrary order.

Notice that there are at most opt vertices. This implies that in the first stage, we add at most opt
vectors and each vector charges us at most 2. So, the cost in the first stage is at most 2opt. To show
C(σ∗, k) ≤ 2opt, we will show the cost is 0 in the second stage. Notice that after the first stage, the
edges we added to σ∗ construct ℓ spanning trees. Thus, adding any new edge will create a cycle.
Assume u1, u2, . . . , uℓ to be an arbitrary path in G such that v{v(ui,ui+1) | i ∈ [ℓ − 1]} has been
added to σ∗. Furthermore, we assume that we are adding v(u1,uℓ) to σ∗ in the second stage. Since
v(u1,uℓ) =

∑ℓ−1
i=1 v(ui,ui+1), we know the cost of adding v(u1,uℓ) is 0. Thus, the cost for the second

stage is 0 and we obtain that C(σ∗, k) ≤ 2opt.

Finally, we conclude that S is a 2α(n,m)-approximate solution to the k-edge packing problem
because

|V (S)| ≤ C(σ, k) ≤ α(n,m)C(σ∗, k) ≤ 2α(n,m)opt.

Thus, we constructed an efficient 2α(n,m)-approximate algorithm for the k-edge packing problem
using A.

A.4 Approximating DkS via Approximating k-edge Packing

In this subsection, we show if we can compute an approximate solution to k-edge packing efficiently
then we can approximate DkS.
Lemma A.8 (Lemma 3.10). If there is an α-approximate algorithm for k-edge packing problem,
then there is an α2-approximate algorithm for DkS problem.

Proof of Lemma 3.10. For every k ∈ [n], we define ρk to be the optimal density for the DkS problem
over graph G. To prove the lemma, we first show the following claim.

Claim A.9. ρk ≥ ρk+1 for every k ∈ [n].

Proof of Claim. Assume there is some k such that ρk < ρk+1 instead. Let Sk+1 be a set of k + 1
vertices such that ρ(Sk+1) = ρk+1. This implies

|E(Sk+1)| = ρk+1
k(k + 1)

2
= ρk+1

k(k − 1)

2
+ ρk+1k.

Notice that the minimum degree of a vertex in Sk+1 is at most ρk+1k, otherwise Sk+1 has more than
ρk+1

(
k+1
2

)
edges. This implies that if we delete the vertex with minimum degree from Sk+1, we get

a subgraph of G that contains k vertices and ρk+1

(
k
2

)
> ρk

(
k
2

)
. This contradicts the definition of ρk.

⋄

Now we show how to use Claim A.9 to prove Lemma 3.10. Denote by A(k) an α-approximate
algorithm for k-edge packing problem, we will show we can run A for m times to output an α2-
approximate solution to the DkS problem. Our algorithm works as follows. For i ∈ [m], we run A(i)
to solve an i-edge packing problem over graph G. Denote by i∗ the largest number such that using
the solution output by A(i∗), we cover k vertices. Denote by S∗ the corresponding set of vertices.
We show that S∗ gives an α2-approximate solution to the DkS problem.

We observe that for every i ∈ [m], if the minimum number of vertices that can be covered by i edges
is j, then i = ρj

(
j
2

)
. Since A is an α-approximate algorithm for i∗-edge packing problem, we know

that there is some k′ ∈ [k/α, k] such that

i∗ = ρk′

(
k′

2

)
≥ ρk

k′(k′ − 1)

2
≥ 1

α2
ρk

(
k

2

)
,

where the first inequality follows by Claim A.9 and the second inequality follows by k′ ≥ k/α.
This implies that ρ(S∗) ≥ ρk/α

2 and thus we get an efficient α2-approximate algorithm for DkS
problem.

18

B Missing Proofs from Section 4

B.1 Labeling a Random Set of Examples

Since in this section, we are focusing on the cost of labeling a random set, which is a slightly different
task from labeling a fixed set in Section 3, before presenting the missing proofs in Section 4, we first
reexplain the notations and the benchmark to avoid confusion.

We start with the worst-case setting. Let C be a concept class of function from Rn → R and let f ∈ C
be the unknown target concept. Let A be a self-directed learner and let X be a random set of examples
drawn from some distribution D. Let random variable L(A, X, f) be the loss suffered by A during
the learning process, where the randomness comes from the dataset X and the internal randomness
of A. We say A labels dataset X with loss L if with probability 99% , L(A, X, f) ≤ L. We will use
L(A, X, f) ∈ R to denote such a bound of loss L. Furthermore, L(A, X) = maxf∈C L(A, X, f).

A slightly easier setting is when f is drawn from a prior distribution F . This average-case setting is a
very natural relaxation of the worst-case setting. In this setting, for a fixed set of examples X , we
use L(A, X, F) = EA,f L(A, X, f) to denote the expected loss suffer by A, where the randomness
comes from f and A. When X is drawn from a distribution D, L(A, X, F) is a random variable of
X . In this setting, we are more interested in if with probability at least 99%, we can draw a dataset
X from D such that A can approximate the best learner to learn f ∼ F over X .

Finally, we will consider the gain from ordering for labeling a random dataset X . We observe that
for the linear regression problem when X ∼ D and the size of X is large, a random sequence of
d examples from X is roughly a sequence of i.i.d. examples. Based on this observation, instead of
competing with the performance of a learner Arandom that selects a random order for every realization
of X , we choose to compete with the average performance of Arandom. This is a reasonable
benchmark and will not make our analysis over complicated due to some extreme cases. Formally, for
the average-case setting, the benchmark we want to compete with is minArandom L(Arandom, X) ∈ R.
And the gain from the ordering of a learner A is a random variable

G(A, X, F) =
minArandom EX∼D L(Arandom, X, F)

L(A, X, F)
,

where the randomness only comes from X . For the worst-case setting, the benchmark we want to
compete with is minArandom maxf∈C EX∼D L(Arandom, X, f) ∈ R and the gain from the ordering
of a learner A is a positive number

G(A, X) =
minArandom maxf∈C EX∼D L(Arandom, X, f)

L(A, X)
.

B.2 Learning in Random Order

To understand the gain of ordering examples, we need to first understand the perfor-
mance of the best self-directed learner that learns with a random order. We will show
that minArandom EX∼D L(Arandom, X,Sd),minArandom maxf∈C EX∼D L(Arandom, X, f) ∈ Θ(1),
which can be obtained immediately by Lemma B.2 and Lemma B.3. To start with, we present the
following probability lemma that will be used multiple times in this section.

Lemma B.1. Let L ⊆ Rd be a k-dimensional subspace, where k ≤ d. Let w be a random vector
sampled uniformly from Sd−1. Then the random variable ∥projL(w)∥

2 ∼ Beta(k/2, (d− k)/2).

Proof of Lemma B.1. Without loss of generality, we assume L is the subspace spanned by the first
k basis vectors. Then the random variable ∥projL(w)∥

2
=
∑k

i=1 w
2
i is equivalent to the the

random variable
∑k

i=1(x
i)2/

∑d
i=1(x

i)2, where for i ∈ [d], xi is independently drawn from a
standard normal distribution N(0, 1). The distribution of

∑k
i=1(x

i)2/
∑d

i=1(x
i)2 is Beta(k/2, (d−

k)/2).

Given the above probability lemma, we are able to compute the following information-theoretic lower
bound for any learner that learns from a random order.

19

Lemma B.2 (Information Theoretic Lower Bound for Learning from A Random Order). Let w∗ ∼ Sd
be a target vector, and let X be a set of n ≥ poly(d) examples drawn i.i.d. from Sd. Denote by A a
learner that learns w∗ with a random order of X . In expectation, we have EX∼D L(A, X,Sd) ≥ 1

2 .

Proof of Lemma B.2. By Lemma A.3, we know that in expectation, L(A, X, Sd) ≥
E
∑d

i=1
1
d

∥∥∥(x(i))L⊥
i−1

∥∥∥2, where x(i) is the i-th example selected in the random order. Since X

is drawn i.i.d. from Sd and the order we select is uniform at random, we know from Lemma B.1 that∥∥∥(x(i))L⊥
i−1

∥∥∥2 ∼ Beta((d− i+ 1)/2, (i− 1)/2) and has an expectation (d− i+ 1)/d. Sum these

expectations together, we obtain that L(A, X,Sd) ≥ 1
2 .

On the other hand, given any target w∗, a learner that selects a random order of examples also learns
w∗ with an expected cost of O(1).

Lemma B.3 (Upper Bound the Cost of Learning from A Random Order). There is a self-directed
learner A that learns an arbitrary w∗ ∈ Sd with an expected cost EX,A L(A, X,w∗) ≤ 1

2 by
selecting a random order of examples of X , where X is a set of n ≥ poly(d) examples drawn i.i.d.
from Sd.

Proof of Lemma B.3. The self-directed learner A simply selects a random order x(1), . . . , x(n) from
X and predicts x(i+1) with w∗

Li
· x(i+1). We know that with probability 1, x(1), . . . , x(d) are linearly

independent. Since X is a set of examples drawn i.i.d. from Sd and A selects a random order, we
have

E
X,A

L(A, X,w∗) = E

d∑
i=1

(y(i) − ŷ(i))2 =

d∑
i=1

E
Li−1,x(i)

(
(y(i) − ŷ(i))2 | x(i)

)
=

d∑
i=1

E
Li−1,x(i)

(
(w∗

Li−1
· xi − w∗ · xi)

2 | x(i)
)

=

d∑
i=1

E
Li−1,x(i)

(
(w∗

L⊥
i−1

· x(i))2 | x(i)
)

=

d∑
i=1

E
Li−1,x(i)

((
w∗

L⊥
i−1

· (x(i))L⊥
i−1

)2
| x(i)

)
(1)

=

d∑
i=1

E
Li−1,x(i)

(∥∥∥w∗
L⊥

i−1

∥∥∥2 ∥∥∥(xi)L⊥
i−1

∥∥∥2 (u · a)2
)

(2)

=

d∑
i=1

E
Li−1,x(i)

∥∥∥w∗
L⊥

i−1

∥∥∥2 E
Li−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 E
Li−1,x(i)

(u · a)2 (3)

=

d∑
i=1

d− i+ 1

d

1

d− i+ 1
E

Li−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2
=

1

d

d∑
i=1

E
Li−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 . (4)

Here in (1), we use the fact that w∗
L⊥

i−1
∈ L⊥

i−1. In (2), we denote by u = w∗
L⊥

i−1
/
∥∥∥w∗

L⊥
i−1

∥∥∥ , a =

(x(i))L⊥
i−1

/
∥∥∥(x(i))L⊥

i−1

∥∥∥. In (3), we use the fact that (u · a)2 is independent on the knowledge of

w∗
L⊥

i−1
and

∥∥∥(x(i))L⊥
i−1

∥∥∥. Furthermore, we notice that w∗
L⊥

i−1
is the projection of w∗ onto a random

d− i+ 1 dimensional subspace. So we obtain E
∥∥∥w∗

L⊥
i−1

∥∥∥ = (d− i+ 1)/d. Furthermore, we know

20

that given the knowlege of w∗
L⊥

i−1
, a = (x(i))L⊥

i−1
/
∥∥∥(x(i))L⊥

i−1

∥∥∥ is uniformly drawn from the unit

sphere in L⊥
i−1. By Lemma B.1, we obtain ELi−1,x(i) (u · a)2 = 1/(d − i + 1). Notice that by

Lemma B.1, ELi−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 = (d− i+1)/d. This implies that EX,A L(A, X,w∗) ≤ 1/2.

B.3 The Gain of Algorithm 1

In this section, we analyze the gain from ordering of Algorithm 1. Our main goal is to prove
Proposition 4.1, which we restate as follows.
Proposition B.4 (Proposition 4.1). Let X be a set of n ≥ poly(d) examples drawn i.i.d. from
Sd and let A denote Algorithm 1, then over the randomness of the dataset X , in expectation,
G(A, X,Sd)−1 ≤ O(1/d+ n−2/d).

We know that minArandom EX∼D L(Arandom, X,Sd) ∈ Θ(1) from the last section. So, to analyze
the gain of Algorithm 1, the central question is to upper bound L(A, X,Sd). To do this, we need the
following probability lemma.
Lemma B.5. Let X1, . . . , Xm be m independent random variable with distribution Beta(k/2, (d−
k)/2), 1 ≤ k < d. Denote by Y = min{X1, . . . , Xm}. Then we have EY ≤
O((m/ logm)−2/kk/d).

Proof of Lemma B.5. We want to find some sufficient small ϵ > 0 such that EY ≤ ϵ. Notice that
E y ≤ EXi ≤ k/d. So we can without loss of generality assume ϵ ≤ k/d. To get such an upper
bound for EY , it is sufficient to find some ϵ > 0 such that Pr(Y ≥ ϵ/2) ≤ ϵ/2 because for such ϵ,
we have

EY ≤ E(Y | Y ≤ ϵ/2) +Pr(Y ≥ ϵ/2) ≤ ϵ.

In the rest of the proof, we show ϵ = O((m/ logm)−2/kk/d) satisfies such conditions by showing
that such an ϵ satisfies some cleaner sufficient conditions for Pr(Y ≥ ϵ/2) ≤ ϵ/2.

We use the fact that Pr(Y ≥ y) = Pr(Xi ≥ y)m = (1−Pr(Xi ≤ y))m ≤ exp (−mPr(Xi ≤ y)).
If exp (−mPr(Xi ≤ ϵ/2)) ≤ ϵ/2, then such ϵ satisfies Pr(Y ≥ ϵ/2) ≤ ϵ/2. This is equivalent to
find ϵ such that

mPr (Xi ≤ ϵ/2) ≥ log(2/ϵ). (5)
We next lower bound Pr (Xi ≤ ϵ/2). By Lemma B.1, We have

Pr (Xi ≤ ϵ/2) = B(
k

2
,
d− k

2
)−1

∫ ϵ
2

0

x
k
2−1(1− x)

d−k
2 −1dx

≥ B(
k

2
,
d− k

2
)−1 (1− ϵ/2)

d−k
2

∫ ϵ
2

0

x
k
2−1dx

≥ 2

k
B(

k

2
,
d− k

2
)−1 exp (−eϵ(d− k)/4) (ϵ/2)

k/2

≥ 2

k
B(

k

2
,
d− k

2
)−1 exp (−ek(d− k)/4d) (ϵ/2)

k/2

≥ 2

k
B(

k

2
,
d− k

2
)−1 exp (−ek/4) (ϵ/2)

k/2

=
2

k
exp (−ek/4) (ϵ/2)

k/2 k(d− k)

2d

(
d/2
k/2

)
≥ d− k

d
exp (−ek/4)

(
dϵ

2k

)k/2

.

In the third inequality, we use the fact that ϵ < k/d. To make (5) holds, we only need to find some ϵ
such that

m(d− k)

d
exp (−ek/4)

(
dϵ

2k

)k/2

≥ log(2/ϵ).

21

That can be done by choosing some ϵ = O((m/ logm)−2/kk/d).

With Lemma B.5, we are able to give the following upper bound for L(A, X,Sd).
Lemma B.6. Let X be a set of n ≥ poly(d) examples drawn i.i.d. from Sd and let A denote
Algorithm 1, then EX L(A, X,Sd) ≤ O(1/d+ n−2/d).

Proof of Lemma B.6. We know that with probability 1, X is in general position. That is to say every
d examples in X are linearly independent. So after seeing labels of d different examples, Algorithm 1
learns w∗ exactly by solving a system of linear equations. Thus, we only need to bound the loss of
Algorithm 1 on the first d examples. Use a similar approach as we did in the proof of Lemma B.3,
We have

E
X,A

L(A, X,w∗) = E

d∑
i=1

(y(i) − ŷ(i))2 =

d∑
i=1

E
Li−1,x(i)

(
(y(i) − ŷ(i))2 | x(i)

)
=

d∑
i=1

E
Li−1,x(i)

(
(w∗

Li−1
· xi − w∗ · xi)

2 | x(i)
)

=

d∑
i=1

E
Li−1,x(i)

(
(w∗

L⊥
i−1

· x(i))2 | x(i)
)
=

d∑
i=1

E
Li−1,x(i)

((
w∗

L⊥
i−1

· (x(i))L⊥
i−1

)2
| x(i)

)

=

d∑
i=1

E
Li−1,x(i)

(∥∥∥w∗
L⊥

i−1

∥∥∥2 ∥∥∥(x(i))L⊥
i−1

∥∥∥2 (u · a)2
)

=

d∑
i=1

E
Li−1,x(i)

∥∥∥w∗
L⊥

i−1

∥∥∥2 E
Li−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 E
Li−1,x(i)

(u · a)2

=

d∑
i=1

d− i+ 1

d

1

d− i+ 1
E

Li−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 =
1

d

d∑
i=1

E
Li−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 .
To bound the loss of Algorithm 1, it remains to bound the ELi−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2, which is the min-

imum norm of the projection of n/(d− i)2 random points onto a d− i+ 1 dimensional subspace for

i > 1. By Lemma B.5, we know that ELi−1,x(i)

∥∥∥(x(i))L⊥
i−1

∥∥∥2 ≤ O((n/ log n)−2/(d−i) d−i
d) ≤

O((n/ log n)−2/d d−i
d). Sum these inequalities together, we obtain that EX,A L(A, X,w∗) ≤

O(1/d + (n/ log n)−2/d). We notice that if n > dd, then (n/ log n)−2/d ≤ 1/d and if n ≤ dd,
(log n)2/d = O(1). This implies that EX,A L(A, X,w∗) ≤ O(1/d+ n−2/d).

With Lemma B.6, we can obtain the proof of Proposition 4.1 immediately.

Proof of Proposition 4.1. By Lemma B.2, we know that minArandom EX∼D L(Arandom, X,Sd) ∈
Ω(1). By Lemma B.6, we know that EX L(A, X,Sd) = Ew∗∼Sd EX,A L(A, X,w∗) ≤ O(1/d +

n−2/d). Thus, we have in expectation, G−1(A, X,Sd) ≤ O(1/d+ n−2/d).

In particular, we remark that with a simple application of Markov inequality, Lemma B.6 actually
implies G−1(A, X) ≤ O(1/d+ n−2/d), since Lemma B.6 holds for arbitrary w∗.

B.4 The Gain of the Best Learner

In this subsection, we analyze the gain of the best learner and prove Proposition 4.2.

Proposition B.7 (Proposition 4.2). Let X ⊆ Sd be a set of n > poly(d) examples drawn iid from
Sd. For every δ ∈ (3/n, 1), with probability at least 99%, G∗(X,Sd)−1 ≥ Ω(1/d+ δn−(2+2δ)/d).

22

By Lemma B.3, we know that minArandom EX∼D L(Arandom, X,Sd) ≤ O(1). So in the rest of this
section, we will focus on the cost of the best learner over a random set of examples X . Our central
result is the following information-theoretic lower bound.

Lemma B.8. Let X ⊆ Sd be a set of n > poly(d) examples drawn iid from Sd. For every δ ∈
(3/n, 1), with probability at least 99%, X satisfies, for every self-directed learner A, L(A, X, Sd) ≥
Ω(1/d+ δn−(2+2δ)/d).

Proof of Proposition 4.2. According to Lemma A.3, the best learner A∗ to learn w∗ ∼ Sd is the one
that selects a sequence of examples with minimum spanning cost and makes the Bayesian optimal
prediction. Let σ∗ be the sequence of examples of X with the minimum spanning cost. Then we
know that L(A∗, X,Sd) = C(σ∗,m)/d. So in the rest of the proof, we will show that with 99%,
there is no sequence of examples with a very small spanning cost. We will first show that for a fixed
permutation of the n random examples, the probability that the sequence has a very small spanning
cost is small, then we will apply a union bound to finish the proof.

We consider the random variable Y defined as follows. Let V be a fixed subspace with dimension
k ≥ d/2, and let x be a uniform vector over Sd−1. Denote by Y = ∥xV ∥2. By Lemma B.1, we know
that Y ∼ Beta(k/2, (d− k)/2). We show that with a very high probability Y is large. We have for
every ϵ ∈ (0, 1),

Pr (Y ≤ ϵ) = B(
k

2
,
d− k

2
)−1

∫ ϵ

0

x
k
2−1(1− x)

d−k
2 −1dx

≤
∫ ϵ

0

x
k
2−1(1− x)

d−k
2 −1dx

k(d− k)

2d

(
ed

k

)k/2

≤ (ed/k)k/2(k/2d)ϵk/2 ≤ (ed/k)k/2ϵk/2.

We set up ϵ = k
2edn

−(2+2δ)/k, then we obtain that with probability at most n−(1+δ)/2,

Y ≤ ϵ ≤ k

ed
n−(2+2δ)/k ≤ n−(2+2δ)/k/2.

Now, we fix a permutation σ of the n random examples. Without loss of generality, we assume this
sequence is x(1), . . . , x(n). We will show a slightly stronger statement that C(σ, d/2) is large with
an extremely high probability.

Now assume that the spanning cost of this sequence x(1), . . . , x(d/2) is small, say,∑d/2
i=2

∥∥∥(x(i))L⊥
i−1

∥∥∥2 ≤ δdn−(2+2δ)/k/12. This implies that at most δd/6 terms of the first d/2

terms can be larger than n−(2+2δ)/d/2. Notice that since x(1), . . . , x(d/2) are independent for a fixed
permutation, we obtain that

Pr

d/2∑
i=2

∥∥∥(x(i))L⊥
i−1

∥∥∥2 ≤ δdn−(2+2δ)/k/12

 ≤ (
1

2
)(1−δ/6)dn− (1+δ)(1−δ/6)d

2

(
d/2

δd/6

)
≤ 0.99n− (1+δ)(1−δ/6)d

2 (3/δ)δd/6

≤ 0.99n− (1+δ)(1−δ/6)d
2 + δd

6 ≤ 0.99n−d/2.

In the third inequality, we use the fact that 3/δ ≤ n, and in the last inequality we use the fact
that δ < 1. Since there are at most nd/2 such permutations for the first d/2 terms, by union
bound, we obtain that with probability 0.99 every sequence of examples has a spanning cost at least
Ω(1 + δdn−(2+2δ)/d), where the constant term comes from the spanning cost of the first term. This
implies that for every self-directed learner A, L(A, X,Sd) ≥ Ω(1/d+ δn−(2+2δ)/d).

With Lemma B.8, we are able to obtain the proof of Proposition 4.2 immediately.

23

Proof. By Lemma B.3, we know that minArandom EX∼D L(Arandom, X,Sd) ≤ O(1) and by
Lemma B.8, we know that with probability at least 90%, for every learner A, L(A, X,Sd) ≥
Ω(1/d+ δn−(2+2δ)/d). This implies that G∗(X,Sd)−1 ≥ Ω(1/d+ δn−(2+2δ)/d) with probability
at least 99%.

We remark that a direct implication of Lemma B.8 is that for every learner A, there is some w∗ such
that with probability at least 99%, the learning cost L(A, X,w∗) is at least Ω(1/d+ δn−(2+2δ)/d),
which means G∗(X) ≥ Ω(1/d+ δn−(2+2δ)/d).

C Missing Proofs from Section 5

In this section, we analyze the performance of Algorithm 2 for the self-directed ReLU regression
problem and present the proof ofTheorem 5.1 in this section.
Theorem C.1. Let X ⊆ Rd be a set of n ≥ poly(d) examples drawn i.i.d. from Sd. Let G(A, X) be
the gain from ordering of Algorithm 2 for the self-directed ReLU regression problem over X. Then,

G(A, X)−1 ≤ O(
1

d
) +

min{O(tan

2 θ0 log d
d), O(log d

n2/d)} if nθ0
4πd log d > exp(d8),

min{O(tan
2 θ0 log d

log(nθ0)
), O(log d

n2/d)} if 1 ≤ nθ0
4πd log d ≤ exp(d8)

O(1n) if nθ0
4πd log d < 1.

C.1 ReLU Regression with A Random Order

We start with an information-theoretic lower bound for the cost of a learner that uses a random order.
Lemma C.2. Let w∗ ∈ Rd be a target vector drawn uniformly from Sd. Let X be a set of n > d
examples drawn i.i.d. from Sd. Let A be any learning algorithm for the ReLU regression problem
over X that uses a random order to learn w∗. For a random set of examples, let the random variable
L(A, X,Sd) be the expected learning cost of A. Then we have EX L(A, X, Sd) ≥ Ω(1).

Proof of Lemma C.2. Assume a self-directed learner A learns w∗ with a random sequence of exam-
ples x(1), . . . , x(n). To lower bound the learning cost of A, we slightly relax the learning model so
that in each round A not only sees Relu(w∗ ·x(i)) but also sees w∗ ·x(i). In the relaxed learning model,
w∗

Li−1
is known at the beginning of each round. We say an example x(i) is good if w∗

Li−1
· x(i) ≥ 0

and w∗
L⊥

i−1
· x(i) ≥ 0. If x(i) is not good, then we say it is a bad example. Notice that by symmetry,

in each round with probability 1/4, we will get a good example. Let y(i) be the true label of x(i) and
let ŷ(i) be the prediction for x(i). Consider a single learning round, we have

E(y(i) − ŷ(i))2 = Pr(x(i) is good)E
(
(y(i) − ŷ(i))2 | x(i) is good

)
+Pr(x(i) is bad)E

(
(y(i) − ŷ(i))2 | x(i) is bad

)
≥ 1

4
E
(
(y(i) − ŷ(i))2 | x(i) is good

)
=

1

4
E

Li−1,ai−1,x(i)

(
(ŷi − ai−1 · x(i) − w∗

L⊥
i−1

· x(i))2 | x(i) is good, w∗
Li−1

= ai−1, x
(i)
)

=
1

4
E

Li−1,ai−1,xi

(
(p̂i − w∗

L⊥
i−1

· x(i))2 | x(i) is good, w∗
Li−1

= ai−1, x
(i)
)

≥ 1

4
Var

(
(w∗

L⊥
i−1

· x(i)) | x(i) is good, w∗
Li−1

= ai−1, x
(i)
)

=
1

4
Var

(
(w∗

L⊥
i−1

· (x(i))L⊥
i−1

) | x(i) is good, w∗
Li−1

= ai−1, x
(i)
)

=
1

4

d− i+ 1

d

d− i+ 1

d
Var

(
w∗

L⊥
i−1∥∥∥w∗

L⊥
i−1

∥∥∥ ·
(x(i))L⊥

i−1∥∥∥(x(i))L⊥
i−1

∥∥∥) | x(i) is good, w∗
Li−1

= ai−1, x
(i)

≥ Ω(

d− i+ 1

d2
).

24

Figure 1: Geometry illustration for Lemma 5.2. K ′′
a,b is the red shadowed area and K ′

a,b is the black
shadowed area. As a/γ increases, θ′ = arcsin(a sin θ/γ) > θ/2 and M(K ′′

a,b) ⊆ K ′
a,b.

Here in the third equality, we denote by p̂i = ŷ(i) − ai−1 · x(i). This implies that EX L(A, X, Sd) =∑d
i=1 E(y(i) − ŷ(i))2 = Ω(1).

Lemma C.2 implies that for every Arandom, there is some w∗ such that EX L(A, X,w∗) = Ω(1).
Thus, minArandom maxw∗ EX L(Arandom, X,w∗) ∈ Ω(1).

C.2 Geometric Technical Lemma

As Lemma C.2 suggests, to analyze the gain of Algorithm 2, we only need to analyze the learning
cost of Algorithm 2. The central technique we use is the following geometric technical lemma. At a
high lever, it bounds by above the probability that a point far away from some guess w is also far away
from the ground-truth vector w∗. We define by Ka := {x ∈ C | w ·x ≥ a sin θ} the set of points that
are far away from the guess w (large-margin points) and by Ka,b := {x ∈ C | w ·x ≥ a sin θ, w∗x ≤
−b sin θ} the subset of Ka that contains points that are far from w∗ (large-margin with respect to
w∗). We show that conditional on Ka the probability that x ∈ Ka,b decays exponentially fast as a

function of the margin b, i.e., Pr (x ∈ Ka,b | x ∈ Ka) ≤ exp
(
−O(db2 + 2ab cos θ)

)
This means

that with very high probability all points in Ka will land “close” to the target-vector w∗.

Lemma C.3 (Lemma 5.2). Let w∗ ∈ Sd be a target vector and let w ∈ Sd be an arbitrary vector such
that θ = θ(w∗, w) < π/2. Denote by C = {x ∈ Sd | w∗x ≤ 0, w · x ≥ 0}. For every a, b ∈ (0, 1),
denote by Ka := {x ∈ C | w ·x ≥ a sin θ} and Ka,b := {x ∈ C | w ·x ≥ a sin θ, w∗x ≤ −b sin θ}.
Let x be a point uniformly drawn from Sd. There is some absolute constant c > 1 such that if a/b ≥ c

then Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2 exp
(
− d

3(1−a2) (b
2 + 2ab cos θ)

)
.

Proof of Lemma 5.2. Without loss of generality, we assume that w = e2 and w∗ = − sin θe1 +
cos θe2, where e1, e2 are the first two standard basis of Rd. We consider the projection of x onto the
2-dimensional subspace spanned by w,w∗. We use a polar coordinate to write such a projection as

25

r cosϕe1 + r sinϕe2. In this way, we obtain that

C = {(r, ϕ) | r ∈ (0, 1), ϕ ∈ (0, ϕ)},
Ka = {(r, ϕ) | r sinϕ ≥ a sin θ, r ∈ (0, 1), ϕ ∈ (0, ϕ)},

Ka,b = {(r, ϕ) | r sin(ϕ− θ) ≥ −b sin θ, r ∈ (0, 1), ϕ ∈ (0, ϕ)}.

We partition Ka,b into two parts. (See Figure 1 for detail.) Let γ2 = a2 + b2 + 2ab cos θ Denote
by K ′

a,b := {(r, ϕ) ∈ Ka,b | sinϕ ∈ [a sin θ, a sin θ/γ]} and K ′′
a,b = {(r, ϕ) ∈ Ka,b | sinϕ ∈

[a sin θ/γ, (
√
1− (b sin θ)2 − b cos θ) sin θ]}. We mirror K ′′

a,b according to ray {(r, ϕ) | sinϕ =

a sin θ/γ} and obatin a mirror set M(K ′′
a,b). We notice that when a/b > c for some constant c > 0,

a/γ > 1/
√
2 and sin θ′ = a sin θ/γ ≥ sin(θ/2). This implies M(K ′′

a,b) ⊆ K ′
a,b. By symmetry, we

obtain that Pr(x ∈ K ′′
a,b) ≤ Pr(x ∈ K ′

a,b) when this happens. Since Ka,b ⊆ Ka, we have

Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2Pr
(
x ∈ K ′

a,b | x ∈ Ka

)
.

In the rest of the proof, we will show Pr
(
x ∈ K ′

a,b | x ∈ Ka

)
≤ exp

(
− d

2(1−a2) (b
2 + 2ab cos θ)

)
By Lemma B.1, recall the density function of r is f(r) = d−2

2π (1 − r2)d/2−2r. Furthermore,
ϕ ∼ U [0, 2π]. This implies that

Pr (x ∈ Ka) =
d− 2

(2π)2

∫ θ

arcsin(a sin θ)

∫ 1

a sin θ
sinϕ

(1− r2)d/2−2rdrdϕ

=
1

(2π)2

∫ θ

arcsin(a sin θ)

(1− (
a sin θ

sinϕ
)2)d/2−1dϕ.

Pr
(
x ∈ K ′

a,b

)
=

d− 2

(2π)2

∫ arcsin(a sin θ/γ)

arcsin(a sin θ)

∫ 1

a sin θ
sinϕ

(1− r2)d/2−2rdrdϕ

=
1

(2π)2

∫ arcsin(a sin θ/γ)

arcsin(a sin θ)

(1− (
a sin θ

sinϕ
)2)d/2−1dϕ.

To simplify the notation, we introduce the following function

g(t) =
1

(2π)2

∫ arcsin(a sin θ/t)

arcsin(a sin θ)

(1− (
a sin θ

sinϕ
)2)d/2−1dϕ, t ∈ [a, 1].

Then we have We are interested in the upper bound for g(γ)/g(a). To do this, we upper bound

log (g(γ)/g(a)) = (log g(t))
′
(γ − a).

for some t ∈ [a, γ]. Now we derive an upper bound for log g(t). Notice that

g′(t) = − 1

(2π)2
a sin θ(1− t2)d/2−1

t2
√
1− (a sin θ

t)2
= − 1

(2π)2
a sin θ(1− t2)d/2−1

t
√

t2 − (a sin θ)2
.

On the other hand, we have Pr
(
x ∈ K ′

a,b | x ∈ Ka

)
= g(γ)/g(a).

g(t) =
1

(2π)2

∫ arcsin(a sin θ/t)

arcsin(a sin θ)

(1− (
a sin θ

sinϕ
)2)d/2−1dϕ

=
1

(2π)2

∫ 1

t

(1− s2)d/2−1 a sin θ

s
√
s2 − (a sin θ)2

ds

≤ 1

(2π)2

∫ 1

t

s(1− s2)d/2−1ds
a sin θ

t2
√

t2 − (a sin θ)2

=
(1− t2)d/2a sin θ

(2π)2dt2
√

t2 − (a sin θ)2
.

26

We have

(log g(t))
′
=

g′(t)

g(t)
≤ −dt(1− t2)−1 ≤ −da(1− a2)−1.

So, we obtain that

log

(
g(γ)

g(a)

)
≤ −da(1− a2)−1(γ − a) = −da(γ2 − a2)

(γ + a)
≤ −d(γ2 − a2)

3
= −d(b2 + 2ab cos θ)

3
.

Here, the second inequality holds because γ =
√
a2 + b2 + 2ab cos θ ≤ 2a. Thus, we get

Pr
(
x ∈ K ′

a,b | x ∈ Ka

)
≤ exp(−d(γ2−a2)

3) = exp(−d(b2+2ab cos θ)
3). Put everything together,

we obtain that Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2 exp
(
− d

3(1−a2) (b
2 + 2ab cos θ)

)
.

We briefly explain how we will make use of this lemma. In Lemma 5.2, w∗ can be understood
as the target vector and w can be understood as our current hypothesis w(i) used in Algorithm 2.
Pr (x ∈ Ka,b | x ∈ Ka) can be understood as if the margin w(i) ·x is large, then with high probability,
the learner’s cost (w∗ · x)2 must be small.

Next, we will make use of the “maximum margin” lemma used in [DKTZ23] to show that the example
we selected actually has a large margin.
Lemma C.4 (Maximum Margin (Proposition 21 in [DKTZ23])). Let v, u ∈ Rd be unit vectors such
with angle θ(u, v) = θ. Let C = {x ∈ Sd | v · x ≤ 0, u · x ≥ 0}. Let x(1), . . . , x(n) be n i.i.d.
examples drawn uniformly from Sd. Then

1. For all n, s ≥ 1 and c ≥ 2 such that exp(−dc/4) ≤ 4πs/(nθ) ≤ 1,

Pr

(
max
i∈[n]

(u · x1{x(i)∈C}) ≤
√

log((nθ/4πs))

2cd
sin θ

)
≤ 2 exp(−2s).

2. For all n, s ≥ 1 such that 4πs/nθ ≤ 1,

Pr

(
max
i∈[n]

(u · x1{x(i)∈C}) ≤
(
1− (

4πs

nθ
)2/d

)
sin θ

)
≤ 2 exp(−2s).

C.3 Proof of Theorem 5.1

Now we are able to prove Theorem 5.1.

Proof of Theorem 5.1. We notice that if (x(0), y(0)) = (0, 0), then with probability at least 99%,
the first time we see a positive example, we will select some example x(1) ∈ Sd such that 0 ≤
w∗ · x(1) ≤ O(1/d). This implies that we will pay O(1/d) to get a pair of example (x(1), y(1)) such
that θ(x(1), w∗) ≤ θ0 = π/2. So it sufficient to deal with the case where (x(0), y(0)) ̸= (0, 0). In
this case, for every i ∈ [d], we use random variable ci to denote the cost of Algorithm 2 for predicting
labels of examples in Xi. Let θi = θ(w(i), w∗) and Ci := {x ∈ Xi | w(i) · x ≤ 0, w∗ · x ≥ 0}. We
say Algorithm 2 makes a mistake at some example x if Relu(w(i) · x) ̸= Relu(w∗ · x). We will
derive a high probability bound for each ci, then the total learning cost is

∑d
i=1 ci since after seeing

d positive examples, we are able to solve a linear equation to get w∗ exactly. We consider three cases
here.

Case 1: θi ≤ 4πd log d
n . In this case, our current hypothesis w(i) is very close to the target w∗. In

this case, we have to consider two different situations. In the first situation, there is at least one
example x ∈ Ci. Since Algorithm 2 keeps selecting example x that minimizes w(i) · x, once we
make a mistake, we must make a mistake at some example x ∈ Ci by paying (w∗ · x)2 ≤ sin2 θi.
In the second situation, there is no example x ∈ Ci. Let C ′

i = {x ∈ Sd | −x ∈ Ci}. By symmetry,
we know that with probability at least 1 − 1/poly(d), there are at most O(log d) examples in C ′

i.

27

Since there is no example in Ci, Algorithm 2 will make a mistake at examples x such that w∗ · x ≥ 0
and will stop making mistakes at some example x such that w∗ · x > 0. When we make a mistake
at an example x ∈ C ′

i, we pay (w(i) · x)2 ≤ sin2 θi. Since there are at most O(log d) examples in
C ′

i, we will pay at most O(log d sin2 θi) for examples in C ′
i. When we make a mistake at a positive

example x, we pay (w(i) · x− w∗ · x)2 = (w∗
L⊥

i−1
· x)2 ≤ sin2 θi. In summary, with probability at

least 1− 1/poly(d), we have ci ≤ O(log d) sin2 θi ≤ O(d
2 log3 d
n3) ≤ 1/(dn) since we assume that

n ≥ poly(d).

Case 2: 1 ≤ nθi
4πd log d ≤ exp(d8). Since each example is drawn i.i.d. from Sd and Xi is a random

subset of them, we obtained that with probability 1− 1/poly(d), there must be at least one example
x ∈ Ci and Algorithm 2 will make its mistake at some example x ∈ Ci. Since Algorithm 2
always selects the example x that minimize w(i) · x, we must make a mistake for an example
x ∈ argminx′∈Ci

w(i) · x′ and pay (w∗ · x)2. Now let x ∈ argminx′∈Ci
w(i) · x′ be the example

where Algorithm 2 makes a mistake. Assume w(i) · x = −a sin θi and w∗ · x = b sin θi, then
our cost in this round is b2 sin2 θi. Denote by Ka := {x ∈ Ci | w(i) · x ≤ −a sin θi} and
Ka,b = {x ∈ Ci | w(i) · x ≤ −a sin θi, w

∗ · x ≥ b sin θi}. We want to show that given w(i) · x is
negative enough, with high probability, b cannot be too large. By Lemma 5.2, this is

Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2 exp
(
− d

3(1− a2)
(b2 + 2ab cos θ)

)
. (6)

To derive a high probability bound for b, it remains to understand how large a could be. Denote by
m = n/d, which is the number of examples in Xi. Since 1 ≤ mθi

4π log d ≤ exp(d8), by Lemma C.4, we
obtain that with probability at least 1− 1/poly(d),

w(i) · x ≤ −
√

log((mθi/4π log d))

4d
sin θi.

Since 1 ≤ mθi
4π log d , again, by Lemma C.4, we obtain that with probability at least 1− 1/poly(d), we

have

w(i) · x ≤ −
(
1− (

4π log d

mθi
)2/d

)
sin θi.

This is to say, with probability at least 1 − 1/poly(d), we have w(i) · x ≤
min{−

√
log((mθi/4π log d))

4d sin θi,−
(
1− (4π log d

mθi
)2/d

)
sin θi}. Now we are able to derive the

bound of ci. Apply (6) with a =
√

log((mθi/4π log d))
4d and b =

√
16 log2 d

d cos2 θi log(mθi/4π log d) we have

Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2 exp(−2dab cos θi
3

) ≤ 1/poly(d).

On the other hand, apply (6) with a = 1− (4π log d
mθi

)2/d and b =
√

log d
d (4π log d

mθi
)2/d we have

Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2 exp(− 2db2

3(1− a2)
) ≤ 1/poly(d).

Combine these two bounds together, we obtain that with probability at least 1 − 1/poly(d), ci ≤
min{ 16 log2 d

d cos2 θi log(mθi/4π log d) sin
2 θi}, log d

d (4π log d
m)2/d} = min{O(tan

2 θi log d
d log(nθi)

), O(log d
dn2/d)}.

Case 3: nθi
4πd log d > exp(d8). This case is similar to Case 2. We know that with probability

1− 1/poly(d) there must be at least 1 example in Ci and we will make a mistake at that example.
Since 1 ≤ mθi

4π log d , by Lemma C.4, we have w(i) · x ≤ −
(
1− (4π log d

mθi
)2/d

)
sin θi. The slightly

tricky part is that since mθi
4π log d > exp(d8), we are not able to apply the first case of Lemma C.4.

However, if we sample m′ examples from Xi such that mθi
4π log d = exp(d8) and consider the examples

among the sampled points in Ci, then we are able to apply the first case of Lemma C.4. We will get

28

with probability at least 1− 1/poly(d), w(i) · x ≤ −
√

1
32 sin θi. Now apply Lemma 5.2, we know

that with probability at least 1− 1/poly(d), ci ≤ min{O(tan
2 θi log d
d2), O(log d

dn2/d)}. In summary, if
we define

f(θ) =

min{O(tan

2 θ log d
d2), O(log d

dn2/d)} if nθ
4πd log d > exp(d8),

min{O(tan
2 θ log d

d log(nθ)), O(log d
dn2/d)} if 1 ≤ nθ

4πd log d ≤ exp(d8)

O(1
dn) if nθ

4πd log d < 1,

then for each i ∈ [d], with probability at least 1 − 1/poly(d), ci ≤ f(θi). We notice that cos θi =

w(i)·w∗

∥w(i)∥∥w∗∥
=

∥∥∥w∗
Li−1

∥∥∥
∥w∗∥ , which implies that θi is decreasing in each round. Also, it is not hard to

check as θi decreasing the cost bound f(θi) is also decreasing in each round. This implies that
with probability at least 1 − 1/poly(d), we have

∑d
i=1 ci ≤ df(θ0). Combine with the cost for

initialization, we have

L(A, X) ≤ O(
1

d
) +

min{O(tan

2 θ0 log d
d), O(log d

n2/d)} if nθ0
4πd log d > exp(d8),

min{O(tan
2 θ0 log d

log(nθ0)
), O(log d

n2/d)} if 1 ≤ nθ0
4πd log d ≤ exp(d8)

O(1n) if nθ0
4πd log d < 1.

By Lemma C.2, we know that minArandom maxw∗ EX L(Arandom, X,w∗) ∈ Ω(1). Thus, we have

G(A, X)−1 ≤ O(
1

d
) +

min{O(tan

2 θ0 log d
d), O(log d

n2/d)} if nθ0
4πd log d > exp(d8),

min{O(tan
2 θ0 log d

log(nθ0)
), O(log d

n2/d)} if 1 ≤ nθ0
4πd log d ≤ exp(d8)

O(1n) if nθ0
4πd log d < 1.

29

