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Abstract

We study fixed-design online learning where the learner is allowed to choose the
order of the datapoints in order to minimize their regret (aka self-directed online
learning). We focus on the fundamental task of online linear regression: the learner
is given a dataset X with n examples in d dimensions and at step t they select a
point xt ∈ X , predict a value ỹt, and suffer loss (ỹt − w∗ · xt)

2. The goal is to
design algorithms that order the examples and achieve better regret than random-
or worst-order online algorithms.
For an arbitrary dataset X , we show that, under the Exponential Time Hypothesis,
no efficient algorithm can approximate the optimal (best-order) regret within a
factor of d1/poly(log log d).
We then show that, for structured datasets, we can bypass the above hardness result
and achieve nearly optimal regret. When the examples of X are drawn i.i.d. from
the uniform distribution on the sphere, we present an algorithm based on the greedy
heuristic of selecting “easiest” examples first that achieves a log d-approximation
of the optimal regret.

1 Introduction

In online learning [Rob51, Han57, B+54, CBL06] the learner receives an example and outputs a
prediction about its label. The true label of the example is then revealed and the learner suffers loss
depending on the “distance” of their prediction from the true label. The goal is to minimize the total
loss over all learning rounds given the knowledge of the correct labels of previous rounds. Under
worst-case assumptions, where an adversary controls the sequence of examples and labels presented
to the learner, a wide range of algorithms based on exponential reweighting [Vov90, LW94, FS97,
Vov95, CBL06] and online convex optimization [Haz16, Ora19] have been developed.

Beyond Worst-Case Online Learning A less adversarial setting is fixed-design (aka transductive)
online learning first considered in [BDKM97] and subsequently studied in [KK05, CBS13, WHGS22].
In fixed-design online learning the pool of potential examples that the learner is going to face during
the learning phase is fixed in advance and known to the learner. There are three main variants of fixed-
design online learning considered in the literature (see, [BDKM97]): the worst or adversarial order
setting, i.e., when an adversary controls the order of examples presented to the learner, the random
order, i.e., when the examples are presented to the learner in a random order, and the best-order
or self-directed setting [GS94], where the learner can choose the next example to predict its label
at every round. Ordering examples during learning is common in practice: in the context of deep-
learning, designing the order of examples when training a model is known as curriculum learning
[BLCW09, HW19, WCZ21], where the focus is on finding ways to rank the training examples from
“easy” to “hard”, as well as using the right pacing function for introducing more difficult data. Another
application is direct marketing [LL98, NL11], one common business intelligence task, which is a
process of identifying likely buyers to market products accordingly. In particular, an agent must study
customers’ characteristics and needs, and select customers to market their products. For example, a
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streaming service or social media platform may want to learn the content preferences of customers
without making too many bad recommendations. In this application, the platform chooses the order
in which to present the content (from a pool of available videos) in order to minimize the “regret”
(and keep the user engaged). Finally, other non-adverserial online learning variants assume that the
order of examples is chosen by a teacher who knows the ground-truth and presents the examples to
help the learner [GM93, Mat97, DSZ10, MSSZ22] or make regularity assumptions about the dataset
of examples [RS13, JRSS15].

Self-Directed Learning and Gain from Ordering In this work, we focus on the best-order or
self-directed version of fixed-design online learning. We first formally define the self-directed online
prediction model [GS94] and its random- and worst-order variants that we consider in this work.
Definition 1.1 (Self-Directed Online Learning [GS94]). Let f ∈ C be an unknown target concept
from some concept class C of functions from Rd to R and let X = {x(1), . . . , x(n)} be a subset of
n ∈ N points in Rd. The learner has access to the full set of (unlabeled) points X .
Until the labels of all examples of X have been predicted:

• The learning algorithm picks a point x ∈ X and makes a prediction z ∈ R about its label.

• The true label f(x) of x is revealed and the learner suffers loss (z − f(x))2.

We say that the learner suffers L loss (or regret) to label X if, with probability at least 99%, it
holds that the total loss suffered by learner over all rounds is at most L. In what follows, given a
self-directed learner Aself we shall denote by L(Aself , X, f) its total loss L.

In this work, we investigate whether we can design efficient self-directed algorithms that exploit the
power of ordering to improve the regret compared to the worst- and random-order settings.
Remark 1.2 (Random-order and Worst-order Online Learning). We shall refer to the setting where
the example during the training phase is picked uniformly at random (without replacement) from the
unlabeled data X as random-order learning. Moreover, we shall refer to the setting where the next
example is chosen by an adversary as worst-order learning.

Before we continue, we remark that we will also consider “average-case” (Bayesian) settings where
the target concept f is sampled from some prior distribution F over concepts.
Remark 1.3 (Average and Worst-Case Targets). In Definition 1.1, we will also consider the case
where the ground-truth f is drawn from some distribution over targets F , in which case the total cost
is defined to be the average cost over F , i.e., L(Aself , X, F ) := Ef∼F L(Aself , X, f). In the worst
case setting we will simply write L(Aself , X) := maxf∈C L(Aself , X, f).

To formalize the notion of how much self-directed learners “improve over worst or random settings”
in a compact way, we introduce the “Gain from Ordering” (or simply gain) that is defined to be the
ratio between the minimum possible total loss of an algorithm that works in the random-order setting
and that of an algorithm that can order the examples.

Definition 1.4 (Gain from Ordering). Let f ∈ C be a target concept. Let X = {x(1), . . . , x(n)} be a
dataset of points in Rd. We define the Gain from Ordering of a self-directed learner Aself as

G(Aself , X, F ) :=
minArandom L(Arandom, X, F )

L(Aself , X, F )
.

Moreover, we denote by G∗(X,F ) := maxAself G(Aself , X, F ) the maximum possible Gain from
Ordering. Similarly, we define the Gain from Ordering in the worst-case (where the target f is

chosen adversarially, see Remark 1.3) by setting G(Aself , X) :=
minArandom L(Arandom,X)

L(Aself ,X)
, and

G∗(X) = maxAself G(Aself , X).

We remark that in the above definition, we do not compare against worst-order algorithms as they
always perform worse than the best random-order algorithm, and therefore, our results readily
generalize when considering the Gain from Ordering with respect to worst-order algorithms.

Whether ordering the examples can improve the total loss suffered by the learner was first studied in
the context of online classification, i.e., when the predictions of the algorithm and the ground truth
labels are binary z, f(x) ∈ {±1}. For the class of one-dimensional threhsolds over the real line, in
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[GS94] it was shown that, in the best-order setting, one mistake suffices. On the other hand in the
random- and worst-order settings it is known [Lit88, Lit89] that the total loss (or equivalently the
number of mistakes) is Θ(log n), where n is the size of the dataset. Therefore, for thresholds on the
real-line the Gain from Ordering is known to be Θ(log n). Positive results on the Gain from Ordering
exist for other concept classes as well (e.g., for monotone monomials and axis-aligned rectangles)
but there are also known concepts where ordering the examples does not help, see [GS94, BDEK95].

Online Linear Regression In this paper, we focus on perhaps the most fundamental problem in
online learning, namely online linear regression. An unknown target vector w∗ ∈ Rd is picked
by an adversary (or sampled from some prior distribution, see Remark 1.3). The true label of an
example x corresponds to f(x) = w∗ · x. In the adversarial/worst-order setting there are numerous
results studying online linear regression going back to the seminal work of Widrow and Hoff
[WH60, LLW91, KW97, CBLW96, Byl97, AW01, Vov01, OCCB15]. In this setting, the optimal
regret is well-understood and tight (even with respect to constant factors) upper and lower bounds
exist [AW01, Vov01, CBL06]. The self-directed setting is much less understood both information-
theoretically, i.e., what is the best possible Gain from Ordering, and computationally, i.e., whether
there exist efficient self-directed algorithms that can achieve the optimal Gain from Ordering. In this
work, we aim to make progress in this direction and ask the following fundamental question.

Is there an efficient, self-directed learning algorithm for linear regression
that achieves (approximately) optimal Gain from Ordering?

1.1 Our Results and Techniques

Our first result is an impossibility result showing that for unstructured datasets it is computationally
intractable to compute an ordering that approximates the optimal Gain from Ordering under the
Exponential Time Hypothesis (ETH). More precisely, we show that, even for the “easier” version of
the problem where the target vector is drawn uniformly at random from the unit sphere, no efficient
self-directed learner can achieve better than d1/poly(log log d)-approximation of the optimal Gain from
Ordering.

Theorem 1.5 (Hardness of Approximation for the Optimal Gain from Ordering). Let X be an
arbitrary set of n unit-norm examples and denote by Sd the uniform distribution over the unit sphere.
Under the Exponential Time Hypothesis (ETH), there is no polynomial time self-directed learner
Aself such that G(Aself , X,Sd) ≥ d−1/ log logc d G∗(X,Sd), where c > 0 is some universal constant.

Our hardness result follows by a reduction to the Densest k-Subgraph (DkS) problem (see Defi-
nition 3.1) that was shown in [Man17] to be ETH-hard to approximate. To go from our learning
problem to the combinatorial DkS problem we perform a sequence of approximation preserving
reductions. At a high-level, we first show that selecting the best order for online linear regression is
equivalent to an offline geometric problem where we need to sort the examples so that the sum of the
distances of every example from the subspace spanned by the previous examples in the ordering is
minimized, see Definition 3.3). We then show that this problem can be further reduced to a specific
edge packing problem on graphs (see Definition 3.7) by only worsening the achieved approximation
guarantee by a factor of 2. Finally, we show that any α-approximate algorithm for the k-packing
problem yields an O(α2)-approximate algorithm for the Densest k-Subgraph problem. For more
details, we refer to Section 3.

As our hardness result suggests, without any assumption over the structure of the data, there is no
hope to design an efficient self-directed learner with “good” approximation guarantee – especially in
high-dimensional settings, i.e., when d is large. This motivates us to study self-directed learning over
structured datasets. We focus on the fundamental setting where the dataset X is i.i.d. drawn uniformly
from the unit sphere, Sd. In this case, we design an algorithm based on a greedy heuristic that picks
the example that is “most similar” to the examples already seen achieves a log d-approximation of
the optimal Gain from Ordering.

Theorem 1.6 (Efficient Self-Directed Learner under Spherical Data). Let X be a set of n examples
drawn i.i.d. from Sd. There exists an efficient self-directed learner A such that, with probability at
least 99%, it holds G(A, X,Sd) ≥ Ω(1/ log d) G∗(X,Sd). Moreover, it holds that G(A, X,Sd) ≥
min(Ω(d),Ω(n2/d)).
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We remark that, apart from presenting an efficient algorithm for approximating the Gain of Ordering,
Theorem 1.6, gives the first information-theoretic bound for the optimal gain under spherical data,
showing that G∗(X,Sd) is roughly n2/d. At a high level, the fact that the optimal gain increases slower
as the dimension increases is explained by the fact that, n samples from the uniform distribution on
the sphere will be almost orthogonal (unless n is very large). Therefore, observing the labels of a
subset of them reveals little information about the remaining points. See Section 4 for more details.

Apart from showing that, under structured datasets, singnificantly improved approximation guarantees
can be achieved our upper bound of Theorem 1.6 serves as a formalization of the popular greedy
heuristic of picking the “easiest examples first” used in curriculum learning ([BLCW09]) for linear
regression. In particular, assuming that we have already observed the labels of the points x(1), . . . , x(i)

we pick the example that is closest to the subspace spanned by x(1), . . . , x(i), see Algorithm 1.

As an extension, we also study the self-directed ReLU regression problem, where the concept class is
C = {Relu(w∗ ·x) | w∗ ∈ Rd}. ReLU regression is a very popular non-convex optimization task that
has recently received significant attention both in online and offline settings, [KS09, Sol17, GKKT17,
GKK, DGK+20, DKKZ20, DKZ20, FCG20, DKTZ22, DKR23], due to the fact that ReLU is a very
common activation in deep learning models. In Section 5, we present an efficient algorithm that
achieves Gain of Ordering roughly min(d, n2/d/ log d+ log n/ log d), see Theorem 5.1, assuming a
“warm-start” labeled example. We observe that, even though ReLU regression is typically a harder
task than linear regression, the Gain of Ordering that we achieve is larger (by a term of log n/ log d)
than that of linear regression. At a high-level this interesting phenomenon has to do with the the
ReLU being constant on a large region of the space: a fact that the self-directed learner can exploit to
improve its gain. It is an interesting direction for future research to further investigate the properties
of the activation and the dataset that allow for improved gains by self directed learners.

1.2 Related Work

Related to the setting of self-directed learning is active learning [CAL94], where the learner has
access to a large pool of unlabeled examples and chooses the “most informative” to ask for their labels.
The goal is to find a classifier with good generalization while minimizing the number of label queries.
There is a long line of research on active linear classification in the distribution-specific setting (e.g.,
under the uniform distribution on the unit sphere) [DKM05, Han11, BU16]. We remark that our goal
of minimizing the number of mistakes is orthogonal to that of active learning: at a high-level, our
algorithms pick the examples for which the current hypothesis is most confident (“easiest examples”)
while in active learning one typically asks for the labels of the “hardest examples”, e.g., those with
the smallest margin with respect to the current guess (see, e.g., [ABHU15, ABHZ16, ZSA20]).

In deep learning, stochastic gradient descent typically trains models by considering the examples
in a random order. In the influential work of [BLCW09] the authors proposed curriculum learning:
training machine learning models in a “meaningful order” – from easy examples to harder ones.
There is a long line of research (see the surveys [HW19, WCZ21, SIRS22] and references therein)
giving empirical evidence that curriculum learning provides significant benefits in convergence speed
and generalization over training with random order. Our results provide theoretical evidence that
ordering the examples from easier to harder significantly reduces the mistakes made by the learner.

There has been a long line of work studying online linear regression. We first review the results in the
realizable setting, which means y(x) = w∗ · x. In this case, the problem is also called the adaptive
filtering problem by [KWH06]. Online gradient descent was shown to be a minimax optimal method
by [KWH06, CBLW96]. These works show if ∥x∥ ≤ B and ∥w∗∥ ≤ W , then online gradient descent
achieves a regret bound O(B2W 2). A matching lower bound Ω(B2W 2) was given by [CBLW96]
using a dataset that contains only one example. In the adversarial setting, online gradient descent and
exponentiated gradient were studied by [CBLW96, KW97]. Given the knowledge of B, by suitable
tuning the learning rate, the two algorithms achieve a regret bound O(L(w∗)), which grows linearly
with T in the worst case. Furthermore, if the algorithms know an error bound E for L(w∗) and a
bound W for ∥w∗∥, then these algorithms can achieve a regret bound O(

√
E), which is O(

√
T ) in

the worst case. These regret bounds cannot be further improved for such types of algorithms. On
the other hand, assuming y(x) ≤ Y and ∥x∥ ≤ B for any x ∈ X , [Vov01, AW01] obtained a regret
bound of O

(
∥w∗∥2 + dY 2 log(TX2/d)

)
using a so called online nonlinear ridge regression method.
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A matching lower bound of Ω(∥w∗∥2 + Y 2d log T ) were given by [CL06, Vov01]. Recently better
lower bound of Ω(dY 2 log T ) were given by [BKM+15, GGHS19]. Another interesting setting is
the stochastic setting studied by [OMP21], where y(x) = w∗ · x+ ξ, ξ is a zero-mean sub-gaussian
noise with variance σ2. In particular, in such a setting, the label y can be unbounded. Ouhamma et
al. showed that the online (nonlinear) ridge regression with high probability has a regret bound of
O(dσ2 log T log log T ).

2 Notation and Preliminaries

In this section, we introduce the notations we will use in the paper. Let X ⊆ Rd be the set of n
examples Denote by w∗ ∈ Rd the target vector that labels each x ∈ X by y(x) = w∗ · x. Let A be a
self-directed learner. For i ∈ [n], we use random vector x(i) ∈ Rd to denote the example in X that is
selected by A in the i-th round. We denote by Li be subspace spanned by examples x(1), . . . , x(i)

and L⊥
i the subspace that is orthogonal to Li. For every v ∈ Rd and for every subspace L ⊆ Rd, we

denote by vL = projL(v), the projection of v onto L. Furthermore, we will use Sd to denote the unit
sphere in Rd and use Sd to denote the uniform distribution over Sd

3 Optimal Gain from Ordering under Arbitrary Data is Hard

In this section, we show that self-directed linear regression, in general, is hard to approximate, even
when X ⊆ Sd and w∗ is drawn uniformly from Sd.

In the rest of this section, we will give a high-level overview of the proof of Theorem 1.5. The full
proof of results in this section can be found in Appendix A. The key idea is that if we have a good
efficient self-directed learner, then we can obtain an efficient algorithm that approximately solves the
k-densest subgraph problem (DkS), which has been shown hard to approximate by [Man17].
Definition 3.1 (Densest k-Subgraph Problem (DkS)). Let G = (V,E) be an undirected graph with
n vertices and m edges, and let k ∈ [n]. The goal is to find a subset of k vertices S such that the
edge density ρ(S) := |E(S)|/

(|S|
2

)
is maximized, where E(S) denotes the set of all edges among the

vertices in S. We define opt to be the maximum density over all possible subsets of k vertices. Given
G and k, an α-approximate algorithm for DkS problem outputs a subset of k vertices S such that
αρ(S) ≥ opt in polynomial time.

The Sequential Spanning Problem (SSP) To begin with, we observe that every self-directed
learner has two parts, selecting examples and making predictions. The first observation, which is
stated as Lemma 3.2, is that with a prior distribution of w∗, it is easy to obtain a Bayesian optimal
prediction in each round.

Lemma 3.2. Let X = {x(1), . . . , x(n)} ⊆ Rd be a set of n examples and w∗ be a target vector
drawn uniformly from Sd that labels y(i) = w∗ · x(i) for each x(i) ∈ X . Given given any set
of labeled examples (x(1), y(1)), . . . , (x(i−1), y(i−1)), denote by Li−1 the subspace spanned by
x(1), . . . , x(i−1) and w∗

Li−1
the projection of w∗ onto Li−1. Let A be a self-directed learner, denote

by ŷ(i) be the prediction of A for the next example x(i), then we have Ew∗

(
(ŷ(i) − y(i))2 | w∗

Li−1

)
≥

Ew∗

(
(w∗

L⊥
i−1

· x(i))2 | w∗
Li−1

)
. Furthermore, the inequality holds for equality if ŷ(i) = w∗

Li−1
·x(i).

With the Bayesian optimal prediction, the problem becomes how to select a good ordering. We show
in Proposition 3.4, the problem can be equivalent to formulate as the following Sequential Spanning
Problem.
Definition 3.3 (k-Sequential Spanning Problem (k-SSP)). Let X = {x(1), . . . , x(m)} on Rd be a set
of m points with unit norm and let k ∈ N. Consider an ordered sequence σ of k points of X , i.e.,
σ = x(i1), x(i2), . . . , x(ik) and define Lj to be the sub-space spanned by the first j-elements of σ
i.e., Lj = span(x(i1), . . . x(ij)) = span(x(σ(1)), . . . x(σ(j))) and V0 = ∅. Define the following cost,
called spanning cost,

C(σ, k) =

k∑
i=1

∥projL⊥
i−1

x(σ(i))∥22 .
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We define opt to be the minimum cost over all sequences of k-elements of X . Given X and k, an
α-approximate algorithm for k-SSP Problem outputs an ordered sequence of k points from X so that
C(σ, k) ≤ α opt in polynomial time.

We shall refer to the special case of the problem where k = m simply as the Sequential Spanning
Problem.
Proposition 3.4 (From SSP to Self-Directed Learning). Let X = {x(1), . . . , x(m)} ⊆ Rd be a
set of examples. For every self-directed linear regression algorithm A over X , with expected
learning loss L(A,Sd), we can use it to get a randomized algorithm A′ for SSP over X with
expected cost E(C(σ,m)) ≤ d L(A,Sd). Moreover, given a randomized algorithm A′ for SSP over
X , we can get a self-directed linear regression algorithm A over X , with expected learning loss
L(A,Sd) = E(C(σ,m))/d. In particular, the construction can be done efficiently.

With the intuition above, we only need to show it is ETH-hard to approximate the SSP. The key
technical result we obtain is the following proposition.
Proposition 3.5 (From DkS to SSP). For every function α(d,m) : R+ ×R+ → R+, if there is an
α(d,m)-approximate algorithm for the SSP, then there is a 64α2(n3, n3)-approximate algorithm for
the DkS problem.

As a direct corollary of Proposition 3.5, we obtain the computational hardness of SSP.
Corollary 3.6 (ETH-hardness of SSP). Assuming the Exponential Time Hypothesis (ETH) is true,
then there is no algorithm that outputs an d1/ log logc d-approximate solution to the SSP in poly(d,m)
time, where c > 0 is a universal constant.

Proof of Corollary 3.6. By Corollary 1.3 in [Man17] if the Exponential Time Hypothesis (ETH) is
true, then there is no polynomial time n1/ log logc n-approximate algorithm for k-densest subgraph
problem. By Proposition 3.5, if there is a polynomial time d1/poly log log d-approximate algorithm for
SSP, we can obtain an efficient n1/ log logc n approximate algorithm for k-densest subgraph problem.
Thus, if ETH is true it is hard to approximate SSP within a d1/poly log log d factor in polynomial
time.

In the rest of the section, we introduce the high-level of the proof of Proposition 3.5 by breaking it
down into two steps.

From k-Edge Packing to SSP In the first step, we introduce an intermediate problem called k-Edge
Packing. We want to show if we can approximate SSP efficiently then we can approximate k-Edge
Packing efficiently.
Definition 3.7 (k-Edge Packing). Let G = (V,E) be an undirected graph with n vertices and m
edges, and let k ∈ [n]. The goal is to find a subset of k edges S such that the number of vertices
covered by S, |V (S)| is minimized, where V (S) denotes the set of endpoints of edges in S. We define
opt to be the minimum number of vertices covered by any possible subsets of k edges. Given G and
k, an α-approximate algorithm for the k-edge packing problem outputs a subset of k edges S such
that V (S) ≤ αopt in polynomial time.

The key idea in this step is to show Lemma 3.8, if we can approximate k-SSP efficiently, then we can
approximate k-edge packing efficiently.
Lemma 3.8. For every function α : R+ ×R+ → R+, if there is an α(d,m)-approxiate algorithm
for k-SSP problem, then there is a 2α(n,m)-approximate algorithm for k-edge packing problem

To build a connection between a geometric problem and a combinatorial problem, we have the
following construction. Given a graph G = (V,E) with n vertice and m edges, we will map every
edge (u, v) to a sparse n-dimensional vector xuv such that the only non-zero entries are xu = 1,
xv = −1. In this way, we obtain a dataset X as the input of A, the approximate algorithm for k-SSP.
Intuitively, if we select k edges in G that are disjoint, then no matter how to order the corresponding
vectors of these k edges, the spanning cost is Ω(k). But if we select k edges that form a clique, the
corresponding vectors span a subspace of dimension O(

√
k), so it is easy to order these vectors to

get a very small spanning cost. With such an intuition, the key structure result we use here is that if a
solution to the k-SSP problem has a sufficiently small cost, then the corresponding edges to these k
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vectors must be sufficiently connected to each other and thus cover a sufficiently small number of
vertices.

However, now we are only able to approximate the k-edge packing problem with an algorithm
that approximately solves the k-SSP problem. To finish this step, we should also be able to use an
algorithm for SSP as a subroutine to solve the k-SSP problem. We show this is possible in Lemma 3.9.

Lemma 3.9. Assume that an algorithm for SSP in d dimensions exists that finds an α(d,m)-
approximate solution in poly(d,m) time for some function α : R+ ×R+ → R+. Then an algorithm
that finds a 4α(m(d + m),m(d + m))-approximate solution for k-SSP for every value of k in
poly(d,m) time exists.

The intuition here is that if the dataset X is in general position (every set of d examples are linearly
independent) then SSP is actually a d-SSP. Given any dataset X with m points, we are able to map
X to a dataset X ′ in f(k, d,m) > d dimension that is in the general position. Such a map is done by
making multiple copies for each example, lifting them to high dimension and adding tiny structured
noise to each of them. We will show that such a transformation well preserves the information in
the original dataset so that if we run A over X ′, we can extract a good approximate solution to the
original k-SSP from the first f(k, d,m) terms of the output solution.

From DkS to k-Edge Packing So far we have shown how to use an algorithm for SSP to solve
the k-edge packing problem. Our final step is to show Lemma 3.10, which implies that if we can
approximately solve the k-edge packing problem then we can also solve the k densest subgraph
problem.

Lemma 3.10 (k-edge packing and DkS). For α > 0, if there is an α-approximate algorithm for
k-edge packing problem, then there is an α2-approximate algorithm for DkS problem.

Notice that k-edge packing is seeking k edges that cover as few vertices as possible, which can be
thought as a dual problem of DkS. If we are able to find the largest number f(k) such that f(k) edges
can cover at most k vertices, then these f(k) edges induce the densest subgraph with k-vertices. The
idea behind Lemma 3.10 is that we can approximately find such f(k) using an approximate algorithm
for k-edge packing and thus can approximately find the k-densest subgraph.

With the above three lemmas, we can prove Proposition 3.5.

Proof of Proposition 3.5 Assume we have an α(d,m)-approximate algorithm for SSP problem,
then by Lemma 3.9, we get an efficient 4α((d+m)m, (d+m)m)-algorithm for k-SSP problem. By
Lemma 3.8, we get an efficient 8α((m+n)m, (m+n)m)-approximate algorithm for k-edge packing
problem. Since (m+n)m ≤ n3 always holds, we get an efficient 8α(n3, n3)-approximate algorithm
for k-edge packing problem. By Lemma 3.10, this gives us an efficient 64α2(n3, n3)-approximate
algorithm for k-densest subgraph problem.

4 A O(log d)-Approximation for Spherical Data

Theorem 1.5, suggests that without any assumption on the structure of the data, it is hard to obtain
an efficient self-directed learners that approximates the best possible improvement over learning in
random order. This motivates us to study the learning problem over datasets with natural structures.
In this section, we consider perhaps the most natural setting, where the dataset X is drawn i.i.d. from
Sd. Our main result in this section shows a simple greedy heuristic, Algorithm 1, which selects the
“easiest” example in each round, and has a nearly (i.e., off by a log d-factor) optimal gain of ordering.

We first bound the Gain of Ordering achieved by the greedy heuristic described in Algorithm 1.

Proposition 4.1. Let X be a set of n ≥ poly(d) examples drawn i.i.d. from Sd and let A denote
Algorithm 1, then over the randomness of the dataset X , in expectation, G(A, X,Sd)−1 ≤ O(1/d+
n−2/d).
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Algorithm 1 SELFDIRECTEDLINEARREGRESSION(X)

Randomly partition X into d subsets X1, . . . , Xd such that Xi contains O(n/(d− i)2) examples.
for i = 1, . . . , d do

Set Li−1 = span{x(1), . . . , x(i−1)}.
Find w(i) ∈ Li−1 consistent with (x(1), y(1)), . . . , (x(i−1), y(i−1)).
Select x(i) = argminx∈Xi

∥∥∥projLi−1
(x)
∥∥∥.

Predict ŷ(i) = w(i) · x(i) and receive y(i).
Label all unlabeled examples in X using w(d).

We start with some intuition for Algorithm 1. Since the observed labels y(i) are consistent with w∗,
after selecting examples x(1), . . . , x(i), our guess w(i) at step i coincides with the projection w∗

Li
of

w∗ onto the subspace Li spanned by these examples. If we choose any x(i+1) and predict w∗
Li

·x(i+1),

then we will pay ℓ2i = (w∗
L⊥

i
· x(i+1))2 = (w∗

L⊥
i
· x(i+1)

L⊥
i

)2. Since we make a random partition of

the data in advance, we are able to show that in expectation ℓ2i /(
∥∥∥w∗

L⊥
i

∥∥∥2 ∥∥∥x(i+1)

L⊥
i

∥∥∥2) = 1/(d− i).

This suggests the cost we pay in each round is proportional to
∥∥∥x(i+1)

L⊥
i

∥∥∥2 and we should choose the
example that is closest to Li greedily. Our key technical lemma shows that in the i + 1-th round,
for a greedily chosen example and a randomly chosen example, the expected ratio of the loss is
O(n−2/(d−i)).

We next show that the optimal Gain from Ordering can only be O(log d) times larger than that of
Algorithm 1.

Proposition 4.2 (Bounding the Optimal Gain). Let X ⊆ Sd be a set of n > poly(d) examples drawn
i.i.d. uniformly from Sd. For every δ ∈ (3/n, 1), with probability at least 99%, G∗(X,Sd)−1 ≥
Ω(1/d+ δn−(2+2δ)/d).

Recall that in Section 3, we showed that if w∗ ∼ Sd, then the expected learning cost is proportional
to the optimal spanning cost of a sequence of examples. This implies analyzing the best learner is
equivalent to analyzing the sequence of examples in X with the smallest spanning cost. The key
of our proof is to show that the distribution of Sd is very concentrated and unless the size of X is
very large there is no sequence of examples whose spanning cost is much smaller than the average
spanning cost.

As a direct corollary, we are able to show Algorithm 1 has a gaining that is at most
O(1/ log d)G∗(X,Sd), which is an exponential improvement of the hardness of approximation
obtained by Theorem 1.5.

Proof of Theorem 1.6 By Proposition 4.1 and Proposition 4.2, we know that with probability at
least 99%, G(A, X,Sd)−1 ≤ 1/d+ n−2/d and G∗(X,Sd)−1 ≥ 1/d+ δn−(2+2δ)/d. Here we ignore
the hidden constant within the bound obtained from Proposition 4.1 and Proposition 4.2 because it
will only add some multiplicative constant factor in our final result. It remains to tune the parameter δ
to show that 1/d+n−2/d

1/d+δn−(2+2δ)/d is at most O(log d). To do this, we write sd/2 and we consider different
ranges for s. We consider the following two cases.

Case 1: If s ≥ d, then we have we have 1/d+n−2/d ≤ 2/d ≤ 2(1/d+ δn−(2+2δ)/d), which implies
G(A, X,Sd) ≥ Ω(1)G∗(X,Sd).

Case 2: If s < d, then n−2/d ≥ 1/d and 1/d + δn−(2+2δ)/d ≥ δn−(2+2δ)/d. This implies
1/d+n−2/d

1/d+δn−(2+2δ)/d ≤ 2
δn

2δ/d = 2
δ s

δ. We set δ = 1/ log s and we obtain that 1
δ s

δ = s1/ log s log s =

O(log s) ≤ O(log d). This implies that G(A, X,Sd) ≥ Ω(1/ log d)G∗(X,Sd).
Remark 4.3. We remark that although the statement of Proposition 4.1 and Proposition 4.2 are
about the average performance of the algorithm, the same results also hold under the worst-case
setting because, with a dataset from a spherical distribution, the learning cost of Arandom under
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these two settings are asymptotically the same in expectation. A detailed discussion about this and
the proof of Proposition 4.1 and Proposition 4.2 are deferred to Appendix B.
Remark 4.4. Although according to Theorem 1.6, Algorithm 1 approximates the optimal gaining
within a O(log d) factor, when n ≤ sd for some constant s that doesn’t depend on d or n ≥ dd/2

Algorithm 1 approximates the optimal gaining within a constant factor and thus is nearly optimal.

5 Self-Directed ReLU Regression

Finally, we study the problem of self-directed ReLU regression, which shares a similar spirit to the
one of self-directed linear regression. According to Proposition 4.1, given a dataset X that is drawn
from Sd, we are able to design an efficient learner with gaining G(A, X) ≥ min(Ω(d),Ω(n2/d)) if
each x is labeled by y(x) = w∗ · x. In fact, the bound of min(Ω(d),Ω(n2/d)) can also be obtained
by the following Algorithm 2, when each x is labeled by a ReLU function Relu(w∗ ·x). However, an
interesting phenomenon we found is that if we give Algorithm 2 some reference example (x(0), y(0))
as a warm start such that θ(x(0), w∗) = θ0 < π/2, then we are able to improve the gaining to
min(Ω(d),Ω(n2/d/ log d+ log n/ log d)), which is a huge improvement when the dimension of the
problem is large.

Algorithm 2 SELFDIRECTEDRELUREGRESSION(X)

Let (x(0), y(0)) be a pair of reference example such that θ(x(0), w∗) = θ0 ≤ π/2.
(Assume (x(0), y(0)) = (0, 0) if there is no such a warm start)
Randomly partition X into d subsets X1, . . . , Xd such that Xi contains n/d examples.
for i = 1, . . . , d do

Set Li−1 = span{x(0), . . . , x(i−1)}, where x(j) is example that has been selected with positive
label for j ∈ {0, . . . , i− 1}.

Find w(i) ∈ Li−1 consistent with (x(0), y(0)), . . . , (x(i−1), y(i−1)).
Keep selecting x ∈ Xi such that w(i) · x ∈ argminx′∈Xi

w(i) · x′ and predict Relu(w(i) · x)
until we see some (x(i), y(i)) such that y(i) > 0.
Label all unlabeled examples in X using w(d+1).

Theorem 5.1. Let X ⊆ Rd be a set of n ≥ poly(d) examples drawn i.i.d. from Sd. Let G(A, X) be
the gain from ordering of Algorithm 2 for the self-directed ReLU regression problem over X. Then

G(A, X)−1 ≤ O(
1

d
) +


min{O( tan

2 θ0 log d
d ), O( log d

n2/d )} if nθ0
4πd log d > exp(d8 ),

min{O( tan
2 θ0 log d

log(nθ0)
), O( log d

n2/d )} if 1 ≤ nθ0
4πd log d ≤ exp(d8 )

O( 1n ) if nθ0
4πd log d < 1.

The main difference between ReLU regression and linear regression is that in ReLU regression, with
a good warm start, we are able to start from the region that is labeled 0 by the target to seek the
decision boundary. Before we see a positive example, we pay nothing. The first time we see a positive
example x, we pay (w∗ · x)2. The key technical lemma, Lemma 5.2 shows that as we keep selecting
the most “negative” example with respect to our current guess, the first positive example we see must
have a very small margin with respect to w∗. In this way, Algorithm 2 learns w∗ with a very small
cost. We refer to Appendix C for more details and proofs.
Lemma 5.2 (Geometry Technical Lemma). Let w∗ ∈ Sd be a target vector and let w ∈ Sd be an
arbitrary vector such that θ = θ(w∗, w) < π/2. Denote by C = {x ∈ Sd | w∗x ≤ 0, w · x ≥ 0}.
For every a, b ∈ (0, 1), denote by Ka := {x ∈ C | w · x ≥ a sin θ} and Ka,b := {x ∈ C | w · x ≥
a sin θ, w∗x ≤ −b sin θ}. Let x be a point uniformly drawn from Sd. There is some absolute constant

c > 1 such that if a/b ≥ c then Pr (x ∈ Ka,b | x ∈ Ka) ≤ 2 exp
(
− d

3(1−a2) (b
2 + 2ab cos θ)

)
.

6 Conclusion, Limitations, and Broader Impact

In this work, we study the self-directed learning problem for linear regression. Our work presents
novel results both computational and information-theoretic. Our first result shows that approxi-
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mating the optimal self-directed regret within a d1/poly log log d factor is ETH-hard under arbitrary
datasets. Our second result yields a novel characterization of the Gain of Ordering for data that are
uniformly distributed on the sphere and gives an efficient approximation algorithm that bypasses
the aforementioned hardness result and achieves close to optimal regret by exploiting the structure
of the data. A limitation of our work is that our algorithms can currently handle linear (or ReLU
regression). Moreover, our presented results assume that the labels are realizable – even in this
fundamental setting, nothing was known prior to our work. Generalizing our results to other concept
classes and investigating the effect of adding noise to the labels are natural questions for future
investigation. Designing robust self-directed learning algorithms for broader concept classes under
broader distributional assumptions are interesting direction for future work.
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