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Abstract

The Naïve Mean Field (NMF) approximation is widely employed in modern
Machine Learning due to the huge computational gains it bestows on the statistician.
Despite its popularity in practice, theoretical guarantees for high-dimensional
problems are only available under strong structural assumptions (e.g., sparsity).
Moreover, existing theory often does not explain empirical observations noted in
the existing literature.
In this paper, we take a step towards addressing these problems by deriving sharp
asymptotic characterizations for the NMF approximation in high-dimensional
linear regression. Our results apply to a wide class of natural priors and allow
for model mismatch (i.e., the underlying statistical model can be different from
the fitted model). We work under an iid Gaussian design and the proportional
asymptotic regime, where the number of features and the number of observations
grow at a proportional rate. As a consequence of our asymptotic characterization,
we establish two concrete corollaries: (a) we establish the inaccuracy of the NMF
approximation for the log-normalizing constant in this regime, and (b) we provide
theoretical results backing the empirical observation that the NMF approximation
can be overconfident in terms of uncertainty quantification.
Our results utilize recent advances in the theory of Gaussian comparison inequal-
ities. To the best of our knowledge, this is the first application of these ideas to
the analysis of Bayesian variational inference problems. Our theoretical results
are corroborated by numerical experiments. Lastly, we believe our results can be
generalized to non-Gaussian designs and provide empirical evidence to support it.

1 Introduction

The Naive Mean Field (NMF) approximation is widely employed in modern Machine Learning as an
approximation to the actual intractable posterior distribution. The NMF approximation is attractive
as (a) it bestows huge computational gains, and (b) it is naturally interpretable and can provide access
to easily interpretable summaries of the posterior distribution e.g., credible intervals. However, these
two advantages may be overshadowed by the following limitations: (a) it is a priori unclear whether
this strategy of using a product distribution as a proxy for the true posterior will result in a “good”
approximation, and (b) it has been empirically observed that NMF often tends to be significantly
over-confident, especially when the feature dimension p is not negligible compared to the sample
size n. In the traditional asymptotic regime (p fixed and n→ ∞), significant progress was made in
understanding these two problems for different statistical models, see for instance [8] and references
therein. On the other hand, in the complementary high-dimensional regime where both n and p are
growing, Ghorbani et al. [7] recently established an instability result for the topic model under the
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Figure 1: These three figures serve as a visual summary of our main results when the Gaussian Spike
and Slab prior is adopted, i.e., NMF does not provide up to leading order correct approximation to the
log-normalizing constant (left), and the estimated credible regions suggested by the NMF distribution
do not achieve the nominal coverage (middle), even when NMF could achieve close to optimal MSE.
Please see Lemma 6 for definitions of the Gaussian Spike and Slab prior and the hyper-parameters q
and ∆2.

proportional asymptotics, i.e., n = Θ(p). In fact, in this regime, based on non-rigorous physics
arguments, it is conjectured and partially established that instead of the NMF free energy one should
optimize the TAP free energy. For linear regression in particular, please see [13, 18]. On the other
hand, positive results of NMF for high-dimensional linear regression were recently established in
[16] when p = o(n).

In this paper, we investigate the performance of NMF approximation for linear regression under
the proportional asymptotics regime. As a consequence of our asymptotic characterization, we
establish two concrete corollaries: (a) we establish the inaccuracy of the NMF approximation for
the log-normalizing constant in this regime, and (b) provide theoretical results backing the empirical
observation that NMF can be overconfident in constructing Bayesian credible regions.

Before proceeding further, we formalize the setup under investigation. Given data {(yi, xi) : 1 ≤
i ≤ n}, yi ∈ R, xi ∈ Rp, the scientist fits a linear model

Y = Xβ⋆ + ϵ, (1)

where ϵi
iid∼ N (0, σ2) and β⋆ ∈ Sp is a p-dimensional latent signal. We consider either S = R or

S = [−1, 1]. In fact, unless explicitly specified otherwise, S = R. Most of our results generalize
to bounded support naturally. To recover the latent signal, the scientist adapts a Bayesian approach.
She puts an iid prior on βi’s, namely, dπ0(β) =

∏p
i=1 dπ(βi) and then constructs the posterior

distribution of β,

dµ

dπ0
(β) =

dµX,y

dπ0
(β) ∝ e−

1
2σ2 ∥Y−Xβ∥2

,

with normalization constant

Zp = Zp(X,Y ) =

∫
Sp

e−
1

2σ2 ∥Y−Xβ∥2

π0(dβ). (2)

Our results are established assuming that the design matrix X is randomly sampled from an iid
Gaussian ensemble, i.e., Xij

iid∼ N (0, 1/n), while we provide empirical evidence for more general
classes of X that has iid entries with mean 0 and variance 1/n. Moreover, we assume n/p→ α ∈
(0,∞) as n, p→ ∞.

Definition 1 (Exponential tilting). For any γ := (γ1, γ2) ∈ R̄× R+ and probability distribution π
on S, we define πγ as

dπγ

dπ
(x) := exp

(
γ1x− γ2

2
x2 − c(γ)

)
, c(γ) = cπ(γ) := log

∫
S

exp
(
γ1x− γ2

2
x2
)
π(dx).

Note that c(·) depends on the distribution π and is usually referred to as the cumulant generating
function in the statistics literature.
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Using this definition of exponential tilts, the (XTX)iiβ
2
i terms in (2) can be absorbed into the base

measure

µ(dβ) ∝ e−
1

2σ2 ∥y−Xβ∥2+
∑p

i=1
di
2 β2

i

p∏
i=1

πi(dβi),

where πi := π(0,di) and di :=
(XTX)ii

σ2 . By the classical Gibbs variational principle (see for instance
[27]), the log-normalizing constant can be expressed as a variational form,

− logZp = inf
Q

(
EQ

[
1

2σ2
∥y −Xβ∥2

]
+DKL

(
Q
∥∥π0))

= inf
Q

(
EQ

[
1

2σ2
∥y −Xβ∥2 −

p∑
i=1

di
2
β2
i

]
+DKL

(
Q

∥∥∥∥∥
p∏

i=1

πi

))
−

p∑
i=1

c(0, di),

where the inf is taken over all probability distribution on Sp. While the infimum is always attained if
and only if Q = µ, the Naive Mean Field (NMF) approximation restricts the variational domain to
product distributions only and renders a natural upper bound,

inf
Q=

∏p
i=1 Qi

[
EQ

(
1

2σ2
∥y −Xβ∥2 −

p∑
i=1

di
2
β2
i

)
+DKL

(
Q

∥∥∥∥∥
p∏

i=1

πi

)
−

p∑
i=1

c(0, di)

]
. (3)

It can be shown that the product distribution Q̂ that achieves this infimum is exactly the one closest to
µ, in terms of KL-divergence. Before moving forward, we need some additional definitions and basic
properties of exponential tilts. The first lemma establishes that instead of using (γ1, γ2) we can also
use (u, γ2) = (EU∼πγU, γ2) to parameterize the tilted distribution.

Lemma 1 (Basic properties of the cumulant generating function c(·)). Let c(·) be as in Definition 1.
Let supp(π) denote the support of π. If m(π) := inf supp(π) < 0 and M(π) := sup supp(π) > 0,
then the following conclusions hold.

(a) ċ (γ1, γ2) :=
∂c(γ1,γ2)

∂γ1
= EX∼πγ (X) is strictly increasing in γ1, for every γ2 ∈ R.

(b) For any u ∈ (m(π),M(π)), there always exists a unique h (u, γ2) ∈ R such that
ċ (h (u, γ2) , γ2) = u.

Definition 2 (Naive mean field variational objective). With di := (XTX)ii/σ
2, we define Mp(u) :

[m(π),M(π)]p → R̄ as

Mp(u) :=
1

2σ2
∥y −Xu∥2 +

p∑
i=1

[
G(ui, di)−

diu
2
i

2

]
,

where G is defined as a possibly extended real valued function on [m(π),M(π)]× R,

G(u, d) := DKL(π
(h(u,d),d)∥π(0,d)) = uh(u, d)− c(h(u, d), d) + c(0, d) if u ∈ (m(π),M(π)), d ∈ R,

:= DKL

(
π∞∥π(0,d)

)
if u =M(π) <∞, d ∈ R,

:= DKL

(
π−∞∥π(0,d)

)
if u = m(π) > −∞, d ∈ R,

in which h(·, ·) was defined in Lemma 1 and π∞ and π−∞ are degenerate distributions which assigns
all measure to M(π) and m(π) respectively.

Note that under product distributions, the EQ(·) term in (3) is parameterized by the mean vector
u := EQβ and exponential tilts of πi’s minimize the KL-divergence term. Therefore, the scaled
log-normalizing function, which is also referred to as the average free energy in statistical physics
parlance and (log) evidence in Bayesian statistics, is bounded by the following variational form,

−1

p
logZp ≤ 1

p
inf

u∈[m(π),M(π)]p
Mp(u)−

1

p

p∑
i=1

c(0, di) = −1

p
logZNMF

p . (4)
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The right-hand side is equal to (3) and is also referred to as the evidence lower bound (ELBO) or NMF
free energy, which can be used as a model selection criterion, see for instance [14]. Asymptotically,
the second term is nothing but a constant since it concentrates around c(0, 1/σ2) as n, p→ ∞.

The main theoretical question of interest here is whether this bound in (4) is asymptotically tight
or not, which serves as the fundamental first step towards answering the question of whether NMF
distribution is a good approximation of the target posterior. Please see [4, 27] for comprehensive
surveys on variational inference, including but not limited to NMF approximation.

To derive sharp asymptotics for the NMF approximation, the key observation is that the optimization
problem is convex under certain priors. We then employ the Convex Gaussian Min-max Theorem
(CGMT). CGMT is a generalization of the classical Gordon’s Gaussian comparison inequality [9],
which allows one to reduce a minimax problem parameterized by a Gaussian process to another
(tractable) minimax Gaussian optimization problem. This idea was pioneered by Stojnic [21] and
then applied to many different statistical problems, including regularized regression, M-estimation,
and so on, see for instance [15, 24]. Unfortunately, concentration results derived from CGMT require
both Gaussianity and convexity. This is exactly why we need the Gaussian design assumption in our
analysis. In the meantime, though we do not pursue this front theoretically, we provide empirical
evidence for more general design matrices in the Supplementary Material. It is worth noting that there
is a parallel line of research that aims to develop universality results for these comparison techniques.
We refer the interested reader to [11] and references within.

Let us emphasize that our main conceptual concern is not investigating whether (4) as a convex
optimization procedure gives a good point estimator, but instead evaluating whether NMF as a strategy
or product distributions as a family of distributions can provide “close to correct” approximation
for the true posterior. Nevertheless, this optimizer’s asymptotic mean square error can also be
characterized as a by-product of our main theorem.

Regarding the accuracy of variational approximations in general, certain contraction rates and
asymptotic normality results were established in the traditional fixed p large n regime [28, 17,
10]. However, under the high-dimensional setting and scaling we consider in the current paper,
without extra structural assumptions (e.g., sparsity), both the true posterior and its variational
approximation are not expected to contract towards the true signal, which also explains why one is
instead interested in whether the log-normalizing constant can be well approximated, as a weaker
standard of “correctness”. Ray et al. [19] studied a pre-specified class of mean field approximation in
sparse high-dimensional logistic regression. Recently, the first known results on mean and covariance
approximation error of Gaussian Variational Inference (GVI) in terms of dimension and sample size
were obtained in [12].

2 Results

This section starts with some necessary definitions and our main assumptions. Then, we present our
main theorem and one natural corollary. Finally, we identify a wide class of priors that would ensure
the convexity of the NMF objective, which plays a crucial role in our analysis.

2.1 Notations and main assumptions

Notations: We use the usual Bachmann-Landau notation O(·), o(·), Θ(·) for sequences. For a
sequence of random variables {Xp : p ≥ 1}, we say that Xp = op(1) if Xp

P→ 0 as p → ∞ and
Xp = op(f(p)) if Xp/f(p) = op(1). We use C,C1, C2 · · · to denote positive constants independent
of n, p. Further, these constants can change from line to line. For any square symmetric matrix A,
∥A∥op and ∥A∥F denote the matrix operator norm and the Frobenius norm, respectively.

Assumption 1 (Proportional asymptotics). We assume n/p→ α ∈ (0,∞), as n, p→ ∞.

Assumption 2 (Gaussian features). For all our theoretical results, we assume the design matrix X is
randomly sampled from an iid Gaussian ensemble, i.e., Xij

iid∼ N (0, 1/n).

Definition 3. Define F : (m(π),M(π)) → R as

F (u) = Fπ,σ2(u) := G(u,Ed1)−
u2Ed1

2
= G

(
u,

1

σ2

)
− u2

2σ2
.
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Definition 4 (The NMF point estimator). Recalling the NMF objective Mp(·) as in Definition 2, let
û = β̂NMF := argminu∈[−1,1]p Mp(u) be the NMF point estimator, which is also the mean vector of
the product distribution (Q̂) that best approximates the posterior in terms of KL-divergence. We refer
to this optimal product distribution as the NMF distribution.
Assumption 3 (Convexity of F (·)). We assume F (·) is strongly convex on So := S \ ∂S.

As alluded to, our analysis relies on the convexity of the “penalty” term F (·). Please note that the
definition of F (·) only depends on the prior π chosen by the statistician, rather than the “true prior”
π⋆. Therefore, to support this assumption, we provide a few sufficient conditions that identify a broad
class of priors that ensure (strong) convexity of F (·) in Section 2.3.

Throughout, we work under a partially well-specified situation, i.e., model (1) is assumed to be
correct, but β⋆

i ’s may not have been a priori sampled iid from π. Instead, we assume the empirical
distribution of β⋆

i ’s converges in L2 to a probability distribution π⋆ supported on S. In addition, the
noise level σ2 is fixed and known to the statistician. Last but not least, π⋆ is assumed to have finite
second moment and let s2 := ET∼π⋆ [T 2] <∞.

2.2 Main results

From now on, we always assume Assumption 1, 2, and 3. Next, we introduce a scalar denoising
function, which is just the proximal operator of F (·).
Definition 5 (Scalar denoising function). For x ∈ R and t > 0,

η(x, t) := argmin
w∈S

{
1

2t
(w − x)2 + F (w)

}
∈ So

Since F (·) is strongly convex, this one-dimensional optimization has a unique minimizer. Note that
when S = [−1, 1], since limw→±1

dF
dw (w) = limw→±1 h(w, 1/σ

2) ∓ 1
σ2 = ±∞, the minimum is

never achieved on the boundary of S. Similarly, when S = R, limw→±∞
dF
dw (w) = ±∞. Therefore,

the minimum is always achieved at a stationary point. Lastly, η(0, t) = 0 if π is symmetric. In fact,
throughout this paper, we only consider symmetric priors.

Before stating our main result and its implications, we first introduce a two-dimensional optimization
problem, which will play a central role in our later discussion,

max
b≥0

min
τ≥σ

ϕ(b, τ) (5)

ϕ(b, τ) :=
b

2
(
σ2

τ
+ τ)− 1

2
b2 +

1

α
Emin

w∈S

{
b

2τ
w2 − bZw + σ2F (w +B)− σ2F (B)

}
, (6)

where F (·) was defined in Definition 3 and the E is taken over (B,Z) ∼ π⋆ ⊗N (0, 1). In the next
lemma, we gather some additional characterizations of this min-max problem.
Lemma 2. The max-min in (5) is achieved at some (b⋆, τ⋆) ∈ (0,∞)× (σ,∞). In fact, b⋆ is unique.
In addition, (b⋆, τ⋆) is also a solution to the following fixed point equation,

τ2 = σ2 +
1

α
E

[(
η

(
τZ +B,

τσ2

b

)
−B

)2
]

b = τ − 1

α
E
[
Z · η

(
τZ +B,

τσ2

b

)]
= τ

(
1− 1

α
E
[
η′
(
τZ +B,

τσ2

b

)])
,

(7)

where η′(x, t) := ∂η
∂x (x, t).

Definition 6. We use ν⋆ = ν⋆π,π⋆ to denote the distribution of
(
η
(
τ⋆Z +B, τ

⋆σ2

b⋆

)
, B
)

, in which

(B,Z) ∼ π⋆ ⊗N (0, 1). We denote by ν̂ the empirical distribution of {(ûi, β⋆
i )}

p
i=1.

We are ready to state our main result, which provides a sharp asymptotic characterization of ν̂.
Theorem 1. Suppose the max-min problem in (5) has a unique optimizer (b⋆, τ⋆), or the fixed point
equation in (7) has a unique solution (b⋆, τ⋆). Then for all ε > 0, as n, p→ ∞,

P
(
W2 (ν

⋆, ν̂)
2 ≥ ε

)
→ 0,

where W2(·, ·) stands for order 2 Wasserstein distance.
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Remark 1. This result indicates the NMF estimator û should be asymptotically roughly iid among
different coordinates, which is different from the NMF distributions being product distributions.

Corollary 1. Suppose the hidden true signal β⋆ was a priori sampled iid from a probability
distribution π⋆ with finite second moment. Note that π⋆ can differ from the prior π that the Bayesian
statistician chose. In addition, suppose the max-min problem in (5) has a unique optimizer (b⋆, τ⋆),
or the fixed point equation in (7) has a unique solution (b⋆, τ⋆), then for all ε > 0,

P
(
W2

(
ν⋆π,π⋆ , ν̂

)2 ≥ ε
)
→ 0, as n, p→ ∞,

in which ν⋆ was defined in Definition 6 .

We provide a proof sketch in Section 6 and all the detailed proofs are deferred to the Supplementary
Materials.

2.3 Convexity of F (·)

In this section, we present a few lemmas that would ensure the validity of Assumption 3. In fact, if
conditions of any of these lemmas are satisfied, Assumption 3 holds.

Lemma 3 (Condition to ensure convexity of F (·): nice prior). Suppose π is absolutely continuous
with respect to Lebesgue measure and

dπ

dx
(x) ∝ e−V (x),∀x ∈ support(π),

for some V : support(π) → R. In addition, suppose either of the following two conditions is true,

1. support(π) = R; V (x) is continuously differentiable almost everywhere; V (x) is un-
bounded above at infinity.

2. support(π) = [−a, a], for some 0 < a < ∞; V (x) is continuously differentiable almost
everywhere.

Then if V (x) is even, non-decreasing in |x| and V ′(x) is convex, F (·) is always strongly convex,
regardless of the value of σ2.

Lemma 4 (Condition to ensure convexity of F (·): discrete prior). Suppose π is a symmetric discrete
distribution supported on {−1, 0, 1},

π(dx) = qδ(x) +
1− q

2
δ(x− 1) +

1− q

2
δ(x+ 1),

for q ∈ (2/3, 1). Then F (·) is always strongly convex, regardless of the value of σ2.

Proofs of Lemma 3 and 4 crucially utilize the Griffiths-Hurst-Sherman (GHS) inequality [5, 6],
which arose from the study of correlation structure in spin systems. The following two lemmas give
examples of some other families of priors for which convexity of F (·) depends on the noise level σ2,
while those in Lemma 3 and 4 do not.

Lemma 5 (Condition to ensure convexity of F (·): low signal-to-noise ratio). Suppose support(π) ⊂
[−a, a] for some a > 0. Then as long as σ2 > a2, F (u) = Fπ(u, σ

2), as a function of u, is always
strongly convex on S, regardless of the exact choice of π and value of σ2.

Lemma 6 (Condition to ensure convexity of F (·): Spike and Slab prior). Consider a spike and slab
prior to the following form,

π(dx) = qδ(x) +
1− q√
2π∆2

e−
x2

2∆2 dx

which is just a mixture of a point mass at 0 and a Normal distribution of mean 0 and variance ∆2.
Suppose

min
h∈R

VarX∼πq̃,∆̃2 (X) < σ2 (8)
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Figure 2: These two figures demonstrate the existence of a gap between limp→∞(Zp)/p and
limp→∞(logZNMF

p )/p when π = π⋆ is a Gaussian Spike and Slab distribution. The left panel
features the observation that the gap gets smaller as q (prior sparsity) increases, while the right panel
shows as α := n/p gets large, the gap seems to converge to 0, which is consistent with the results
established in [16] when p = o(n).

where πq̃,∆̃2 is again a Gaussian spike and slab mixture,

π(dx) = q̃δ(x) +
1− q̃√
2π∆̃2

e−
x2

2∆̃2 dx

with q̃ =
q

q + (1− q)(1 + ∆2/σ2)−1/2
and ∆̃2 =

σ2∆2

σ2 +∆2
.

Then, F (u) is strongly convex. In addition, one easier-to-check sufficient condition for (8) is(
1 +

2q

1− q

√
1 +

∆2

σ2

)
∆2

σ2 +∆2
< 1. (9)

Remark 2. It is easy to see that for large enough σ (q and ∆ fixed), or small enough q (∆ and σ
fixed), or small enough ∆ (q and σ fixed), (9) is always satisfied. In other words, F (·) is strongly
convex for low signal-to-noise ratio or high temperature in physics parlance.

3 Log normalizing constant: sub-optimality of NMF

As alluded, as implications of Theorem 1, we develop asymptotics of both logZNMF
p and mean square

error (MSE) of the NMF point estimator û in terms of (b⋆, τ⋆).

Corollary 2 (MSE). When conditions of Corollary 1 hold, as n, p→ ∞,

1

p
∥û− β⋆∥2 P−→ E(B,Z)∼π⋆⊗N (0,1)

[(
η

(
τ⋆Z +B,

τ⋆σ2

b⋆

)
−B

)2
]
= α(τ⋆2 − σ2).

Corollary 3 (Log normalizing constant). When conditions of Corollary 1 hold, as n, p→ ∞,

−1

p
logZNMF

p =
1

p

[
Mp(û)−

p∑
i=1

c(0, di)

]
P−→ αb⋆2

2σ2
+ EF (η(B + τ⋆Z, τ⋆/b⋆))− c(0, 1/σ2).

Though all our main theorems and corollaries apply to the case when π⋆ ̸= π, for simplicity and
clarity, from now on, we only consider the “nicest” setting, i.e, when assumptions of Corollary 1 are
satisfied and in addition π = π⋆. By doing so, we would like to convey that even if there were no
model mismatch at all, NMF still would not be “correct”.

Concentration and limiting values of both the optimal Bayesian mean square error (i.e., Eµ∥β −
E[β⋆|X, y]∥2/p) and the actual log-normalizing constant were conjectured and rigorously established
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Figure 3: These two figures show that estimated credible regions given by NMF do not achieve
the nominal coverage (95%) when π = π⋆ is a Gaussian Spike and Slab distribution. Recall that
α = n/p and please see Lemma 6 for exact definitions of the hyper-parameters q and ∆2.

under additional regularity conditions, which provides us the “correct answers” to compare with.
Please see [2, 20].

Please see Figure 2 for numerical evaluations of Corollary 3, which suggests the bound in (4) is
not tight for Gaussian Spike and Slab prior. Since, in general, both F (·) and η(·, ·) lack analytical
forms, it is hard to provide a universal guarantee on whether (5) has a unique optimizer or the fixed
point equation (7) has a unique solution. In fact, our numerical experiments suggest it is possible
for (7) to have multiple fixed points. Therefore, how to exactly realize and evaluate the asymptotic
predictions in these two corollaries (so as Corollary 4 in the next section) is challenging in general
and can only be done in a case-by-case basis and usually involves numerically solving (7). In light of
this observation, we use the Gaussian Spike and Slab prior as defined in Lemma 6 for presentation
purposes. Since it is both non-trivial and of practical interest, though, we do emphasize that the same
framework and workflow also apply to other priors. Without loss of generality, we also take σ2 = 1.
This choice renders Figure 2 and 3 in the next section. Details of how to generate these plots are
deferred to the Supplementary Material.

4 Uncertainty quantification: the average coverage rate

To study uncertainty quantification properties of NMF approximation, we consider the average cover-
age rate of symmetric Bayesian credible regions (of level 1− ζ) suggested by the NMF distributions,
i.e, Rp,ζ := 1

p

∑p
i=1 1{β⋆

i ∈[q̂i,ζ/2,q̂i,1−ζ/2]}, where q̂i,t is the t-th quantile of π(h(ûi,di),di). In order to
study asymptotic behavior of Rp,ζ , we define an (m(π),M(π))× S → {0, 1} indicator function

ψζ(u0, β0) = 1{
β0∈

[
q
π(h(u0,1/σ2),1/σ2),ζ/2

,q
π(h(u0,1/σ2),1/σ2),1−ζ/2

]}.
The following corollary of Theorem 1 establishes the asymptotic convergence of Rp,ζ . Numerically
evaluating it for the Gaussian Spike and Slab prior renders Figure 3, which shows NMF credible
regions can not achieve the nominal coverage, in this case, 95%, and also provides an exhibition of
how large the gaps are for different hyper-parameters.
Corollary 4. Suppose conditions of Corollary 1 hold. In addition, assume the quantile function of π
is continuous. Then as n, p→ ∞,

Rp,ζ
P−→ E(B,Z)∼π⋆⊗N (0,1)

[
ψζ

(
η

(
τ⋆Z +B,

τ⋆σ2

b⋆

)
, B

)]
.

On the other hand, based on the asymptotic joint distribution of û and β⋆ as stated in Corollary1, we
can in fact identify a strategy of constructing asymptotically exact Bayesian credible regions based
on û. Let qt(x) be the t-th quantile of conditional distribution of B given η(τ⋆Z +B, τ⋆σ2/b⋆) = x.
This way, the following Corollary ensures [qζ/2(ûi), q1−ζ/2(ûi)] is asymptotically of at least 1− ζ
coverage.
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Corollary 5. Suppose conditions of Corollary 4 hold, then for any ε > 0,

lim
p→∞

P

(
1

p

p∑
i=1

1{β⋆
i ∈[qζ/2(ûi),q1−ζ/2(ûi)]} < 1− ζ − ε

)
= 0.

5 Discussion: Extensions and Limitations

In order to provide some intuition on why the NMF approximation is loose in the current setting,
it is worth noting that in comparison with the proportional asymptotics regime we consider here,
positive results of NMF for high-dimensional linear regression were recently established in [16]
when p = o(n). Using terminology from Austin [1], Mukherjee and Sen [16] (when restricted to
designs with iid Gaussian features) essentially proved, when p/n→ 0, the eigenvalue concentration
behavior of XTX leads to the Hamiltonian being of “low complexity”. On the other hand, when
p = Θ(n), tr(A2) ̸= o(p), where A = A(X) is defined as the off-diagonal part of XTX , which
violates [16, Equation (5)]. Roughly speaking, when the eigenstructure of A is not “dominated” by a
few top eigenvalues, the Hamiltonian can not be covered by an efficient net and thus is not of “low
complexity”. Please see [1, 16, 3] for more details.

We want to be clear about the fact that, technically, we did not “prove” the sub-optimality of NMF.
Instead, we rigorously derived asymptotic characterizations of NMF approximation through the
solution of a fixed point equation. But this fixed point equation can only be solved numerically on
a case-by-case basis and is not guaranteed a unique solution. All our plots are based on iteratively
solving the fixed point equation. As a matter of fact, for instance, when q is close to 1 for the Gaussian
Spike and Slab prior we considered, the fixed point equation is clearly not converging to the right fixed
point, as demonstrated in the Supplementary Material. It could also just not converge for very small
α. Nevertheless, all the plots we are showing in the main text are backed by a numerical simulation
using simple gradient descent to optimize the NMF objective, i.e. infMp(u), for n = 8000. All in
all, it is probably more accurate to say we provided a tool for establishing the sub-optimality of NMF
for a general class of priors rather than proving it for good.

Another obvious limitation is we can only handle priors that guarantee convexity of the KL-divergence
term in terms of the mean parameters. Though it is indeed a broad class of distributions covering
some of the most commonly used symmetric priors (e.g., Gaussian, Laplace, and so on), little is
known about the asymptotic behavior of NMF when the convexity assumption is violated.

We note that, in theory, in order to carry out the analysis using CGMT, the additive noise ϵ as defined
in (1) does not have to be Gaussian. Instead, as long as it has log-concave density, the same proof
idea applies, though we intentionally chose to stick with Gaussian noise as it renders much cleaner
results and a more comprehensive presentation. In addition, we expect stronger uniform convergence
results (e.g., uniform in σ2) could also be established, which can be crucial for applications like
hyperparameters selection. Please see [15] for an example in which results of this flavor were
obtained.

6 Proof strategy

This section gives a proof outline of Theorem 1. More details can be found in the Supplementary
Material. Replacing all di’s in Mp with Edi = 1/σ2, we define Np as

Np(u) =
1

2σ2
∥Y −Xu∥22 +

p∑
i=1

[
G(ui, 1/σ

2)− u2i
2σ2

]
=

1

2σ2
∥Y −Xu∥22 +

p∑
i=1

F (ui).

Lemma 7. Let ûN := argminu[Np(u)]. Then for some Cs ∈ R+, as n, p→ ∞,

P
(
1

p
max(∥û∥2, ∥ûN∥2) > (1 + Cs)s2

)
−→ 0.

Lemma 8. For any ε > 0, as n, p→ ∞, with Cs as defined in Lemma 7,

P

(
1

p
sup

∥u∥2/p≤(1+Cs)s2

∣∣∣∣∣
p∑

i=1

[
G(ui, 1/σ

2)− u2i
2σ2

]
−
[
G(ui, di)−

diu
2
i

2

]∣∣∣∣∣ > ε

)
−→ 0. (10)
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According to Lemma 8 and 7, Np(·) and Mp(·) are with high probability uniformly close. Thus,
from now on, we focus on using Gaussian comparison to analyze ûN and Np(ûN ) in place of û and
Mp(û). Since F (·) is strongly convex, ŵ := ûN − β⋆ is the unique minimizer of

L(w) :=
1

2n
∥Xw − ϵ∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) .

By introducing a dual vector s, we get

min
w
L(w) = min

w∈Rp
max
s∈Rn

1

n
sT (Xw − ϵ)− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) .

By CGMT (see for instance [22, Theorem 3.3.1] or [15, Theorem 5.1]), it suffices now to study

min
w∈Rp

max
s∈Rn

1

n3/2
∥s∥gTw +

1

n3/2
∥w∥hTu− 1

n
sT ϵ− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i ))

where g ∼ N (0, Ip) and h ∼ N (0, In) and they are independent. Note that the min and max
can be flipped due to convex-concavity. By optimizing with respect to s/∥s∥ and introducing√

∥w∥2

n + σ2 = minτ≥σ

{
∥w∥2

n +σ2

2τ + τ
2

}
, it can be further reduced to

max
b≥0

min
τ≥σ

b

2
(
σ2

τ
+ τ)− b2

2
+

1

α
min
w∈Rp

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
.

Under minor regularity conditions, as n, p→ ∞, it converges to

max
b≥0

min
τ≥σ

b

2

(
σ2

τ
+ τ

)
− b2

2
+

1

α
EB,Z min

w∈R

{
b

2τ
w2 − bZw + σ2F (w +B)− σ2F (B)

}
with (B,Z) ∼ π⋆ ⊗N (0, 1), which is how we got ϕ(·, ·) as in (5). Furthermore, by differentiating
ϕ(b, τ) with respect to τ and b, we arrive at the fixed point equation in Lemma 2. Last but not least,
note that argminw

{
b
2τw

2 − bZw + σ2F (w +B)
}
= η(τZ+B, τσ2/b)−B, which explains why

the joint empirical distribution of (ŵi, β
⋆
i )’s converges to the law of

(
η(τ⋆Z +B, τ⋆σ2/b⋆)−B,B

)
.

Finally, we note that similar proof arguments were made in [15, 22].
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Supplementary Materials

A Technical lemmas and basic facts

Lemma 9. Let ċ(h, d) := ∂c
∂h (h, d) and c̈(h, d) := ∂2c

∂h2 (h, d). We have, for u ∈ (m(π),M(π)) and
d ∈ R,

∂G

∂u
(u, d) = h(u, d),

∂G

∂d
=

1

2

∫
S

z2 dπ(h(u,d),d)(z)− 1

2

∫
S

z2 dπ(0,d)(z).

∂2G

∂2u
(u, d) =

1

c̈(h(u, d), d)
=

1

VarX∼π(h(u,d)d)(X)
> 0.

Lemma 10 (von Neumann’s minimax theorem, [25]). Let Sw ⊂ Rn and Ss ⊂ Rm be compact convex
sets. If f : Sw × Ss → R is a continuous function that is convex-concave, i.e., f(·, s) : Sw → R is
convex for fixed s, and f(w, ·) : Ss → R is concave for fixed w. Then we have that

min
w∈Sw

max
s∈Ss

f(w, s) = max
s∈Ss

min
w∈Sw

f(w, s).

Theorem 2 (CGMT, [23, 22, 15]). Let Sw ⊂ Rp and Ss ⊂ Rn be two compact sets and let
Q : Sw × Ss → R be a continuous function. Let G = (Gij)1≤i≤n,1≤j≤p

iid∼ N (0, 1), g ∼ N (0, Ip),
h ∼ N (0, In) be independent standard Gaussian vectors. Denote

Φ(G) = min
w∈Sw

max
s∈Ss

sTGw +Q(w, s),

Ψ(g, h) = min
w∈Sw

max
s∈Ss

∥s∥gTw + ∥w∥hT s+Q(w, s).

Then we have

1. For all t ∈ R,

P (Φ(G) ≤ t) ≤ 2P(Ψ(g, h) ≤ t).

2. If both Sw and Ss are convex and if Q(·, ·) is convex-concave, then for all t ∈ R,

P (Φ(G) ≥ t) ≤ 2P(Ψ(g, h) ≥ t).

Remark 3. The most important message of this theorem is essentially whenever Ψ(g, h) concentrates
around a certain value t, Φ(G) will also concentrate around t, assuming Q(·, ·) is convex-concave.

B Proofs

Proof of Lemma 1 and 9 can be found in for instance [16].

B.1 Convexity of F (·)

Proof of Lemma 3. We only prove part (1) here, as proof of part (2) is almost exactly the same. For
any h, d ∈ R+, by GHS inequality [6, Equation 1.4],

∂ [VarB∼π(h,d)(B)]

∂h
= E[B3]− 3EBE[B2] + 2 (EB)

3 GHS
≤ 0,

Together with the assumption that V is even, we have for any h ∈ R and d ≥ 0,

VarB∼π(h,d)(B) ≤ VarB∼π(0,d)(B).

Consider now a family of parametric distributions {Pθ : θ ≥ 0} as a generalization of π(0,d), with

dPθ

dx
(x) ∝ exp(−θV (x)) exp

(
−dx2/2

)
.
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Note that Pθ=1 = π(0,d). Since V (·) is even and increasing,

VarB∼π(0,d)(B) = VarS∼Pθ=1
(S) ≤ VarS∼Pθ=0

(S)

=

∫
R z

2e−dz2/2dz∫
R e

−dz2/2dz

=
1

d

∫
R z

2e−z2/2dz∫
R e

−z2/2dz

≤ 1

d
VarS∼N (0,1)(S) =

1

d
,

which ensures VarB∼π(h(u,1/σ2),1/σ2)(B) ≤ σ2 and therefore d2F
du2 (u) ≥ 0 by (11). Note that as

long as π is a valid probability distribution, F (·) is not only convex but always strongly convex, as
VarB∼π(h(u,1/σ2),1/σ2)(B) = σ2 if and only if V (·) is a constant function and the support of π is the
whole real line.

The same proof idea also applies to Lemma 4; therefore, we omit its proof to avoid redundancy.

Proof of Lemma 5. The conclusion follows by noting

d2F

du2
(u) =

1

VarB∼π(h(u,1/σ2),1/σ2)(B)
− 1

σ2
> 0, (11)

as π(h,d) is a distribution on [−a, a] and thus its variance is at most a2, which is assumed to be
smaller than σ2.

For Lemma 6, since VarB∼π(h,d)(B) can be analytically computed for the Gaussian Spike and Slab
prior, its proof is nothing but elementary calculation and then checking for (11).

B.2 Replacing di with Edi

Proof of Lemma 7. We focus on only ∥û∥ since almost exactly the same argument also applies to
ûN . We first collect a few high-probability claims, proofs of which are just direct applications of
basic standard random matrix results (see, for instance, [26]).

1. There exist positive constants C1 and C2 (only depend on α), such that for any ε > 0,
S1 := {|λmax(X

TX) − C1| < ε} and S2 := {|λmin(X
TX) − C2| < ε} are both of high

probability.

2. Recall the additive noise ϵ ∼ N (0, σ2In). For any ε > 0, S3 := {|∥ϵ∥2/n− σ2| < ε} is of
high probability.

3. For any ε > 0, S4 = {
∣∣ϵTXβ⋆/p

∣∣ < ε} is of high probability.

Let S0 = S1 ∩ S2 ∩ S3 ∩ S4, which is again an event of approaching 1 probability. Note that since
the empirical distribution of β⋆

i ’s converge in L2 to π⋆, one has ∥β⋆∥2 < 1.01ps2 for large enough p.
When S0 happens, if ∥u∥2/p > (1 + Cs)s2 (with Cs > 0 to be chosen later, but large enough such
that ∥Xu∥ > ∥Y ∥),

Np(u) ≥
1

2σ2
∥Y −Xu∥2 ≥ 1

2σ2
(∥Xu∥ − ∥Y ∥)2 ≥ p

2σ2

[√
(C2 − ε)(1 + Cs)s2 − ∥Xβ⋆ + ϵ∥/p

]2
≥ p

2σ2

[√
(C2 − ε)(1 + Cs)s2 −

√
2(C1 + ε) · 2s2 + 2α(σ2 + ϵ)

]2
.

On the other hand,

Np

(→
0
)
=

1

2σ2
∥Y ∥2 ≤ p

2σ2

[
(C1ε) · 2ps2 + α(σ2 − ε) + 2ε

]
.

Upon Cs being large enough, we have Np(u) > Np

(→
0
)

for any u such that ∥u∥2/p > (1 + Cs)s2.

Therefore, ∥ûN∥2/p < (1 + C2)s2 on S0.
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Proof of Lemma 8. If S = [−1, 1], by Lemma 9,
∣∣∣∂G(u,d)

∂d (u, d)
∣∣∣ ≤ 1

2 for any u, d, thus

LHS of (10) ≤ sup
u

[
p∑

i=1

∣∣G(ui, di)−G(ui, 1/σ
2)
∣∣+ p∑

i=1

∣∣∣∣ u2i2σ2
− diu

2
i

2

∣∣∣∣
]

≤ sup
u

[
p∑

i=1

∣∣∣∣∂G(u, d)∂d
(ui, 1/σ

2)(di − 1/σ2)

∣∣∣∣
]
+

1

2

p∑
i=1

|di − 1/σ2|

≤
p∑

i=1

∣∣∣∣di − 1

σ2

∣∣∣∣ .
Since Xji’s are iid with variance 1/n, we know Edi = 1

σ2E
[∑n

j=1X
2
ji

]
= 1

σ2 , di
n→∞−→ 1

σ2 , and all
di’s are iid, which guarantee RHS of the previous display goes to 0 in probability as n, p→ ∞. On
the other hand, if S = R, note that for any δ ∈ (0, 1/(2σ2)), P(max1≤i≤p |di − 1/σ2| > δ) → 0
as n, p → ∞. In addition, when max1≤i≤p |di − 1/σ2| ≤ δ is true, which is of approaching 1
probability,

1

p
· LHS of (10) ≤ sup

u:∥u∥/p<(1+Cs)s2

[
p∑

i=1

∣∣G(ui, di)−G(ui, 1/σ
2)
∣∣+ p∑

i=1

∣∣∣∣ u2i2σ2
− diu

2
i

2

∣∣∣∣
]

≤ 1

p
· sup
u:∥u∥/p<(1+Cs)s2

[
p∑

i=1

∣∣∣∣∂G(u, d)∂d
(ui, 1/σ

2 + δi)(di − 1/σ2)

∣∣∣∣
]
+

1

2

p∑
i=1

|di − 1/σ2|u2i ,

where δi ∈
(
min(0, di − 1/σ2),max(0, di − 1/σ2)

)
. By Lemma 9, it is further smaller than

1

p
· sup
u:∥u∥/p<(1+Cs)s2

{
1

2

p∑
i=1

∣∣∣∣di − 1

σ2

∣∣∣∣ · [VarX∼π(h(ui,1/σ
2+δi),1/σ

2)(X) + u2i +Var
X∼π(0,1/σ2+δi))

(X) + u2i
]}

.

Lastly, note that when conditions of one of Lemma 3, 4, 5 and 6 are true, for d̃ close enough to 1/σ2,
we have VarX∼π(h̃,d̃)(X) < 2σ2 for any h̃ ∈ R. Therefore, upon choosing small enough δ such that
all di’s are close enough to 1/σ2, the display above is controlled by

1

p
· sup
u:∥u∥/p<2s2

{
1

2

p∑
i=1

[∣∣∣∣di − 1

σ2

∣∣∣∣ · (4σ2 + 2u2i )

]}

≤ max
1≤i≤p

|di − 1/σ2| · sup
u:∥u∥/p<2s2

[
4σ2 +

∥u∥2

p

]
≤δ · (4σ2 + (1 + Cs)s2),

Lastly, further requiring δ < ε
4σ2+(1+Cs)s2

renders Lemma 8.

B.3 Regarding the fixed point equation

Proof of Lemma 2. First of all, recall the definition of ϕ(·, ·) in (6),

∂ϕ

∂b
(b, τ) =

1

2
(σ2/τ + τ)− b− τ

2α
+

1

2τα
E
[
(τZ +B − η(τZ +B, τσ2/b))2

]
.

Note that for any fixed x, |x− η(x, t)| is always strictly increasing with respect to t, we have

∂
{
E
[
(τZ +B − η(τZ +B, τσ2/b))2

]}
∂b

< 0,

which further leads to
∂2ϕ

∂b2
(b, τ) < −1, ∀b, τ.

Therefore, for any fixed τ , ϕ(·, τ) is 1-strongly concave. Define ψ(b) := minτ≥σ ϕ(b, τ). Since ψ(·)
is the minimum of a collection of 1-strongly concave functions, it is 1-strongly concave itself and
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must have a unique maximizer b⋆ over [0,∞). In addition, by definition of η, limt→∞ η(x, t) = 0,
dominated convergence theorem gives

lim
b→0+

E
[
(τZ +B − η(τZ +B, τσ2/b))2

]
= E

[
(τZ +B)2

]
= τ2 + E[B2].

Therefore, for any fixed τ ,

lim inf
b→0

∂ϕ

∂b
(b, τ) =

1

2
(σ2/τ + τ) +

E[B2]

2τα
> 0.

Together with Lemma 11 and continuity of ϕ(·, ·), it ensures b⋆ ̸= 0. On the other hand, for any
b > 0,

∂ϕ

∂τ
(b, τ) =

b

2τ2

[
τ2 −

(
σ2 +

1

α
E
[(
η(τZ +B, τσ2/b)−B

)2])]
,

∂ϕ

∂τ
(b, τ = σ) < 0.

Together with Lemma 11, we have minτ≥σ ϕ(b
⋆, τ) has at least one minimizer τ⋆ ∈ (σ,∞). Finally,

since b⋆ and τ⋆ are not on the boundary, we have ∂ϕ
∂b (b

⋆, τ⋆) = ∂ϕ
∂τ (b

⋆, τ⋆) = 0, which gives rise to
the fixed point equation as in (7).

Lemma 11. Recall the definition of ϕ in (6). For any fixed b ∈ (0,∞),

lim
τ→∞

ϕ(b, τ) = ∞.

Therefore, minτ ϕ(b, τ) admits at least one minimizer.

Proof. Since E[B2] = s2 <∞, Eminw∈S

{
b
2τw

2 − bZw + σ2F (w +B)− σ2F (B)
}

is decreas-
ing in τ and always finite for any (b, τ) ∈ (0,∞)× [σ,∞). Therefore limτ→∞(b, τ) = ∞.

B.4 Proof of the main results

We devote this subsection to proving Theorem 1, while we note Corollary 1, 2, 3, 4 and 5 are all
direct consequences of it. We first prove Theorem 1 while introducing some necessary lemmas. Then,
we prove these lemmas at the end of this subsection. Whenever the optimization domains for w and s
are omitted throughout this subsection, they are understood to be Rp and Rn, respectively. We use ν̂
to denote empirical distribution in general.

Since F (·) is strongly convex, ŵ := ûN − β⋆ is the unique minimizer of

L(w) :=
1

2n
∥Xw − ϵ∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i ))

By introducing a dual vector s, we get

min
w
L(w) = min

w∈Rp
max
s∈Rn

1

n
sT (Xw − ϵ)− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) := min
w

max
s

ΦX(w, s)

Following the recipe in Theorem 2, we define

Ψg,h(w, s) :=
1

n3/2
∥s∥gTw +

1

n3/2
∥w∥hT s− 1

n
sT ϵ− 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β⋆
i )− F (β⋆

i )) ,

(12)

where g ∼ N (0, Ip) and h ∼ N (0, In) and they are independent. Note that with a deliberate abuse
of notations, we use Φ and Ψ to denote these two functions to indicate their resemblance to those in
the statement of Theorem 2. By Theorem 2, it suffices now to study minw maxs Ψg,h(w, s) in place
of minw maxs ΦX(w, s), which is made rigorous by the following lemma.

Lemma 12. Let D be any close set.
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1. We have for all t ∈ R

P
(
min
w∈D

max
s

ΦX(w, s) ≤ t

)
≤ 2P

(
min
w∈D

max
s

Ψg,h(w, s) ≤ t

)
.

2. If D is in addition convex, then we have for all t ∈ R

P
(
min
w∈D

max
s

ΦX(w, s) ≥ t

)
≤ 2P

(
min
w∈D

max
s

Ψg,h(w, s) ≥ t

)
.

We defer the proof of Lemma 12 to the end of this section and proceed with proving Theorem 1. Due
to strong convexity, ŵΨ := argminw maxs Ψg,h(w, s) always exists and is unique. Note that the
min and max can be flipped due to convex-concavity (Lemma 10). By optimizing with respect to
s/∥s∥ and introducing √

∥w∥2
n

+ σ2 = min
τ≥σ

{
∥w∥2

n + σ2

2τ
+
τ

2

}
, (13)

minw maxs Ψg,h(w, s) can be further reduced to

max
b≥0

min
τ≥σ

Γg,h(b, τ)

Γg,h(b, τ) :=
b

2
(
σ2

τ
+ τ)− b2

2
+

1

α
min
w∈Rp

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
,

in the sense that (i) the optimizers ŵΨ and ŵΓ are close, i.e, for any κ > 0,

P
(
1

p
∥ŵΨ − ŵΓ∥2 > κ

)
→ 0, (14)

and (ii) the optimum value is preserved with arbitrarily small error with high probability.
The next lemma ensures empirical distribution of (ŵΨ, β

⋆) is close to the distribution of(
η
(
τ⋆Z +B, τ

⋆σ2

b⋆

)
−B,B

)
, which we denote as ν⋆(w⋆,π⋆), where (B,Z) ∼ π⋆ ⊗N (0, 1).

Lemma 13. Suppose all conditions of Theorem1 are satisfied. For any ε > 0, there exists C(ε) ∈
(0, ε), such that as p, n→ ∞,

P
(
∃w̃ ∈ Rp such that W2

(
ν̂(w̃,β⋆), ν

⋆
(w⋆,π⋆)

)2
≥ ε and max

s
Ψg,h(w̃, s) < min

w
max

s
Ψg,h(w, s) + C(ε)

)
→ 0.

In the meantime,

min
w

max
s

Ψg,h(w, s)
P.−→ αb⋆2

2σ2
+ EF (η(B + τ⋆Z, τ⋆/b⋆)).

Again, for now, we proceed assuming Lemma 13 and prove it later at the end of this sec-
tion. Building upon Lemma 12 and Lemma 13, we now prove the empirical distribution of
(ûN , β

⋆) = (β⋆ + ŵ, β⋆) is close to ν⋆ as defined in Definition 6. For ε > 0, define Dε ={
w ∈ Rp :W2

(
ν̂(w,β⋆), ν

⋆
(w⋆,π⋆)

)2
≥ ε

}
. To establish

P
(
W2(ν̂(ŵ,β⋆), ν

⋆
(w⋆,π⋆))

2 > ϵ
)
→ 0,

it suffices to show with high probability, for some δ(ε) > 0,

min
w∈Dε

max
s

ΦX(w, s) ≥ min
w∈Rp

max
s

ΦX(w, s) + δ(ε). (15)

On the one hand, by applying both (1) and (2) of Lemma 12 to D = Rp, together with Lemma 13,
we have

lim
n,p→∞

min
w

max
s

ΦX(w, s) = lim
n,p→∞

min
w

max
s

Ψg,h(w, s) =
αb⋆2

2σ2
+ EF (η(B + τ⋆Z, τ⋆/b⋆)),
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where the “lim” is understood to be convergence in probability. It further leads to

P
(∣∣∣min

w
max

s
ΦX(w, s)−min

w
max

s
Ψg,h(w, s)

∣∣∣ > ε
)
→ 0.

On the other hand, applying (1) of Lemma 12 to D = Dε, together with Lemma 13, we have

P
(
min
w∈Dε

max
s

ΦX(w, s) > min
w

max
s

ΦX(w, s) + C(ε) + ε

)
→ 0,

which establishes (15) with δ(ε) = C(ε) + ε, where C(ε) > 0 was defined in Lemma 13. Therefore,
we have the empirical distribution of (ûN , β⋆) is close to the target distribution ν⋆, i.e.,

W2(ν̂(ûN ,β⋆), ν
⋆)

P.→ 0. (16)

Finally, according to Lemma 8 and 7, Np(·) and Mp(·) are with high probability uniformly close.
Together with strong convexity of Np(·), we have for any κ > 0

P
(
1

p
∥û− ûN∥2 < κ

)
→ 0. (17)

Theorem 1 is therefore given by (16) and (17).

Proof of Lemma 12. In order to prove Lemma 12 using Theorem 2, one only needs to establish that
the optimizer of ΦX(w, s) always has a bounded norm with high probability. In fact, Lemma 7 ensures
boundedness of ŵ = argminw maxs ΦX(w, s) while the boundedness of ŝ := argmaxs ΦX(ŵ, s)
can be established by a similar argument.

Proof of Lemma 13. Define

Γ̃g,h(b, τ) :=
b

2
(
σ2

τ
+ τ)− b2

2
+

1

α
min
w∈Dε

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
.

By definition, Γ̃g,h(b, τ) ≥ Γg,h(b, τ) for any (b, τ) deterministically. Recall the definition of Φg,h(·)
in (12),

min
w∈Dε

max
s

Ψg,h(w, s)

= min
w∈Dε

max
∥s∥

1

n3/2
∥s∥gTw +

1

n

∥∥∥∥∥w∥h√
n

− ϵ

∥∥∥∥ · ∥s∥ − 1

2n
∥s∥2 + σ2

n

p∑
i=1

(F (wi + β∗
i )− F (β∗

i ))

b=
∥s∥√

n
= min

w∈Dε

max
b≥0

[
1

n
bgTw + b

√
∥w∥2
n

+ σ2 − b2

2
+
σ2

n

p∑
i=1

(F (wi + β∗
i )− F (β∗

i ))

]
+ on(1)

(13)
= min

w∈Dε

max
b≥0

min
τ≥σ

b

2
(
σ2

τ
+ τ)− b2

2
+

1

α

p∑
i=1

[
1

p

{
b

2τ
w2

i − bgiwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]
+ on(1)

Lemma 10
≥ max

b≥0
min
τ≥σ

Γ̃g,h(b, τ) + on(1).

Therefore,
min
w∈Dε

max
s

Ψg,h(w, s) ≥ max
b≥0

min
τ≥σ

Γ̃g,h(b, τ) + on(1)

≥ min
τ≥σ

Γ̃g,h(b
⋆, τ) + on(1)

= Γ̃g,h(b
⋆, τ̃(b⋆)) + on(1)

(i)

≥ Γg,h(b
⋆, τ̃(b⋆)) + on(1)

(ii)

≥ min
τ≥σ

Γg,h(b
⋆, τ) + on(1)

= Γg,h(b
⋆, τ⋆) + on(1)

= min
w∈Rp

max
s

Ψg,h(w, s) + on(1),

(18)
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where τ̃(b⋆) := argminτ≥σ Γ̃g,h(b
⋆, τ). We claim that the gaps resulting from (i) and (ii) can not be

both negligible. Namely, there exists ϱ > 0 such that

lim sup
n,p→∞

P (T1 + T2 > ϱ) > 0, (19)

where

T1 := Γ̃g,h(b
⋆, τ̃(b⋆))− Γg,h(b

⋆, τ̃(b⋆)) ≥ 0,

T2 := Γg,h(b
⋆, τ̃(b⋆))− Γg,h(b

⋆, τ⋆) ≥ 0.

In order to establish (19), we will proceed with proof by contradiction. Suppose (19) is NOT true,
equivalently, for any ϱ > 0,

lim
n,p→∞

P (T1 > ϱ) = 0, (20)

lim
n,p→∞

P (T2 > ϱ) = 0. (21)

Recall the definition of ϕ(·) in (6). Since (b⋆, τ⋆) is the unique optimizer of ϕ(·) and Γg,h(b, τ)
converges to ϕ(b, τ) uniformly on any compact subset of [0,∞) × [σ,∞), (21) is only possible if
|τ̃(b⋆)− τ⋆| P.→ 0 as n, p→ ∞. On the other hand, by definition of Dε, there exists γ > 0 such that
with high probability, for any w ∈ Dε,

p∑
i=1

[
1

p

{
b⋆

2τ⋆
w2

i − b⋆giwi + σ2F (wi + β⋆
i )− σ2F (β⋆

i )

}]

>

p∑
i=1

[
1

p

{
b⋆

2τ⋆
w̄2

i − b⋆giw̄i + σ2F (w̄i + β⋆
i )− σ2F (β⋆

i )

}]
+ γε,

where w̄i is sampled independently from the distribution of η
(
τ⋆Z + β⋆

i ,
τ⋆σ2

b⋆ − β⋆
i

)
with Z ∼

N (0, 1). Therefore, with high probability,

Γ̃g,h(b
⋆, τ⋆)− Γg,h(b

⋆, τ⋆) > γε.

By triangle inequality,

T1 ≥
[
Γ̃g,h(b

⋆, τ⋆)− Γg,h(b
⋆, τ⋆)

]
−
∣∣∣∣Γ̃g,h(b

⋆, τ̃(b⋆))− Γ̃g,h(b
⋆, τ⋆)

∣∣∣∣− ∣∣∣∣Γg,h(b
⋆, τ̃(b⋆))− Γg,h(b

⋆, τ⋆)

∣∣∣∣.
In addition, note that if |τ̃(b⋆)− τ⋆| P.→ 0 as n, p→ ∞, then

Γ̃g,h(b
⋆, τ̃(b⋆))− Γ̃g,h(b

⋆, τ⋆)
P.→ 0 and Γg,h(b

⋆, τ̃(b⋆))− Γg,h(b
⋆, τ⋆)

P.→ 0.

Putting them together, we have

P (T1 > γε/2) → 1.

The display above is in contradiction to (20), which means (19) is thus established.

Finally, note that Lemma 13 is equivalent to

P
(
min
w∈Dε

max
s

Ψg,h(w, s)− min
w∈Rp

max
s

Ψg,h(w, s) > C(ε)

)
→ 1

and it is therefore a direct consequence of (19) and (18).

C Numerical simulations

All source code can be found in a separate zip file in the Supplementary Materials.

19



Figure 4: iid Gaussian design versus iid Laplace design (with Gaussian spike and slab prior): These
three plots showcase the empirical observation that prediction of Corollary 2 seem to be valid for a
design matrix with iid entries that have sub-exponential tails.

C.1 Universality: non-Gaussian design matrix

Instead of assuming Xij
iid∼ N (0, 1/n), we now present empirical evidence of universality, i.e.,

Theorem 1 holds for a broader class of design matrix that has iid entries with variance 1/n. Since
it is impossible to exhaust all possible distributions, we will stick with a representative example
Xij

iid∼ Laplace(
√
2/2) and the Gaussian spike and slab prior. We use Gradient Decent to optimize

Mp(u) and then demonstrate that the empirical MSE of its optimizer coincides with the prediction of
Corollary 2. Please see Figure 4 for a visual summary.

For more comprehensive and rigorous results on the universality of Gaussian comparison inequalities,
we refer interested readers to [11] and references within.

C.2 Fixed point equation

Figure 5: As we can see, when q is large (q = 0.8 or 0.9 in the figure above), our initialization did
not lead to the right fixed point.

As alluded to in the main text, all our plots are generated by iteratively solving the fixed point
equation (7). However, this naive strategy might not give the right fixed point, i.e., the (b⋆, τ⋆) that
minimizes ϕ(b, τ), or it could just do not converge. Please see Figure 5 for an empirical example.
Since either F (·) or η(·, ·) lacks analytical forms for most natural priors, unlike other applications
of CGMT (e.g., asymptotic analysis of lasso [15]), it is hard to determine whether (7) has a unique
solution analytically. Fortunately, there are two possible remedies. First, which is the option we
took, one could solve minuMp(u) for some large n and check if the empirical MSE matches the
prediction given by the fixed point. Alternatively, one could adapt a more brute-force way to find
the actual optimizer of maxb minτ ϕ(b, τ), e.g., grid search or iteratively solving (7) with multiple
initializations. After all, it is only a two-dimensional scalar optimization problem. We followed
the first way simply because we wanted to use empirical simulations to corroborate our theoretical
predictions anyway.
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