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Abstract

This paper presents an innovative visual reasoning approach to enhancing instance
verification and retrieval, particularly in situations where a fine-tuning set is unavail-
able. The widely-used SPatial verification (SP) method, despite its efficacy, relies
on a spatial model and the hypothesis-testing strategy for instance recognition,
leading to inherent limitations, including the assumption of planar structures and
neglect of topological relations among features. To address these shortcomings,
we introduce a pioneering technique that replaces the spatial model with a topo-
logical one within the RANSAC process. We propose bio-inspired saccade and
fovea functions to verify the topological consistency among features, effectively
circumventing the issues associated with SP’s spatial model. Our experimental
results demonstrate that our method significantly outperforms SP, achieving state-
of-the-art performance in non-fine-tuning retrieval. Furthermore, our approach can
enhance performance when used in conjunction with fine-tuned features. Impor-
tantly, our method retains high explainability and is lightweight, offering a practical
and adaptable solution for a variety of real-world applications. Our code can be
found through this link.

1 Introduction and related work
Content-based image retrieval, a fundamental and long-standing challenge, has seen significant
advancements due to the rise of deep learning [29, 45, 7, 24]. These data-driven approaches, although
successful, often rely heavily on fine-tuning with data from the same domain [24, 46]. However,
acquiring such a fine-tuning set can be impractical or costly, particularly in open-world or private
scenarios. Moreover, these methods often fall short in providing explainability, a critical factor for
real-world applications where search results are integral to decision-making.

In situations where a fine-tuning set is absent, the esteemed SPatial verification (SP) [26] method has
demonstrated the highest accuracy in verifying an image pair [28]. However, its dependency on a
spatial model for recognition exposes vulnerabilities, particularly to viewpoint changes in 3D objects
and neglect of topological relations among key points (Sect. 2.1). To address these issues, we pioneer
the replacement of the spatial model with a topological one during the RANdom SAmple Consensus
(RANSAC) process. We introduce Homeomorphism Region (Def. 2.1), which circumvents the
mentioned problems, providing a size metric superior to the original inlier counts used in SP. Drawing
inspiration from human observation, we propose innovative saccade and fovea functions to validate
topological relations among keypoints within RANSAC [12] iterations (Sect. 3).

Numerous studies have explored SP [2, 31, 21, 36], but none have made such a direct modification to
the spatial model in RANSAC, possibly because earlier benchmarks presented the issues of the spatial
model as less severe [28, 26, 27]. However, with the introduction of more challenging benchmarks
like ROxford and RParis [28], these problems have become increasingly critical. While some recent
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deep-learning approaches have explored feature relations, their effectiveness diminishes without a
fine-tuning set, and they often lack explainability [45, 40]. In contrast, by adopting the hypothesis-
testing strategy with topological rules, our method outperforms even large-scale pre-trained methods
in non-fine-tuning scenarios, maintaining high explainability and lightweight nature. Moreover, it
can further enhance performance when used alongside fine-tuned features. These results show our
novel attempt at topological-based RANSAC is a success.

Our contributions are summarized as follows:

• We propose a novel approach to directly modify the underlying common sense in hypothesis
testing. Our method is pioneering in adopting topological common sense, diverging from
traditional spatial approaches. This shift paves the way for numerous future research
opportunities.

• Drawing inspiration from the human observation process, we introduce innovative saccade
and fovea functions to verify topological relations among keypoints

• Our method has demonstrated a significant improvement in accuracy by adopting the
hypothesis-and-test strategy with topological rules. Our method surpasses all other methods
without fine-tuning. Moreover, our approach can be combined with fine-tuned features to
achieve even better performance.

• Our method offers a highly explainable and lightweight solution, which is crucial for
real-world applications.

2 Motivation and overview

2.1 Spatial verification

RANdom SAmple Consensus (RANSAC) is an effective method for handling noisy data [12]. It
involves using a hypothesis and test strategy to optimize model parameters to accurately describe
inliers iteratively. The model selected is crucial for achieving high inference accuracy. For instance
recognition, Spatial verification (SP) [26] employs a spatial model to match features in two sets of
points, P1 and P2. It finds applications in a variety of contexts, such as reranking in image search [7],
facilitating loop closure detection [20], and serving as a preliminary step in 3D reconstruction [35].
By using RANSAC, SP calculates a transformation matrix M to account for the spatial configuration
change between different views. The similarity between the two images can then be determined using
the following equation:

Ds(P1, P2|M) =
∑

pi
1∈P1

J∥pi
1M − pi

2∥ < ϵK, (1)

where pi
1 and pi

2 represent the locations of pi1 ∈ P1 and pi2 ∈ P2, respectively. pi2 is the feature in P2

that is most similar to pi1. The threshold for the location disparity is denoted by ϵ.

The spatial model is intrinsically intertwined with RANSAC in the field of computer vision [9, 8],
and it is particularly well-suited for tasks such as pose estimation where achieving an accurate
homography or fundamental matrix is the primary objective [38, 23]. However, despite the wealth
of research surrounding the use of RANSAC for pose estimation, its integration within rigid body
recognition remains under-discussed in the existing literature. This paper endeavors to address this
gap, offering insights into why a spatial model may not be ideally suited for recognition tasks.

SP has been the subject of numerous studies [2, 31, 21, 36]. However, none of the existing works
have sought to modify the fundamental spatial model. On the other hand, while near-perfect results
have been reported on the original Oxford and Paris benchmarks [26, 27], newer challenges such as
complex positives and confusing distractors have recently emerged [28]. To address these challenges,
contemporary research often bypasses the RANSAC process, focusing instead on enhancing perfor-
mance through fine-tuning [29, 7, 24, 40]. Nevertheless, this strategy may not be feasible in private
or dynamic scenarios where fine-tuning datasets are unavailable. As discussed in Section 5, tasks
involving non-fine-tuning recognition are of significant importance. To the best of our knowledge, in
the absence of a fine-tuning set, RANSAC-based SP still stands as the most effective method [28]
in ROxford and RParis. This paper aims to delve into the often-overlooked aspect of enhancing the
RANSAC process within rigid instance recognition tasks.
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Figure 1: This figure presents our novel adaptation of the SPatial model (SP) [26] into the ToPological
model (TP), marking the first such transformation in hypothesis-testing. Sub-figures (a) and (b)
highlight an instance where SP incorrectly assigns more inliers to an erroneous image pair (22 inliers)
compared to the correct pair (18 inliers). Conversely, sub-figures (c) and (d) demonstrate our TP
model accurately discerns the right image pair and dismisses the wrong pair by iteratively refining
the Homeomorphism Regions (HRs) based on patch connections.

In our study, we identified two significant issues when spatial model is deployed for recognition.
Firstly, SP assumes that two images depicting the same plane from different perspectives can be
matched using an affine transformation—an assumption that may not always hold true. Real-world
objects are often three-dimensional, not planar, which means the 3 by 3 affine matrix employed in
SP may not accurately represent their variations. Secondly, SP’s sparse inlier count of the predicted
homography matrix neglects the topological relationships among features and the relevance of other
image regions. This issue is evident in Fig. 1, which presents SP results for both a correct and an
incorrect image pair. Notably, the incorrect image pair generates more inliers than the correct pair, an
outcome that starkly illustrates the limitations of using inlier count as the sole measure of accuracy
in image recognition tasks. It is important to note that the two issues we’ve identified with SP
primarily originate from the spatial model itself rather than from the hypothesis-testing strategy. This
realization motivates us to modify the spatial model while retaining the hypothesis-testing approach.

2.2 Topological verification

In contrast to existing works that rely on fine-tuning to enhance performance [40, 7, 25], our study
pioneers the use of a topological model in place of the spatial model within RANSAC. Importantly,
this approach remains viable even when fine-tuning is not feasible. We introduce the concept of a
Homeomorphism Region (HR) to address two primary issues associated with the spatial model. Its
size is a new metric for RANSAC iteration and image pair similarity. The formal definition of HRs is
in Definition 2.1.

Definition 2.1 (Homeomorphism region) Let r be a small image patch of image I , rn1 and rn2 be
the corresponding patches in I1 and I2, R1 = {r11, ..., rn1 } and R2 = {r12, ..., rn2 } be the families
of patches of images I1 and I2. R1 and R2 are Homeomorphism regions (HRs), if they satisfy the
following conditions:

1. Local consistency: rn1 ∈ R1 and rn2 ∈ R2 are identified as the same patches based on their local
descriptors. [Two corresponding patches should be similar; they are supposed to depict the same
region of an object.]

2. Topological consistency: ∀(rn1 , rm1 , rn2 , r
m
2 ), if rn1 and rm1 overlap each other, rn2 and rm2 should

also overlap each other, and vice versa. [Parts of an object that are connected should remain so, even
when the viewpoint changes.]

3. Connectivity: ∀rn1 ∈ R1,∃rm1 ∩ rn1 ! = ∅, rm1 ∈ R1 [We do not consider similar but isolated
patches. Note that wrong similar patches x3 and y3 in Fig. 1 are excluded from the HR in this way.]

Our novel topological perspective effectively circumvents the aforementioned problems, yielding
more robust results than its spatial counterpart. In contrast to SP’s planar assumption, our approach
posits that parts of an object that are connected should remain so, even when the viewpoint changes.
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This assumption holds true for 3D objects. Furthermore, our topological approach considers the
topological relationships between patches and leverages more information in an image pair. For
example, incorrect SP matches can occur when there are numerous repeated patterns, even if these
matched pairs aren’t topologically consistent with other features, as shown in Fig. 1 (b). Our model,
however, correctly identifies these as different structures. As demonstrated in Fig. 1 (c) and (d),
our method successfully discriminates between correct and incorrect image pairs, highlighting its
potential in enhancing image recognition tasks.

3 Method detail

Algorithm 1 Topological inference

Input: HypothesisSet: {(r11, r
1
2),(r21, r

2
2),...}.

Output: : Regions: list of HRs
1: Regions← []
2: for (ri1, r

i
2) in HypothesisSet do

3: π← []
4: π′ ← [(ri1, r

i
2)]

5: while π′ is not empty do
6: (r1, r2)= pop(π′)
7: r̂1, r̂2, verified=F(r1, r2)
8: if verified = True then
9: Add (r̂1, r̂2) to π

10: π′=S(π)
11: end if
12: end while
13: add π to Regions.
14: end for

To find HRs, we are inspired by our brain’s
mechanism of comparing two first-seen objects.
Our eye mostly captures low-resolution visual
information except for a tiny patch called the
fovea. The fovea only observes a very small
area and the entire scene illusion is created by
stitching several glimpses of the fovea during
eye movements called saccade [17, 14]. Inspired
by this process, we design our saccade and fovea
functions to detect the HRs that satisfied the
Def. 2.1.

Algorithm 1 shows the overall pipeline of our
method. Traditionally, RANSAC samples a sub-
set and computes a hypothesis based on this
selection. We modify this approach by using
each ratio test matching result as an individual
hypothesis. Therefore, the size of our sample
subset is effectively reduced to one, with each
iteration’s hypothesis being the translation, as
opposed to the affine matrix. Instead of counting
inliers based on the spatial constraint, we detect
HRs for each hypothesis, the size of which is

then used as the new iteration metric. We recognize that the sampling strategy and convergence proof
are the focal points of ongoing RANSAC research. However, as the first study to adopt a topological
perspective, this paper primarily seeks to demonstrate the feasibility and advantages of this paradigm
shift.

3.1 Topological consistency and connection

To verify the connection and topological consistency, we progressively verify and select the patches
one by one. It can be expressed as follows:

π′
t = S(πt), πt+1 = F (π′

t), (2)

where S is the saccade function to guide the observation place, F is the fovea function to verify two
patches, πt records the verified patches at t-th iteration, π0 is the given hypothesis about translation,
and π′

t records the candidate patches generated by S. πt and π′
t are shown using green and purple

boxes in Fig. 2. After finishing this verification progress, the final verified region πT will be treated
as the HR defined in Section 3.1. The saccade function S makes the new candidate patch intersect
with one and only one verified patch in πt, as shown in Fig. 2. In this way, a series of verified patches
are connected with each other and also satisfy the topological consistency.

Under the assumption that two images are depicting the same object with some transformations
(zoom, foreshortening, vertical shearing), the saccade function S predicts the area around the verified
patch pair will be similar. For example, r̂1 and r̂2 in Fig. 2 are two verified patches, and saccade
function S expects the patches around them are also similar. The correspondence patch location and
size will be refined by F , as shown in the next section. Similar to [26], we do not consider in-plane
image rotations because of the fact that images are usually displayed with the correct orientation.
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Figure 2: The process of finding HRs for each hypothesis. This is an iterative method. Fovea function
F verifies the similarity between two candidate patches at each iteration, and saccade function S
updates the candidate patches.

3.2 Local consistency

The fovea function F concentrates on two patch areas and verifies if the query patch r1 and test patch
r2 are similar based on the local feature sets P1 and P2 of images I1 and I2.

Feature matching. The first step for verification is to match the key points in two images correctly.
Traditional geometric verification directly searches the nearest neighbor of a keypoint in I1 from
keypoints in I2 based on their descriptors. However, we observe this approach may have many wrong
matching points in practice due to the repeated patterns in an image, as shown in Fig. 1. To address
this problem, we restrict the search region when implementing the fovea function. That is, for each
key point in patch r1, we find its nearest neighbor among keypoints in patch r2 instead of I2. We find
that this approach increases the matching performance.

Patch location adjustment. We need to adjust the location and size of the candidate patches here.
Because r1 and r2 are candidate patches generated by saccade function S only based on the verified
region π, their contents may not be exactly same. As shown in Fig. 2, the scope of patch r2 is different
from patch r1. After the feature matching, we treat the r2 region containing the matched points as the
adjusted corresponding patch r′2, as shown in Fig. 2.

Locally spatial constraint. Two main challenges of object verification are the location disparity
of the key points due to the view change of two images and the matching outliers. Fortunately, our
saccade function S has separated an object into patches. It offers three benefits. Firstly, because the
patch size is smaller than the whole image, a patch is more likely to depict the 2D plane of a 3D object.
Locally using the spatial constraint like Eq. (1) can be more robust than the origin SP. Secondly, we
can assume the center points of patches r1 and r′2 are correct if they share the same pattern. That
is we assume c1 = c2 = c, where c1 and c2 are the center locations of r1 and r′2. Treating c as the
reference point, the disparity of two correct matching key points pi

2 and pi
1 is (M − I)(pi

1 − c),
where I is the identity matrix. So Eq. (1) can be rewritten as:

F =
∑
pi
1∈r1

J∥(pi
2 − pi

1)− (M − I)(pi
1 − c)∥ < ϵK. (3)

Like [26], we do not consider the in-plane rotations and overturn. We try to infer a threshold of
disparity (pi

2 − pi
1) based on (pi

1 − c) without calculating a correct M . Note that the upper bound of∣∣pi
1 − c

∣∣ is half of the patch diagonal length.

Thirdly, because fovea function only focuses on the regional patterns, we can assume there is no
unrelated object or occlusion in r1 and r′2. Thus, we use the inlier ratio to replace the inlier number
of SP:

F =
1

|r1|
∑
pi
1∈r1

J∥(pi
2 − pi

1)− (M − I)(pi
1 − c)∥ < ϵK, (4)
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where |r1| is the number of local features in r1. This change is to use probability to deal with the
uncertainty of feature matching. Although it is difficult to guarantee the accuracy of a specific local
feature matching, we expect the clear different inlier ratio distributions between the correct patches
and in-correct patches with enough matching samples.

Implementation. We simplify Eq. (4) for the easy of computing. For pi1 ∈ r1, the expectation
location of its corresponding point pi2 ∈ r′2 is pi

1 + (M − I)(pi
1 − c). Because photos are taken from

a restricted range of canonical views, transformation M varies in a restricted space. We try to predict
the location pi

2 based on (pi
1 − c) without calculating a correct M . To do so, we divide r1 and r′2

into 3 by 3 sub-patches and each sub-patch contains some points. That is r1 = [a1, a2, ..., a9] and
r′2 = [b1, b2, ..., b9], where ak and bk are correspondence sub-patches. For a matching point pair
pi1 ∈ r1 and pi2 ∈ r′2, if pi1 locates in ak, we expect its corresponding point pi2 will be in bk. In this
way, we simplify the Eq. (4) as:

F (r1, r
′
2) =

9∑
k=1

f(ak, bk), f(ak, bk) =
1

|ak|
∑

pn∈ak

k(pn, p
′
n), (5)

where pn and p′n are two matched points, k(pn, p′n) = 1 if p′n ∈ bk, otherwise k(pn, p
′
n) = 0.

4 Experiment

Table 1: Results (% mAP) on the ROxf/RPar datasets and their large-scale versions
ROxf+1M/RPar+1M, with both Medium and Hard evaluation protocols.

ROxf ROxf+R1M RPar RPar+R1M
Method M H M H M H M H

compare inference ability using SIFT
VLAD [19] 37.6 21.7 31.4 10.7 83.2 69.1 69.5 44.7

ASMK [42, 48, 45] 49.6 29.1 41.4 18.0 83.6 69.5 66.2 44.4
SP (with ratio test) [28, 26] 64 42 56.3 30.5 86.3 71.6 70.1 46.4

SP (without ratio test) [28, 26] 44.4 23.3 37.3 13.5 83.7 69.0 66.9 44.2
GCRANSAC [5] 63.3 40.2 55.7 29.7 85.9 71.0 69.6 45.7

TP with SP (Ours) 68.6 46.3 59.2 33.9 86.6 71.7 70.5 46.6
TP without SP (Ours) 69.5 46.9 60.4 34.4 86.5 71.6 70.6 46.8

vs. pre-trained models
CLIP (RN101) [30] 46.4 21.9 39.4 12.5 85.1 70.0 68.9 45.7

CLIP (ViT-B/32) [30] 47.5 24.0 38.0 13.2 83.9 68.9 69.2 46.1
Superpoint [10] 66.1 42.4 59.4 33.4 85.9 71.0 70.0 46.1

vs. large-scale fine-tuned models
GeM [29]+CL [29] (GLD) [46] 71.0 49.1 57.1 30.3 86.6 72.4 70.2 46.6
GeM [29]+AP [32] (GLD) [46] 69.9 48.2 55.1 29.1 86.8 72.7 70.5 47.1

4.1 Experiment setting

In our study, we contrast our novel ToPological verification (TP) approach with established methods
like SP, Vector of Locally Aggregated Descriptors (VLAD) [19], and Aggregated Selective Match
Kernel (ASMK) [42], employing standard SIFT features for the comparison. For SP, we utilize
both standard RANSAC and Graph-Cut RANSAC (GCRANSAC) [5], recognized as one of the
superior RANSAC methods. The conventional comparison for SP involves reranking the top 100
images found by ASMK using the same local feature [28]. As advanced initial ranking methods
can introduce more challenging images and elevate the difficulty [28], we opt for the state-of-the-art
fine-tuned feature DELG [7] over SIFT for initial ranking. For fairness, all methods rerank the top
100. Though our primary focus is not on enhancing representative learning, we contrast our method
with state-of-the-art (SOTA) pre-training and fine-tuning techniques to underscore the importance of
this inference direction and its potential for future exploration. We benchmark our method against
pre-trained methods CLIP [30] and Superpoint [10]. In terms of the fine-tuning approach, we choose
methods fine-tuned on the extensive, cleaned Google Landmark Dataset (GLD) [46]. We notice that
some recent studies claim that GLD is not a fair fine-tuning set for ROxford and RParis because there
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are overlapped landmarks [45]. We agree with this claim. However, we still compare our approach
with SOTA methods fine-tuned on GLD because our method does not need any fine-tuning, and the
methods fine-tuned on GLD, although have fairness issues, show the best performance on ROxford
and RPairs. We compare our method with the well-known GeM [29], fine-tuned on GLD using
contrastive loss (CL) and AP loss (AP) [32]. To demonstrate the generalizability of our TP, we pair
it with the SOTA fine-tuned features of DELG [7] and the SOTA re-ranking method Hypergraph
Propagation (HP) [3]. We notice that there are existing claimed better results than DELG and HP on
ROxford and RParis, but combining DELG and HP is the best baseline we can successfully reproduce
by the submission date of this paper.

4.2 Quantitative result

Table 2: Results (% mAP) of
HP on the ROxford.

Method M H

SP (hop1) 80 61

Our TP (hop1) 81 63

SP (hop2) 85 69

Our TP (hop2) 86 71

As depicted in Table 1, our method notably surpasses SP,
GCRANSAC [5], ASMK, and VLAD across all settings. It signifi-
cantly outperforms SP by 8.6% and 11.7% on the challenging ROxford
under middle and hard settings, respectively. This underlines the fea-
sibility and effectiveness of our novel adaptation of the topological
model in RANSAC. Given the widespread usage of SP [26, 33, 35, 34]
and its competitiveness with other instance recognition approaches in
terms of accuracy [28, 7, 24], this improvement is particularly note-
worthy. Our results represent the top non-fine-tuning performance
on ROxford and RParis. While GCRANSAC excels at predicting
homography or fundamental matrices [5], it does not surpass stan-
dard RANSAC in our recognition task. This may be due to the
spatial model’s incompatibility with recognition tasks, suggesting
that enhancing spatial-based RANSAC may not improve landmark
recognition performance. In an ablation study conducted to assess the impact of using SP to filter
the hypothesis set, we found that incorporating SP surprisingly led to a decrease in final accuracy.
Despite our Python-based method averaging 1.23s per image pair, slower than C-implemented SP at
0.53s, we anticipate considerable speed improvements with a C-based implementation of our method.

Our TP outperforms notable pre-trained models, including CLIP [30] and Superpoint [10], without
requiring any training. Although CLIP delivers fair performance, it falls short of both SP and TP. These
results underscore the competitive edge of the hypothesis-testing strategy for landmark recognition
in highly noisy situations, even against large-scale pre-training methods. Despite Superpoint’s
superiority to SIFT in SP and its enhancement of inference performance, it remains less effective
than our TP. These results attest to our TP’s ability to circumvent the inherent issues of the spatial
model for recognition.

Query Correct image Similarity 
scores

0.22

0.23

0.23

Query 
patches

Target 
patches

0.15

0.1

Query Wrong image Similarity 
score

0.1
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HRs
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Figure 3: SP results, TP results, and some TP steps for
verifying a correct image pair (upper) and a wrong image
pair (down) using SIFT features. The threshold α is set as
0.2.

Our novel TP method demonstrates
competitive results against the
renowned GeM [29], fine-tuned on
the large cleaned Google landmarked
dataset (GLD)[46], without any
pre-training or fine-tuning. This
comparison, while unconventional
due to TP being a reranking method
and GeM an initial ranking method,
is meaningful. GeM, a state-of-the-art
retrieval baseline, marked a mile-
stone as the first metric learning
method to surpass non-fine-tuned
SP approaches [28], following a
series of improvements from selective
search[41] to R-MAC [43]. Since
then, non-fine-tuning techniques have
seen limited advancements. However,
TP breaks this trend, achieving
comparable results to GLD-trained GeM. This is not to say SIFT is enough for this task but

7



#inliers:57 #inliers:21 #inliers:22

#inliers:76

#inliers:21#inliers:46

SP

Ours

Figure 4: Hypergraph propagation results using traditional SP (upper) and our method (down). In
each triplet, the first image and third image are different. Red lines show SP’s wrongly connected
local features between the first image and the third image. The orange and green regions show the
verified HRs between each image pair. Our method correctly separates the local features of the first
and the third images. HR is the union of many verified patches. We only show the outline of key
points in HR for ease of observation.

to emphasize the potential of hypothesis testing when combined with a topological model for
non-fine-tuning image retrieval.

We acknowledge that advancements in fine-tuning features for ASMK or SP, such as SuperFeature
and DELG [45, 7], have emerged recently. While it is possible to train features for our TP, we leave
this for future work, as this work mainly focuses on the non-fine-tuning retrieval. However, to show
our method’s generalization capabilities, we still apply TP to fine-tuned DELG local features and
Hypergraph Propagation (HP) [3]. HP is a fast reranking method that combines verification and
diffusion on local features. It runs the heavy verification offline and thus achieves fast, low-memory,
and high-accuracy reranking online. Table 2 demonstrates that our method outperforms SP on
HP, irrespective of propagating among hop1 or hop2 neighbors; hop1 or hop2 is the truncation
hyperparameter in diffusion [3]. This improvement is noteworthy, considering it does not necessitate
any additional training. This is the SOTA retrieval performance on ROxford to the best of our
knowledge.

We understand that readers may have concerns about the practical value of a RANSAC-based
method in retrieval, given its slower processing time compared to using dot products with learned
embedding vectors. However, it is important to note that if RANSAC can provide reliable labels
without fine-tuning, these labels can be used directly to train the embedding space for any database,
eliminating the need for a specially collected fine-tuning set. As we shown in Table 2, it can also
directly improve HP accuracy. Because verification in HP is offline, the slower speed of RANSAC
is acceptable. Furthermore, SP is employed not only in retrieval but also in other tasks on mobile
devices where model size is crucial, such as loop-closure detection. Our TP, which shares the
lightweight nature of SP without involving millions of parameters like models such as ResNet [15],
offers enhanced robustness and accuracy. Most importantly, our method is highly explainable, which
we will discuss in the following section.

4.3 Qualitative result

In addition to its accuracy, our method exhibits high explainability, a crucial aspect for real-life
applications. The explainability of our method can be understood in three aspects:

1. We can observe how the HRs are constructed step by step, find a correspondence patch for each
patch in HR, and check how each candidate patch pair is accepted or rejected by the fovea function
F , as shown in Figs. 2 and 3. These characters offer a clear understanding of how our method works.

2. The TP detected HRs and matched patches are easy to comprehend, whether using SIFT (Fig. 3)
or DELG (Figs. 1 and 4). As shown in the upper row of Fig. 3, although SP can also give a high
inlier number for the correct image pair, its found matchings can be wrong. Our TP gives more
reasonable results. This issue of high inlier counts with incorrect matchings is also observed in DELG,
suggesting that fine-tuning can improve the similarity of local features for the same object, but cannot
guarantee the accuracy of their locations. Additional examples are provided in the supplementary
material. Fig. 4 compares the qualitative performance of SP and our TP on HP. The first query and
third image in each triplet do not depict the same building. Due to SP’s erroneous matching of
some local features (indicated by red lines), a search engine using SP mistakenly identifies the third
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image as a positive match. In contrast, our method accurately matches the correct similar regions
between two images and can correctly determine that the third image is unrelated to the query, thereby
enhancing retrieval performance.

Query FP Query FP Query FP

Query FN Query FN Query FN

Figure 5: The false positive (FP) and false nega-
tive (FN) cases of our method. We draw the SIFT
feature locations in the largest detected HRs for
FP cases and the ratio test results for FN cases.
Check more examples in the supplementary ma-
terial. Check all the FP and FN cases from this
link.

3. Our approach maintains explainability, even
in cases of false positives and negatives, offer-
ing valuable insights into the effectiveness and
potential issues at each stage. We have visual-
ized all false negatives (FN) and positives (FP)
in Fig. 5. For a more comprehensive review,
we provide a link for readers to explore further.
Interestingly, without context, many FP cases
are challenging for the authors to distinguish,
signaling the effectiveness of our fovea func-
tion F in generating reasonable patch similarity
results. Upon examining FN cases, we recog-
nize areas for enhancement. The primary issues
lie in incorrect ratio test results and significant
size changes. While our method considers size
changes, it struggles with handling extreme vari-
ations. An easy solution is to multi-rescale each
image and traverse all possible matching scales.

We refrained from this to avoid significantly reducing speed and to maintain a fair comparison with
SP. However, future work could potentially apply this strategy or devise a better sampling method to
manage extreme scale changes, thereby improving performance.

5 Discussion about the task value

This paper aims to advance explainable image retrieval in scenarios where a fine-tuning set is
unavailable. This pursuit carries significant weight as acquiring a large fine-tuning set can often be
impractical or costly, especially in open-world or private settings. Therefore, research in this domain
has the potential to enhance the utility of AI systems across a variety of real-world contexts.

Our exploration into non-fine-tuned retrieval is further motivated by the observed gap between human-
level performance and that of the state-of-the-art (SOTA) fine-tuned models [4, 40] on challenging
datasets such as ROxford/ RParis [28] and PROxford/ PRParis [3]. Notably, these datasets provide
invaluable user study results, as each positive image pair is verified to be identifiable by humans
without the need for contextual visual information [28, 4]. Our recent study shows that annotators
who are not familiar with European buildings can recognize, localize, and segment the target landmark
of all the positive image pairs in ROxford and RParis. We propose the pixel-retrieval task and its first
benchmarks PROxford and PRParis, to evaluate the pixel-level recognition [4]. Interestingly, humans
achieve this remarkable recognition ability without extensive in-domain training, such as learning from
the Google Landmarks Dataset (GLD) [46]. Yet, even the best fine-tuned models [7, 40] trained on
the vast GLD with 4.1 million images have yet to reach human-level accuracy on ROxford/RParis and
PROxford/PRParis. This discrepancy prompts us to question how humans excel in such recognition
tasks without large-scale fine-tuning.

The process of recognition is a confluence of perception and cognition. The superior instance
recognition of humans in the ROxford dataset might be more cognitively inclined, though concrete
evidence remains elusive. Cognition entails reasoning based on existing knowledge for decision-
making and the discovery of new knowledge [47, 13, 37]. When summarizing notable human instance
recognition experiments [6, 16, 39], Greyson [1] defines perception as the direct link between an
instance and its visual features, while cognition involves understanding the object’s changes in
viewpoint or state (e.g., background and illumination) [47, 1, 11, 22]. Machine learning methods
that align with this definition of cognition include ASMK [42] and SP [26], which further motivates
us to explore improvements to SP without fine-tuning. Future research discerning the nuances
between perception and cognition could potentially enhance non-fine-tuning methods for real-world
applications.
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6 Conclusion
Our study highlights the limitations of the SPatial verification (SP) method, particularly its reliance
on a spatial model for recognition. As a potential alternative, we propose the use of topological
common sense, which significantly outperforms SP and achieves unprecedented performance in
non-fine-tuning instance recognition. This underscores the potential of hypothesis-testing inference.

The inspiration for our saccade and fovea function comes from the human process of comparing two
newly seen images. In this sense, our topological approach aligns more closely with the human visual
system than the spatial approach. While humans don’t compute transformation matrices like SP when
comparing images, they intuitively understand the topological relations among observed objects—for
instance, recognizing that a hand is connected to an arm. Notably, topological information is
vital to the human visual system, as it is consistently preserved even when visual signals undergo
significant deformation during transmission from the retina to the lateral geniculate nucleus and
visual cortex [44, 18].

Importantly, our method doesn’t compete with existing fine-tuning methods but complements them.
It can directly integrate learned features, and future work could even fine-tune features specifically
for this topological approach.
While our results are promising, they also pave the way for future exploration. Subsequent work
could investigate the incorporation of more complex common sense concepts, both explicit, like
our topological model, and implicit, derived from pre-training. Enhancements in these areas could
potentially boost the robustness and adaptability of our method. Further study into the convergence
properties of our method and refinement of the hypothesis sampling strategy are also warranted.
Through addressing these areas, we aspire to advance object recognition and highlight the potential
of hypothesis-testing approaches in artificial intelligence.
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