
A Implementation details: retrieval based scene understanding486

A.1 How to store memories?487

The memory bank only needs to be calculated once per dataset and can then be re-used for each of the488

images in the evaluation set. To populate the memory bank, each image in the dataset’s training set489

(i.e. the “prompt”) is encoded using the frozen backbone of the pretrained network to evaluate. We490

encode each of the training set images into a spatial map ki=f✓(xi)2RH⇥W⇥D, where a feature491

kj

i
2RD at a given spatial location j is aligned with the local label lj

i
created by averaging the pixel492

labels yj

i
in that patch. These features ki are then L2-normalized.493

When the memory bank length is not large enough to accommodate all features for all images, it494

is necessary to subsample and only store a subset of the features of each image. For a concrete495

example using ADE20K, training set images have a resolution of 512⇥ 512 which when encoded496

by a ViT-B/16 results in a 32 ⇥ 32 grid of features (i.e. 1,024 features per image). To store every497

feature from each of ADE20K’s 20,120 training images would require a memory bank length of498

20,120⇥ 32⇥ 32 = 20,695,040. When using data augmentation to increase the number of training499

images, the required length is even higher.500

Our subsampling strategy for semantic segmentation works as follows. We define the number of501

features to take per image as nfeatures_per_image = |M|
|D|⇤num_augmentation_epochs where |D| refers to the502

number of images in the training dataset. We thus sample the same number of features for each503

training image. Rather than sampling this number of features per image from the grid uniformly, we504

attempt to sample the most salient features using a simple strategy: upweighting patches containing505

class labels that appear less frequently in the image. Following the notation of Section 3.1, let506

lj refer to the label attached to the patch indexed by j in the image and let c2lj = 1 if a given507

class c 2 lj and 0 otherwise. Then for each class c we define c =
P

j c2lj (i.e. a count of how508

many patches the class c appeared in). We define a “class score” for each patch indexed by j as509

class_scorej =
P

c2C c · c2lj . Finally, we take the nfeatures_per_image from the spatial map ki with510

the lowest final scores using511

final_scorej = (class_scorej · x) + (106 · lj=;) (5)

where x ⇠ U[0,1]. The first term introduces some stochasticity into the sampling process and the512

second term deprioritizes locations that have no class label. The chosen features serve as the memory513

bank keys and their associated labels are the memory bank values.514

The subsampling strategy used for depth estimation is simpler since there are no classes involved. We515

opted not to use data augmentation for this task making nfeatures_per_image =
|M|
|D| . We first randomly516

order each patch in the image, then place all patches that contain no valid pixel labels after any patch517

with valid pixel labels, and then take the first nfeatures_per_image from the list.518

There are many possible alternative strategies for sampling the most salient patches within an image in519

the event that the memory bank length cannot fit every feature from every image. We leave exploration520

of these possibly better sampling strategies for future work because in general we found this technique521

to perform well and wanted to show that nearest neighbor evaluation does not require complicated,522

hand-crafted strategies but rather works well out of the box with a simple heuristic calculated per523

image. For a complete listing of the hyperparameters involved in building and retrieving from the524

memory bank, see Appendix A.2.525

A.2 How to recall memories?526

After the memory bank has been populated as described in Appendix A.1, we sequentially make527

predictions for each image in the evaluation set. Evaluation was done on a single Nvidia V100528

GPU per downstream task and takes approximately 20 minutes for PASCAL VOC, 40 minutes for529

ADE20K, and 75 minutes for NYUv2. Each image x is encoded as a grid of features q=f✓(x) and530

each of the features from this grid will serve as the query that we will look up the nearest neighbors531

for. We use the open-source ScaNN library [28] to perform the approximate nearest neighbor search532

efficiently. ScaNN natively provides the functionality to return both the top-k nearest neighbors for a533

given query as well as scores for the similarity that can be used as the attention logits. These scores534

14

are then divided by a temperature scaling value before having a softmax applied to them to obtain the535

final attention values (see Equation 1).536

Throughout the paper, we use ScaNN in asymmetric hashing (AH) mode as opposed to brute-force537

mode. We find that there is little to no negative impact on the evaluation from using approximate538

nearest neighbor search as opposed to a brute-force exact search, despite the approximate search539

being several orders of magnitude faster. We use cosine similarity (L2-normalized dot product)540

as a distance measure throughout this work. We also attempted some experiments using squared541

Euclidean distance and found it to have no benefits to performance for any of the models evaluated.542

Table 6: NN retrieval hyperparameters. Note that no training is involved with NN evaluation,
hence there are no hyperparameters such as learning rates or training epochs.

Section 4.2 Everywhere else

|M| (Memory bank length) 20,480,000 10,240,000
k (nearest neighbors) 90 30
Temperature .1 .02
Augmentation epochs 8 2
ScaNN dimensions_per_block 4 4
ScaNN num_leaves 512 512
ScaNN num_leaves_to_search 256 32
ScaNN reordering_num_neighbors 1800 120

Table 6 summarizes the hyperparameters used for NN evaluation throughout this work. For every543

section except for Section 4.2, we use a flat set of hyperparameters detailed in the “Everything else”544

column of Table 6. Because Section 4.2 is concerned with small subsets of the data (i.e. training545

on the order of hundreds of images), hyperparameter sweeps are extremely cheap to run and it is546

computationally fast to find nearest neighbors even with minimal approximations, hence we used547

a slightly different set-up in this regime. In general, we found nearest neighbor retrieval to be sur-548

prisingly robust to the choice of hyperparameters, with temperature and reordering_num_neighbors549

being the most relevant to performance. The same set of hyperparameters were used for the seman-550

tic segmentation tasks (PASCAL VOC and ADE20K) as for the monocular depth estimation task551

(NYUv2), with the exception of the number of augmentation epochs (we did not use augmentations552

for depth estimation). For a complete description of the meaning of the ScaNN hyperparame-553

ters, please see https://github.com/google-research/google-research/blob/554

master/scann/docs/algorithms.md.555

Table 7 details the parameters used for augmenting the training dataset for semantic segmentation556

tasks. Note that the augmentations used to augment the training set when evaluating downstream557

tasks differ from the augmentations used for creating different views of the same image during558

contrastive pretraining described in Appendix C.1. When augmentations are enabled, the image is559

first scaled between the minimum and maximum scale factor, from which a random crop is selected.560

Then photometric augmentations are applied independently with the probabilities and maximum561

intensities provided.562

Table 7: Evaluation augmentations. Parameters used to augment the training dataset for semantic
segmentation.

Parameter
Random crop probability 1.0
Minimum scale factor 0.5
Maximum scale factor 2.0
Brightness jittering probability 0.5
Contrast jittering probability 0.5
Saturation jittering probability 0.5
Hue jittering probability 0.5
Brightness adjustment max 0.1
Contrast adjustment max 0.1
Saturation adjustment max 0.1
Hue adjustment max 0.1

15

https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md
https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md
https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md

B Implementation details: contextual pretraining563

The contextual pretraining module takes as input an image representation (i.e. query) q = h =564

f✓(x)2RB⇥H⇥W⇥D from the ViT encoder f✓, where B=4096 is the batch size, H=W =14 are565

the height and width of the spatial feature map and D=768 for ViT-B and D=1024 for ViT-L is the566

feature dimension. Keys and values for the contextualization cross-attention operation are entries of567

the memory bank Mp = {(ki,vi), i=1, ..., |Mp|}, where keys ki are taken from previous batches568

by spatially averaging h (see Equation 2) and values vi are obtained by applying a two-layer MLP569

�✓ to the keys, where we use batch norm after the first layer and the hidden dimension is set to 4096.570

Each feature qi of the image representation is then updated as ci= ✓((1� �) qi

kqik + �
v̂i

kv̂ik), where571

 ✓ is a linear layer and kxk is the L2 norm. Preliminary analysis showed �=0.2 to work well across572

datasets, so we use it for all our experiments, with higher values ��0.5 degrading performance.573

We populate the memory bank with all batch entries of ImageNet-1k / -22k at each step, using the574

representations from the target network. The memory bank is spread across 128 Cloud TPU v3575

workers with 1200 entries on each TPU for ImageNet-1k (256 TPUs with 600 entries for ImageNet-576

22k), resulting in total memory length of 153,600.577

C Implementation details: self-supervised pretraining578

C.1 Data augmentation579

Each image is randomly augmented twice, resulting in two views x1 and x2. The augmentations are580

constructed as compositions of the following operations, each applied with a given probability:581

1. random cropping: a random patch of the image is selected, whose area is uniformly sampled582

in [0.08 · A,A], where A is the area of the original image, and whose aspect ratio is583

logarithmically sampled in [3/4, 4/3]. The patch is then resized to 224⇥ 224 pixels using584

bicubic interpolation;585

2. horizontal flipping;586

3. color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly587

distributed offset;588

4. color dropping: the RGB image is replaced by its grey-scale values;589

5. gaussian blurring with a 23⇥ 23 square kernel and a standard deviation uniformly sampled590

from [0.1, 2.0];591

6. solarization: a point-wise color transformation x 7! x · x<0.5 + (1 � x) · x�0.5 with592

pixels x in [0, 1].593

The augmented images x1 and x2 result from augmentations sampled from distributions T1 and T2594

respectively. These distributions apply the primitives described above with different probabilities and595

different magnitudes. Table 8 specifies these parameters for the BYOL framework [27], which we596

adopt without modification.597

Table 8: Pretraining augmentations. Parameters used to generate different views of a single image
for contrastive pretraining.

Parameter T1 T2

Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.4
Contrast adjustment max 0.4
Saturation adjustment max 0.2
Hue adjustment max 0.1
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

16

C.2 Optimization598

We pretrain the model for 300 epochs on ImageNet-1k or 100 epochs on ImageNet-22k using AdamW599

[46] with a batch size of 4096, split across 128 Cloud TPU v3 workers for ImageNet-1k and 256600

Cloud TPU v3 workers for ImageNet-22k. Training a ViT-B / ViT-L for 300 epochs on ImageNet-1k601

takes roughly 21 hours / 53 hours, while 100 epochs on ImageNet-22k takes approximately 60 hours602

/ 128 hours. We update the online parameters ✓ with a cosine learning rate schedule with a base603

learning rate of 0.001, weight decay of 0.1 and gradient clipping with a maximum norm of 1. We604

update the target parameters ⇠ as an exponential moving average of the online parameters with a605

decay rate of 0.99.606

Following [15] the projections and predictions in Equation 4 are normalized and rescaled such that607

their norm is equal to 1/
p
⌧ where the contrastive loss temperature ⌧ is equal to 0.1. When using608

additional supervision we set the supervised loss weight ↵ to 0.25 for the supervised ViT-B trained609

on ImageNet-22k and ↵=0.05 for all other experiments.610

D Supplementary analysis611

D.1 Data efficiency612

In Table 2 we compared Hummingbird with several leading representation learning techniques in613

the low-data regime. Here we provide the complete analysis from 1/128 to 100% of the data, as614

well as results for our ViT-L model trained on ImageNet-22k to show the scalability properties of615

Hummingbird. Note that there is a difference between the experiments run here and those found in616

Section 4.4 of the main paper; that section uses an UperNet [73] decoder and this section uses a linear617

decoder for all of the finetuned rows in each table.618

For PASCAL VOC (Table 9), Hummingbird performs very well not only in the low-data regime but619

in the full-data regime, with the apples-to-apples comparison (ViT-B self-supervised on IN1K) com-620

petitive with all other techniques even as the dataset fraction increases. This table also demonstrates621

the clear benefit of supervision as well as model-size and dataset size scaling—with only nearest622

neighbors (no finetuning), Hummingbird++ trained on IN22K with a ViT-L backbone beats all of623

the other finetuned variants for every dataset fraction. Hummingbird++ using a ViT-B and IN1K624

predictably lies inbetween the other two models for every dataset fraction.625

For ADE20K (Table 10), the same general trends from above hold. Backbone and dataset scaling626

are once again beneficial as Hummingbird++ with ViT-L and IN22K training outperforms the627

other Hummingbird models, however this time the absolute performance relative to the finetuned628

competition in the high-data regime is less favorable since the end-to-end finetuned versions of other629

techniques start to outperform the nearest neighbors only ViT-L Hummingbird++ at 1/16 of the data.630

Table 9: PASCAL VOC data efficiency analysis. After pretraining, models are applied to down-
stream tasks with the indicated fraction of the dataset size. Models perform the task either with
end-to-end fine-tuning with a linear head (E2E FT) or with our mechanism for in-context scene
understanding using nearest neighbors at evaluation time (NN). All fine-tuning runs are averaged
over five different seeds. The metric reported is mean IoU (higher numbers are better). † denotes
models trained on ImageNet-22k; all other models were trained on ImageNet-1k.

Fraction of dataset

Method Decoder Backbone 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1/1

DeiT-III [64] E2E FT ViT-B 41.8 53.8 63.1 67.7 70.7 72.2 73.4 75.2
DINO [14] E2E FT ViT-B 36.1 44.3 54.3 57.8 61.7 64.8 68.2 72.2
MoCo-v3 [19] E2E FT ViT-B 19.9 33.4 47.0 54.8 61.5 67.1 70.7 73.4
MAE [29] E2E FT ViT-B 34.2 44.1 53.0 58.7 62.7 67.4 70.8 73.5
LOCA [12] E2E FT ViT-B 40.1 53.9 63.1 67.8 70.7 72.8 74.4 75.5
Hummingbird NN ViT-B 50.5 57.2 60.1 62.6 64.3 65.9 68.9 71.8
Hummingbird++ NN ViT-B 52.4 57.3 61.5 64.6 66.2 67.9 70.5 73.2
Hummingbird++

† NN ViT-L 61.8 65.3 68.0 70.7 71.4 73.2 75.3 77.2

17

Table 10: ADE20K data efficiency analysis. After pretraining, models are applied to downstream
tasks with the indicated fraction of the dataset size. Models perform the task either with end-to-end
fine-tuning with a linear head (E2E FT) or with our mechanism for in-context scene understanding
using nearest neighbors at evaluation time (NN). All fine-tuning runs are averaged over five different
seeds. The metric reported is mean IoU (higher numbers are better). The results for other techniques
between 1/32 and 1/1 are sourced directly from [12], the rest are reproductions. † denotes models
trained on ImageNet-22k; all other models were trained on ImageNet-1k.

Fraction of dataset

Method Decoder Backbone 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1/1

DeiT-III [64] E2E FT ViT-B 10.8 14.3 20.9 27.1 32.7 38.3 42.0 47.3
DINO [14] E2E FT ViT-B 11.7 14.4 18.4 24.5 29.5 35.2 39.5 44.1
MoCo-v3 [19] E2E FT ViT-B 4.6 7.9 17.7 25.2 30.8 36.5 40.7 45.4
MAE [29] E2E FT ViT-B 8.2 12.2 18.4 25.3 30.5 36.1 40.6 45.5
LOCA [12] E2E FT ViT-B 11.2 15.5 22.2 30.0 34.4 39.1 42.8 47.9
Hummingbird NN ViT-B 11.7 15.1 17.3 20.0 22.3 24.9 27.9 29.6
Hummingbird++ NN ViT-B 12.7 16.4 18.9 21.5 24.0 26.8 29.9 32.0
Hummingbird++

† NN ViT-L 16.6 20.5 24.0 27.4 30.2 33.1 36.0 37.8

D.2 Correlation of NN retrieval and finetuning performance631

In this section, we study the relation between NN retrieval performance and end-to-end finetuning.632

To that end, we collect 14 Hummingbird models trained with different architectures (ViT-B vs ViT-L),633

datasets (ImageNet-1k vs ImageNet-22k), learning objectives (self-supervised or with additional634

supervision), and training lengths. Figure 5 plots the performance of these models when equipped635

with NN retrieval decoders (x-axis) and fully-finetuned UperNet decoders (y-axis). For both PASCAL636

VOC and ADE20K semantic segmentation, performance using one decoding scheme is highly637

predictive of the other (Person’s ⇢ = 0.80 for PASCAL VOC, ⇢ = 0.89 for ADE20K). As such, even638

in cases where NN retrieval underperforms end-to-end finetuning, it can still be used as a powerful639

diagnostic tool. As illustrated in Section 4.3, evaluating with NN retrieval is much simpler and faster640

than with end-to-end finetuning, even when using a linear decoder. End-to-end finetuning often641

requires sweeping over optimization hyperparameters and averaging across multiple seeds, making it642

unsuitable for online evaluation, whereas NN retrieval is 10x less variable across runs and doesn’t643

require any hyperparameter sweeps. As such NN retrieval can be used as an online evaluation that is644

highly predictive of performance obtained with more expensive finetuning protocols.645

Figure 5: Correlation of NN retrieval vs end-to-end finetuning.

D.3 Effect of pretraining and evaluation memory length for ADE20K646

We include the equivalent of Figure 4 on the ADE20K dataset in Figure 6. Similar to what we647

observe for PASCAL VOC, we benefit from large memory banks at evaluation. Since the ADE20K648

training set is roughly 2x larger than that of PASCAL VOC, we also observe that sampling which649

18

features to store in the memory bank is more important than it is for PASCAL VOC (see Appendix650

A.1 on the details of the sampling procedure). Similarly, at training time, ADE20K benefits from651

larger pretraining memory banks than PASCAL VOC, with performance plateauing for memory652

banks larger than 200,000. Thus, we set the pretraining memory bank length to 153,600 in all our653

experiments (see Appendix B for details on contextual pretraining).654

Figure 6: Effect of the pretraining (left) and evaluation (right) memory length on performance of
ADE20K. All models were pretrained with ViT-B on ImageNet-22k. Left: Since the retrieval-based
supervised objective is only defined for memory banks of non-zero length, for the purpose of this
ablation we replace it with a simple linear classifier when |Mp|=0. Right: For downsample=False,
we store representations of all patches into the memory bank. If downsample=True, we sample
|M|/N patches per image (N is the length of the downstream training set), allowing for greater
memory bank diversity and thus superior performance than when downsample=False.

19

	Introduction
	Related Work
	Method
	Retrieval-based scene understanding
	Contextual pretraining
	Self-supervised objective
	Retrieval-based supervised objective

	Experiments
	Retrieval-based scene understanding
	Data-efficient retrieval-based scene understanding
	Fast adaptation to downstream tasks
	Fully finetuned scene understanding

	Analysis
	Conclusion
	Broader Impact and Limitations
	Implementation details: retrieval based scene understanding
	How to store memories?
	How to recall memories?

	Implementation details: contextual pretraining
	Implementation details: self-supervised pretraining
	Data augmentation
	Optimization

	Supplementary analysis
	Data efficiency
	Correlation of NN retrieval and finetuning performance
	Effect of pretraining and evaluation memory length for ADE20K

