
Towards In-context Scene Understanding

Ivana Balažević∗ David Steiner∗ Nikhil Parthasarathy† Relja Arandjelović Olivier J. Hénaff
Google DeepMind

Abstract
In-context learning—the ability to configure a model’s behavior with different
prompts—has revolutionized the field of natural language processing, alleviating
the need for task-specific models and paving the way for generalist models capable
of assisting with any query. Computer vision, in contrast, has largely stayed in
the former regime: specialized decoders and finetuning protocols are generally
required to perform dense tasks such as semantic segmentation and depth estimation.
In this work we explore a simple mechanism for in-context learning of such
scene understanding tasks: nearest neighbor retrieval from a prompt of annotated
features. We propose a new pretraining protocol—leveraging attention within and
across images—which yields representations particularly useful in this regime.
The resulting Hummingbird model, suitably prompted, performs various scene
understanding tasks without modification while approaching the performance of
specialists that have been finetuned for each task. Moreover, Hummingbird can
be configured to perform new tasks much more efficiently than finetuned models,
raising the possibility of scene understanding in the interactive assistant regime.

1 Introduction

In natural language processing (NLP), the pretrain-finetune paradigm has long been the dominant
way of acquiring domain-specific knowledge and adapting a model’s behavior to a particular task (e.g.
question answering, natural language inference, summarization). More recently and predominantly
due to the increase in model and dataset sizes, large language models have exhibited impressive,
task-agnostic emergent capabilities [11, 37, 68], where a single model, given an appropriate prompt,
can perform a wide range of downstream tasks without any change in its parameters.

While large-scale supervised and self-supervised pretraining in vision has yielded powerful encoders
which capture useful semantics [15, 22, 31, 32, 35, 42, 43], applying these representations to solve
downstream tasks has typically required bespoke decoders and end-to-end finetuning. The most
readily applicable representations are trained for image-text alignment, enabling zero-shot classifi-
cation [53] and image-based dialogue [2, 19, 80, 81], however these models are inherently limited
by the coarseness of natural language outputs. Attempts have been made at casting fine-grained
tasks (e.g. detection) as language modeling [17], but dense scene understanding tasks requiring
millions of outputs do not lend themselves to this format. Indeed, deficiencies in fine-grained spatial
understanding have been well documented in visual language models [36, 45, 64, 79].

In this work, we investigate the components required for in-context learning of scene understanding
tasks, which we characterize along three axes: generality, data efficiency, and fast adaptation. To this
end, we expand the well-known non-parametric nearest neighbor (NN) retrieval method [7, 9, 15, 75]
to support a variety of dense scene understanding tasks. This retrieval-based decoding mechanism has
the advantage of requiring no task-specific parameters or finetuning, thus enabling effortless adaption
of standard encoders (e.g. ResNet [32] or ViT [22]) to any dense task of interest, as well as faster
research iteration by allowing for simpler and more efficient model selection during pretraining.

*Equal contribution. †Current affiliation: NYU CNS, work done while interning at Google DeepMind.
Correspondence to {balazevic, davidsteiner, henaff}@google.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

We further show that the NN scene understanding capabilities of canonically pretrained vision trans-
formers (such as MAE [30] and DINO [15]) vary greatly, despite similar finetuned performance. We
find two pretraining components to yield reliable gains: (1) a simple modification to the standard
self-supervised pretraining protocol, termed contextual pretraining, which performs attention across
images by updating the spatial representation of each image with features retrieved from a memory
bank, and (2) a spatial attention pooling mechanism (as opposed to the more standard mean pooling
or the [CLS] token), which computes attention within an image to summarize the (contextualized)
spatial grid of features into a single image-level representation to be fed into the self-supervised objec-
tive. We showcase the benefits of this approach in a standard contrastive framework, demonstrating
large gains in NN scene understanding over prior pretraining methods.

Finally we find that our model, named Hummingbird due to its fast adaptation properties: (1) yields
general-purpose representations which perform well in non-parametric semantic segmentation and
monocular depth estimation using NN retrieval, (2) approaches the performance of fully finetuned
models on some tasks, and (3) is more data-efficient and faster to adapt to new tasks when equipped
with NN retrieval, compared to other pretraining methods and decoding mechanisms. By adapting
quickly and efficiently to new tasks specified on the fly, Hummingbird raises the possibility of vision
systems providing general-purpose assistants with in-context scene understanding.

2 Related Work

Retrieval-based perception. Non-parametric evaluation has a long history with roots in the
exemplar theory of human cognition [3, 38, 50] and case-based theories of artificial intelligence
[1, 58]. In computer vision, non-parametric methods combined with simple features such as SIFT
[48] and HOG [21] saw early success in image classification [9], shape matching [7, 8, 59], scene
recognition [66, 76], and image parsing [44]. Exemplar-SVMs [49] showcased the versatility of
non-parametric methods by retrieving arbitrary meta-data (such as segmentations, geometry, even 3D
models) from training examples. We leverage these insights with modern architectures and training
paradigms coupled with dense retrieval.

Retrieval-based training. To improve retrieval-based performance at test time, retrieval-based
classifiers [69, 74] shape their representations for this task, enabling fine-grained classification from
coarse supervision. While not explicitly training for it, DINO [15] witnessed NN classification
abilities emerge from self-supervised training of vision transformers, enabling global retrieval tasks
such as landmark recognition and copy detection. In [72], tracking abilities emerge after pretraining
on a colorization task via retrieval from reference frames of a video. Retrieval has also been proposed
as a means of enriching the positive pairs used in self-supervised contrastive learning [24]. These
works differ from ours in that they encode and retrieve global representations of entire images, in
contrast to the local inferences required by dense scene understanding tasks.

Fast adaptation. A number of methods have tackled the problem of adapting to newly specified
tasks, most often from the perspective of meta-learning. For example, matching networks [71]
and MAML [26] learn to solve new classification and reinforcement learning tasks specified on
the fly. Architectural innovations, such as image prompting [4, 39, 82] and adapter layers [27, 55]
have also facilitated transfer to new image recognition tasks. While fast adaptation to dense scene
understanding tasks has been less studied, image inpainting [6, 73] and VTM [41] have made
progress in this direction, particularly in the low-data regime. These approaches differ from ours in
that they achieve fast adaptation by training on related dense tasks and (in the case of VTM) adapt
to downstream tasks with task-specific weight updates and learned similarity functions. In contrast,
we maintain the simplicity of pure retrieval-based approaches by adapting to new downstream tasks
without modifying any model parameters, and the generality of self-supervised approaches by learning
representations from generic pretraining data with no dense annotations.

Self-supervised learning. Methodologically, our representation learning method is most similar
to self-supervised learning (SSL) techniques. Similarly to NLP, image-based SSL has witnessed
great success in recent years, notably with the advent of contrastive methods [14, 15, 16, 23, 33],
self-distillation [12, 18, 28], and masked auto-encoding [30]. Due to their conceptual simplicity, we
base our method on standard contrastive baselines such as SimCLR [16] and MoCo [31]. Image-based
SSL techniques have since been tailored to learning representations which transfer well to scene
understanding tasks [13, 33, 70, 78], and although they have been shown to support zero-shot object
discovery [34, 61], they generally still require task-specific decoders and end-to-end finetuning.

2

Find nearest neighbors

Aggregate their labels

Input prompt images

Input prompt labels

Query images

Predictions

Figure 1: In-context scene understanding with nearest neighbor retrieval. On the left, we provide
the system with a “prompt” of annotated images. On the right, we ask the system to describe new
query images. The network computes dense features for each location and uses them to query features
computed from the prompt. The labels associated with the nearest prompt features are then aggregated
to make predictions about the query. Note that the system makes no assumptions about the nature of
the labels, and as such can be used to solve a variety of different scene understanding tasks in-context.
The nearest neighbors and predictions in this example are computed with our Hummingbird model.

3 Method

The following sections describe the retrieval-based scene understanding decoding protocol (Section
3.1), followed by the contextual pretraining method (Section 3.2) and the self-supervised (Section
3.3) and supervised learning objectives (Section 3.4). We use subscripts xi to differentiate between
representations and superscripts xj to denote spatial locations within a representation.

3.1 Retrieval-based scene understanding

A general-purpose image representation should perform well across a variety of scene understanding
tasks out-of-the-box, i.e. without modifying its parameters. To test whether a representation satisfies
this condition, we extend the standard image-level nearest neighbor (NN) retrieval [7, 9] decoding
mechanism to dense, patch-level retrieval (with patch size set to 16×16 across all models in this work).
Given a prompt composed of training images from the downstream task and their corresponding
labels {(xi,yi), i = 1, ..., N,xi∈RH′×W ′×C}, our aim is to enable a pretrained image encoder fθ
to make predictions about a new image x from the test set. In tasks considered in this work, labels yi

are spatial maps of either class labels yi∈CH′×W ′
(e.g. for semantic segmentation, where C is the

space of all classes) or scalars yi∈RH′×W ′
(e.g. for monocular depth estimation).

We encode each prompt image into a spatially flattened map ki=fθ(xi)∈RH·W×D, where a feature
kj
i ∈RD at a spatial location j is aligned with the local label lji created by averaging the pixel labels

yj
i of a patch. We then sample a subset of features and local labels for each image, which form the

keys and values of the memory bank M={(kj
i , l

j
i), i=1, ..., N, j∼S} (see Appendix A.1 for details

on the sampling distribution S). In the following, we do not distinguish between entries from different
images, and use a single integer j to index into the memory bank: M={(kj , lj), j=1, ..., |M|}.

Given a test image x, we form a representation q=fθ(x) and use each spatial feature qi as a query
to cross-attend over the memory bank with temperature β. The cross-attention weights are then used
to combine the corresponding labels and form a local prediction l̂i:

si,j =
1

β

⟨qi,kj⟩
∥qi∥∥kj∥

, ai = softmax
j

(si), l̂i =
∑
j

ai,j lj . (1)

Equation 1 defines the cross-attention operation as l̂i = CA(qi,kj , lj). The final prediction ŷ is
simply the concatenation of local predictions l̂i upsampled to the original image size via bilinear
interpolation. As a result, nearest neighbor retrieval allows a simple image encoder to perform scene
understanding tasks without any decoders or parameter adaptation (finetuning or otherwise) to the
downstream dataset. The mechanism is also entirely agnostic to the format of the labels, enabling it
to perform tasks as diverse as semantic segmentation and depth estimation.

3

Confidential - DeepMind

encoder

attention
pool

encoder

contrastive
objective

downstream
tasks

encoder +
mean pool

contextualizeaugment

augment contextualize

view 1

view 2

hiddens
contextualized

hiddens

memory bank

attention
pool

Figure 2: Hummingbird model components.

3.2 Contextual pretraining

Memory retrieval allows an image encoder to perform various tasks by combining labels of nearby
examples. To ensure that a model will perform well in this regime, we propose to train it in a similar
manner, by enforcing its representation to be expressed as a combination of representations of nearby
examples. Over the course of training, we populate a memory bank Mp = {(ki,vi), i = 1, ..., |Mp|}
with spatially averaged keys and values computed from training images xi from previous batches:

hi = fθ(xi) ∈ RH·W×D, ki =
1

H ·W

H·W∑
j=1

hj
i ∈ RD, vi = ϕθ(ki) ∈ RD, (2)

where we use an MLP as the value head ϕθ (see Appendix B for implementation details). We then
form a representation q=fθ(x) of a new training image x and use each spatial feature qi to attend
over the memory bank and compute an update v̂i=CA(qi,kj ,vj). Each feature is “contextualized”
as ci = ψθ((1 − λ) qi

∥qi∥ + λ v̂i

∥v̂i∥) , where ψθ is a linear layer and λ a weighting parameter. The
contextualized image representation c=gθ(q, Mp) is simply the concatenation of local features ci.

Note that the pretraining memory bank Mp is discarded at test time and differs from the test
time memory bank M described in Section 3.1, allowing for straightforward comparison of our
representations fθ(x) to those trained without the memory bank.

3.3 Self-supervised objective

While contextual pretraining updates representations by attending across images, we hypothesize that
learning to attend within images will also enable fine-grained predictions required by dense tasks. To
that end, we train representations to locate the most distinctive part of an image using a combination
of attention pooling and contrastive learning. Following [16, 28], we construct different views of
unlabeled images x through random data augmentation x1 ∼ A1(x),x2 ∼ A2(x), see Appendix
C.1. Each view is encoded as hi=fθ(xi) and further contextualized with the mechanism described
above as ci=gθ(hi, Mp)∈RH·W×D (see Figure 2). Following [52], we compute attention pooled
representations ĉi∈RD using masks mi derived from a lightweight attention module aθ, which we
augment with an additional value head ωθ. Pooled features are then used to compute projections zθ

i :

mi = softmax
j

(aθ(ci)), ĉi =

H·W∑
j=1

mj
l ωθ(c

j
i), zθ

i = pθ(ĉi). (3)

Finally, following [20, 28, 65], each view forms predictions qθ(zθ
i) about the other view’s targets

zξ
j , which are computed with the same architecture and a different set of weights ξ which vary more

slowly (see Appendix C.2). The online weights θ are optimized using a standard contrastive loss:

Lij
SSL(θ; ξ) = − log

exp(qθ(z
θ
i) · z

ξ
j)

exp(qθ(zθ
i) · z

ξ
j) +

∑
k exp(qθ(z

θ
i) · z

ξ
k)
. (4)

4

Table 1: In-context scene understanding. All models are pretrained on source data in a supervised
or self-supervised manner, and applied to downstream datasets without modification. All downstream
tasks are performed using a single mechanism, nearest neighbor retrieval. †indicates our reproduction
of external work, all other models were evaluated using publicly available checkpoints.

Semantic segmentation Depth pred.

Method Encoder Params (M) Dataset PASCAL ↑ ADE20K ↑ NYUv2 ↓

Supervised† ViT-B 86 IN1K 35.1 13.8 .913
DINO [15] ViT-B 86 IN1K 55.9 21.8 .793
MoCo-v3 [20] ViT-B 86 IN1K 37.2 14.6 .771
MAE [30] ViT-B 86 IN1K 6.6 3.3 .981
LOCA [13] ViT-B 86 IN1K 57.5 18.5 .880
Hummingbird ViT-B 86 IN1K 70.5 28.3 .718
Hummingbird++ ViT-B 86 IN1K 72.1 30.5 .738

Supervised† ViT-B 86 IN22K 63.5 28.0 1.07
MAE† [30] ViT-B 86 IN22K 9.8 4.2 .968
LOCA [13] ViT-B 86 IN22K 56.4 16.8 .829
Hummingbird ViT-B 86 IN22K 73.5 30.7 .706
Hummingbird++ ViT-B 86 IN22K 76.2 34.1 .695

Comparison across architectures:
CLIP† [53] NFNet-F6 [10] 438 ALIGN 57.2 25.0 .844
Supervised† NeXt-XL [46] 1300 IN22K 58.9 25.5 .791
Supervised† ViT-L 307 IN22K 65.8 26.1 .860
MAE [30] ViT-L 307 IN1K 8.0 3.6 .934
LOCA [13] ViT-L 307 IN22K 59.5 17.6 .912
Hummingbird ViT-L 307 IN22K 76.9 35.0 .671
Hummingbird++ ViT-L 307 IN22K 77.3 35.8 .671

3.4 Retrieval-based supervised objective

Given the availability of large labeled datasets, and noting that correctly designed supervision
does not necessarily hurt generalization [57], we explore the use of label-supervision for learning
representations that perform well in dense NN retrieval. While supervision is typically added with a
linear classifier atop average pooled features [32, 43, 62], we instead use it to constrain contextual
pretraining and further align our training methodology with NN retrieval [69, 74]. Specifically, we
expand the memory bank Mp to include the labels: M′

p = {(ki,vi,yi), i = 1, ..., |M′
p|} and query

it with attention pooled features ĉi∈RD (see Equation 3) to form predictions ŷi=CA(ĉi,kj ,yj).
We then use the standard softmax cross entropy loss Li

CE(ŷi,yi), which added to the self-supervised
objective of Equation 4, forms the total loss Lij = Lij

SSL + α(Li
CE + Lj

CE), with supervised weight α.
Note that the memory bank M′

p is only used during training and the added supervision relates to a
global image classification task, not the downstream pixel-level tasks.

4 Experiments

We demonstrate the generality of Hummingbird representations through retrieval-based scene under-
standing on several downstream tasks (Section 4.1): semantic segmentation on PASCAL VOC [25]
and ADE20K [83] with mean IoU (mIOU) as metric, and monocular depth estimation on NYUv2
[60] with root-mean-square error (RMSE) as metric. We further show that, in the low-data regime
(Section 4.2) and when looking at adaptation speed (Section 4.3), Hummingbird with NN retrieval
outperforms other pretraining techniques and decoding mechanisms, including end-to-end finetuning.
Section 4.4 compares the performance of fully finetuned Hummingbird with prior work.

4.1 Retrieval-based scene understanding

We consider the performance of learned representations in the retrieval-based scene understanding
setup described in Section 3.1 across architecture (ViT-B and ViT-L) and dataset (ImageNet-1k and

5

Table 2: Data-efficient scene understanding. After pretraining, models are adapted to downstream
tasks on small amounts of data with end-to-end fine-tuning with a linear head (E2E FT) or with
nearest neighbor retrieval (NN). n refers to the number of images a fraction represents. All runs are
averaged over five different seeds, with standard deviation of the order of 0.04 / 0.10% for NN and
0.36 / 1.35% for E2E FTon PASCAL / ADE20K. Each method is trained with ViT-B on ImageNet-1k.

PASCAL ↑ ADE20K ↑
Method Decoder 1/128 (n=83) 1/64 (n=165) 1/128 (n=158) 1/64 (n=316)
Supervised [67] E2E FT 41.8 53.8 10.8 14.3
DINO [15] E2E FT 36.1 44.3 11.7 14.4
MoCo-v3 [20] E2E FT 19.9 33.4 4.6 7.9
MAE [30] E2E FT 34.2 44.1 8.2 12.2
LOCA [13] E2E FT 40.1 53.9 11.2 15.5
Hummingbird NN 50.5 57.2 11.7 15.1
Hummingbird++ NN 52.4 57.3 12.7 16.4

101 102 103 104

Number of adaptation images

10

20

30

40

50

60

70

M
ea

n
Io

U

PASCAL semantic segmentation

Linear + E2E FT
Linear + frozen
NN retrieval

101 102 103 104

Number of adaptation images

5

10

15

20

25

30

35

40

M
ea

n
Io

U

ADE20K semantic segmentation

Figure 3: Data efficiency of Hummingbird. The model is evaluated with retrieval-based evaluation
(“NN retrieval”), linear probing (“Linear + frozen”), or full finetuning (“Linear + E2E FT”).

-22k [56]) scales, trained with supervision (Hummingbird++) or without (Hummingbird). Figure 1
shows an example prediction made by Hummingbird with a ViT-B encoder on PASCAL VOC.

The top part of Table 1 shows an apples-to-apples comparison of Hummingbird with existing methods
for pretraining ViT-B encoders, where it outperforms all baselines by a large margin. We also note
that Hummingbird scales well with increasing the dataset size from ImageNet-1k to ImageNet-22k,
which does not hold for all other methods (e.g. MAE, consistent with [51]). Further, training with
supervision is generally beneficial, particularly for semantic segmentation. For an ablation on the
impact of retrieval-based supervision on performance, see Appendix D.5.

The bottom part of Table 1 contains the best performing methods across architectures, showing a
performance increase for Hummingbird with encoder size. Note that results achieved by Hummingbird
retrieval on PASCAL VOC and ADE20K, without any finetuning, approach the performance of
methods fully finetuned on each of those tasks with specialized decoders (see Table 4).

4.2 Data-efficient retrieval-based scene understanding

In addition to adapting to downstream tasks with minimal (or ideally no) alterations to the model, a
second ingredient for in-context learning is adaptation given only a limited number of examples.

We therefore evaluate the performance of Hummingbird retrieval in the low-data regime, and compare
it with other decoding techniques: linear probing and end-to-end finetuning (Figure 3). For PASCAL
VOC, NN retrieval outperforms the end-to-end finetuning for up to 1/8 of the data (∼1300 images).
For ADE20K the effect is less pronounced, however NN retrieval still exceeds end-to-end finetuning
when given up to 1/32 of the data (∼600 images). Hummingbird retrieval outperforms linear decoding

6

Table 3: Fast adaptation to new scene understanding tasks. After pretraining, models are
transferred to downstream tasks with the full dataset, but a small amount of computation: 1 epoch.
Models perform the task either with a linear classifier (Frozen), end-to-end fine-tuning (E2E FT) or
with our mechanism for in-context scene understanding (NN).

PASCAL ↑ ADE20K ↑
Method Decoder Frozen E2E FT Frozen E2E FT
Supervised [67] Linear 61.5 66.3 27.6 15.1
DINO [15] Linear 54.9 64.0 25.6 23.4
MoCo-v3 [20] Linear 41.2 4.8 14.6 3.2
MAE [30] Linear 20.1 42.5 8.3 7.9
LOCA [13] Linear 61.9 62.9 25.4 14.6
Hummingbird NN 70.5 28.3
Hummingbird++ NN 72.1 30.5

200ms 1s 10s 1min 10min 1h
Adaptation time (1 TPU)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Io

U

PASCAL semantic segmentation

200ms 1s 10s 1min 10min 1h
Adaptation time (1 TPU)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Io

U

ADE20K semantic segmentation
Linear + E2E FT
Linear + frozen
NN retrieval

Figure 4: Adaptation time of Hummingbird. The model is evaluated with retrieval-based evaluation
(“NN retrieval”), linear probing (“Linear + frozen”), or full finetuning (“Linear + E2E FT”).

on top of the frozen encoder in all cases. These results show that given an appropriately designed
encoder, NN retrieval provides a data-efficient alternative to end-to-end finetuning, and is strictly
more expressive than linear decoding.

Second, we verify the generality of these findings by comparing Hummingbird retrieval to several
other representation learning algorithms which transfer to the low-data regime with finetuning
(Table 2, see Appendix D.1 for higher-data regime and additional analysis). For PASCAL VOC,
Hummingbird with the NN retrieval decoder outperforms the end-to-end finetuned version of all
other techniques for both 1/128 (83 images) and 1/64 (165 images) of the data, which holds for both
the purely self-supervised Hummingbird and its supervised variant. For ADE20K, Hummingbird is
competitive with DINO [15] for 1/128 of the data (158 images) and outperformed by LOCA for 1/64
of the data (316 images), whereas Hummingbird++ outperforms all other models, demonstrating the
benefit of retrieval-based supervision during pretraining. In summary, in the few-shot regime (e.g.
≤100 images) relevant for in-context learning, Hummingbird retrieval provides a compelling and
robust alternative to end-to-end finetuning.

4.3 Fast adaptation to downstream tasks

While Hummingbird retrieval displays useful data-efficiency properties relative to fully finetuned
methods, finetuning yields better performance when given access to the entire dataset. Yet even in
this large-data regime, assistant systems must be quickly adaptable to new tasks. We thus evaluate
the amount of computation required to reach good performance with the different decoding schemes
from Section 4.2. All decoders are given the full training set and varying compute budgets. We
titrate the amount of computation given to NN retrieval by partially populating the memory bank with
fractions of the dataset. Figure 4 shows that 5 minutes (1 epoch through the downstream training set)

7

Table 4: Scene understanding with end-to-end finetuning. After pretraining, models are equipped
with task-specific decoders and finetuned for that task on the entire downstream dataset. †indicates
results are taken from [30], using UperNet [77] as the decoder. Results for all other baselines are
taken from [13] and use the linear decoder from [63]. For ViT-L results, see Appendix D.4.

Fine-tuned accuracy (mIoU)

Method Encoder Dataset PASCAL ↑ ADE20K ↑
Random ViT-B IN1K 29.1 21.1
Supervised [67] ViT-B IN1K 76.1 47.3
DINO [15] ViT-B IN1K 74.1 44.1
MoCo-v3 [20] ViT-B IN1K 74.5 47.3†

BEiT [5] ViT-B IN1K+DALLE [54] - 47.1†

MAE [30] ViT-B IN1K 75.0 48.1†

LOCA [13] ViT-B IN1K 76.7 47.9
Hummingbird ViT-B IN1K 80.0 44.9
Hummingbird++ ViT-B IN1K 81.2 44.9
Hummingbird ViT-B IN22K 81.6 46.9
Hummingbird++ ViT-B IN22K 82.1 48.2

Table 5: Ablation of pretraining components. Effect of training with spatial attention pooling (as
opposed to mean pooling or a [CLS] token) and memory contextualization ("Cont.") on performance.
All models were pretrained with ViT-B on ImageNet-1k.

Semantic segmentation Depth pred.

Method Pool. Cont. PASCAL ↑ ADE20K ↑ NYUv2 ↓

MoCLR [65] mean ✗ 38.6 4.9 1.01
+ cont. mean ✓ 55.6 15.3 .901
+ [CLS] [CLS] ✗ 64.5 23.9 .741
+ [CLS] + cont. [CLS] ✓ 65.6 25.1 .731
+ QK att. [52] + cont. QK att. ✓ 68.7 26.3 .728
+ QKV att. QKV att. ✗ 68.0 27.4 .742

Hummingbird QKV att. ✓ 70.5 28.3 .718

are sufficient to build a performant NN decoder (70% mIoU on PASCAL VOC, 28% on ADE20K). In
contrast, given the same amount of time, end-to-end finetuning still exhibits performance near chance,
despite benefitting from hyperparameter tuning of learning rates, weight decay, and warm-up length.
While a linear classifier converges more quickly than finetuning, it saturates with a significantly lower
performance than NN retrieval (50% mIoU on PASCAL VOC, 20% on ADE20K).

We also quantify these benefits in terms of relative convergence: on PASCAL VOC, NN retrieval
reaches the performance of full finetuning after 3 minutes rather than 3 hours, and the performance of
a linear classifier in 2 seconds rather than 3 minutes. For ADE20K, the speedups are smaller, but
significant: 7 minutes rather than 30 minutes (relative to full finetuning), and 1 minute rather than 30
minutes (relative to the linear classifier). By making substantial gains in this near-real-time use case,
we believe NN retrieval lays the groundwork for scene understanding in an interactive setting.

Table 3 compares Hummingbird retrieval to other models (equipped with linear or end-to-end fine-
tuned decoders) in the fast-adaptation regime (i.e. when given a single pass over the full downstream
dataset): Hummingbird retrieval outperforms all other pretraining techniques and decoding mecha-
nisms on both PASCAL VOC and ADE20K.

4.4 Fully finetuned scene understanding

Although the primary focus of this work is on fast and effortless adaption to downstream tasks, for
completeness, we include a comparison of fully finetuned Hummingbird with fully finetuned state-of-
the-art models on the semantic segmentation task. We follow the finetuning protocol of MAE [30]
and use UperNet [77] as a decoder. Table 4 shows that both Hummingbird and Hummingbird++ are
competitive with state-of-the-art when finetuned. Further analysis shows retrieval-based performance
to be correlated with the finetuning performance (see Appendix D.2), paving the way for using
retrieval-based evaluation as a model selection tool during training.

8

5 Analysis

Ablating the pretraining components. We perform an ablation of pretraining components required
for adaptation to downstream tasks through NN retrieval in Table 5. We find attention pooling to yield
superior performance compared to mean pooling or a [CLS] token. Both contextual pretraining and
attention pooling separately lead to large performance improvements over a baseline MoCLR [65]
model and best results are achieved when combining the two. Note that although spatial attention
pooling was initially introduced in the context of video understanding [52], this work is the first
to show its utility for downstream task adaptation in the NN retrieval setup. We further find that
modifying it (“QK att”) with a value head (“QKV att.”) improves its performance across all tasks.

40,000 160,000 640,000 2,560,000 10,240,000
Memory bank length

10

25

50

100

200

400

Ru
nt

im
e

(m
s)

NN lookup time vs. memory bank length

Figure 5: Effect of memory bank length on nearest neighbor lookup at inference time. Inference
time is for a single image. Lookups were done on a single Nvidia A100 GPU.

0 50000 100000 150000 200000 250000 300000
Training memory length

69

70

71

72

73

74

75

76

M
ea

n
Io

U

PASCAL: Importance of pretraining memory

self-supervised
supervised

105 106 107

Evaluation memory length

45

50

55

60

65

70

M
ea

n
Io

U

PASCAL: Importance of evaluation memory

downsample=True
downsample=False

Figure 6: Effect of the pretraining (left) and evaluation (right) memory length on performance.
All models were pretrained with ViT-B on ImageNet-22k. Left: Since the retrieval-based supervised
objective is only defined for memory banks of non-zero length, for the purpose of this ablation
we replace it with a simple linear classifier when |Mp| = 0. Right: For downsample=False, we
store representations of all patches into the memory bank. If downsample=True, we sample |M|/N
patches per image (N is the length of the downstream training set), allowing for greater diversity.

Effect of evaluation memory length |M|. When transferring to downstream tasks with many
training images (e.g. PASCAL VOC and ADE20K contain ∼ 10k and ∼ 20k images respectively,
each image providing 100s of tokens), we see benefits of using large memory banks (e.g. |M| of the
order of 1–10 million tokens, see Figure 6, right). Since this makes the cross-attention operation
computationally intractable, we leverage powerful libraries for approximate NN search [29, 40] to
limit cross-attention (Equation 1) to a small set of nearest neighbors for each query (e.g. k = 30, see
Appendix A.2 for details, where we find increasing k not to have significant impact on performance).

Figure 5 shows the relationship between evaluation memory length and the cost of the nearest
neighbor lookup at inference time. For small-to-medium sized memory banks (0 to 1 million keys),
the lookup cost is minimal (≤ 30 ms), meaning the system is still fast enough to be used for real-time

9

applications, such as segmenting videos at 30 frames per second. When scaling to very large memory
banks of 10 million keys or more, the scaling tends to be linear. However, the absolute performance
is likely still suitable for most applications: with a memory bank size of 10 million, the overhead
from NN lookup is only 0.2 seconds for dense tasks.

Effect of pretraining memory length |Mp|. In contrast to retrieval-based evaluation, we find
contextual pretraining to be remarkably memory-efficient: small memory banks (e.g. |Mp| = 40k, see
Figure 6, left for PASCAL VOC and Appendix D.3 for ADE20K) are sufficient to yield robust gains
in retrieval-based scene understanding, adding a relatively small computational overhead to training
the representation (e.g. +22% for |Mp| = 40k). The module is agnostic to how the representation
is trained and it benefits both self-supervised and supervised pretraining. Note that contextual
pretraining is only present at training time and does not affect inference speed, and that pretraining
and evaluation memory length are fully decoupled, allowing us to set them independently.

6 Conclusion

Inspired by impressive examples of in-context learning in language models, we investigate compo-
nents necessary for in-context learning of dense scene understanding tasks in computer vision. To this
end, we propose a simple non-parametric nearest neighbor retrieval mechanism—which is agnostic to
the downstream task and requires no finetuning or specialized decoders—to serve as a general-purpose
decoder which we use to evaluate models on semantic segmentation and monocular depth estimation
tasks. We further propose Hummingbird, a pretraining method which benefits from attention across
images (through contextual pretraining) and within an image (through spatial attention pooling) to
produce image representations that can be easily configured to perform downstream tasks in a fast and
data-efficient manner. By combining Hummingbird as the encoder with NN retrieval as the decoder,
we take an important step towards in-context learning for dense vision tasks.

7 Broader Impact and Limitations

Broader impact. In laying the groundwork for scene understanding methods to be used in the
interactive regime, our work could potentially benefit general-purpose assistants that are seeing rapid
adoption. While these may enable a host of beneficial applications, they suffer from the biases and
potential harms associated with visual language models and large language models more generally.

Limitations. Despite offering large relative improvements compared to finetuning and linear
classification in the low-data regime, the absolute performance of Hummingbird when given less than
100 examples in the prompt is still far from perfect. To truly match the in-context learning abilities
displayed in NLP, we would ideally need good performance from a handful of examples.

Further, given that retrieval-based scene understanding is task-agnostic, we leave expanding Hum-
mingbird nearest neighbor evaluation to other tasks (e.g. object detection) to future work. Certain
tasks, such as image rotation or image flipping, are not currently amenable to our framework as
we assume a spatial correspondence between features and their labels. Explicitly post-processing
to smooth outputs across patches was also not explored in this paper. Although the set of nearest
neighbors and their weights vary smoothly as a function of the query image representation, it should
be noted that this smoothness is dependent on the input prompt, since the memory bank needs to be
sufficiently diverse and dense to allow a linear combination of neighbors to be expressive enough to
cover all possible labels.

Finally, while we have showcased the benefits of attention within and across images in a contrastive
framework, we defer adding them to more recent approaches using advanced data curation [51] and
self-distillation [15, 84] to future work.

Acknowledgements

We thank Daniel Zoran, Andrew Zisserman, Evan Shelhamer and João Carreira for their thoughtful
feedback, Skanda Koppula and Mathilde Caron for their assistance in reproducing baselines, and
Aäron van den Oord and Oliver Vikbladh for fruitful discussions at the inception of the project.

10

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological variations,
and system approaches. AI Communications, 7(1):39–59, 1994.

[2] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: A visual language model for few-shot learning. Advances in
Neural Information Processing Systems, 2022.

[3] F. G. Ashby and W. T. Maddox. Human category learning. Annu. Rev. Psychol., 56:149–178,
2005.

[4] H. Bahng, A. Jahanian, S. Sankaranarayanan, and P. Isola. Exploring visual prompts for adapting
large-scale models. arXiv preprint arXiv:2203.17274, 2022.

[5] H. Bao, L. Dong, and F. Wei. BEiT: BERT pre-training of image transformers. In International
Conference on Learning Representations, 2022.

[6] A. Bar, Y. Gandelsman, T. Darrell, A. Globerson, and A. Efros. Visual prompting via image
inpainting. Advances in Neural Information Processing Systems, 2022.

[7] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape
contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):509–522,
2002.

[8] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion
correspondences. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[9] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classifi-
cation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2008.

[10] A. Brock, S. De, S. L. Smith, and K. Simonyan. High-performance large-scale image recognition
without normalization. In International Conference on Machine Learning, 2021.

[11] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 2020.

[12] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Conference on Computer Vision, 2018.

[13] M. Caron, N. Houlsby, and C. Schmid. Location-aware self-supervised transformers. arXiv
preprint arXiv:2212.02400, 2022.

[14] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin. Unsupervised learning of
visual features by contrasting cluster assignments. Advances in Neural Information Processing
Systems, 2020.

[15] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

[16] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International Conference on Machine Learning, 2020.

[17] T. Chen, S. Saxena, L. Li, D. J. Fleet, and G. Hinton. Pix2Seq: A language modeling framework
for object detection. In International Conference on Learning Representations, 2022.

[18] X. Chen and K. He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

[19] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni, P. Padlewski, D. Salz, S. Goodman,
A. Grycner, B. Mustafa, L. Beyer, et al. PaLI: A jointly-scaled multilingual language-image
model. In International Conference on Learning Representations, 2023.

[20] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.

[21] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[22] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Representations, 2021.

[23] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised
feature learning with convolutional neural networks. In Advances in Neural Information
Processing Systems, 2014.

[24] D. Dwibedi, Y. Aytar, J. Tompson, P. Sermanet, and A. Zisserman. With a little help from my
friends: Nearest-neighbor contrastive learning of visual representations. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

11

[25] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, 2015.

[26] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

[27] J. Frankle, D. J. Schwab, and A. S. Morcos. Training batchnorm and only batchnorm: On
the expressive power of random features in CNNs. In International Conference on Learning
Representations, 2021.

[28] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,
B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to
self-supervised learning. Advances in Neural Information Processing Systems, 2020.

[29] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern, and S. Kumar. Accelerating
large-scale inference with anisotropic vector quantization. In International Conference on
Machine Learning, 2020.

[30] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022.

[31] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

[32] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016.

[33] O. J. Hénaff, S. Koppula, J.-B. Alayrac, A. v. d. Oord, O. Vinyals, and J. Carreira. Efficient visual
pretraining with contrastive detection. In Proceedings of the IEEE International Conference on
Computer Vision, 2021.

[34] O. J. Hénaff, S. Koppula, E. Shelhamer, D. Zoran, A. Jaegle, A. Zisserman, J. Carreira, and
R. Arandjelović. Object discovery and representation networks. In Proceedings of the European
Conference on Computer Vision, 2022.

[35] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. Eslami, and A. v. d. Oord.
Data-efficient image recognition with contrastive predictive coding. International Conference
on Machine Learning, 2020.

[36] L. A. Hendricks and A. Nematzadeh. Probing image-language transformers for verb under-
standing. In Findings of ACL, 2021.

[37] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. In
Advances in Neural Information Processing Systems, 2022.

[38] D. Homa, S. Sterling, and L. Trepel. Limitations of exemplar-based generalization and the
abstraction of categorical information. Journal of Experimental Psychology: Human Learning
and Memory, 7(6):418, 1981.

[39] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim. Visual
prompt tuning. In Proceedings of the European Conference on Computer Vision, 2022.

[40] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

[41] D. Kim, J. Kim, S. Cho, C. Luo, and S. Hong. Universal few-shot learning of dense prediction
tasks with visual token matching. In International Conference on Learning Representations,
2023.

[42] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer
(BiT): General visual representation learning. In Proceedings of the European Conference on
Computer Vision, 2020.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

[44] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: Label transfer via dense scene
alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2009.

[45] F. Liu, G. Emerson, and N. Collier. Visual spatial reasoning. arXiv preprint arXiv:2205.00363,
2022.

[46] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A ConvNet for the 2020s.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[47] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

12

[48] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60:91–110, 2004.

[49] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVMs for object detection
and beyond. In Proceedings of the IEEE International Conference on Computer Vision, 2011.

[50] R. M. Nosofsky. Attention, similarity, and the identification–categorization relationship. Journal
of Experimental Psychology: General, 115(1):39, 1986.

[51] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al. DINOv2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023.

[52] N. Parthasarathy, S. Eslami, J. Carreira, and O. J. Hénaff. Self-supervised video pretraining
yields strong image representations. In Advances in Neural Information Processing Systems,
2023.

[53] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning, 2021.

[54] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning, 2021.

[55] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual adapters.
Advances in Neural Information Processing Systems, 2017.

[56] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[57] M. B. Sariyildiz, Y. Kalantidis, K. Alahari, and D. Larlus. No reason for no supervision:
Improved generalization in supervised models. In International Conference on Learning
Representations, 2023.

[58] R. C. Schank. Dynamic memory revisited. Cambridge University Press, 1999.
[59] E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[60] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference

from rgbd images. Proceedings of the European Conference on Computer Vision, 2012.
[61] O. Siméoni, G. Puy, H. V. Vo, S. Roburin, S. Gidaris, A. Bursuc, P. Pérez, R. Marlet, and

J. Ponce. Localizing objects with self-supervised transformers and no labels. Proceedings of
the British Machine Vision Conference, 2021.

[62] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

[63] R. Strudel, R. Garcia, I. Laptev, and C. Schmid. Segmenter: Transformer for semantic segmen-
tation. In Proceedings of the IEEE International Conference on Computer Vision, 2021.

[64] T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams, D. Kiela, and C. Ross. Winoground:
Probing vision and language models for visio-linguistic compositionality. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[65] Y. Tian, O. J. Henaff, and A. van den Oord. Divide and contrast: Self-supervised learning from
uncurated data. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021.

[66] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(11):1958–1970, 2008.

[67] H. Touvron, M. Cord, and H. Jégou. DeiT III: Revenge of the ViT. In Proceedings of the
European Conference on Computer Vision, 2022.

[68] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. LLaMa: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[69] H. Touvron, A. Sablayrolles, M. Douze, M. Cord, and H. Jégou. Grafit: Learning fine-grained
image representations with coarse labels. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

[70] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. Van Gool. Unsupervised semantic
segmentation by contrasting object mask proposals. In Proceedings of the IEEE International
Conference on Computer Vision, 2021.

[71] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for
one shot learning. In Advances in Neural Information Processing Systems, 2016.

[72] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy. Tracking emerges by
colorizing videos. In Proceedings of the European Conference on Computer Vision, 2018.

13

[73] X. Wang, W. Wang, Y. Cao, C. Shen, and T. Huang. Images speak in images: A generalist
painter for in-context visual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023.

[74] Z. Wu, A. A. Efros, and S. X. Yu. Improving generalization via scalable neighborhood
component analysis. In Proceedings of the European Conference on Computer Vision, 2018.

[75] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[76] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene
recognition from abbey to zoo. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2010.

[77] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun. Unified perceptual parsing for scene understanding.
In Proceedings of the European Conference on Computer Vision, 2018.

[78] E. Xie, J. Ding, W. Wang, X. Zhan, H. Xu, P. Sun, Z. Li, and P. Luo. Detco: Unsupervised
contrastive learning for object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

[79] N. Xie, F. Lai, D. Doran, and A. Kadav. Visual entailment: A novel task for fine-grained image
understanding. arXiv preprint arXiv:1901.06706, 2019.

[80] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu. CoCa: Contrastive
captioners are image-text foundation models. In Transactions on Machine Learning Research,
2022.

[81] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li, C. Li, et al.
Florence: A new foundation model for computer vision. arXiv preprint arXiv:2111.11432,
2021.

[82] Y. Zhang, K. Zhou, and Z. Liu. What makes good examples for visual in-context learning? In
Advances in Neural Information Processing Systems, 2023.

[83] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba. Semantic
understanding of scenes through the ADE20K dataset. International Journal of Computer
Vision, 127:302–321, 2019.

[84] J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and T. Kong. iBOT: Image BERT
pre-training with online tokenizer. International Conference on Learning Representations,
2022.

14

A Implementation details: retrieval based scene understanding

A.1 How to store memories?

The memory bank only needs to be calculated once per dataset and can then be re-used for each of
the images in the evaluation set. To populate the memory bank, each image in the dataset’s training
set (i.e. the “prompt”) is encoded using the frozen backbone of the pretrained network to evaluate.
We encode each of the training set images into a spatial map ki=fθ(xi)∈RH·W×D, where a feature
kj
i ∈RD at a given spatial location j is aligned with the local label lji created by averaging the pixel

labels yj
i in that patch. These features ki are then L2-normalized.

When the memory bank length is not large enough to accommodate all features for all images, it
is necessary to subsample and only store a subset of the features of each image. For a concrete
example using ADE20K, training set images have a resolution of 512× 512 which when encoded
by a ViT-B/16 results in a 32 × 32 grid of features (i.e. 1,024 features per image). To store every
feature from each of ADE20K’s 20,120 training images would require a memory bank length of
20,120× 32× 32 = 20,695,040. When using data augmentation to increase the number of training
images, the required length is even higher.

Our subsampling strategy for semantic segmentation works as follows. We define the number of
features to take per image as nfeatures_per_image = |M|

|D|∗num_augmentation_epochs where |D| refers to the
number of images in the training dataset. We thus sample the same number of features for each
training image. Rather than sampling this number of features per image from the grid uniformly, we
attempt to sample the most salient features using a simple strategy: upweighting patches containing
class labels that appear less frequently in the image. Following the notation of Section 3.1, let
lj refer to the label attached to the patch indexed by j in the image and let 1c∈lj = 1 if a given
class c ∈ lj and 0 otherwise. Then for each class c we define κc =

∑
j 1c∈lj (i.e. a count of how

many patches the class c appeared in). We define a “class score” for each patch indexed by j as
class_scorej =

∑
c∈C κc · 1c∈lj . Finally, we take the nfeatures_per_image from the spatial map ki with

the lowest final scores using

final_scorej = (class_scorej · x) + (106 · 1lj=∅) (5)

where x ∼ U[0,1]. The first term introduces some stochasticity into the sampling process and the
second term deprioritizes locations that have no class label. The chosen features serve as the memory
bank keys and their associated labels are the memory bank values.

The subsampling strategy used for depth estimation is simpler since there are no classes involved. We
opted not to use data augmentation for this task making nfeatures_per_image =

|M|
|D| . We first randomly

order each patch in the image, then place all patches that contain no valid pixel labels after any patch
with valid pixel labels, and then take the first nfeatures_per_image from the list.

There are many possible alternative strategies for sampling the most salient patches within an image in
the event that the memory bank length cannot fit every feature from every image. We leave exploration
of these possibly better sampling strategies for future work because in general we found this technique
to perform well and wanted to show that nearest neighbor evaluation does not require complicated,
hand-crafted strategies but rather works well out of the box with a simple heuristic calculated per
image. For a complete listing of the hyperparameters involved in building and retrieving from the
memory bank, see Appendix A.2.

A.2 How to recall memories?

After the memory bank has been populated as described in Appendix A.1, we sequentially make
predictions for each image in the evaluation set. Evaluation was done on a single Nvidia A100
GPU per downstream task and takes approximately 15 minutes for PASCAL VOC, 25 minutes for
ADE20K, and 30 minutes for NYUv2. Each image x is encoded as a grid of features q=fθ(x) and
each of the features from this grid will serve as the query that we will look up the nearest neighbors
for. We use the open-source ScaNN library [29] to perform the approximate nearest neighbor search
efficiently. ScaNN natively provides the functionality to return both the top-k nearest neighbors for a
given query as well as scores for the similarity that can be used as the attention logits. These scores

15

are then divided by a temperature scaling value before having a softmax applied to them to obtain the
final attention values (see Equation 1).

Throughout the paper, we use ScaNN in asymmetric hashing (AH) mode as opposed to brute-force
mode. We find that there is little to no negative impact on the evaluation from using approximate
nearest neighbor search as opposed to a brute-force exact search, despite the approximate search
being several orders of magnitude faster. We use cosine similarity (L2-normalized dot product)
as a distance measure throughout this work. We also attempted some experiments using squared
Euclidean distance and found it to have no benefits to performance for any of the models evaluated.

Table 6: NN retrieval hyperparameters. Note that no training is involved with NN evaluation,
hence there are no hyperparameters such as learning rates or training epochs.

Section 4.2 Everywhere else

|M| (Memory bank length) 20,480,000 10,240,000
k (nearest neighbors) 90 30
Temperature .1 .02
Augmentation epochs 8 2
ScaNN dimensions_per_block 4 4
ScaNN num_leaves 512 512
ScaNN num_leaves_to_search 256 32
ScaNN reordering_num_neighbors 1800 120

Table 6 summarizes the hyperparameters used for NN evaluation throughout this work. For every
section except for Section 4.2, we use a flat set of hyperparameters detailed in the “Everywhere else”
column of Table 6. Because Section 4.2 is concerned with small subsets of the data (i.e. training
on the order of hundreds of images), hyperparameter sweeps are extremely cheap to run and it is
computationally fast to find nearest neighbors even with minimal approximations, hence we used
a slightly different setup in this regime. In general, we found nearest neighbor retrieval to be sur-
prisingly robust to the choice of hyperparameters, with temperature and reordering_num_neighbors
being the most relevant to performance. The same set of hyperparameters were used for the seman-
tic segmentation tasks (PASCAL VOC and ADE20K) as for the monocular depth estimation task
(NYUv2), with the exception of the number of augmentation epochs (we did not use augmentations
for depth estimation). For a complete description of the meaning of the ScaNN hyperparame-
ters, please see https://github.com/google-research/google-research/blob/
master/scann/docs/algorithms.md.

Table 7 details the parameters used for augmenting the training dataset for semantic segmentation
tasks. Note that the augmentations used to augment the training set when evaluating downstream
tasks differ from the augmentations used for creating different views of the same image during
contrastive pretraining described in Appendix C.1. When augmentations are enabled, the image is
first scaled between the minimum and maximum scale factor, from which a random crop is selected.
Then photometric augmentations are applied independently with the probabilities and maximum
intensities provided.

Table 7: Evaluation augmentations. Parameters used to augment the training dataset for semantic
segmentation.

Parameter
Random crop probability 1.0
Minimum scale factor 0.5
Maximum scale factor 2.0
Brightness jittering probability 0.5
Contrast jittering probability 0.5
Saturation jittering probability 0.5
Hue jittering probability 0.5
Brightness adjustment max 0.1
Contrast adjustment max 0.1
Saturation adjustment max 0.1
Hue adjustment max 0.1

16

https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md
https://github.com/google-research/google-research/blob/master/scann/docs/algorithms.md

B Implementation details: contextual pretraining

The contextual pretraining module takes as input a batch of image representations (i.e. queries)
q = h = fθ(x) ∈ RB×H·W×D from the ViT encoder fθ, where B = 4096 is the batch size,
H = W = 14 are the height and width of the spatial feature map and D = 768 for ViT-B and
D = 1024 for ViT-L is the feature dimension. Keys and values for the contextualization cross-
attention operation are entries of the memory bank Mp = {(ki,vi), i=1, ..., |Mp|}, where keys ki

are taken from previous batches by spatially averaging h (see Equation 2) and values vi are obtained
by applying a two-layer MLP ϕθ to the keys, where we use batch norm after the first layer and the
hidden dimension is set to 4096. Each feature qi of the image representation is then updated as
ci = ψθ((1 − λ) qi

∥qi∥ + λ v̂i

∥v̂i∥), where ψθ is a linear layer and ∥x∥ is the L2 norm. Preliminary
analysis showed λ=0.2 to work well across datasets, so we use it for all our experiments, with higher
values λ≥0.5 degrading performance.

We populate the memory bank with all batch entries of ImageNet-1k / -22k at each step, using the
representations from the target network. The memory bank is spread across 128 Cloud TPU v3
workers with 1200 entries on each TPU for ImageNet-1k (256 TPUs with 600 entries for ImageNet-
22k), resulting in total memory length of 153,600.

C Implementation details: self-supervised pretraining

C.1 Data augmentation

Each image is randomly augmented twice, resulting in two views x1 and x2. The augmentations are
constructed as compositions of the following operations, each applied with a given probability:

1. random cropping: a random patch of the image is selected, whose area is uniformly sampled
in [0.08 · A,A], where A is the area of the original image, and whose aspect ratio is
logarithmically sampled in [3/4, 4/3]. The patch is then resized to 224× 224 pixels using
bicubic interpolation;

2. horizontal flipping;
3. color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly

distributed offset;
4. color dropping: the RGB image is replaced by its grey-scale values;
5. gaussian blurring with a 23× 23 square kernel and a standard deviation uniformly sampled

from [0.1, 2.0];
6. solarization: a point-wise color transformation x 7→ x · 1x<0.5 + (1 − x) · 1x≥0.5 with

pixels x in [0, 1].

The augmented images x1 and x2 result from augmentations sampled from distributions T1 and T2
respectively. These distributions apply the primitives described above with different probabilities and
different magnitudes. Table 8 specifies these parameters for the BYOL framework [28], which we
adopt without modification.

Table 8: Pretraining augmentations. Parameters used to generate different views of a single image
for contrastive pretraining.

Parameter T1 T2

Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.4
Contrast adjustment max 0.4
Saturation adjustment max 0.2
Hue adjustment max 0.1
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

17

C.2 Optimization

We pretrain the model for 300 epochs on ImageNet-1k or 100 epochs on ImageNet-22k using AdamW
[47] with a batch size of 4096, split across 128 Cloud TPU v3 workers for ImageNet-1k and 256
Cloud TPU v3 workers for ImageNet-22k. Training a ViT-B / ViT-L for 300 epochs on ImageNet-1k
takes roughly 21 hours / 53 hours, while 100 epochs on ImageNet-22k takes approximately 60 hours
/ 128 hours. We update the online parameters θ with a cosine learning rate schedule with a base
learning rate of 0.001, weight decay of 0.1 and gradient clipping with a maximum norm of 1. We
update the target parameters ξ as an exponential moving average of the online parameters with a
decay rate of 0.99.

Following [16] the projections and predictions in Equation 4 are normalized and rescaled such that
their norm is equal to 1/

√
τ where the contrastive loss temperature τ is equal to 0.1. When using

additional supervision we set the supervised loss weight α to 0.25 for the supervised ViT-B trained
on ImageNet-22k and α=0.05 for all other experiments.

D Supplementary analysis

D.1 Data efficiency

In Table 2 we compared Hummingbird with several leading representation learning techniques in the
low-data regime. Here we provide the complete analysis from 1/128 to 100% of the data, as well as
results for our ViT-L model trained on ImageNet-22k to show the scaling properties of Hummingbird.
Note that there is a difference between the experiments run here and those found in Section 4.4 of the
main paper; that section uses an UperNet [77] decoder and this section uses a linear decoder for all of
the finetuned rows in each table.

For PASCAL VOC (Table 9), Hummingbird performs very well not only in the low-data regime but
in the full-data regime, with the apples-to-apples comparison (ViT-B self-supervised on ImageNet-
1k) competitive with all other techniques even as the dataset fraction increases. This table also
demonstrates the clear benefit of supervision as well as model-size and dataset size scaling—with
only nearest neighbors (no finetuning), Hummingbird++ trained on ImageNet-22k with a ViT-L
backbone beats all of the other finetuned variants for every dataset fraction. Hummingbird++ using a
ViT-B and ImageNet-1k predictably lies in-between the other two models for every dataset fraction.

For ADE20K (Table 10), the same general trends from above hold. Backbone and dataset scaling
are once again beneficial as Hummingbird++ with ViT-L and ImageNet-22k training outperforms
the other Hummingbird models, however this time the absolute performance relative to the finetuned
competition in the high-data regime is less favorable since the end-to-end finetuned versions of other
techniques start to outperform the nearest neighbors only ViT-L Hummingbird++ at 1/16 of the data.

Table 9: PASCAL VOC data efficiency analysis. After pretraining, models are applied to down-
stream tasks with the indicated fraction of the dataset size. Models perform the task either with
end-to-end fine-tuning with a linear head (E2E FT) or with our mechanism for in-context scene
understanding using nearest neighbors at evaluation time (NN). All fine-tuning runs are averaged
over five different seeds. The metric reported is mean IoU (higher numbers are better). † denotes
models trained on ImageNet-22k; all other models were trained on ImageNet-1k.

Fraction of dataset

Method Decoder Backbone 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1/1

DeiT-III [67] E2E FT ViT-B 41.8 53.8 63.1 67.7 70.7 72.2 73.4 75.2
DINO [15] E2E FT ViT-B 36.1 44.3 54.3 57.8 61.7 64.8 68.2 72.2
MoCo-v3 [20] E2E FT ViT-B 19.9 33.4 47.0 54.8 61.5 67.1 70.7 73.4
MAE [30] E2E FT ViT-B 34.2 44.1 53.0 58.7 62.7 67.4 70.8 73.5
LOCA [13] E2E FT ViT-B 40.1 53.9 63.1 67.8 70.7 72.8 74.4 75.5
Hummingbird NN ViT-B 50.5 57.2 60.1 62.6 64.3 65.9 68.9 71.8
Hummingbird++ NN ViT-B 52.4 57.3 61.5 64.6 66.2 67.9 70.5 73.2
Hummingbird++† NN ViT-L 61.8 65.3 68.0 70.7 71.4 73.2 75.3 77.2

18

Table 10: ADE20K data efficiency analysis. After pretraining, models are applied to downstream
tasks with the indicated fraction of the dataset size. Models perform the task either with end-to-end
fine-tuning with a linear head (E2E FT) or with our mechanism for in-context scene understanding
using nearest neighbors at evaluation time (NN). All fine-tuning runs are averaged over five different
seeds. The metric reported is mean IoU (higher numbers are better). The results for other techniques
between 1/32 and 1/1 are sourced directly from [13], the rest are reproductions. † denotes models
trained on ImageNet-22k; all other models were trained on ImageNet-1k.

Fraction of dataset

Method Decoder Backbone 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1/1

DeiT-III [67] E2E FT ViT-B 10.8 14.3 20.9 27.1 32.7 38.3 42.0 47.3
DINO [15] E2E FT ViT-B 11.7 14.4 18.4 24.5 29.5 35.2 39.5 44.1
MoCo-v3 [20] E2E FT ViT-B 4.6 7.9 17.7 25.2 30.8 36.5 40.7 45.4
MAE [30] E2E FT ViT-B 8.2 12.2 18.4 25.3 30.5 36.1 40.6 45.5
LOCA [13] E2E FT ViT-B 11.2 15.5 22.2 30.0 34.4 39.1 42.8 47.9
Hummingbird NN ViT-B 11.7 15.1 17.3 20.0 22.3 24.9 27.9 29.6
Hummingbird++ NN ViT-B 12.7 16.4 18.9 21.5 24.0 26.8 29.9 32.0
Hummingbird++† NN ViT-L 16.6 20.5 24.0 27.4 30.2 33.1 36.0 37.8

D.2 Correlation of NN retrieval and finetuning performance

In this section, we study the relation between NN retrieval performance and end-to-end finetuning.
To that end, we collect 14 Hummingbird models trained with different architectures (ViT-B vs ViT-L),
datasets (ImageNet-1k vs ImageNet-22k), learning objectives (self-supervised or with additional
supervision), and training lengths. Figure 7 plots the performance of these models when equipped
with NN retrieval decoders (x-axis) and fully-finetuned UperNet decoders (y-axis). For both PASCAL
VOC and ADE20K semantic segmentation, performance using one decoding scheme is highly
predictive of the other (Pearson’s ρ = 0.80 for PASCAL VOC, ρ = 0.89 for ADE20K). As such,
even in cases where NN retrieval underperforms end-to-end finetuning, it can still be used as a
powerful diagnostic tool. As illustrated in Section 4.3, evaluating with NN retrieval is much simpler
and faster than with end-to-end finetuning, even when using a linear decoder. End-to-end finetuning
often requires sweeping over optimization hyperparameters and averaging across multiple seeds,
making it unsuitable for online evaluation, whereas NN retrieval is 10× less variable across runs and
doesn’t require any hyperparameter sweeps. As such NN retrieval can be used as an online evaluation
that is highly predictive of performance obtained with more expensive finetuning protocols.

70 72 74 76 78
NN retrieval

80

81

82

83

84

85

En
d-

to
-e

nd
 fi

ne
-tu

ne
d

PASCAL: NN retrieval vs E2E FT

30 32 34 36 38
NN retrieval

45

46

47

48

49

50

51

52

En
d-

to
-e

nd
 fi

ne
-tu

ne
d

ADE20K: NN retrieval vs E2E FT

Figure 7: Relation between NN retrieval and end-to-end finetuning performance. We collect 14
models trained with different architectures, datasets, and learning objectives.

D.3 Effect of pretraining and evaluation memory length for ADE20K

We include the equivalent of Figure 6 on the ADE20K dataset in Figure 8. Similar to what we
observe for PASCAL VOC, we benefit from large memory banks at evaluation. Since the ADE20K

19

training set is roughly 2× larger than that of PASCAL VOC, we also observe that sampling which
features to store in the memory bank is more important than it is for PASCAL VOC (see Appendix
A.1 on the details of the sampling procedure). Similarly, at training time, ADE20K benefits from
larger pretraining memory banks than PASCAL VOC, with performance plateauing for memory
banks larger than 200,000. Thus, we set the pretraining memory bank length to 153,600 in all our
experiments (see Appendix B for details on contextual pretraining).

0 50000 100000 150000 200000 250000 300000
Training memory length

28

29

30

31

32

33

34

M
ea

n
Io

U

ADE20K: Importance of pretraining memory

self-supervised
supervised

105 106 107

Evaluation memory length

10

15

20

25

30

M
ea

n
Io

U

ADE20K: Importance of evaluation memory

downsample=True
downsample=False

Figure 8: Effect of the pretraining (left) and evaluation (right) memory length on performance of
ADE20K. All models were pretrained with ViT-B on ImageNet-22k. Left: Since the retrieval-based
supervised objective is only defined for memory banks of non-zero length, for the purpose of this
ablation we replace it with a simple linear classifier when |Mp|=0. Right: For downsample=False,
we store representations of all patches into the memory bank. If downsample=True, we sample
|M|/N patches per image (N is the length of the downstream training set), allowing for greater
memory bank diversity and thus superior performance than when downsample=False.

D.4 Impact of encoder size on finetuned performance

We investigate the impact of encoder size in the finetuning regime in Table 11. We find that scaling
the encoder from ViT-B to ViT-L is beneficial for both Hummingbird and Hummingbird++, where
the self-supervised Hummingbird benefits slightly more from model scaling than its supervised
counterpart. Note that this scaling study highlights the need for jointly scaling data and model size,
as the best performing model overall is the one with ViT-L as an encoder trained on ImageNet-22k.

Table 11: Impact of encoder size on finetuned performance. After pretraining, models are equipped
with task-specific decoders and finetuned for that task on the entire downstream dataset.

Finetuned accuracy (mIoU)

Method Encoder Dataset PASCAL ↑ ADE20K ↑
Hummingbird ViT-B IN1K 80.0 44.9
Hummingbird ViT-L IN1K 82.4 47.1

Hummingbird++ ViT-B IN1K 81.2 44.9
Hummingbird++ ViT-L IN1K 81.8 47.3

Hummingbird ViT-B IN22K 81.6 46.9
Hummingbird ViT-L IN22K 84.1 50.8

Hummingbird++ ViT-B IN22K 82.1 48.2
Hummingbird++ ViT-L IN22K 85.3 52.0

D.5 Importance of retrieval-based supervision for in-context scene understanding

We study the importance of retrieval-based supervised objective (see Section 3.4) on in-context scene
understanding performance. We compare a model trained purely with the retrieval-based supervised
objective (“Sup”) with Hummingbird (purely self-supervised, i.e. “SSL”) and Hummingbird++ (both
self-supervised and retrieval-based supervised, i.e. “SSL + Sup”). Results shown in Table 12 indicate

20

the necessity of the self-supervised objective for creating representations that are general and transfer
well to downstream tasks.

Table 12: Importance of retrieval-based supervision for in-context scene understanding. All
models are pretrained on source data and applied to downstream datasets without modification. All
downstream tasks are performed using nearest neighbor retrieval. All models use ViT-B as an encoder.

Semantic segmentation Depth pred.

Method Objective Dataset PASCAL ↑ ADE20K ↑ NYUv2 ↓
Supervised retrieval Sup IN1K 56.9 22.9 .787
Hummingbird SSL IN1K 70.5 28.3 .718
Hummingbird++ SSL + Sup IN1K 72.1 30.5 .738

Supervised retrieval Sup IN22K 69.3 30.3 .739
Hummingbird SSL IN22K 73.5 30.7 .706
Hummingbird++ SSL + Sup IN22K 76.2 34.1 .695

21

	Introduction
	Related Work
	Method
	Retrieval-based scene understanding
	Contextual pretraining
	Self-supervised objective
	Retrieval-based supervised objective

	Experiments
	Retrieval-based scene understanding
	Data-efficient retrieval-based scene understanding
	Fast adaptation to downstream tasks
	Fully finetuned scene understanding

	Analysis
	Conclusion
	Broader Impact and Limitations
	Implementation details: retrieval based scene understanding
	How to store memories?
	How to recall memories?

	Implementation details: contextual pretraining
	Implementation details: self-supervised pretraining
	Data augmentation
	Optimization

	Supplementary analysis
	Data efficiency
	Correlation of NN retrieval and finetuning performance
	Effect of pretraining and evaluation memory length for ADE20K
	Impact of encoder size on finetuned performance
	Importance of retrieval-based supervision for in-context scene understanding

