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1 Appendix14

1.1 Why the term "incidental correlations" for image background?15

The concept of "incidental correlations" is derived from the notion of incidental endogeneity [3],16

which describes unintentional but genuine correlations between variables. In the context of our study,17

image backgrounds are not considered spurious because they offer contextual information that aids18

in decision-making. Therefore, the relationship between image backgrounds and classification is19

not anti-causal, as would be true if the backgrounds were spurious. We argue that the imbalance of20

specific image backgrounds in the training data is the primary factor contributing to the introduction21

of incidental correlations.22

1.2 Training and inference details for pertaining and fine-tuning DPViT23

Training Details. Our approach involves pre-training the Vision Transformer backbone and projection24

head using the same method described in the iBOT paper [8]. We mostly keep the hyper-parameter25

settings unchanged without tuning. By default, we use the Vit-Small architecture, which consists26

of 21 million parameters. The patch size is set to 16 as our default configuration. The student and27

teacher networks have a shared projection head for the [cls] token output. The projection heads28

for both networks have an output dimension of 8192. We adopt a linear warm-up strategy for the29

learning rate over 10 epochs, starting from a base value of 5e-4, and then decaying it to 1e-5 using a30

cosine schedule. Similarly, the weight decay is decayed using a cosine schedule from 0.04 to 0.4. We31

employ a multi-crop strategy to improve performance with 2 global crops (224×224) and 10 local32
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crops (96×96). The scale ranges for global and local crops are (0.4, 1.0) and (0.05, 0.4), respectively.33

Following [8], we use only the local crops for self-distillation with global crops from the same image.34

Additionally, we apply blockwise masking to the global crops inputted into the student network. The35

masking ratio is uniformly sampled from [0, 1, 0.5] with a probability of 0.5, and with a probability36

of 0.5, it is set to 0. Our batch size is 480, with a batch size per GPU of 120. DPViT is pre-trained for37

500 epochs for the given training set for all the datasets.38

We use the value of λcls = 1, λs = 0.5, λo = 0.5 for all the datasets. In the case of ImageNet-9,39

we incorporate the class labels by incorporating a logit head onto the projection heads. This allows40

us to calculate the cross-entropy loss based on the provided class labels. The explicit utilization of41

class labels is necessary for the ImageNet-9 dataset because the evaluation involves straightforward42

classification rather than few-shot learning.43

Fine-tuning Details. Once the pretraining stage is completed, we proceed to train the model using44

the supervised contrastive loss, which involves distilling knowledge from [cls] tokens across different45

views of images (referred to as Lcls in Equation 9 of the main draft). The fine-tuning process is46

conducted for 50 epochs using the same training data in the given dataset. We maintain the same set47

of hyperparameters used in the initial pretraining stage without additional tuning.48

We use the value of λinv
cls = 1, and λinv

p = 0.5 for all the datasets.49

Inference Details. For inference purposes, we utilized a feature representation obtained by the [cls]50

token of the teacher network. We also found concatenating the weighted average pooling of the51

generated patches with the [cls] token useful in a few-shot evaluation. The weights for the weighted52

average pooling are determined by taking the average of the attention values of the [cls] token across53

all heads of the final attention layer.54

In the case of ImageNet-9, the logit head is used to infer the class label for the given sample in the55

test set.56

1.3 Details regarding the multi-head attention modules57

The design of our attention layers draws inspiration from the standard self-attention mechanism,58

commonly known as qkv self-attention (SA) [2]. In our implementation, we calculate a weighted sum59

over all values v in the input sequence z, where z has dimensions of RN×D. The attention weights60

Aij are determined based on the pairwise similarity between two elements of the sequence and their61

corresponding query qi and key kj representations.62

[q,k, v] = zUqkv Uqkv ∈ RD×3Dh , (1)

A = softmax
(

qk⊤/
√
Dh

)
A ∈ RN×N , (2)

SA(z) = Av . (3)

Multihead self-attention (MSA) is an expansion of the self-attention mechanism, where we perform63

k parallel self-attention operations, known as "heads," and then combine their outputs through64

concatenation. In order to maintain consistent computation and the number of parameters when65

adjusting the value of k, the dimension Dh (as defined in Equation 1) is typically set to D/k.66

MSA(z) = [SA1(z);SA2(z); · · · ;SAk(z)]Umsa Umsa ∈ Rk·Dh×D (4)

1.4 Details regarding the power iterative method to compute spectral norm67

We follow the power iterative method described in [1] to compute the spectral norm for (PTP− I).68

Starting with a randomly initialized v ∈ Rn, we iteratively perform the following procedure a small69

number of times (2 times by default) :70

u← (PTP− I)v, v ← (PTP− I)u, σ(PTP− I)← ||v||
||u||

. (5)

The power iterative method reduces computational cost from O(n3) to O(mn2), which is practically71

much faster when used with our training procedure.72
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Method IN-9L ↑ Original ↑ M-SAME ↑ M-RAND ↑ BG-GAP ↓
ResNet-50 [6] 94.6 96.3 89.9 75.6 14.3
WRN-50×2 [6] 95.2 97.2 90.6 78.0 12.6
ConstNet [7] 90.6 92.7 86.1 69.2 17.1
ViT-S pretrained [2] 82.5 84.9 72.2 50.3 21.9
ConceptTransformer [5] 84.7 85.5 73.1 51.5 21.6

Ours - DPViT 96.9 98.5 93.4 87.5 5.9
Table 1: Performance evaluation on domain shift of varying background and common data corruptions
on ImageNet-9. Evaluation metric is Accuracy %.

(a) Original (b) MIXED-SAME (c) MIXED-RAND

Figure 1: Visualizing the test splits from ImageNet-9 dataset.

1.5 Comparing ViT-S [2] and Concept Transformer (CT) [5] on ImageNet-973

In addition to the findings presented in Section 5.4 (Table 2 in the main draft), we conducted a74

comparison with vanilla ViT-S pretrained on Imagenet and ConceptTransformers (CT) as well. CT, as75

described in the study by [5], has a notable limitation in that it relies on attribute supervision for part76

localization information. This restriction restricts the applicability of CT in scenarios where attribute77

information is absent, such as in the case of ImageNet-9. To train CT without attributes, we utilized78

the code provided by the authors and deactivated the attribute loss, allowing CT to be trained without79

relying on the attribute information 1. This adjustment significantly decreases the performance of CT80

but enables a fair comparison with other methods on ImageNet-9. It is worth noting that CT employs81

the ViT-S backbone pretrained on ImageNet as its default architecture. Moreover, we train ConstNet82

[7] using the source code provided by the authors 2.83

As indicated in Table 1, DPViT demonstrates superior performance compared to both ViT-S pretrained84

on ImageNet and CT, exhibiting a clear advantage. CT can be seen as a pretrained ViT-S model85

with the inclusion of part dictionaries, but it experiences a noticeable drop in performance when86

confronted with the presence of incidental correlations in the image backgrounds (as observed in the87

low M-SAME and M-RAND performance in Table 1). This demonstrates that the part learners in88

general cannot effectively deal with the incidental correlations of backgrounds and are susceptible to89

varying backgrounds.90

1.6 Ablation study with different values of K and nf on MiniImageNet91

In this analysis, we investigate the impact of varying the number of parts, denoted as K, on the92

MiniImageNet dataset. Specifically, we explore the effects of altering the number of foreground parts,93

represented by nf , as well as the number of background vectors, which can be calculated as K − nf .94

Table 2 presents the obtained results, demonstrating the influence of different values of K, nf , and95

nb on parts, foreground parts, and background parts, respectively.96

Our findings indicate that maintaining K = 64 and selecting nf = 2K/3 yields the highest97

performance. When employing a significantly lower number of part vectors, the model’s capacity98

becomes insufficient, leading to performance degradation. Conversely, employing a larger value of K99

results in increased computational complexity associated with distance maps, subsequently leading to100

lower performance.101

1ConceptTransformer [5] - https://github.com/IBM/concept_transformer
2ConstNet [7] - https://github.com/mlpc-ucsd/ConstellationNet

3

https://github.com/IBM/concept_transformer
https://github.com/mlpc-ucsd/ConstellationNet


K=32 K=64 K=96 K=128
Foreground parts 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
nf = K/2 72.2±0.2 87.8±0.4 72.9±0.5 88.1±0.4 72.1±0.2 88.1±0.4 72.1±0.5 87.1±0.5

nf = 2K/3 72.2±0.2 88.1±0.4 73.8±0.5 89.3±0.4 73.1±0.2 88.1±0.4 72.2±0.5 87.4±0.5

nf = 4K/3 72.3±0.2 88.4±0.4 73.4±0.5 88.5±0.4 73.2±0.2 87.9±0.4 72.5±0.5 87.8±0.5

Table 2: Ablation of varying the number of foreground-background vectors, along with part-vectors
used. We show the results on the miniImageNet dataset.

Setting 1-shot ↑ 5-shot ↑ ||P||1 ↓ ||PPT − I||1 ↓
Shared 73.6 89.6 0.4 0.5

Unshared 73.8 89.8 0.3 0.5

Table 3: Siamese DPViT. Sharing MSA and
MCA layers and evaluation on MiniImageNet.

Method 1-shot ↑ 5-shot ↑
SMKD [4] 60.93 80.38

DPViT 62.81 83.25

Table 4: Few-shot performance after 1st stage
pretrain phase on MiniImageNet.

1.7 Computational complexity of DPViT102

Adding part-dictionaries to MCA layers slightly increases the trainable parameters from 21M (ViT-S)103

to 25M (DPViT). It is also possible to share the attention layers, analogous to the Siamese networks,104

for MSA and MCA, which keeps the number of trainable parameters to 21M . DPViT results in a105

similar performance in terms of few-shot accuracy when the attention layers are shared, as shown in106

Table 3.107

1.8 Stage-1 pertaining comparison with SMKD [4]108

Table 4 showcases the few-shot evaluation results of DPViT on the MiniImageNet dataset. In addition,109

we compare the performance of DPViT with the first-stage performance of SMKD [4]. It is worth110

noting that both DPViT and SMKD utilize the iBOT [8] pretraining strategy. However, incorporating111

part-dictionaries, MSA, and MCA layers in DPViT’s pretraining phase contributes to its superior112

performance compared to SMKD.113

1.9 Studying complementary properties of MSA and MCA114

Based on Section 5.1 in the main draft, our study focuses on examining the complementary character-115

istics of MSA and MCA. MSA is designed to be effective for images containing a small number of116

objects, but it struggles to capture the spatial relationships among multiple objects. In contrast, MCA117

layers utilize distance maps to learn spatial relationships and prioritize objects without considering118

their specific classes. In simpler terms, MSA may overlook certain objects that are not crucial for119

classification, while MCA emphasizes learning spatially similar objects.120

Additionally, we present the visualization of attention heads in Figure 2, 3, and 5. The MSA heads121

excel at identifying objects for classification but may overlook relevant objects with significant spatial122

context, such as the "charger" in Figure 2 and the "garbage box" in Figure 5. On the other hand, the123

MCA layers perform well in scenarios involving multiple objects (Figure 2 and 5), but struggle when124

spatially similar objects are present, as seen with the confusion between the "red grass" and the "fish"125

in Figure 3.126

(a) Original (b) Attention heads of MSA (c) Attention heads of MCA

Figure 2: Visualizing the attention heads for MSA and MCA.
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(a) Original (b) Attention heads of MSA (c) Attention heads of MCA

Figure 3: Visualizing the attention heads for MSA and MCA.

(a) Original (b) Attention heads of MSA (c) Attention heads of MCA

Figure 4: Visualizing the attention heads for MSA and MCA.

1.10 Visualization foreground parts127

We present additional part visualizations for Figure 3(a) and 4(a). These are shown in Figure 5(a) and128

5(b).129

1.11 Qualitative comparison of extracted patches with ConstNet [7]130

In order to showcase the acquired parts of DPViT and ConstNet, we provide visualizations in Figure 6131

and 7. This is achieved by selecting the nearest patches to the parts. Figure 6 illustrates the separation132

(a) Parts visualizations for Figure 3(a)

(b) Parts visualizations for Figure 4(a)

Figure 5: Visualizing foreground parts learned by DPViT.
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(a) Foreground patches extracted by DPViT

(b) Background patches extracted by DPViT

Figure 6: Visualizing foreground and background patches extracted by DPViT around a random
foreground and background part for images from the validation set of MiniImageNet.

(a) Patches extracted by ConstNet [7]

(b) Patches extracted by ConstNet [7]

Figure 7: Visualizing patches extracted by ConstNet [7] around a random parts for images from the
validation set of MiniImageNet.

of foreground and background concepts accomplished by our model, whereas Figure 7 exhibits the133

patches surrounding the learned parts from the ConstNet model.134
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While DPViT learns to disentangle the foreground patches from the backgrounds, the patches extracted135

by ConstNet suffer from the entanglement caused due to incidental correlations of backgrounds.136
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