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Abstract

Data augmentation has been proven effective for training high-accuracy convolu-
tional neural network classifiers by preventing overfitting. However, building deep
neural networks in real-world scenarios requires not only high accuracy on clean
data but also robustness when data distributions shift. While prior methods have
proposed that there is a trade-off between accuracy and robustness, we propose
IPMix, a simple data augmentation approach to improve robustness without hurting
clean accuracy. IPMix integrates three levels of data augmentation (image-level,
patch-level, and pixel-level) into a coherent and label-preserving technique to
increase the diversity of training data with limited computational overhead. To
further improve the robustness, IPMix introduces structural complexity at different
levels to generate more diverse images and adopts the random mixing method for
multi-scale information fusion. Experiments demonstrate that IPMix outperforms
state-of-the-art corruption robustness on CIFAR-C and ImageNet-C. In addition,
we show that IPMix also significantly improves the other safety measures, in-
cluding robustness to adversarial perturbations, calibration, prediction consistency,
and anomaly detection, achieving state-of-the-art or comparable results on several
benchmarks. Code is available at https://github.com/hzlsaber/IPMix.

1 Introduction

Deep neural network models have recently achieved remarkable performance on various computer
vision tasks, such as zero-shot image classification [1–3], 3D object detection [4–6], and face
recognition [7, 8]. In real-world scenarios, models can achieve impressive accuracy when training
and test distributions are identical, but challenges appear when confronted with out-of-distribution
examples [9–11], such as natural corruptions [12], adversarial perturbations [13], and anomaly
patterns [14], necessitating robustness across distribution shifts. Data augmentation has been proposed
to partially alleviate this issue, which applies diverse transformations on clean images to generate
new training examples [15, 16]. Furthermore, a high diversity of augmented images enables neural
networks to resist data distribution shifts and improve robustness [17]. Data augmentation approaches
generally fall into three subgroups: image-level, patch-level, and pixel-level augmentations.

Image-level augmentation techniques [18–20] apply transformations on the whole image, such as
brightness, sharpness, and solarization, to increase the total amount of training data. Patch-level aug-
mentation techniques [21, 22] typically mask or replace a region of an image, compelling classifiers
to focus on less discriminative portions. Meanwhile, pixel-level augmentation techniques [23, 24]
mix images using pixel-wise weighted averages to increase diversity within the training dataset.
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Figure 1: Visual comparison of various data augmentation methods. IPMix utilizes the structural
complexity of fractals and multi-scale information to generate more diverse examples.

Previous studies have focused on either pixel-level or patch-level information to improve model
performance. However, most of these techniques are label-variant, which may lead to manifold intru-
sion [25, 26] and decrease performance on unseen data. Simultaneously, a limitation of image-level
data augmentation techniques is the computationally expensive search for an optimal augmentation
policy, often exceeding the training process’s complexity [18, 19]. Given these considerations and the
potential for enhancing data augmentation strategies, we mainly discuss one question in this paper:
How to take advantage of the strengths of the three methods while avoiding their drawbacks?

Our contributions are as follows:

• We propose IPMix, a label-preserving data augmentation approach, which integrates three levels
of data augmentation into a single framework with limited computational overhead, demonstrating
that these approaches are complementary and that a unification among them is necessary to
achieve robustness.

• To further enhance model performance, IPMix incorporates structural complexity from synthetic
data at various levels to produce more diverse images. Additionally, we employ random mixing
methods and scar-like image patches for multi-scale information fusion.

• Extensive experiments demonstrate that IPMix achieves state-of-the-art corruption robustness and
improves numerous safety metrics compared with other data augmentation approaches.

Figure 2: The performance of different levels of
data augmentation methods on CIFAR-100. Com-
pared to other approaches which focus on utilizing
only one category, IPMix achieves state-of-the-art
accuracy and robustness.

IPMix integrates the three data augmentation
techniques in a label-preserving fashion, effec-
tively circumventing potential manifold intru-
sion and maintaining label consistency[27]. Fur-
thermore, inspired by prior work, IPMix elimi-
nates the need to search for an optimal data aug-
mentation policy, thus reducing computational
costs. By addressing these challenges, IPMix
has achieved significant improvements, as de-
picted in Figure 2. In comparison to other meth-
ods that focus on leveraging one of these cate-
gories for enhancement, IPMix achieves state-
of-the-art results in accuracy and robustness.

Since IPMix involves different levels of data
augmentation techniques, it naturally motivates
us to design a novel mixing method for bet-
ter information fusion. Previous research has
demonstrated that enhancing training data diver-
sity [23, 28, 29] and image structural complexity [30, 31] is crucial for improving model robustness.
The structural complexity of synthetic data, such as fractals and statistical information, can bolster
model performance through pre-training [32] or blending with clean images [24]. For better data
integration, IPMix mixes clean images with synthetic pictures at different scales by random mixing
to improve structural complexity, which can generate more diverse images to improve robustness.

Building on the enhancement of corruption robustness, we further extend IPMix’s capabilities to
enhance various safety metrics to fulfill the demands of constructing secure and reliable systems in
real-world situations [11]. We demonstrate that IPMix improves numerous safety metrics, including
corruption robustness, calibrated uncertainty estimates, adversarial robustness, anomaly detection, and
prediction consistency. On CIFAR-10-C and CIFAR-100-C, IPMix achieves the best results across
different architectures. On ImageNet, IPMix outperforms previous methods and gains a substantial
improvement on various safety measure benchmarks, achieving state-of-the-art or comparable results
on ImageNet-R, ImageNet-A, and ImageNet-O [33, 34].
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Figure 3: Top: Sample fractals from IPMix set. Bottom: An example of IPMix applied on a dog
image, k = 2, t = 3. We randomly select P (pixel and patch) data augmentation methods and image-
level data augmentation methods to generate a highly diverse set of augmented images. We sample
wk (k = 2, in this case) from Dirichlet distribution and use skip connection (m sample from a Beta
distribution) to maintain semantic consistency.

2 Related Works

2.1 Data Augmentation

Data augmentation is crucial to the success of modern neural networks, contributing significantly to the
improvement of model generalization performance. The presented data augmentation approaches can
be classified into three high-level categories: image-level, pixel-level, and patch-level augmentations.

Image-level data augmentation. Image-level data augmentation methods are commonly label-
preserving, applying transformations on the whole image to improve data diversity. AutoAug-
ment [19] utilizes reinforcement learning to automatically search optimal compositions of transfor-
mations. Adversarial AutoAugment [35] generates adversarial images to extend data and produces a
dynamic policy during training. TrivialAugment [36] randomly selects an operation and the magni-
tude to reduce search space and improve performance. AugMix [37] uses multiple transformations to
create high diversity of augmented images, achieving state-of-the-art results on corruption robustness
and calibration. AugMax [29] unifies diversity and hardness to search for the worst-case mixing
strategy. PRIME [38] uses max-entropy image transformations to boost model corruption robustness.

Pixel-level data augmentation. Pixel-level data augmentation methods mix images using pixel-wise
weighted averages. MixUp [23] generates augmented images by linearly interpolating between two
randomly selected images and their corresponding labels. Manifold MixUp [39] encourages neural
networks to learn smooth interpolations between data points in the hidden layers, improving accuracy
by comparison with MixUp. PixMix [24] utilizes structural complexity synthetic pictures, such as
fractals and feature visualizations, to improve model performance. Our work shared similarities with
PixMix, but we use multi-scale information and better information fusion methods to train robust
models by leveraging more diverse examples.

Patch-level data augmentation. Patch-level data augmentation methods mask or replace parts of
the original image with different information. CutOut [28] randomly masks out regions of a clean
image to learn less discriminative portions, thereby improving accuracy. CutMix [40] replaces a
patch of an original image with another randomly picked image to improve performance. Patch
Gaussian [41], which inputs a patch of Gaussian noise into the clean picture, combines the improved
accuracy of CutOut with the noise robustness of Gaussian. SaliencyMix [42], based on the maximum
intensity pixel local in the saliency map, replaces a square patch of the original image with salient
information from another image. TokenMix [43] improves the performance of vision transformers by
partitioning the mixing region into multiple separated parts and mixing two images at the token level.
AutoMix [44] optimizes both the mixed sample generation task and the mixup classification task in a
momentum training pipeline with corresponding sub-networks in a bi-level optimization framework.
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2.2 Safety Measures

When deploying network models in real-world scenarios, it is crucial to consider comprehensive
security measures beyond standard accuracy. Implementing unsafe machine learning systems in
high-stakes environments [45–47] can lead to incalculable losses. With the rise of multimodal large
language models (MLLMs) [48–50], safety issues are receiving increasing attention because their
superior performance still makes mistakes. For example, GPT-4 [49] may be confidently wrong in its
predictions and disturbed by adversarial questions. Previous research has proposed various safety
measures, including but not limited to robustness and calibration.

Robustness. Corruption robustness considers how to improve the model resistance to unseen natural
perturbations under data distribution shifts. As a variant of the original ImageNet, ImageNet-C [51]
consists of 15 diverse commonplace corruptions belonging to different categories with five levels
of severity, regarded as a general benchmark for corruption robustness. In addition to natural
corruption, Hendrycks et al. [33] demonstrate that models should measure generalization to various
abstract visual renditions. The robustness of adversarial attacks focuses on defending against
imperceptible perturbations to images [52]. Prior works have proposed that there is a trade-off
between the robustness of adversarial perturbations and clean image accuracy [53, 54]. ImageNet-O
and ImageNet-A [34], widely regarded as benchmarks for evaluating image classifier performance
under shifts in both input data and label distributions, are utilized for anomaly detection.

Calibration. Calibrated prediction confidences, which indicate whether a model’s output should be
trusted, are valuable for classification models in real-world settings. Bayesian approaches [55] are
widely used to deal with uncertainty estimation. Kuleshov et al. [56] utilize recalibration methods to
solve the miscalibration of credible intervals. Ovadia et al. [57] provide a benchmark for evaluating
the accuracy and uncertainty of models under data distributional shifts.

2.3 Training with Synthetic Data

Previous works have proved that training with synthetic data can improve performance on real
datasets. Debidatta et al. [58] discover that combining synthetic annotated datasets with real data can
significantly improve the performance of instance detection. Baradad et al. [31] generate synthetic
data by utilizing various procedural noise models. In addition, they find that naturalism and diversity
are two important properties for synthetic data to achieve comparable results with real datasets.
Kataoka et al. [59, 60] propose a suite of datasets generated by formula-driven supervised learning.

3 An Attempt to Integrate Existing Approaches

Table 1: The combination of different levels of data augmen-
tation. M, C and A are abbreviations for MixUp, CutMix, and
AugMix, respectively.

Classification Robustness Calibration
Error(↓) mCE(↓) RMS(↓)

Vanilla 21.3 50 14.6
+M 20.5 (-0.8) 45.9(-4.1) 10.5(-4.1)

+M+C 20.2 (-1.1) 46.1(-3.9) 22.7(+8.1)
+M+C+A 23.4 (+2.1) 50.1(+0.1) 25.6(+11)

Some prior studies [24, 40] have
suggested that combining different
data augmentation techniques with
existing methods can improve accu-
racy on standard datasets. However,
these works merely employed sim-
ple combinations without consider-
ing the compatibility between meth-
ods at different levels. Simultane-
ously, these studies chose the clean
accuracy as the sole evaluation met-
ric and have not taken the model’s
safety performance into account. In this section, we select MixUp [23], CutMix [40], and Aug-
Mix [37] as representative data augmentation approaches for pixel-level, patch-level, and image-level,
respectively, to conduct combination experiments of these approaches on CIFAR-100. Please refer to
Appendix F for more details about the combination experiments.

Results on Table 1 demonstrate that simply combining different data augmentation methods may
significantly impair model performance. This could be attributed to the excessive perturbation of
training data caused by the combination of these methods, making the newly generated samples
more challenging to identify and impacting the model’s ability to learn useful features, leading to
performance degradation. When multiple label-variant methods are combined, manifold intrusion
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Figure 4: Different mixing framework of IPMix. P augmentation operation represents pixel-level
and patch-level augmentation operations. 1⃝ Utilizing P operations and image-level operations in
different chains and mixing the results. 2⃝ A clean image is randomly carried out by P operations or
image-level operations in linear combinations to generate an IPMix image. 3⃝ leveraging the mixed
image as a new input.

issues may be more likely to arise. One possible solution for better information integration is to incor-
porate approaches (e.g., MixUp) into search-based data augmentation techniques [20, 36]. However,
searching the space for an optimal DA policy will bring expensive computation. Furthermore, this
approach aims at improving clean accuracy and does not consider the overall safety performance.

4 IPMix: A Simple Method for Training Robust Classifiers

In this section, we propose IPMix, which integrates three levels of data augmentation methods into
a label-preserving approach, comprehensively improving safety metrics without sacrificing clean
accuracy. We first demonstrate how to merge various techniques into a coherent framework and then
propose novel approaches to achieve superior information fusion.

4.1 Integrates Different Levels into A Coherent Approach

Pixel-level & Patch-level. As a label-preserving data augmentation approach, IPMix uses the
equation below to mix two input images:

x̃ = B ⊙ x1 + (I − B)⊙ x2 (1)

Where x1 is the input image and x2 represents an unlabeled synthetic image (e.g., fractals, spectrum,
or auto-generated contours). B is a mask matrix suitable for both patch-level and pixel-level data
augmentation methods, and I is a binary mask filled with ones, having the same dimensions as B .
⊙ represents the element-wise product. When performing mixing operations at the patch level, we
choose a patch of random size and position from B , with a value of λ (sample from Beta distribution)
in this range and a value of 1 in other areas, which ensures that except for the mixing patch, the rest of
the generated image comes from x1. When performing mixing operations at the pixel level, we treat
the entire image as a patch, with a value of λ. To make it efficient, we adopt fractals as representatives
of synthetic data. However, IPMix is insensitive to mixing sets change, as shown in Table 8.

Fractals are geometric shapes with structural complexities and natural geometries. While previous
works [32, 61] merely use iterated function systems (IFS) to create fractal data, we employ the
Escape-time Algorithm for generating "orbit trap" complex fractals to enhance dataset complexity
and diversity. Please refer to Appendix E for details about generating fractal images.

The above-described method provides two key advantages: (1) We utilize a simple approach to
combine operations of two levels, facilitating better information fusion. (2) Our method is label-
preserving, ensuring it is not affected by manifold intrusion while eliminating the need for label
smoothing [62]. In the following sections, we refer to the method used in Eq. (1) as P-level data
augmentation, signifying the employment of both patch-level and pixel-level methods.

Image-level. IPMix leverages various augmentation techniques and compositions to create a new
image that does not deviate significantly from the original. Drawing inspiration from previous
works [36, 37], we randomly sample operations from PIL (e.g., brightness, sharpness) and randomly
sample strengths to enhance the diversity of training data without expensive searching. Notably, these
operations are disjoint from ImageNet-C corruptions, ensuring the robustness test’s validity.
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Table 2: Results are reported on CIFAR-100 and CIFAR-100-C
with ResNeXt-29. The Chain-Mixed achieves the most balanced
result on these metrics. Bold is best.

Classification Robustness Calibration
Error(↓) mCE(↓) RMS(↓)

Chain-Mixed 18.3 28.1 3.8
Linear Mix 18.2 27.4 13.5
Mixed Input 19.8 29.6 3.6

The IPMix framework. To deter-
mine the most effective methods
for combining P-level and image-
level, we conducted experiments
using different mixing structures
to generate a diverse set of IPMix
images, as illustrated in the Fig-
ure 4 and Table 2. While Linear
Mix achieves excellent results in
clean accuracy and corruption ro-
bustness, it performs poorly in cal-
ibrated prediction confidence. Mixed Input performs better in calibration but is inferior in accuracy
and corruption robustness compared to Chain-Mixed. Consequently, we chose Chain-Mixed as
the default framework for IPMix. Furthermore, the experimental results highlight the potential of
establishing a general framework for integrating various data augmentation methods.

4.2 Multi-scale Information Fusion

IPMix can enhance the diversity and the structural complexity of training data to improve model
performance. However, we found that simple mixing methods restrict the model’s capabilities.

Random Pixels Mixing Random Elements Mixing

Figure 5: Top: Examples of random
mixing operations. Bottom: Ex-
amples of IPMix-Scar mixing and
IPMix-Square mixing.

To overcome this issue, we use random mixing and scar-like
image patches for achieving more effective information fusion.

Random mixing. In previous data augmentation works, it is
typical to either linearly mix two images or extract specific
image features, such as saliency [22, 42], which requires addi-
tional computations, for image mixing. As IPMix incorporates
various levels of operations, its objective is to enhance the
mixing of images, ultimately increasing data diversity. To
accomplish this objective, IPMix employs four mixing oper-
ations: addition, multiplication, random pixel mixing, and
random element mixing [63]. Random pixel mixing creates a
binary mask of size H ×W × 1 that operates on each chan-
nel sequentially, while random element mixing generates a
binary mask of size H × W × 3 (RGB) that applies to all
channels simultaneously. An example is shown in Figure 5.
The experiments in Appendix B.1 show that both operations
are beneficial to better information mixing between images
and fractals.

Scar-like image patches. IPMix-Scar employs a long, thin
rectangular box filled with an image patch to enhance dataset diversity, which has proven effective for
anomaly detection [64]. An example of patch mixing is illustrated in Figure 5. First, IPMix randomly
selects a point and a scar or square of the previously chosen size from the current image. Next, IPMix
crops corresponding portions of the current image and the fractal picture and combine them.

Finally, we obtain IPMix, which employs various levels of data augmentation to create diverse
transformations with image structural complexity and data diversity. Figure 3 displays an example of
IPMix, where k denotes the number of augmented chains, and t represents the maximum number of
times an image can be augmented. The algorithm of IPMix is summarized in Appendix D.

5 Experiments

In this section, we showcase the significant performance improvements brought by IPMix on clean
datasets in multiple settings. We present the evaluation results of IPMix for image classification on
three datasets—CIFAR-10, CIFAR-100 [65], and ImageNet [66]—across various models. Besides
clean Classification, we assess IPMix on diverse safety tasks, including adversarial attack robustness,
corruption robustness, prediction consistency, calibration, and anomaly detection. Please refer to
Appendix C for details about the evaluation metrics. Lastly, we evaluate the properties of IPMix in
thorough ablation studies and compare our approach with different levels of methods.
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Table 3: Clean Error for IPMix on CIFAR-10 and CIFAR-100, lower is better. Top : CIFAR-10.
Bottom : CIFAR-100. Mean and standard derivation over three random seeds is shown for each
experiment. Bold is best.

Vanilla MixUp CutOut CutMix AugMix PixMix IPMix

WideResNet40-4 4.4(±0.05) 3.8(±0.06) 3.6(±0.05) 4.0(±0.04) 4.3(±0.08) 4.1(±0.08) 4.0(±0.06)

WideResNet28-10 3.8(±0.07) 3.6(±0.08) 3.4(±0.06) 3.4(±0.05) 3.4(±0.07) 3.8(±0.13) 3.3(±0.08)

ResNeXt-29 4.3(±0.04) 3.8(±0.11) 4.2(±0.08) 3.8(±0.02) 4.2(±0.05) 3.8(±0.09) 3.8(±0.07)

ResNet-18 4.4(±0.05) 4.2(±0.04) 4.1(±0.05) 4.0(±0.04) 4.5(±0.03) 4.4(±0.05) 4.2(±0.07)

Mean 4.2 3.9 3.8 3.8 4.1 4.0 3.8
WideResNet40-4 21.3(±0.11) 20.5(±0.13) 19.9(±0.11) 20.3(±0.15) 20.6(±0.15) 20.4(±0.17) 19.4(±0.14)

WideResNet28-10 19.0(±0.13) 18.4(±0.12) 18.8(±0.15) 18.0(±0.11) 19.4(±0.11) 18.3(±0.13) 17.4(±0.25)

ResNeXt-29 20.4(±0.11) 20.3(±0.12) 19.6(±0.13) 19.5(±0.13) 20.4(±0.13) 20.1(±0.11) 18.3(±0.22)

ResNet-18 23.7(±0.09) 21.0(±0.07) 22.0(±0.11) 20.8(±0.12) 23.0(±0.14) 21.6(±0.15) 21.6(±0.23)

Mean 21.1 20.0 20.1 19.7 20.8 20.1 19.2

Table 4: Mean Corruption Error (mCE) for IPMix across architectures on CIFAR-10-C and CIFAR-
100-C, lower is better. Top : CIFAR-10-C. Bottom : CIFAR-100-C. Bold is best.

Vanilla MixUp CutOut CutMix AugMix PixMix IPMix

WideResNet40-4 26.4(±0.14) 21(±0.15) 25.9(±0.13) 26(±0.13) 10(±0.12) 9.5(±0.14) 8.6(±0.14)

WideResNet28-10 24.2(±0.15) 19.2(±0.17) 23.5(±0.17) 25.1(±0.13) 9.1(±0.14) 8.7(±0.14) 7.5(±0.17)

ResNeXt-29 27.5(±0.11) 23.6(±0.18) 27.3(±0.18) 28.5(±0.18) 11.3(±0.15) 9.2(±0.12) 8.6(±0.19)

ResNet-18 25(±0.09) 20(±0.15) 24.1(±0.13) 24.7(±0.19) 10.4(±0.13) 9(±0.11) 8.4(±0.17)

Mean 25.8 20.9 25.2 26 10 9.1 8.2
WideResNet40-4 50(±0.15) 45.9(±0.19) 51.5(±0.17) 50(±0.19) 33.3(±0.22) 31.1(±0.19) 28.6(±0.15)

WideResNet28-10 48.5(±0.21) 44.2(±0.18) 48.2(±0.15) 48.6(±0.21) 31.5(±0.21) 28.3(±0.21) 26.6(±0.29)

ResNeXt-29 51.4(±0.19) 47.9(±0.21) 51(±0.17) 52.4(±0.22) 34.1(±0.24) 30.6(±0.23) 28.1(±0.31)

ResNet-18 50(±0.18) 45.5(±0.21) 50.2(±0.19) 50.8(±0.24) 35(±0.25) 31.4(±0.28) 29.9(±0.29)

Mean 50 45.9 50.2 50.5 33.4 30.3 28.3

We evaluate IPMix on CIFAR-10-C, CIFAR-100-C, and ImageNet-C to measure its resistance to cor-
ruption data shifts. We test IPMix on CIFAR-10-P, CIFAR-100-P, and ImageNet-P to measure network
prediction stability against minor perturbations. To thoroughly demonstrate our method’s capabili-
ties, we assess it on supplementary datasets, including ImageNet-R, ImageNet-O, and ImageNet-A.
Experiments on these datasets validate our approach’s robustness under real-world distribution shifts.

5.1 Evaluation on CIFAR

We experiment with different backbone architectures on CIFAR-10 and CIFAR-100, including 40-4
Wide ResNet [67], 28-10 Wide ResNet, ResNeXt-29 [68], and Resnet-18 [69]. We compare IPMix
with various data augmentation methods, including CutOut, MixUp, CutMix, AugMix, and PixMix.
Please refer to Appendix A for more details about the training configurations.

Accuracy. In Table 3, we demonstrate that IPMix improves standard accuracy across architectures.
In comparison with other approaches, IPMix achieves the best or comparable accuracy, showing the
improvement of safety measures is not at the cost of hurting clean accuracy.

Corruption robustness. Results show that IPMix substantially improves corruption robustness across
architectures. Compared to AugMix on CIFAR-100-C, IPMix achieves 4.7%(40-4) and 4.9%(28-10)
improvement on WideResNet, 6% on ResNeXt, and 5.1% on ResNet. Table 4 demonstrates that
IPMix achieves state-of-the-art results on both CIFAR-10-C and CIFAR-100-C.

Calibration. We utilize RMS calibration error [70] to evaluate the empirical frequency of correctness.
As depicted in Figure 6, IPMix surpasses other methods, achieving state-of-the-art results.

Prediction consistency. We leverage the mean flip rate (mFR) to evaluate prediction consistency on
CIFAR-10-P and CIFAR-100-P [51]. IPMix achieves the lowest mFR, as shown in Figure 7.
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Figure 6: The results of calibration on CIFAR-100. IPMix achieves the lowest RMS error in all data
augmentation methods, improving 11.8% by comparing with Vanilla.
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Figure 7: Left: prediction consistency. Right: adversarial robustness. IPMix achieves the best
results on both metrics, demonstrating its ability to improve overall security performance.

Adversarial robustness. This measure evaluates the resistance of adversarially perturbed by projected
gradient descent. We utilize PGD [71] to verify the adversarial robustness of image classifiers. The
results in Figure 7 show that IPMix achieves the lowest error.

Table 5: The results of IPMix on ImageNet. For Anomaly Detection, we test the accuracy on
ImageNet-A and AUPR on ImageNet-O, higher is better. IPMix achieves round improvement over
various data augmentation methods. Bold is best, and underline is second.

Classification Robustness Consistency Calibration Anomaly Detection

Clean ImageNet-C ImageNet-R ImageNet-P C R A ImageNet-A ImageNet-O
Error(↓) mCE(↓) Error(↓) mFR(↓) RMS(↓) RMS(↓) RMS(↓) Classification(↑) AUPR(↑)

Vanilla 23.9 78.6 64 57.7 12 19.9 47 2.2 16.2
MixUp[23] 22.7 76.5 62.4 54.6 9.3 41.7 49.3 5.2 16.1
CutOut[28] 22.6 73.1 64.6 57.9 11.3 19.7 46.3 4.7 15.9
CutMix[40] 22.9 77.2 66.5 58.1 9.6 44.2 48 7.2 16.5
AugMix[37] 22.6 68.5 61.8 52.3 8.1 13.1 43.5 3.8 17.4
AugMax[29] 22.9 67.4 62.1 54.6 8.8 12.1 44.7 3.9 17.1
PixMix[24] 22.4 65.4 59.8 50.8 7.2 12.3 44 5.9 17.3

IPMix 22.2 63 57.4 48.5 7.1 7 30 6.6 18.2

5.2 Evaluation on ImageNet

For ImageNet experiments, we compare different data augmentation methods, including MixUp,
CutOut, CutMix, AugMix, AugMax [29], and PixMix. We utilize SGD optimizer with an initial
learning rate of 0.01 to train ResNet-50 for 180 epochs following a cosine decay schedule. Please
refer to Appendix A for more details about the training configurations.

IPMix achieves state-of-the-art or comparable performances on a broad range of safety measures, as
shown in Table 5. Compared with other methods, IPMix improves the resistance of out-of-distribution
shifts without reducing clean accuracy. On corruption robustness, IPMix outperforms Vanilla by
15.6% and AugMix by 5.5%, achieving state-of-the-art results. On ImageNet-R, IPMix demonstrates
the ability to improve rendition robustness, increasing by 6.6% by comparison with Vanilla. On
ImageNet-P, IPMix improves mFR by 9.2% over Vanilla and 2.3% over PixMix. On calibration
tests, IPMix surpasses all methods on ImageNet-C, ImageNet-R, and ImageNet-A, improving RMS
by 0.1%, 5.1%, and 13.5% by comparison with the second-best approach. Furthermore, IPMix
achieves convincing results on ImageNet-A and ImageNet-O, demonstrating its exceptional ability in
anomaly detection. The results demonstrate that IPMix can roundly improve safety metrics.
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Table 6: Ablation results of different components of IPMix on ImageNet with ResNet-50.

Classification Robustness Consistency Calibration Anomaly Detection

Clean ImageNet-C ImageNet-R ImageNet-P C R A ImageNet-A ImageNet-O
Error(↓) mCE(↓) Error(↓) mFR(↓) RMS(↓) RMS(↓) RMS(↓) Classification(↑) AUPR(↑)

IPMix 22.2 63 57.4 48.5 7.1 7 30 6.6 18.2
w/o patch 22.8(±0.11) 65.1(±0.16) 58.8(±0.11) 49.1(±0.15) 7.8(±0.11) 7.4(±0.08) 31.1(±0.01) 6(±0.01) 17.7(±0.02)

w/o pixel 23.1(±0.15) 65.6(±0.19) 59.3(±0.13) 49.5(±0.17) 8.2(±0.13) 7.4(±0.09) 32.4(±0.11) 5.6(±0.01) 17.2(±0.03)

w/o image 23.5(±0.16) 66.2(±0.21) 59.5(±0.17) 49.6(±0.14) 8.8(±0.13) 8.1(±0.13) 33.5(±0.13) 6.5(±0.02) 17.8(±0.03)

5.3 Ablation Study

Table 7: Ablation results of different components of IPMix on
CIFAR-100. Mean and standard derivation over three random
seeds is shown for each experiment. Bold is the best.

Classification Robustness Calibration

IPMix 19.4 28.6 2.8
w/o patch 19.7(±0.13) 30 (±0.21) 4.6 (±0.07)

w/o pixel 19.6 (±0.09) 33 (±0.35) 8.2 (±0.12)

w/o image 20.1 (±0.27) 34 (±0.65) 8.6 (±0.21)

In this paragraph, we evaluate the
properties of our approach by abla-
tion experiments. We first study the
influence of different parts of IPMix
on performance and then assess the
stability of IPMix under various mix-
ing sources. Please refer to more ab-
lation experiments in Appendix B.1.

Components of IPMix. In this sec-
tion, we evaluate the influence of dif-
ferent IPMix components on perfor-
mance. We execute ablation experiments on the three primary IPMix constituents: image-level,
patch-level, and pixel-level. The results show the indispensable contribution of each component to
enhancing model performance, demonstrating that these approaches are complementary and that
a unification among them is necessary to achieve robustness. The ablation experiment results are
shown in Table 6 and Table 7. Please refer to thorough analysis in Appendix J.

Table 8: Ablation results on IPMix across different mixing
sets.The results show that IPMix is insensitive to mixing sets
change.

Mixing sets Classification Robustness Calibration
Error(↓) mCE(↓) RMS(↓)

Fractal + FVis 19.4 28.8 3.3
FractalDB 20 29 5.4

RCDB 19.5 28.4 3.2
Dead Leaves 19.4 29.1 3.1

Spectrum 19.8 29.2 4
fractals(ours) 19.4 28.6 2.8

Mixing sources. The excellent per-
formance of IPMix is partly due to
the structural complexity of fractal
pictures. In this part, we examine
the sensitivity of IPMix to different
fractal sources on CIFAR-100. We
report clean accuracy, corruption ro-
bustness, and calibration from differ-
ent sources with WRN40-4. Fractal +
FVis is the default setting of PixMix,
which consists of fractals and fea-
ture visualization. FractalDB [59]
consists of fractal images generated
by Iterated Function System (IFS).
RCDB [60] consists of auto-generated contours. Dead Leaves and Spectrum generated from genera-
tive image models [31]. The full results show in Table 8.

5.4 The Comparison with Different Levels of Method

In this section, we perform an extensive performance comparison between IPMix and a range of
existing methods using multiple metrics. We consider AutoAugment, RandAugment, and Triv-
ialAugment [36] as representative image-level techniques, while SaliencyMix, PuzzleMix [72], and
Co-Mixup [22] serve as typical patch-level techniques. For pixel-level methods, Manifold Mixup
stands as our representative choice. IPMix does not require searching for the optimal DA policy like
image-level techniques. In contrast to patch-level approaches, IPMix eliminates the need for saliency
computations. The results in Table 9 show that IPMix outperformed all other methods on all metrics.

6 Analysis of IPMix

IPMix combines three levels of data augmentation into a unified, label-preserving technique to
improve model performance. We believe that IPMix’s superior performance is due to the increased
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Image Baseline AugMix PixMix CutMix IPMix

Baseline AugMix PixMix CutMix IPMix

Figure 8: Top: t-SNE visualization. The features are from the penultimate layer of a WRN40-4
trained on CIFAR10. Compared with other approaches, IPMix has distinct boundaries between
different category clusters and generates diverse samples to cover boundary areas, thereby improving
the generalization ability. Bottom: The Grad-CAM visualization, with input images sourced from
ImageNet-A, demonstrates that IPMix excels in identifying objects within complex scenarios.

Table 9: Results of different augmentation methods on CIFAR-100 and CIFAR-100-C with 28-10
Wide ResNet. Bold is best.

Methods Classification Robustness Adversaries Consistency Calibration
Error(↓) mCE(↓) Error(↓) mFR(↓) RMS(↓)

AutoAugment [19] 17.7(±0.11) 38.4(±0.15) 97.8(±0.22) 8(±0.06) 7.9(±0.06)

RandAugment [20] 17.8(±0.14) 41.5(±0.13) 96.6(±0.25) 8.6(±0.10) 7.9(±0.04)

TrivialAugment [36] 17.9(±0.13) 96.3(±0.21) 35.4(±0.23) 7.3(±0.07) 8.7(±0.04)

SaliencyMix [42] 18.3(±0.14) 38.3(±0.24) 96.7(±0.21) 10.8(±0.07) 7.1(±0.07)

PuzzleMix [72] 18.1(±0.11) 37.9(±0.21) 96.1(±0.23) 10.5(±0.04) 7.5(±0.08)

Co-Mixup [22] 18.0(±0.19) 35.6(±0.25) 95.6(±0.21) 10.1(±0.05) 7.7(±0.04)

Manifold Mixup [39] 18.8(±0.21) 51.3(±0.23) 93.4(±0.17) 29.9(±0.28) 10.2(±0.09)

IPMix 17.4(±0.25) 26.6(±0.29) 91.3(±0.21) 4.2(±0.11) 6.4(±0.07)

data diversity and enhanced regularization effect. For a more intuitive demonstration of these effects,
we utilize t-SNE and Class Activation Mapping (CAM) [73] for visualizations, as shown in Figure 8.

Increasing diversity. IPMix increases the diversity of training data by mixing data at multiple levels,
enabling the model to learn a greater variety of feature combinations and patterns. Furthermore, the
integration of synthetic data from distinct distributions (e.g., fractals), further amplifies this diversity.

Enhanced regularization effect. The approach of mixing data also serves as a potent regularization
technique. By randomly mixing samples, the model is compelled to learn more robust features rather
than overly relying on specific sample or class characteristics, which reduces the risk of overfitting
and enhances the model’s performance in different environments.

7 Conclusion

We propose IPMix, which leverages different levels of augmentation techniques and image structural
complexity to improve model performance. By employing random mixing methods, we facilitate
more effective information fusion. The experimental results indicate that IPMix can significantly
improve various safety metrics. We hope our work will attract attention to joining different methods
into coherent and synergetic approaches to improve robustness and other safety measures. This
adaptation is crucial given the growing importance of safety requirements in systems design.
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