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Abstract

Graph neural networks, which typically exchange information between local neigh-
bors, often struggle to capture long-range interactions (LRIs) within the graph.
Building a graph hierarchy via graph pooling methods is a promising approach
to address this challenge; however, hierarchical information propagation cannot
entirely take over the role of local information aggregation. To balance locality
and hierarchy, we integrate the local and hierarchical structures, represented by
intra- and inter-graphs respectively, of a multi-scale graph hierarchy into a single
mega graph. Our proposed MeGraph model consists of multiple layers alternating
between local and hierarchical information aggregation on the mega graph. Each
layer first performs local-aware message-passing on graphs of varied scales via
the intra-graph edges, then fuses information across the entire hierarchy along
the bidirectional pathways formed by inter-graph edges. By repeating this fusion
process, local and hierarchical information could intertwine and complement each
other. To evaluate our model, we establish a new Graph Theory Benchmark de-
signed to assess LRI capture ability, in which MeGraph demonstrates dominant
performance. Furthermore, MeGraph exhibits superior or equivalent performance
to state-of-the-art models on the Long Range Graph Benchmark. The experimental
results on commonly adopted real-world datasets further demonstrate the broad
applicability of MeGraph. 1

1 Introduction

Graph-structured data, such as social networks, traffic networks, and biological data, are prevalent
across a plethora of real-world applications. Recently, Graph Neural Networks (GNNs) have emerged
as a powerful tool for modeling and understanding the intricate relationships and patterns present in
such data. Most existing GNNs learn graph representations by iteratively aggregating information
from individual nodes’ local neighborhoods through the message-passing mechanism. Despite their
effectiveness, these GNNs struggle to capture long-range interactions (LRIs) between nodes in the
graph. For instance, when employing a 4-layer vanilla GNN on the 9-node (A to I) graph (as shown
in Fig. 1), the receptive field of node A is limited to 4-hop neighbors, making the aggregation of
information from nodes G, H, and I into node A quite challenging. While GNNs could theoretically
incorporate information from nodes n-hops away with n-layers of message passing, this often leads
to over-smoothing and over-squashing issues [17, 3] when n is large.

*Equal Contribution. Work done while HD, JX and YY are interns at Tencent Robotics X.
†Corresponding authors, contact honghuad@cs.toronto.edu and lxhan@tencent.com.
1Project website and open-source code can be found at https://sites.google.com/view/megraph.
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Figure 1: Illustration of the graph pooling operation, graph pyramid, and mega graph. Graph pooling is a
downsampling process comprising SELECT, CONNECT, and REDUCE steps. It begins by selecting subsets for
grouping and each subset collapses into a new node in the pooled graph. Next, it forms new edges by merging
the original ones, and finally calculates the pooled graph’s features. In this graph, nodes A B C, D E F, and G H
I are pooled into nodes 1, 2, and 3 respectively, while the edges (B, E) and (C, D) are merged into (1, 2). Graph
Pyramid involves multi-scaled graphs derived from iterative graph pooling, with the height indicating different
scales and h = 1 symbolizing the original graph. Mega Graph is formed by connecting the graph pyramid
using inter-graph edges, which are the by-products of graph pooling.

One mainstream solution to this problem involves constructing a multi-scale graph hierarchy through
graph pooling methods. Previous efforts, such as Graph UNets [22] and HGNet [47], have attempted
to broaden the receptive field using this strategy. They downsample and upsample the graph,
aggregating information along the hierarchy. However, hierarchical information propagation cannot
take over the role of local information aggregation. To illustrate, consider the graph hierarchy depicted
in Fig. 1. The information propagated along the hierarchy from node B to nodes D, E, and F tends to
be similar since they share the common path B-1-X-2. However, in the original graph, node B holds
different degrees of importance to nodes D, E, and F as they are 2, 1, and 3 hops away respectively.

To balance the importance of locality and hierarchy, we amalgamate the local and hierarchical
structures of a multi-scale graph hierarchy into a single mega graph as depicted in Fig. 1, where we
refer to the local structure as intra-graph edges and hierarchical structure as inter-graph edges. Based
on this mega graph, we introduce our MeGraph model consisting of n Mee layers. Each layer first
performs local-aware message-passing on graphs of varied scales via the intra-graph edges and then
fuses information across the whole hierarchy along the bidirectional pathways formed by inter-graph
edges. This method enables hierarchically fused information to circulate within local structures and
allows locally fused information to distribute across the hierarchy. By repeating this fusion process,
local and hierarchical information could intertwine and complement each other. Moreover, to support
flexible graph pooling ratios when constructing the multi-scale graph hierarchy, we propose a new
graph pooling method S-EdgePool that improves from EdgePool [13].

In our experiments, We first evaluate MeGraph’s capability to capture Long Range interactions
(LRIs). We establish a Graph Theory Benchmark comprising four tasks related to shortest paths
and one related to connected components. MeGraph demonstrates superior performance compared
with many competitive baselines. MeGraph also achieves comparable or superior performance than
the state-of-the-art on the Long Range Graph Benchmark (LRGB) [17]. In addition, we perform
extensive experiments on widely-used real-world datasets that are not explicitly tailored for assessing
the capacity to capture LRIs. These include the GNN benchmark [15] and OGB-G datasets [28].
In these tests, MeGraph demonstrates superior or equivalent performance compared to the baseline
models, suggesting its broad applicability and effectiveness.

The main contributions of this work are summarized as follows: 1) Mega graph and novel architec-
ture: we propose the mega graph, a multi-scale graph formed by intra- and inter-graph edges, where
the message-passing over the mega graph naturally balances locality and hierarchy. On this basis, we
introduce a novel architecture MeGraph, which alternates information aggregation along the intra-
and inter-edges of the mega graph. This fusion process intertwines local and hierarchical information,
leading to mutual benefits. 2) Hierarchical information fusion: we design a bidirectional pathway
to facilitate information fusion among the hierarchies. 3) S-EdgePool: we enhance EdgePool into
S-EdgePool, allowing an adjustable pooling ratio. 4) Benchmark and Evaluations: we establish a
new graph theory benchmark to evaluate the ability of models to capture LRIs. In these evaluations,
MeGraph exhibits dominant performance. Additionally, MeGraph achieves new SOTA in one task of
LRGB and shows better or comparable performance compared with baselines on popular real-world
datasets.
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2 Notations, Backgrounds and Preliminaries
Let G = (V, E) be a graph with node set V (of cardinality Nv) and edge set E (of cardinality Ne). The
edge set can be represented as E = {(sk, tk)}k=1:Ne , where sk and tk are the indices of the source
and target nodes connected by edge k. We define XG as features of graph G, which is a combination
of global (graph-level) features uG , node features VG , and edge features EG . Accordingly, we
use VGi to represent the features of a specific node vi, and EGk denotes the features of a specific
edge (sk, tk). We may abuse the notations by omitting the superscript G when there is no context
ambiguity.

2.1 Graph Network (GN) Block

We adopt the Graph Network (GN) block design in accordance with the GN framework [6]. In our
notation, a GN block accepts a graph G and features X = (u,V,E) as inputs, and produces new
features X′ = (u′,V′,E′). A full GN block [6] includes the following update steps. In each of these
steps, ϕ denotes an update function, typically implemented as a neural network:

Edge features: E′k = ϕe(Ek,Vsk ,Vtk ,u),∀k ∈ [1, Ne].
Node features: V′i = ϕv(ρe→v({E′k}k∈[1,Ne],tk=i), Vi,u), ∀i ∈ [1, Nv], where ρe→v is an aggre-
gation function taking the features of incoming edges as inputs.
Global features: u′ = ϕu(ρe→u(E′), ρv→u(V′),u), where ρe→u and ρv→u are two global aggrega-
tion functions over edge and node features.

Given a fixed graph structure G and the consistent input and output formats outlined above, GN
blocks can be seamlessly integrated to construct complex, deep graph networks.

2.2 Graph Pooling

Graph pooling operation downsamples the graph structure and its associated features while ensuring
the preservation of structural and semantic information inherent to the graph. Drawing from the
SRC framework [23], we identify graph pooling as a category of functions,POOL, that maps a graph
G = (V, E) with Nv nodes and features XG to a reduced graph G̃ = (Ṽ, Ẽ) with N ṽ nodes and new
features XG̃ . Here, N ṽ ≤ Nv and (G̃,XG̃) = POOL(G,XG).
The SRC framework deconstructs the POOL operation into SELECT, REDUCE, and CONNECT functions,
which encompass most existing graph pooling techniques. We reinterpret these functions in our own
notation as follows:

(Ĝ,XĜ) = SELECT(G,XG); G̃ = CONNECT(G, Ĝ,XĜ); XG̃ = REDUCE(XG , Ĝ,XĜ). (1)

As shown in Fig. 1, the SELECT establishes N ṽ nodes for the pooled graph, and each node ṽ
corresponds to a subset of nodes Sṽ ⊆ V in the input graph. This creates an undirected bipartite
graph Ĝ = (V̂, Ê), with V̂ = V ∪ Ṽ and (v, ṽ) ∈ Ê if and only if v ∈ Sṽ . We refer to this graph Ĝ as
the inter-graph, a larger graph that links nodes in the input graph G with nodes in the pooled graph G̃.
The SELECT function can be generalized to include inter-graph features XĜ . As an example, edge
weights can be introduced for some edge (ŝk, t̂k) in graph Ĝ to gauge the importance of node ŝk from
the input graph contributing to node t̂k in the pooled graph.

The CONNECT function reconstructs the edge set Ẽ between the nodes in Ṽ of the pooled graph G̃
based on the original edges in E and the inter-graph edges in Ê . The REDUCE function calculates
the graph features XG̃ of graph G̃ by aggregating input graph features XG , taking into account both
the inter-graph Ĝ and features XĜ . In a similar vein to the relationship between graph lifting and
coarsening, we define the EXPAND function for graph features, which serves as the inverse of the
REDUCE function: XG = EXPAND(XG̃ , Ĝ,XĜ).

3 Methods

We begin with the introduction of the mega graph (Sec.3.1), which amalgamates the local (intra-
edges) and hierarchical (inter-edges) structures of a multi-scale graph hierarchy into a single graph.
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Figure 2: Illustration of the MeGraph model, where n− denotes n− 1. The blue and green circles represent
features of intra- and inter-graphs, respectively. In this figure, the horizontal and vertical directions represent the
interaction among the local structure (intra-graph) and graph hierarchy (inter-graph) respectively. The features
of intra- and inter-graphs are represented by blue and green circles, respectively. In this figure, the horizontal
and vertical directions denote the local structure and graph hierarchy respectively. During the encode stage, the
mega graph is constructed using graph pooling. In the process stage, the Mee layer, which features bidirectional
pathways across multiple scales, is stacked n times. In the decode stage, multi-scale features are read out. The
golden inter GN blocks form bidirectional pathways across the whole hierarchy.

Following this, we present the MeGraph model (Sec.3.2), which alternates between the aggregation
of local and hierarchical information along the intra- and inter-edges of the mega graph. We then
discuss the specific choices made for the core modules of the MeGraph, along with the innovations
(Sec.3.3). Finally, we delve into the computational complexity of the MeGraph model (Sec.3.4).

3.1 Connecting Multi-scale Graphs into a Mega Graph

Similar to the concept of an image pyramid [1], a graph pyramid is constructed by stacking multi-
scale graphs, which are obtained through iterative downsampling of the graph using a graph pooling
technique. Formally, in alignment with the definition of an image feature pyramid [39], we define
a graph feature pyramid as a set of graphs G1:h := {Gi}i=1,··· ,h and their corresponding features
XG1:h := {XGi}i=1,··· ,h. Here, G1 represents the original graph, XG1 signifies the initial features, h
stands for the height, and (Gi,XGi) = POOL(Gi−1,XGi−1) for i > 1.

By iteratively applying the POOL function, we can collect the inter-graphs Ĝ1:h := {Ĝi}i=1,··· ,h−1

and their features XĜ1:h := {XĜi}i=1,··· ,h−1 (since there are h− 1 inter-graphs for h intra-graphs),
where (Ĝi,XĜi) = SELECT(Gi,XGi) for i < h. The bipartite inter-graph Ĝ and its features XĜ

essentially depict the relationships between the graphs before and after the pooling process (see
Sec. 2.2).

Finally, as illustrated in Fig. 1, we wire the graph pyramid G1:h using the edges found in the
bipartite graphs Ĝ1:h. This results in a mega graphMG = (MV,ME), whereMV =

⋃h
i=1 Vi

andME =
⋃h

i=1 Ei ∪
⋃h−1

i=1 Êi. The structure of the mega graph would vary as the graph pooling
method trains. We denoteMGintra =

⋃h
i=1 Gi as the intra-graph ofMG, and refer to the edges

therein as intra-edges. Correspondingly,MGinter =
⋃h−1

i=1 Ĝi is referred to as the inter-graph ofMG,
with its corresponding edges termed as inter-edges. The features XMG of the mega graphMG is a
combination of intra-graph features XG1:h and inter-graph features XĜ1:h .

3.2 Mega Graph Message Passing

We introduce the MeGraph architecture, designed to perform local and hierarchical aggregations over
the mega graph alternately. As shown in Fig.2, the architecture follows the encode-process-decode
design [6, 25] and incorporates GN blocks (refer to Sec. 2.1) as fundamental building blocks.

During the encode stage, initial features are inputted into an intra-graph GN block, which is followed
by a sequence of graph pooling operations to construct the mega graphMG and its associated features
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Figure 3: Illustration of the Mee layer, where i− denotes i− 1 and j+ denotes for j + 1. The blue and green
circles represent the features of intra- and inter-graphs, respectively. Grey and golden arrows represent the intra
and inter GN blocks. The cross-update utilizes inter GN blocks to exchange information between consecutive
heights, as elaborated in the main text. The Mee layer first aggregates information locally along inter-graph
edges. It then applies cross-updates sequentially from lower to higher levels, accumulating information along
the pathway to pass to the higher hierarchy. The process is reversed in the last step.

(X0)MG . In the process stage, the Mee layer, which performs both local and hierarchical information
aggregation within the mega graph, is stacked n times. The i-th Mee layer receives (Xi−1)MG as
input and outputs (Xi)MG . Through the stacking of Mee layers, a deeper architecture is created,
enabling a more profound fusion of local and hierarchical information. Lastly, in the decode stage,
the features (Xn)MG are transformed into task-specific representations using readout functions.

Mee Layer. The Mee layer is designed to aggregate local and hierarchical information within the
mega graph. A detailed structure of the Mee layer is depicted in Fig. 3.

For the i-th Mee layer, we consider inputs denoted by (Xi−1)MG = {(Xi−1)G1:h , (Xi−1)Ĝ1:h}.
For simplicity, we omit the superscript and denote the features of intra- and inter-graphs as
{Xi−1

j }j=1,··· ,h := (Xi−1)G1:h and {X̂i−1
j }j=1,··· ,h−1 := (Xi−1)Ĝ1:h respectively.

The first step applies GN blocks on intra-graph edges, performing message passing on the local
structure of graphs at each scale: X′j = GNi,j

intra(Gj ,X
i−1
j ). Here, X′j represents the updated

intra-graph Gj features.

The second and third steps focus on multi-scale information fusion. The second step applies cross-
updates across consecutive heights from 1 to h, while the third step reverses the process, forming a
bidirectional pathway for the information flow across the hierarchy. The cross-update between consec-
utive heights j and j + 1 is denoted by a function (X′j , X̂

′
j ,Xj + 1′) = X-UPD(j,Xj , X̂j ,Xj + 1).

The prime notation indicates the updated value, and residual links [26] are used in practice.

This cross-update can be implemented via an inter-graph convolution with GNi,j
inter, referred to as X-

Conv (detailed in App.C.1). Alternatively, it can be realized using the REDUCE and EXPAND operations
of POOL (refer to Sec.2.2) by X′j+1 = REDUCE(Ĝj , X̂0

j ,Xj) and X′j = EXPAND(Ĝj , X̂0
j ,Xj+1),

where Ĝj is the j-th inter-graph. We denote this implementation as X-Pool.

The Mee layer outputs features {Xi
j}j=1,··· ,h and {X̂i

j}j=1,··· ,h−1. Residual links [26] can be added
from Xi−1

j to Xi
j and from X̂i−1

j to X̂i
j empirically, creating shortcuts that bypass GN blocks in the

Mee layer. It’s worth noting that the intra and inter GN blocks can share parameters across all heights
j to accommodate varying heights, or across all Mee layers to handle varying layer numbers.

3.3 Module Choice and Innovation

MeGraph incorporates two fundamental modules: the graph pooling operator and the GN block. This
architecture can accommodate any graph pooling method from the POOL function family (refer to
Sec. 2.2). Furthermore, the GN block is not strictly confined to the graph convolution layer found in
standard GCN, GIN, or GAT.

Graph Pooling. There are a number of commonly used graph pooling methods, including Diff-
Pool [62], TopKPool [22], EdgePool [13], etc. We opt for EdgePool due to its simplicity, efficiency,
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and ability to naturally preserve the graph’s connectivity through edge contraction. However, edge
contraction is applied only to the edges in a specific maximal matching of the graph’s nodes [13],
thereby setting a lower limit of 50% to the pooling ratio ηv . This constraint implies that a minimum
of log2 N pooling operations is required to reduce a graph of N nodes to a single node. To address
this limitation, we propose the Stridden EdgePool (S-EdgePool), which allows for a variable pooling
stride.

The principle behind S-EdgePool involves dynamically tracking the clusters of nodes created by the
contraction of selected edges. Similar to EdgePool, edges are processed in descending order based on
their scores. When an edge is contracted, if both ends do not belong to the same node cluster, the
two clusters containing the endpoints of the edge merge. The current edge can be contracted if the
resulting cluster contains no more than τc nodes after this edge’s contraction. The iteration stops
prematurely once a pooling ratio, ηv, is achieved. During pooling, each node cluster is pooled as a
new node. When τc = 2, S-EdgePool reverts to the original EdgePool. The algorithm’s details and
pseudocode are available in App. C.2.

For efficiency, we employ the disjoint-set data structure to dynamically maintain the node clusters,
which has a complexity of O(Eα(E)), where E is the number of edges and α(E) is a function that
grows slower than log(E) [50]. The total time complexity of S-EdgePool is equivalent to EdgePool
and is calculated as O(ED+E logE), where D is the embedding size, O(ED) from computing edge
scores and O(E logE) from sorting the edges.

GN block. The full GN block, introduced in Sec. 2.1, is implemented as a graph full network (GFuN)
layer. This layer exhibits a highly configurable within-block structure, enabling it to express a variety
of other architectures (see Sec. 4.2 of [6]), like GCN, GIN, GAT, GatedGCN. Thus, modifying the
within-block structure of GFuN is akin to plugging in different GNN cores. Further details can be
found in App. C.3.

Encoder and decoder. Most preprocessing methods (including positional encodings and graph
rewiring), encoding (input embedding) and decoding (readout functions) schemes applicable to GNNs
can also be applied to MeGraph. We give implementation details in App. C.4.

3.4 Computational Complexity and Discussion

The overall complexity of the MeGraph model is contingent on the height h, the number of Mee
layers n, the chosen modules, and the corresponding hyperparameters. Let D be the embedding
size, V the number of nodes, and E the number of edges in the input graph G. The time complexity
of S-Edgepool is O(ED+E logE), and that of a GFuN layer is O(V D2+ED). Assuming both
the pooling ratios of nodes and edges are η, the total time complexity to construct the mega graph
MG becomes O((ED + E logE)/(1− η)), where

∑h−1
i=0 ηi < 1/(1− η). Similarly, the total time

complexity of an Mee layer is O((V D2 + ED)/(1− η)). This complexity is equivalent to a typical
GNN layer if we consider 1/(1− η) as a constant (for instance, it is a constant of 2 when η = 0.5).

Theoretically, when using the same number of layers, MeGraph is better at capturing LRIs than
standard message-passing GNNs owning to the hierarchical structure (see App. D.1 for details). On
the other hand, MeGraph can degenerate into standard message-passing GNNs (see App. D.2 for
details), indicating it should not perform worse than them on other tasks.

4 Experiments
We conduct extensive experiments to evaluate the MeGraph’s ability to capture long-range interactions
(LRIs) and its performance in general graph learning tasks.

4.1 Experimental Settings

Baselines. We compare MeGraph model to three baselines as follows: 1) MeGraph h=1 variant does
not use the hierarchical structure and falls back to standard GNNs. 2) MeGraph n=1 variant gives up
repeating information exchange over the mega graph. 3) Graph U-Nets [22] uses a U-shaped design
and only traverses the multi-scale graphs once.

Due to page limits, statistics of the datasets are provided in App. B.1, hyper-parameters are reported
in Table 9, and the training and implementation details are reported in App. E.
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Table 1: Results on Graph Theory Benchmark (medium size). For each task, we report the MSE regression loss
on test set, averaged over different graph generation methods. Darker blue cells denote better performance and
the bold denotes the best one. We provide detailed results on each type of graphs in App. F.7.

Category Model SPsssd MCC Diameter SPss ECC Average

Baselines
(h=1)

n=1 11.184 1.504 11.781 22.786 20.133 13.478
n=5 3.898 1.229 5.750 12.354 18.971 8.440
n=10 2.326 1.264 5.529 7.038 18.876 7.006

MeGraph (h=5)
EdgePool (τc=2)

n=1 1.758 0.907 4.591 5.554 14.030 5.368
n=5 0.790 0.767 2.212 0.712 6.593 2.215

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.660 0.747 0.719 0.459 0.942 0.705
ηv=0.3 2.225 0.778 1.061 3.591 2.009 1.933
ηv=0.3, τc=4 0.615 0.702 0.651 0.434 0.975 0.675
ηv=0.5, τc=4 1.075 0.769 0.945 1.204 1.992 1.197
ηv=0.3, τc=4 (X-Pool) 0.935 0.751 0.864 1.462 2.003 1.203
ηv=0.3, τc=4 (w/o pw) 0.632 0.730 0.864 0.765 2.334 1.065

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.118 1.008 2.031 1.166 2.584 1.581

Table 2: Results on Graph Theory Benchmark (large size).
Category Model SPsssd MCC Diameter SPss ECC Average

Baseline h=1,n=5 328.014 39.4772 189.577 324.033 219.746 220.169

MeGraph h=5,n=5,ηv=0.3,τc=4 23.8963 16.8321 19.2185 14.9676 44.9234 23.9676
Graph-UNets h=5,n=9,ηv=0.3,τc=4 101.009 30.3711 39.8708 100.070 75.1185 69.2879

Table 3: Results on LRGB [17], numbers are taken from corresponding papers. All methods use around 500K
parameters for a fair comparison. Message-passing-based models have 5 layers, while the Transformer-based
models have 4 layers [17]. PE indicates positional encoding, which makes it easier to distinguish different nodes.

Methods Use PE Peptide-func ↑ Peptide-struct ↓
GCN [17] 59.30 ±0.23 0.3496 ±0.0013
GINE [17] 55.43 ±0.78 0.3547 ±0.0045

GatedGCN [17] 58.64 ±0.77 0.3420 ±0.0013
GatedGCN+RWSE [17] ✓ 60.69 ±0.35 0.3357 ±0.0006

GatedGCN+RWSE+VN [10] ✓ 66.85 ±0.62 0.2529 ±0.0009
Transformer+LapPE [17] ✓ 63.26 ±1.26 0.2529 ±0.0016

SAN+LapPE [17] ✓ 63.84 ±1.21 0.2683 ±0.0043
SAN+RWSE [17] ✓ 64.39 ±0.75 0.2545 ±0.0012

GPS [46] ✓ 65.35 ±0.41 0.2500 ±0.0005
MGT+WavePE [43] ✓ 68.17 ±0.64 0.2453 ±0.0025

GNN-AK+ [27] 64.80 ±0.89 0.2736 ±0.0007
SUN [27] 67.30 ±0.78 0.2498 ±0.0008

GraphTrans+PE [27] ✓ 63.13 ±0.39 0.2777 ±0.0025
GINE+PE [27] ✓ 64.05 ±0.77 0.2780 ±0.0021

GINE-MLP-Mixer+PE [27] ✓ 69.21 ±0.54 0.2485 ±0.0004

MeGraph (h=9,n=1) 67.52 ±0.78 0.2557 ±0.0011
MeGraph (h=9,n=4) 69.45 ±0.77 0.2507 ±0.0009

4.2 Perfomance on LRI Tasks

To test MeGraph’s ability to capture long-range interactions, we establish a Graph Theory Benchmark,
of which four tasks related to shortest path distance, i.e., Single Source Shortest Path (SPss), Single
Source Single Destination Shortest Path (SPsssd), Graph Diameter (Diameter) and Eccentricity of
nodes (ECC); and 1 task related to connected component, i.e., Maximum Connected Component of
the same color (MCC). To generate diversified undirected and unweighted graphs for each task, we
adopt the ten methods used in PNA [12] and add four new methods: cycle graph, pseudotree, SBM,
and geographic threshold graphs. The details of the dataset generation can be found in App. B.2.

As depicted in Table 1, the MeGraph model with h=5, n=5 significantly outperforms both the h=1
and n=1 baselines in terms of reducing regression error across all tasks. It is worth noting that even
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Table 4: Results on GNN benchmark. Regression tasks are colored with blue. ↓ indicates that smaller numbers
are better. Classification tasks are colored with green. ↑ indicates that larger numbers are better. Darker colors
indicate better performance. † denotes the results are reported in [15].

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑
GCN† 0.416 ±0.006 1.372 ±0.020 90.120 ±0.145 54.142 ±0.394 85.498 ±0.045 47.828 ±1.510
GIN† 0.387 ±0.015 1.894 ±0.024 96.485 ±0.252 55.255 ±1.527 85.590 ±0.011 58.384 ±0.236
GAT† 0.475 ±0.007 1.441 ±0.023 95.535 ±0.205 64.223 ±0.455 75.824 ±1.823 57.732 ±0.323
GatedGCN† 0.435 ±0.011 1.352 ±0.034 97.340 ±0.143 67.312 ±0.311 84.480 ±0.122 60.404 ±0.419

Graph-UNets 0.332 ±0.010 1.063 ±0.018 97.130 ±0.227 68.567 ±0.339 86.257 ±0.078 50.371 ±0.243
MeGraph (h=1) 0.323 ±0.002 1.075 ±0.007 97.570 ±0.168 69.890 ±0.209 84.845 ±0.021 58.178 ±0.079
MeGraph (n=1) 0.310 ±0.005 1.038 ±0.018 96.867 ±0.167 68.522 ±0.239 85.507 ±0.402 50.396 ±0.082
MeGraph 0.260 ±0.005 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.507 ±0.067 68.603 ±0.101
MeGraphbest 0.202 ±0.007 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.732 ±0.023 68.610 ±0.164

Table 5: Results on OGB-G. † indicates that the results are reported in [28].

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN† 76.06 ±0.97 79.15 ±1.44 68.87 ±1.51 91.30 ±1.73 59.60 ±1.77
GIN† 75.58 ±1.40 72.97 ±4.00 68.17 ±1.48 88.14 ±2.51 57.60 ±1.40

Graph-UNets 79.48 ±1.06 81.09 ±1.66 71.10 ±0.52 91.67 ±1.69 59.38 ±0.63
MeGraph (h=1) 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51
MeGraph (n=1) 78.56 ±1.02 79.72 ±1.24 67.34 ±0.98 91.07 ±2.21 58.08 ±0.59
MeGraph 77.20 ±0.88 78.52 ±2.51 69.57 ±2.33 92.04 ±2.19 59.01 ±1.45
MeGraphbest 79.20 ±1.80 83.52 ±0.47 69.57 ±2.33 92.06 ±1.32 63.43 ±1.10

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN† 75.29 ±0.69 63.54 ±0.42 1.114 ±0.03 2.640 ±0.23 0.797 ±0.02
GIN† 74.91 ±0.51 63.41 ±0.74 1.173 ±0.05 2.755 ±0.34 0.757 ±0.01

Graph-UNets 77.85 ±0.81 66.49 ±0.45 1.002 ±0.04 1.885 ±0.07 0.716 ±0.01
MeGraph (h=1) 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00
MeGraph (n=1) 77.01 ±0.93 66.89 ±1.21 0.896 ±0.04 1.892 ±0.06 0.730 ±0.01
MeGraph 78.11 ±0.47 67.67 ±0.53 0.886 ±0.02 1.876 ±0.05 0.726 ±0.00
MeGraphbest 78.11 ±0.47 67.90 ±0.19 0.867 ±0.02 1.876 ±0.05 0.688 ±0.01

the h=5, n=1 baseline outperforms the h=1, n=10 baseline, indicating that adopting a multi-scale
graph hierarchy is crucial in these tasks. The improvement is also substantial when compared with
our reproduced Graph-UNets using S-EdgePool ([MeGraph] 0.675 vs. [Graph UNets] 1.581). The
improvements are more significant when the size of graphs becomes larger (as shown in Table 2).
These results collectively demonstrate the superior ability of MeGraph to capture LRIs.

Furthermore, we evaluated MeGraph model and compared it with other recent methods on the
Long Range Graph Benchmark (LRGB) [17] that contains real-world tasks that require capturing
LRIs. As depicted in Table 3, the h=9, n=4 variant of MeGraph achieves superior results on the
Peptide-func task, and comparable performance on the Peptide-struct task, relative to state-of-the-art
models. It is worth noting that the n = 1 variant already surpasses other methods except the recent
MLP-Mixer [27] in the Peptide-func task.

4.3 Generality of MeGraph
To verify the generality of MeGraph model, we evaluate MeGraph on widely adopted GNN Bench-
mark [15], Open Graph Benchmark [28] and TU Dataset [42]. Results on TU Datasets are available
in App. F.3. In addition to the standard model that shares hyper-parameters in similar tasks, we also
report MeGraphbest with specifically tuned hyper-parameters for each task.

GNN Benchmark. We experiment on chemical data (ZINC and AQSOL), image data (MNIST and
CIFAR10) and social network data (PATTERN and CLUSTER). As shown in Table 4, MeGraph
outperforms the three baselines by a large margin, indicating the effectiveness of repeating both the
local and hierarchical information aggregation.

Open Graph Benchmark (OGB). We choose 10 datasets related to molecular graphs from the graph
prediction tasks of OGB. The task of all datasets is to predict some properties of molecule graphs
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Figure 4: Node classification accuracy (averaged over 10 random repetitions) for MeGraph on TreeCycle
(left) and TreeGrid (right) datasets by varying the number of Mee layers n, the height h, and the graph pooling
methods (EdgePool, Louvain, Random). Clear gaps can be observed among heights 1, 2, and 3 for EdgePool and
Louvain [8] methods, while the accuracy is almost invariant among different heights for randomized pooling.

based on their chemical structures. As shown in Table 5, MeGraph outperforms the h=1 baseline by a
large margin, suggesting that building a graph hierarchy is also essential in molecule graphs. The
performance of MeGraph, n = 1 baseline, and the reproduced Graph U-Nets are comparable. This
observation may be because the information obtained from multi-hop neighbors offers only marginal
improvements compared to the information aggregated hierarchically.

4.4 Ablation Study

Hierarchy vs. Locality. We study the impact of the height h and the number of Mee layers n on four
synthetic datasets introduced in [61], which are BAShape, BACommunity, TreeCycle, and TreeGrid.
Each dataset contains one graph formed by attaching multiple motifs to a base graph. The motif can
be a ‘house’-shaped network (BAShape, BACommunity), six-node cycle (TreeCycle), or 3-by-3 grid
(TreeGrid). The task is to identify the nodes of the motifs in the fused graph.

As shown in Fig. 4, we can observe clear improvements in performance as the height h and the number
of layers n increase when using EdgePool. Although increasing height shows better improvements,
both hierarchy and locality are indispensable in TreeCycle and TreeGrid tasks. In App. F.5, we show
that the conclusion also holds on BAShape and BACommunity datasets, except that the accuracy
is already saturated with height h = 2. The significance of integrating locality with hierarchy is
also demonstrated in the CLUSTER task, as presented in Table 4. Here, MeGraph reaches 68.6%
accuracy, which is markedly higher than the 50.4% accuracy achieved by both the n=1 baseline and
Graph-UNets.

Varying the Pooling Method. We varied the graph pooling with two non-learnable pooling methods,
Louvain [8] and Random. On the TreeCycle and TreeGrid datasets, as depicted in Fig. 4, Louvain
achieves comparable accuracy to EdgePool, while MeGraph using random pooling matches the
performance of the h = 1 variant of MeGraph. These observations indicate that: 1) a well-structured
hierarchy crafted by suitable graph pooling methods enhances MeGraph’s ability to harness hierarchi-
cal information; and 2) despite the disruption from a randomly constructed hierarchy, the MeGraph
model effectively taps into the local structure of the original graph (also discussed in App. D.2).

We further studied the impact of the node pooling ratio ηv and the maximum cluster size τc in
S-EdgePool by perturbing these parameters. As indicated in Table 1, the best variant (ηv=0.3,τc=4)
achieved a regression error about 3x smaller (0.675) compared to the original EdgePool (τc=2 with
an error of 2.215). This suggests the benefit of having a flexible pooling stride. Moreover, the mega
graph produced by S-EdgePool can vary significantly with different parameters. In App. F.2, we
visualized the resulting graph hierarchy to illustrate the difference between different S-EdgePool
variants. However, irrespective of the parameter set used, MeGraph consistently outperforms h = 1
baselines. This suggests that MeGraph exhibits robustness against different architectures of the mega
graph.

Varying GN Block. We varied the aggregation function of the GN block as attention (w/ ATT) and
gated function (w/ GATE). We observe similar results as in Sec. 4.2 and 4.3, verifying the robustness
of MeGraph towards different types of GN blocks. Detailed results can be found in Tables 16, 17 and
18 in App. F.6.

9



Changing cross update function (X-UPD). The unpool operation is frequently used by other hier-
archical architectures that build upon graph pooling. As illustrated in Table 1, we substituted the
X-Conv implementation with the X-Pool implementation of X-UPD, which resulted in a performance
decline from 0.675 to 1.203 (smaller is better). This finding suggests that other hierarchical GNNs
might also benefit from replacing the unpool operation with a convolution over the inter-graph edges.

Disabling bidirectional pathway. We verify the effectiveness of the bidirectional pathway design by
replacing steps 2 and 3 of the Mee layer as a standard message-passing along the inter-graph edges
(denoted w/o pw). As shown in Table 1, the performance degrades from 0.675 to 1.065 (smaller is
better), which indicates the contribution of the bidirectional pathway.

5 Related Work
Long-Range Interactions (LRIs). Various methods have been proposed to address the issue of
LRIs, including making the GNNs deeper [40]. Another way is to utilize attention and gating
mechanism, including GAT [52], jumping knowledge (JK) network [59], incorporating Transformer
structures [35, 60, 56, 46] and MLP-Mixer [27]. Another line of research focuses on multi-scale
graph hierarchy using graph pooling methods [62, 22, 47], or learning representation based on
subgraphs [5, 66]. Recently, Long Range Graph Benchmark [17] has been proposed to better evaluate
models’ ability to capture LRIs.

Feature Pyramids and Multi-Scale Feature Fusion. Multi-scale feature fusion methods on image
feature pyramids have been widely studied in computer vision literature, including the U-Net [48],
FPN [39], UNet++ [67], and some recent approaches [63, 41, 38, 37]. HRNet [53] is a similar method
compared to MeGraph. HRNet alternates between multi-resolution convolutions and multi-resolution
fusion by stridden convolutions. However, the above methods are developed for image data. The key
difference compared to these approaches is that the multi-scale feature fusion in MeGraph is along the
inter-graph edges, which is not as well structured as the pooling operation in image data. For graph
networks, the GraphFPN [65] builds a graph feature pyramid according to the image feature pyramid
and superpixel hierarchy. It applies GNN layers on the hierarchical graph to exchange information
within the graph pyramid. Existing works [22, 20, 47, 30] have also explored similar ideas in graph-
structured data. Our approach aligns with the broader concept of multi-scale information fusion, but
it is the first method that builds a mega graph using graph pooling operations and alternates local and
hierarchical information aggregation.

Graph Pooling Methods. Graph pooling is an important part of hierarchical graph representation
learning. There have been some traditional graph pooling methods like METIS [32] in early liter-
ature. Recently, many learning-based graph pooling methods have been proposed, including the
DiffPool [62], TopKPool [22], SAG pool [36], EdgePool [13], MinCutPool [7], Structpool [64], and
MEWISPool [44], etc. In this work, we utilize S-EdgePool improved from EdgePool to build the
mega graph, while this module can be substituted with any of the above-mentioned pooling methods.

Graph Neural Network (GNN) Layers. The GNN layer is the core module of graph representation
learning models. Typical GNNs include the GCN [34], GraphSage [24], GAT [52, 9], GIN [58],
PNA [12]. MeGraph adopts the full GN block [6] by removing part of links in the module as an
elementary block, and similarly this can be replaced by any one of the popular GNN blocks.

6 Limitations and Future Work
The MeGraph model suffers from some limitations. The introduced mega graph architecture inevitably
increases both the number of trainable parameters and tuneable hyper-parameters. The flexible choices
of many modules in MeGraph post burdens on tuning the architecture on specific datasets. For future
research, MeGraph encourages new graph pooling methods to yield edge features in addition to
node features, when mapping the input graph to the pooled graph. It is also possible to improve
MeGraph using adaptive computational steps [49]. Another direction is to apply some expressive but
computationally expensive models like Transformers [51] and Neural Logic Machines [14, 57] (only)
over the pooled small-sized graphs.
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A Code and Reproducibility

The code along with the configuration of hyper-parameters to reproduce our experiments can be
found at https://github.com/dhh1995/MeGraph.

We set the random seed as 2022 for all experiments to enable reproducible results. We provide dataset
statistics in Table 6 and details for the proposed graph theory benchmark in Appendix B.2. Details of
the hyper-parameters are reported in Table 9. Configuration of all hyper-parameters and the command
lines to reproduce the experiments have been included in the code repository.

B Dataset Details

B.1 Dataset Statistics and Metrics

We provide the statistics of all datasets used in our experiments in Table 6 and introduce the evaluation
metrics for each dataset.

For Synthetic datasets, we use classification accuracy (ACC) as the evaluation metric. We use Mean
Square Error (MSE) as the evaluation metric for all datasets in our Graph Theory Benchmark. For
GNN Benchmark, we follow the original work [15] for evaluation, i.e., Mean Absolute Error (MAE)
for ZINC and AQSOL, classification accuracy for MNIST and CIFAR10, and balanced classification
accuracy for PATTERN and CLUSTER. For OGB Benchmark, we follow the original work [28] and
use the ROC-AUC for classification tasks and Root Mean Square Error (RMSE) for regression tasks.
For TU datasets, we follow the setting used by [11] and use classification accuracy as the evaluation
metric.

B.2 Graph Theory Benchmark

In this section, we provide the details about the tasks and how the graph features and the labels are
generated given a base graph G = (V, E):

• Single source single destination shortest path (SPsssd): a source node s ∈ V and a destination
node t ∈ V are selected uniform randomly. The feature of each node v contains three
numbers: (1, whether the node v is s, whether the node v is t). The label of a graph is the
length of the shortest path from s to t.

• A maximum connected component of the same color (MCC): each node of the graph is
colored with one of three colors. The feature for each node is the one-hot representation of
its color. The label of graph is the size of the largest connected component of the same color
for each color.

• Graph diameter (Diameter): the label of the graph is the diameter of the graph. The diameter
of a graph G is the maximum of the set of shortest path distances between all pairs of nodes
in the graph. The feature of each node is a uniform number 1.

• Single source shortest path (SPss): a source node s is selected uniformly randomly. The
feature of each node contains two numbers: (1, whether the node is s). The label of each
node is the length of the shortest path from s to this node.

• Graph eccentricity (ECC): the label of each node v is node’s eccentricity in the graph, which
is the maximum distance from v to the other nodes. The feature of each node is a uniform
number 1.

For each task and graph generation method, We generate the dataset by the following steps:

• Sample N (number of nodes) from an interval with a total number of graphs. These numbers
can be configured. For the medium size setting, the interval is [20, 50], a total of 300 graphs.
For the large size setting, the interval is [100, 200], a total of 500 graphs.

• Use the graph generation method to generate a graph of N nodes.

• Create graph features and labels according to the task.
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Table 6: The statistics of the datasets used in experiments. Some statistics (like the average number
of edges) of the Graph Theory datasets may vary depending on different random graph generation
methods. The regression tasks are marked with ✓ in a separate column. The tasks of 4 synthetic
datasets are transductive, where the same graph is used for both training and testing. We do not use
the node labels as features during the training time. The train-val-test split is over nodes. All other
datasets in the table are inductive, where the testing graphs do not occur during training, and the
train-val-test split is over graphs.

Collection Dataset #
Graphs

Avg
#

Nodes

Avg
#

Edges

#
Node
Feat

#
Edge
Feat

#
Classes Task Reg.

Synthetic BaShape 1 700 1761 1 - 4 Trans-Node
Synthetic BaCommunity 1 1400 3872 10 - 8 Trans-Node
Synthetic TreeCycle 1 871 970 1 - 2 Trans-Node
Synthetic TreeGrid 1 1231 1705 1 - 2 Trans-Node

GraphTheory SPsssd 300 35.0 - 3 - - Graph ✓
GraphTheory Diameter 300 35.0 - 1 - - Graph ✓
GraphTheory MCC 300 35.0 - 3 - - Graph ✓
GraphTheory SPss 300 35.0 - 2 - - Node ✓
GraphTheory ECC 300 35.0 - 1 - - Node ✓

LRGB Peptides-func 15535 150.94 307.30 9 3 10 Graph
LRGB Peptides-struct 15535 150.94 307.30 9 3 - Graph ✓

GNNBenchmark ZINC 12000 23.16 49.83 28 4 2 Graph ✓
GNNBenchmark AQSOL 9823 17.57 35.76 65 5 2 Graph ✓
GNNBenchmark MNIST 70000 70.57 564.53 3 1 10 Graph
GNNBenchmark CIFAR10 60000 117.63 941.07 5 1 10 Graph
GNNBenchmark PATTERN 14000 118.89 6078.57 3 - 2 Node
GNNBenchmark CLUSTER 12000 117.20 4301.72 7 - 6 Node

OGB Graph molhiv 41127 25.51 80.45 9 3 2 Graph
OGB Graph molbace 1513 34.09 107.81 9 3 2 Graph
OGB Graph molbbbp 2039 24.06 75.97 9 3 2 Graph
OGB Graph molclintox 1477 26.16 81.93 9 3 2 Graph
OGB Graph molsider 1427 33.64 104.36 9 3 2 Graph
OGB Graph moltox21 7831 18.57 57.16 9 3 2 Graph
OGB Graph moltoxcast 8576 18.78 57.30 9 3 2 Graph
OGB Graph molesol 1128 13.29 40.64 9 3 - Graph ✓
OGB Graph molfreesolv 642 8.7 25.50 9 3 - Graph ✓
OGB Graph mollipo 4200 27.04 86.04 9 3 - Graph ✓

TU MUTAG 188 17.93 19.79 7 - 3 Graph
TU NCI1 4110 29.87 32.30 37 - 2 Graph
TU PROTEINS 1113 39.06 72.82 4 - 2 Graph
TU D&D 1178 284.32 715.66 89 - 2 Graph
TU ENZYMES 600 32.63 62.14 21 - 6 Graph
TU IMDB-B 1000 19.77 96.53 10 - 2 Graph
TU IMDB-M 1500 13.00 65.94 10 - 3 Graph
TU RE-B 2000 429.63 497.75 10 - 2 Graph
TU RE-M5K 4999 508.52 594.87 10 - 5 Graph
TU RE-M12K 11929 391.41 456.89 10 - 11 Graph
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We then provide the details about the random graph generation methods we used to create our Graph
Theory datasets.

Following [12], we continue to use undirected and unweighted graphs from a wide variety of
types. We inherit their 10 random graph generation methods and quote their descriptions here for
completeness (the percentage after the name is the approximate proportion of such graphs in the
mixture setting).

• Erdös-Rényi (ER) (20%) [18]: with a probability of presence for each edge equal to p,
where p is independently generated for each graph from U [0, 1]

• Barabási-Albert (BA) (20%) [2]: the number of edges for a new node is k, which is taken
randomly from {1, 2, . . . , N − 1} for each graph

• Grid (5%): m× k 2d grid graph with N = mk and m and k as close as possible
• Caveman (5%) [55]: with m cliques of size k, with m and k as close as possible
• Tree (15%): generated with a power-law degree distribution with exponent 3
• Ladder graphs (5%)
• Line graphs (5%)
• Star graphs (5%)
• Caterpillar graphs (10%): with a backbone of size b (drawn from U [1, N)), and N − b

pendent vertices uniformly connected to the backbone
• Lobster graphs (10%): with a backbone of size b (drawn from U [1, N)), p (drawn from
U [1, N−b] ) pendent vertices uniformly connected to the backbone, and additional N−b−p
pendent vertices uniformly connected to the previous pendent vertices.

Additional, we add three more graph generation methods:

• Cycle graphs
• Pseudotree graphs: A tree graph plus an additional edge. The graph is generated by first

generating a cycle graph of size m = sample(0.3N, 0.6N). Then n−m remaining nodes
are sampled to m parts, where i-th part represents the size of the tree hanging on the i-th
node on the cycle. The trees are randomly generated with the given size.

• Stochastic Block Model (SBM) graphs: graphs with clusters. We randomly sample the size
of each block to be random from (5, 15), and the probability of edge within the block to be
random from (0.3, 0.5) and those for other edges to be random from (0.005, 0.01). To make
all the tasks well-defined, we filtered out the unconnected graphs during the generation.

• Geographic (Geo) graphs: geographic threshold graphs, but with added edges via a
minimum spanning tree algorithm, to ensure all nodes are connected. This graph generation
method is introduced by [6] in their codebase 2. We use the geographic threshold θ = 200
instead of the default value θ = 1000.

Note that we do not have randomization after the graph generation as in [12]. Therefore, very long
diameter is preserved for some type of graphs.

C Method Details

C.1 Cross Update Function

The cross update function (X′j , X̂
′
j ,X

′
j+1) = X-UPD(j,Xj , X̂j ,Xj+1) perform information ex-

change in consecutive hierarchies.

The X-Conv realization contains the following steps:

1. Merge the node features of Xj and Xj+1 with the inter-graph feature X̂j , results in X̄j .

2. Apply GN blocks on inter-graph Ĝj : X̂′j = GNi,j
inter(Ĝj , X̄j).

3. Retrieve X′j and X′j+1 from the node features of inter-graph features X̂′j .
2https://github.com/deepmind/graph_nets, the shortest path demo
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C.2 S-EdgePool

In this subsection, we introduce the details of S-EdgePool. We first introduce the score generation
method, then give details about the SELECT, CONNECT, REDUCE and EXPAND functions, and lastly
provide pseudocode of the algorithm.

C.2.1 Edge Score Generation

Both S-EdgePool and EdgePool methods compute a raw edge score rk for each edge k using a linear
layer:

rk = W · (Vsk ||Vtk ||Ek) + b

where sk and tk are the source and target nodes of edge k, V is node features, E is edge features,
W and b are learned parameters. The raw edge scores are further normalized by a local softmax
function over all edges of a node:

wk = exp(rk)/
∑

k′,tk′=tk

exp(rk′),

and biased by a constant 0.5 [13].

C.2.2 Select, Connect, Reduce and Expand

SELECT step. S-EdgePool shares the same computations as in EdgePool to generate learnable edge
scores, as detailed above. Then, we use a clustering procedure to determine the subset of nodes to be
reduced.

Let Iv be the identifier of the cluster containing a set of nodes v. Initially, we let v = {v} for
every single node v. A contraction of an edge merges a pair of nodes (v, v′) connected by this edge
(where v ∈ v, v′ ∈ v′ and v ̸= v′), and thus unifies the cluster identifiers, i.e., Iv = Iv′ = Ivmerge

and vmerge = v ∪ v′. That is, once an edge connecting any pair of nodes from two distinct clusters
is contracted, we merge the two clusters and unify their identifiers. Edges are visited sequentially
by a decreasing order on the edge scores, and contractions are implemented if valid. We set the
maximum size of the node clusters to be a parameter τc, where τc = 2 degenerates to the case of
EdgePool [13]. We further introduce the pooling ratio ηv to control the minimal number of remaining
clusters after edge contractions to be Nv ∗ ηv. Contractions that violate the above two constraints
are invalid and will be skipped. Both parameters control the number of nodes in the pooled graph.
In our implementation, the cluster of nodes is dynamically maintained using the disjoint-set data
structure [21].

Then each node cluster i collapses into a new node ṽ of the pooled graph (i.e. Sṽ = {v|Iv = i}),
with inter-graph edges connect the nodes in the cluster to the new node ṽ.

CONNECT step. The CONNECT function rebuilds the edge set Ẽ between the nodes in Ṽ . As aforemen-
tioned, we build the pooled graph’s nodes according to node clusters. We call this mapping function
from node clusters to new nodes as c2n. After that, we build the pooled graph’s edges following three
steps: First, for all edges in the original graph, we find out the corresponding node cluster(s) of its
two endpoints (using a disjoint-set’s find index operation). Then, we find out the corresponding new
nodes by using the mapping function n. Last, we add a new edge between the new nodes.

REDUCE and EXPAND step. The REDUCE and EXPAND are generalized from the method mentioned in
[13]. The REDUCE function computes new node features and edge features. We follow their method
to compute new node features by taking the sum of the node features and multiplying it by the edge
score. Specifically, we generalize the computation between two nodes to a node cluster. The node
clusters are maintained with a disjoint-set data structure and a cluster Sṽ consists of |Sṽ| nodes. We
define Edsṽ as a set of |Sṽ| − 1 edges, where the edges are the selected edges to be contracted in the
SELECT step. Then,

cṽ =
1 +

∑
ek∈Edsṽ

wk

|Sṽ|
Vṽ = cṽ

∑
v∈Sṽ

Vv
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To integrate the edge features between two node clusters, we first find all the connected edges
between the two node clusters (the edges between node clusters are edges that connect two nodes
from different node clusters). Then, we use the sum of all the connected edges’ features between the
two node clusters as the new edge’s features.

The EXPAND function is also referred as unpool operation. It computes node features of the input
graph Vv given the node features of the pooled graph Vṽ as following:

Vv =
Vṽ

cṽ

C.2.3 Pseudo Code

The pseudo-code includes two parts, where Algorithm 1 describes how to maintain the clusters using
a disjoint-set data structure, and Algorithm 2 describes the procedure of S-EdgePool that generates a
pooled graph G̃ with configurable node pooling ratio ηv and maximum of cluster sizes τc.

Algorithm 1 Get Cluster Index And Cluster Size of a Node (Using disjoint-set data structure)
function InitializeDisjointSet(graph G(V, E))

for v ∈ V do
index[v] = v {the identifier of the cluster the node v belongs to}

end for
end function
function FindIndex(node v)

if index[v] = v then
return v

else
index[v]←FindIndex(index[v])
return index[v]

end if
end function
function FindIndexAndSize(node v)
i← FindIndex(v)
s← size[i]
return i, s

end function
function MERGE(cluster index x, cluster index y)
size[y]← size[x] + size[y]
index[x]← index[y]

end function

C.3 GFuN

We first realize the ϕe, ϕv , ϕu functions in the full GN block (Sec 2.1 and [6]) as neural networks:

E′k = NNe(Ek,Vsk ,Vtk ,u), (2)
V′i = NNv(Ē

′
i,Vi,u), (3)

u′ = NNu(Ē
′, V̄′,u), (4)

respectively, where

Ē′i = ρe→v({E′k}k∈[1...Ne],tk=i), (5)

Ē′ = ρe→u(E′), (6)
V̄′ = ρv→u(V′). (7)

We further decompose the neural networks according to the features in the function:

NNe(Ek,Vsk ,Vtk ,u) = NNe←e(Ek) + NNe←vs(Vsk) + NNe←vt(Vtk) + NNe←u(u),(8)
NNv(Ē

′
i,Vi,u) = NNv←e(Ē

′
i) + NNv←v(Vi) + NNv←u(u), (9)

NNu(Ē
′, V̄′,u) = NNu←e(Ē

′) + NNu←v(V̄
′) + NNu←u(u) (10)
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Algorithm 2 Strided EdgePool
input graph G = (V, E), edge scores w, node pooling ratio ηv , maximum cluster sizes τc.
output pooled graph G̃ = (Ṽ, Ẽ) and inter graph Ĝ = (V̂, Ê)

InitializeDisjointSet(G)
remains← Nv {Nv is the number of nodes in graph G}
Ē ← Sort the edges E according to the edge scores w decreasingly.
for e ∈ Ē do
x, y ← the two endpoints of the edge e
rx, sx← FindIndexAndSize(x)
ry, sy ← FindIndexAndSize(y)
if rx ̸= ry and (sx+ sy ≤ τc) then

Merge(x, y)
remains← remains− 1
if remains ≤ Nv ∗ ηv then

break
end if

end if
end for
Ṽ, Ẽ , V̂, Ê ← {}, {}, {}, {}
create empty mapping c2n from cluster index to nodes
for v ∈ V do

if FindIndex(v) = v then
create new node ṽ
c2n[v] = ṽ

Ṽ ← Ṽ ∪ {ṽ}
end if

end for
for e ∈ E do

x, y ← the two endpoints of the edge e
x̃← c2n[FindIndex(x)]
ỹ ← c2n[FindIndex(y)]
Ẽ ← Ẽ ∪ {(x̃, ỹ)}

end for
for v ∈ V do

ṽ ← c2n[FindIndex(v)]
Ê ← Ê ∪ {(v, ṽ)}

end for
V̂ ← V ∪ Ṽ

However, such GN block uses 10 times the number of parameters as the standard GCN [34] layer
when the node, edge and global embedding dimensions are all equivalent. In practice, we disable all
computations related to global features u, as well as the neural networks NNe←e and NNe←vt . We
also set NNv←e to be Identity.

In practice, we use the summation function as the aggregator function ρe→v by default. But other
choices like MEAN, MAX, gated summation, attention or their combinations can also be used.

Overall, we call such GN block as graph full network (GFuN).

C.4 Encorder and Decoder

Encoder. For input embedding, we use the Linear layer or Embedding layer to embed input features.
For example, we follow [15] and use the Linear layer on MNIST and CIFAR10 datasets, and use
the Embedding layer on ZINC and AQSOL datasets. For the molecular graph in OGB, we use the
same embedding method as in the original work [28]. Besides, we can adopt positional encoding
methods like Laplacian [15] and Random Walk [16] to further embed global and local graph structure
information. The embedding of positional encoding can be combined into (like concatenation,
addition, etc.) input features and form new embeddings.
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Decoder. We can freely choose from the multi-scale features computed during the process stage as
inputs to the decoder module. Empirically, we use the features on the original graph for prediction in
all experiments. For node-level tasks, we apply a last GNN layer on the original graph to get logits
for every node. For graph-level tasks, we first use global pooling functions to aggregate features. We
can use common global pooling methods like SUM, MEAN, MAX, or their combination. After the
global pool, we use MLP layer(s) to generate the prediction.

C.5 Architecture Variants

We can replace some GN blocks within Mee layers as an Identity block to reduce the time complexity.
We call the height j is reserved if the intra GN block of height j is not replaced by an Identity block.
We prefer to reserve an interval of consecutive heights for the Mee layers. (The inter GN blocks
between these heights remain unchanged while others are replaced as identities) By varying the
heights reserved in each Mee layers, we can create a large number of variants of MeGraph model
including U-Shaped, Bridge-Shaped and Staircase-Shaped.

U-Shaped. This variant is similar to Graph U-Net [22]. In this U-Shaped variant, the relationship
between the number of layers n and height h is n = 2h+ 1, and there is only one GN block in each
layer. We keep the GN block at height j = i for each layer i at the first half layers and keep the GN
block at height j = n− i+1 for each layer i at the later half layers. In the middle layer, only the last
height j = h = (n− 1)/2 has a GN block.

Bridge-Shaped. In this variant, all GN blocks are combined like an arch bridge. Describe in detail,
in the first and last layers, there are GN blocks in each height. In other layers, there are GN blocks at
a height of 1 to j (where 1 < j < h).

Staircase-Shaped. There are four forms in this variant, and the number of layers n is equal to the
height h in all forms. The first form is like the ‘downward’ staircase. In each layer i of this form,
there are GN blocks at the height of j to h (where j = i). The second form is the inverted first form.
In each layer i of this second form, there are GN blocks at height of 1 to h− i + 1 (where j = i).
The last two forms are the mirror of the first and second forms.

D Theoretical Discussions

D.1 Smaller Number of Aggregation Steps for Capturing Long-Range Interactions

We rephrase the analysis provided in [47] as following:

We analyze the number of aggregation steps required to capture long-range interactions between
nodes in the original graph while assuming the node representation capacity is large enough.

Standard message-passing GNNs require n aggregation steps to capture long-range interactions of n
hops away, therefore requiring a stack of n layers, which could be expensive when n is large.

We also assume the height h of the hierarchy is large enough so that all nodes of the original graph
are pooled into a single node. In that case, the information aggregation along the hierarchy captures
all pairs of LRIs into the embedding of the single node. Which means the number of aggregation
steps of MeGraph is h. When we adopt a pooling method that coarsens the graph at least half, h is
at most O(log(|V |)) where |V | is the number of nodes of the input graph. Therefore, the height h is
significantly smaller than the diameter of the graph (which could be O(|V |)) in most cases.

D.2 MeGraph can degenerate to standard GNNs

MeGraph can learn a gating function (within the X-UPD function) that only reserves the features of
the same scale while performing cross-scale information exchanging. In that case, there will be no
information exchange across multi-scale graphs, and features other than those in the original scale
will not be aggregated. We provide a proof sketch below, while the results of the random pooling
method ablation study in Sec. 4.4 also provide empirical evidence.

Proof: The cross update function is (X ′j , X̂
′
j , X

′
j+1) = X-UPD(j,Xj , X̂j , Xj+1). There is a residual

function applied here, and we assume it is implemented as a gated residual: X ′′j = σ(α)Xj+σ(β)X ′j ,
where σ is the sigmoid function and α, β are learnable parameters. Theoremetically, it is possible that
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Table 7: Running time (s) for one epoch on the GNN benchmark. See Sec. E for more implementation
details.

ZINC AQSOL CIFAR10 MNIST PATTERN CLUSTER

Megraph (h = 5) 25.69 20.22 336.63 307.23 101.52 69.65
Megraph (h = 1) 2.41 1.67 51.74 38.60 9.21 6.52

Table 8: Running time (s) for one epoch on the OGBG datasets. See Sec. E for more implementation
details.

molhiv molbace molbbbp molclintox molsider

Megraph (h = 5) 393.42 14.70 20.36 14.03 14.12
Megraph (h = 1) 22.50 1.43 1.58 1.26 1.41

moltox21 moltoxcast molesol molfreesolv mollipo

Megraph (h = 5) 70.15 78.77 11.68 6.24 44.77
Megraph (h = 1) 5.27 8.17 0.76 0.41 2.77

σ(α) = 1 and σ(β) = 0 after training. In that case, X ′′j = Xj , which means Xj is not changed over
steps 2 and 3 of the Mee layer. Therefore, Xi

0 = GN i,0
intra(G, X

i−1
0 ), this is equivalent to a simple

GNN layer that Xi = GNNi(G, Xi−1) as Xi
0 is the features of the original graph and GNintra is a

GNN layer. Therefore, MeGraph degenerates to standard message-passing GNNs in this case. ■

E Implementation and Training Details

We use PyTorch [45] and Deep Graph Library (DGL) [54] to implement our method.

We implement S-EdgePool using DGL, extending from the original implementation of EdgePool in
the Pytorch Geometric library (PYG) [19]. We did Constant optimization over the implementation
to speed up the training and inference of the pooling. We further use Taichi-Lang [29] to speed up
the dynamic node clustering process of S-EdgePool. The practical running time of MeGraph model
with height h > 1 after optimization is about 2h times as the h = 1 baseline. This is still slower
than the theoretical computational complexity due to the constant in the implementation and the
difficulty of paralleling the sequential visitation of edges (according to their scores) in the EdgePool
and S-EdgePool. This process could be further speed up by implementing the operations with the
CUDA library. We provide the practical running time for h > 1 and h = 1 in GNN benchmark and
OGB-G datasets in Tables 7 and 8. The speed is slower than the theoretical one partially due to the
pooling ratio of edges being larger than the nodes, making the number of edges decrease slowly over
the hierarchy. To further speed up, we could use the variants of MeGraph introduced in App. C.5 by
skipping some computation modules.

We run all our experiments on V100 GPUs and M40 GPUs. For training the neural networks, we use
Adam [33] as the optimizer. We report the hyper-parameters of the Megraph in Table 9.

For models using GFuN layer as the core GN block, we find it benefits from using layer norms [4].
However, for models using GCN layer as the core GN block, we find it performs best when using
batch norms [31].

F Additional Experiment Results

F.1 Experimental Protocol

We evaluate MeGraph on public real-world graph benchmarks. To fairly compare MeGraph with the
baselines, we use the following experimental protocols. We first report the public baseline results and
our reproduced standard GCN’s results. We then replace GCN layers with GFuN layers (which is
equivalent to MeGraph (h = 1)) to serve as another baseline. We tune the hyper-parameters (such
as learning rate, dropout rate and the readout global pooling method, etc.) of MeGraph (h = 1) and
choose the best configurations. We then run other diversely configured MeGraph candidates by tuning
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Table 9: Hyper-parameters of the standard version of MeGraph for each dataset. It is worth noting
that the total number of GNN layers is equals to one plus the number of Mee layers as n+ 1.

Hyper-parameters Synthetic
Datasets

Graph
Theory

Benchmark

LRGB
Benchmark

GNN
Benchmark

OGB
Benchmark

TU
Datasets

Repeated Runs 10 5 4 4 5 1 for each fold

Epochs per run 200 for BA*
500 for Tree*

300
(200 for MCC) 200

200
(100 for
MNIST,

CIFRA10)

100
100

(200 for
ENZYMES)

Learning rate 0.002 0.002
(0.005 for MCC) 0.001 0.001 0.001 0.002

Weight decay 0.0005 0.0005 0 0 0.0005 0.0005

Node hidden dim 64 128 160 144 300 128

Edge hidden dim
(for GFuN) 64 128 160 144 300 128

Num Mee
layers n - - 4 3 4 2

Height h - - 9 5 5 3 or 5

Batch size 32 32 128 128 32 128

Input embedding False True True True True True

Global pooling Mean Mean
Max

Mean
Max
Sum

Mean Mean
Mean
Max
Sum

Dataset split
(train:val:test) 8:1:1 8:1:1 Original

split
Original

split
Original

split
10-fold cross

validation

other hyper-parameters that only matters for h > 1, and these hyper-parameters are referred to as the
MeGraph hyper-parameters. Detailed configurations are put in Table 9 in App. E.

F.2 Visualization

We plotted the graph hierarchies discovered by MeGraph in the shortest path tasks of Graph Theory
Benchmark. In Figure 5, the S-EdgePool with ηv = 0.3, τc = 4 well preserves the structure of
the graph after pooling, while the S-EdgePool with ηv = 0.3 (no cluster size limit) sometimes
pooled too many nodes together, breaking the graph structure. The former S-EdgePool leads to
better performance as indicated in Table 1. We also plot the hierarchy for SBM-generated graphs in
Figure 6, indicating that EdgePool can handle graphs that naturally contains clusters of different size.

F.3 Other Real-Wrold Datasets

TU dataset consists of over 120 datasets of varying sizes from a wide range of applications. We
choose 10 datasets, 5 of which are molecule datasets (MUTAG, NCI1, PROTEINS, D&D and
ENZYMES) and the other 5 are social networks (IMDB-B, IMDB-M, REDDIT-BINARY, REDDIT-
MULTI-5K and REDDIT-MULTI-12K). They are all graph classification tasks. For more details of
each dataset, please refer to the original work [42].

Our Megraph uses the same network structure and hyper-parameters for the same type of dataset. As
shown in Table 10, our Megraph achieves about 1% absolute gain than the h = 1 Baselines.

F.4 GFuN

We show our GFuN results on real-world datasets compared to our reproduced GCN in Table 11, 12
and 13. Both GCN and GFuN have the same hyper-parameters except the batch norm for GCN and
layer norm for GFuN as stated in Appendix E.
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Figure 5: The visualization of the resulting graph hierarchy of MeGraph. Each row is a graph hierarchy, and the
nodes with the same color in the same graph are in the same cluster and are pooled into a single node in the next
hierarchy. The 1st, 3rd hierarchies use S-EdgePool with ηv = 0.3, τc = 4 and the 2nd and 4th hierarchies use
S-EdgePool with ηv = 0.3. The graph in the 1st and 2nd hierarchies is generated by the ’lobster’ method, the
graph in the 3rd and 4th hierarchies is generated by the ’geo’ method. The task is to compute the length of the
shortest path between two nodes.
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Figure 6: The graph hierarchy visualization, using S-EdgePool with ηv = 0.3, τc = 4 (left two figures) and
Louvain pooling (right two figures) on the same SBM generated graph. The task is the shortest path.

F.5 Synthetic Datasets

Figures 7 and 8 show the influence of the height h and the number of Mee layers n for MeGraph
model on the BAShape and BACommunity datasets. The trends are similar while less significant on
easier datasets BAShape and BACommunity.

F.6 Varying GN block

We vary the aggregation function of the GN block as attention (w/ ATT) and gated function (w/
GATE). We observe similar results as in Sec. 4.2 and 4.3, verifying the robustness of MeGraph over
different GN blocks. Results are shown in Tables 16, 17 and 18.

25



Table 10: Results on Tu Dataset. † means the results taken from [11] (*: The result of GCN on
ENZYMES is 100 epoch).

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN† 87.20 ±5.11 83.65 ±1.69 75.65 ±3.24 79.12 ±3.07 66.50 ±6.91* 78.42
GIN† 89.40 ±5.60 82.70 ±1.70 76.20 ±2.80 - - -

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
MeGraph (h=1) 93.01 ±6.83 82.53 ±1.89 81.32 ±4.08 81.32 ±3.17 74.83 ±3.20 82.60
MeGraph 93.07 ±6.71 83.99 ±0.98 81.41 ±3.10 81.24 ±2.39 75.17 ±4.86 82.98
MeGraphbest 94.12 ±5.02 84.40 ±1.11 81.68 ±3.40 82.00 ±2.86 75.17 ±4.86 83.47

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
MeGraph (h=1) 68.60 ±3.53 51.33 ±2.23 93.10 ±1.16 57.47 ±2.31 51.56 ±1.06 64.41
MeGraph 72.40 ±2.80 51.27 ±2.71 93.75 ±1.25 57.69 ±2.22 52.03 ±0.86 65.43
MeGraphbest 74.30 ±2.97 52.00 ±2.49 93.75 ±1.25 58.45 ±2.22 52.13 ±1.01 66.13

Table 11: Comparison between GCN and GFuN on GNN benchmark.

Model ZINC ↓ AQSOL ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑

GCN 0.426 ±0.015 1.397 ±0.029 90.140 ±0.140 51.050 ±0.390 84.672 ±0.054 47.541 ±0.940
GFuN 0.364 ±0.003 1.386 ±0.024 95.560 ±0.190 61.060 ±0.500 84.845 ±0.021 58.178 ±0.079

MeGraph (h=1) 0.323 ±0.002 1.075 ±0.007 97.570 ±0.168 69.890 ±0.209 84.845 ±0.021 58.178 ±0.079
MeGraph 0.260 ±0.005 1.002 ±0.021 97.860 ±0.098 69.925 ±0.631 86.507 ±0.067 68.603 ±0.101

Table 12: Comparison between GCN and GFuN on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

GCN 75.40 ±1.29 76.01 ±3.31 67.35 ±0.96 89.62 ±2.27 58.08 ±0.78
GFuN 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51

MeGraph (h=1) 78.54 ±1.14 71.77 ±2.15 67.56 ±1.11 89.77 ±3.48 58.28 ±0.51
MeGraph 77.20 ±0.88 78.52 ±2.51 69.57 ±2.33 92.04 ±2.19 59.01 ±1.45

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

GCN 75.11 ±0.41 64.13 ±0.52 1.141 ±0.02 2.407 ±0.15 0.788 ±0.01
GFuN 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00

MeGraph (h=1) 75.89 ±0.45 64.49 ±0.46 1.079 ±0.02 2.017 ±0.08 0.768 ±0.00
MeGraph 78.11 ±0.47 67.67 ±0.53 0.886 ±0.02 1.876 ±0.05 0.726 ±0.00

Table 13: Comparison between GCN and GFuN on Tu Dataset.

Model MUTAG ↑ NCI1 ↑ PROTEINS ↑ D&D ↑ ENZYMES ↑ Average

GCN 92.46 ±6.55 82.55 ±0.99 77.82 ±4.52 80.56 ±2.40 74.17 ±5.59 81.51
GFuN 93.01 ±7.96 82.80 ±1.30 80.60 ±3.83 82.43 ±2.60 73.00 ±5.31 82.37

Model IMDB-B ↑ IMDB-M ↑ RE-B ↑ RE-M5K ↑ RE-M12K ↑ Average

GCN 76.00 ±3.44 50.33 ±1.89 91.15 ±1.63 56.47 ±1.54 48.71 ±0.88 64.53
GFuN 68.90 ±3.42 51.27 ±3.22 92.25 ±1.12 57.53 ±1.31 51.54 ±1.19 64.30
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Figure 7: Node Classification accuracy for MeGraph model on TreeCycle (left) and TreeGrid (right) datasets,
varying the height h and the number of Mee layers n. A clear gap can be observed between heights 1, 2 and ≥ 3.
The concrete number of accuracy can be found in Table 14.
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Figure 8: Node Classification accuracy for MeGraph model on BAShape (left) and BACommunity (right)
datasets, varying the height h and the number of Mee layers n. A clear gap can be observed between heights 1
and ≥ 2. The concrete number of accuracy can be found in Table 15.

F.7 Graph Theory Dataset

We provide a list of tables (from Table 19 to 30) showing the individual results of Table 1 for each
possible graph generation method. Each table contains a list of variants of models and 5 tasks. Some
graph generation methods and task combinations are trivial so we filter them out.
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Table 14: Node Classification accuracy for MeGraph model on TreeCycle (above) and TreeGrid (below).

layer
height 1 2 3 4 5 6

1 61.48 ±6.04 76.59 ±4.41 91.48 ±2.70 98.52 ±1.69 97.95 ±2.32 98.52 ±1.35
2 67.27 ±6.91 81.59 ±4.03 97.39 ±1.25 98.98 ±0.94 98.75 ±1.29 98.86 ±1.14
3 74.43 ±3.60 90.80 ±2.61 98.64 ±1.11 99.09 ±1.11 98.75 ±1.56 99.09 ±0.85
4 79.55 ±4.34 93.41 ±2.82 99.20 ±0.73 99.20 ±0.89 99.66 ±0.73 99.20 ±1.69
5 82.73 ±4.06 93.41 ±1.89 99.43 ±1.05 99.20 ±1.35 99.32 ±1.16 99.32 ±0.56
6 83.18 ±3.51 94.09 ±2.02 99.43 ±0.76 99.09 ±0.85 99.20 ±1.69 99.20 ±0.89
7 84.43 ±3.74 94.43 ±2.24 99.89 ±0.34 99.20 ±1.02 99.20 ±0.89 99.66 ±0.73
8 84.20 ±3.82 94.20 ±2.00 98.98 ±1.19 99.32 ±0.75 99.66 ±0.52 99.20 ±0.73
9 84.43 ±3.87 94.20 ±2.06 99.77 ±0.45 99.20 ±1.02 98.98 ±1.07 99.32 ±0.75

10 84.77 ±3.98 94.43 ±2.18 99.32 ±0.75 98.86 ±1.14 99.09 ±1.67 99.66 ±0.52

layer
height 1 2 3 4 5 6

1 79.11 ±3.07 91.13 ±2.01 96.85 ±1.11 97.18 ±1.31 97.10 ±1.45 97.42 ±1.34
2 89.68 ±1.76 93.55 ±1.53 98.31 ±0.76 97.82 ±1.14 97.42 ±1.24 97.98 ±0.74
3 90.81 ±1.36 96.13 ±1.48 97.66 ±1.22 98.23 ±0.94 98.87 ±0.82 98.39 ±0.62
4 91.53 ±1.04 96.69 ±1.05 98.06 ±1.03 98.55 ±1.01 98.63 ±1.08 97.98 ±1.15
5 93.95 ±1.58 96.13 ±1.76 98.47 ±1.17 98.47 ±0.92 98.31 ±0.84 97.90 ±0.65
6 94.35 ±1.25 96.69 ±1.46 98.06 ±1.03 98.31 ±1.05 98.15 ±1.20 98.39 ±1.20
7 94.76 ±1.10 97.02 ±1.44 98.47 ±0.84 98.47 ±1.05 98.71 ±0.74 98.87 ±0.90
8 95.08 ±0.76 97.02 ±1.20 98.55 ±1.24 98.87 ±0.82 98.47 ±0.92 98.71 ±1.15
9 94.68 ±1.09 96.94 ±1.19 98.47 ±0.43 98.15 ±1.20 98.15 ±0.89 98.39 ±1.08

10 94.84 ±1.21 96.77 ±1.20 98.47 ±0.92 97.98 ±1.50 98.15 ±1.02 98.23 ±1.19

Table 15: Node Classification accuracy for MeGraph model on BAShape (above) and BACommunity (below).

layer
height 1 2 3 4 5 6

1 98.71 ±1.00 99.14 ±1.14 99.86 ±0.43 99.43 ±0.70 99.43 ±0.95 99.57 ±0.91
2 98.71 ±1.00 99.29 ±0.96 99.57 ±0.91 99.71 ±0.57 99.57 ±0.91 99.57 ±0.91
3 99.00 ±0.91 99.43 ±0.95 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
4 99.00 ±0.91 99.71 ±0.57 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95 99.71 ±0.57
5 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.43 ±0.95
6 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
7 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43
8 99.00 ±0.91 99.86 ±0.43 99.86 ±0.43 99.86 ±0.43 99.71 ±0.57 99.57 ±0.65
9 99.00 ±0.91 99.86 ±0.43 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91 99.57 ±0.91

10 99.00 ±0.91 99.71 ±0.57 99.57 ±0.91 99.71 ±0.57 99.86 ±0.43 99.43 ±0.95

layer
height 1 2 3 4 5 6

1 94.93 ±1.30 97.00 ±1.80 96.93 ±1.60 97.00 ±1.88 97.21 ±1.70 96.86 ±1.67
2 97.93 ±0.87 98.36 ±0.72 98.79 ±0.46 98.79 ±0.46 98.57 ±0.55 98.50 ±1.03
3 98.07 ±0.91 98.64 ±0.87 98.86 ±0.91 98.86 ±0.80 98.50 ±0.98 98.93 ±0.80
4 98.21 ±0.97 98.86 ±0.65 98.86 ±0.80 98.79 ±0.64 99.00 ±0.73 99.07 ±0.64
5 98.50 ±0.87 98.86 ±0.91 99.07 ±0.64 99.21 ±0.67 99.14 ±0.70 99.00 ±0.73
6 98.71 ±0.83 98.64 ±0.87 99.07 ±0.64 99.14 ±0.70 99.07 ±0.85 99.14 ±0.70
7 98.29 ±0.91 98.86 ±0.65 99.07 ±0.56 98.79 ±0.56 98.79 ±0.72 98.86 ±0.57
8 98.43 ±0.77 99.00 ±0.47 99.14 ±0.53 98.93 ±0.58 99.14 ±0.29 99.14 ±0.43
9 98.79 ±0.79 99.07 ±0.56 99.21 ±0.50 99.00 ±0.73 99.29 ±0.45 99.36 ±0.50

10 98.86 ±0.73 98.93 ±0.80 99.21 ±0.87 99.14 ±0.70 99.00 ±0.73 99.29 ±0.64
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Table 16: Comparison results of MeGraph with ATT and GATE on Graph Theory Benchmark.
Category Model SPsssd MCC Diameter SPss ECC

MeGraph w. ATT
h = 1 2.990 ±3.411 3.346 ±3.228 44.41 ±36.33 16.39 ±13.57 29.04 ±27.59
h = 5 0.594 ±0.903 1.706 ±1.409 3.256 ±2.956 1.018 ±1.071 14.80 ±17.09
h = 5, ηv = 0.3, τc = 4 0.749 ±1.131 1.128 ±0.794 4.430 ±4.329 0.640 ±0.833 5.649 ±4.496

MeGraph w. GATE
h = 1 4.144 ±4.181 0.908 ±0.934 6.343 ±7.152 13.94 ±12.78 19.73 ±19.47
h = 5 0.809 ±0.993 0.660 ±0.601 2.506 ±2.639 0.669 ±0.546 7.508 ±7.558
h = 5, ηv = 0.3, τc = 4 0.602 ±0.622 0.599 ±0.520 0.544 ±0.490 0.342 ±0.193 0.859 ±0.712

Table 17: Comparison results of MeGraph with ATT and GATE on GNN Benchmark.
ZINC AQSOL CIFAR10 MNIST PATTERN CLUSTER

MeGraph w. ATT (h = 1) 0.4258 ±0.0054 1.1421 ±0.0270 69.890 ±0.209 97.570 ±0.168 78.232 ±0.827 59.497 ±0.207
MeGraph w. ATT (h = 5) 0.3637 ±0.0116 1.0767 ±0.0105 69.925 ±0.631 97.860 ±0.098 83.798 ±0.885 68.930 ±68.76
MeGraph w. GATE (h = 1) 0.3336 ±0.0036 1.0766 ±1.0556 64.200 ±0.586 96.812 ±0.205 85.391 ±0.029 59.321 ±0.290
MeGraph w. GATE (h = 5) 0.2897 ±0.0291 1.0240 ±0.0098 64.935 ±0.829 97.290 ±0.140 86.611 ±0.041 67.122 ±3.323

Table 18: Comparison results of MeGraph with ATT and GATE on OGB-G.

Model molhiv ↑ molbace ↑ molbbbp ↑ molclintox ↑ molsider ↑

MeGraph w. ATT (h = 1) 77.33 ±0.78 74.83 ±4.87 64.74 ±1.14 86.34 ±1.04 58.12 ±0.53
MeGraph w. ATT (h = 5) 77.15 ±1.37 76.13 ±3.85 68.68 ±2.07 87.17 ±0.76 58.03 ±1.58
MeGraph w. GATE (h = 1) 76.35 ±0.70 76.36 ±1.55 65.97 ±1.98 87.12 ±0.74 58.11 ±1.29
MeGraph w. GATE (h = 5) 78.14 ±0.91 78.90 ±1.29 66.53 ±0.74 89.02 ±2.56 59.58 ±1.88

Model moltox21 ↑ moltoxcast ↑ molesol ↓ molfreesolv ↓ mollipo ↓

MeGraph w. ATT (h = 1) 75.88 ±0.64 64.65 ±0.59 1.091 ±0.030 2.318 ±0.089 0.790 ±0.012
MeGraph w. ATT (h = 5) 76.71 ±0.98 66.98 ±0.70 1.007 ±0.617 2.065 ±0.151 0.736 ±0.023
MeGraph w. GATE (h = 1) 75.30 ±0.43 64.34 ±0.62 1.064 ±0.015 2.191 ±0.068 0.766 ±0.008
MeGraph w. GATE (h = 5) 76.91 ±0.25 66.78 ±0.13 1.003 ±0.086 2.048 ±0.199 0.700 ±0.014

Table 19: Graph Theory Benchmark results on Grid graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 6.60 ±0.541 1.50 ±0.050 22.49 ±1.36 26.74 ±0.347 20.99 ±0.232
n=5 4.18 ±0.737 1.29 ±0.124 5.04 ±1.26 15.54 ±0.155 20.32 ±0.326
n=10 3.70 ±0.422 1.33 ±0.100 0.737 ±0.116 7.24 ±0.243 20.32 ±0.422

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.19 ±0.486 1.24 ±0.154 6.78 ±1.95 5.34 ±0.265 18.00 ±0.910
n=5 0.738 ±0.322 1.11 ±0.043 0.616 ±0.310 0.617 ±0.099 13.3 ±3.31

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.361 ±0.182 1.24 ±0.113 0.382 ±0.120 0.442 ±0.130 0.918 ±0.220
ηv=0.3 4.77 ±2.50 1.33 ±0.161 0.349 ±0.074 5.40 ±0.954 3.59 ±0.354
ηv=0.3, τc=4 0.745 ±0.316 1.35 ±0.168 0.385 ±0.180 0.552 ±0.113 0.622 ±0.100
ηv=0.5, τc=4 1.61 ±0.394 1.28 ±0.138 0.458 ±0.220 1.71 ±0.535 1.48 ±0.283
ηv=0.3, τc=4 (X-Pool) 1.03 ±0.365 1.50 ±0.142 0.626 ±0.216 1.70 ±0.185 3.44 ±0.991
ηv=0.3, τc=4 (w/o pw) 0.616 ±0.194 1.66 ±0.083 0.361 ±0.147 0.678 ±0.139 1.70 ±0.485

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.969 ±0.643 2.18 ±0.381 0.111 ±0.091 0.773 ±0.086 0.548 ±0.131

Table 20: Graph Theory Benchmark results on Tree graphs. All results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.21 ±0.209 1.28 ±0.050 3.77 ±1.22 17.16 ±0.168 24.63 ±0.427
n=5 3.34 ±0.375 0.405 ±0.089 0.504 ±0.109 7.66 ±0.325 18.11 ±1.85
n=10 3.16 ±0.252 0.338 ±0.046 0.100 ±0.059 2.28 ±0.209 14.93 ±0.800

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.62 ±0.314 0.846 ±0.071 0.725 ±0.249 6.99 ±0.610 12.27 ±0.843
n=5 0.83 ±0.667 0.490 ±0.118 0.084 ±0.030 1.27 ±0.442 2.87 ±0.420

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.599 ±0.200 0.483 ±0.081 0.075 ±0.012 0.497 ±0.121 0.429 ±0.105
ηv=0.3 0.868 ±0.230 0.413 ±0.054 0.142 ±0.047 0.789 ±0.092 0.534 ±0.074
ηv=0.3, τc=4 0.615 ±0.209 0.418 ±0.024 0.081 ±0.017 0.440 ±0.106 0.436 ±0.097
ηv=0.5, τc=4 1.06 ±0.327 0.424 ±0.042 0.214 ±0.018 1.20 ±0.128 2.03 ±0.507
ηv=0.3, τc=4 (X-Pool) 0.666 ±0.118 0.596 ±0.067 0.182 ±0.057 1.22 ±0.281 1.11 ±0.122
ηv=0.3, τc=4 (w/o pw) 0.771 ±0.141 0.455 ±0.056 0.124 ±0.032 0.700 ±0.190 1.07 ±0.260

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.873 ±0.247 0.667 ±0.043 0.804 ±0.284 0.606 ±0.123 1.00 ±0.221
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Table 21: Graph Theory Benchmark results on Ladder graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.06 ±0.330 1.73 ±0.249 1.17 ±0.149 13.20 ±0.126 20.10 ±0.583
n=5 0.692 ±0.204 0.734 ±0.106 1.39 ±0.078 5.02 ±0.876 19.81 ±0.669
n=10 0.257 ±0.078 0.691 ±0.119 1.55 ±0.069 1.60 ±0.194 20.40 ±0.995

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.662 ±0.165 0.866 ±0.071 1.57 ±0.992 2.18 ±0.181 6.61 ±1.32
n=5 0.251 ±0.108 0.753 ±0.091 0.175 ±0.169 0.321 ±0.058 1.18 ±0.746

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.296 ±0.070 0.754 ±0.086 0.226 ±0.069 0.228 ±0.021 0.285 ±0.069
ηv=0.3 0.507 ±0.204 0.768 ±0.050 0.156 ±0.053 0.969 ±0.148 0.787 ±0.059
ηv=0.3, τc=4 0.297 ±0.113 0.712 ±0.059 0.095 ±0.046 0.180 ±0.026 0.225 ±0.043
ηv=0.5, τc=4 0.375 ±0.196 0.656 ±0.064 0.058 ±0.019 0.612 ±0.191 0.464 ±0.121
ηv=0.3, τc=4 (X-Pool) 0.442 ±0.108 0.742 ±0.047 0.158 ±0.074 0.710 ±0.076 0.765 ±0.089
ηv=0.3, τc=4 (w/o pw) 0.245 ±0.021 0.682 ±0.105 0.106 ±0.052 0.271 ±0.039 0.618 ±0.188

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.339 ±0.11 0.797 ±0.138 0.013 ±0.005 0.287 ±0.023 0.230 ±0.054

Table 22: Graph Theory Benchmark results on Line graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 30.37 ±1.41 0.458 ±0.035 21.49 ±8.84 68.99 ±0.247 75.46 ±1.86
n=5 10.55 ±2.40 0.019 ±0.004 9.97 ±10.85 46.39 ±3.09 78.49 ±4.38
n=10 3.29 ±0.813 0.012 ±0.003 10.18 ±10.59 35.07 ±2.71 77.23 ±3.42

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.45 ±0.598 0.056 ±0.014 7.62 ±4.43 10.13 ±2.33 45.19 ±8.64
n=5 0.536 ±0.149 0.016 ±0.007 0.611 ±0.238 1.06 ±0.341 14.12 ±13.82

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.349 ±0.206 0.013 ±0.003 0.724 ±0.479 0.339 ±0.102 1.15 ±0.267
ηv=0.3 3.65 ±2.13 0.017 ±0.005 1.75 ±1.63 13.99 ±2.09 7.45 ±0.989
ηv=0.3, τc=4 0.283 ±0.072 0.019 ±0.006 0.584 ±0.337 0.515 ±0.044 1.27 ±1.08
ηv=0.5, τc=4 1.81 ±0.121 0.022 ±0.006 0.711 ±0.213 2.64 ±0.047 3.77 ±0.763
ηv=0.3, τc=4 (X-Pool) 1.06 ±0.510 0.101 ±0.016 0.767 ±0.522 2.29 ±0.472 3.89 ±1.02
ηv=0.3, τc=4 (w/o pw) 0.377 ±0.106 0.022 ±0.007 1.19 ±1.17 1.12 ±0.115 3.34 ±0.904

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.426 ±0.223 0.062 ±0.008 2.89 ±1.89 0.767 ±0.129 4.78 ±1.94

Table 23: Graph Theory Benchmark results on Caterpillar graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 24.24 ±1.57 1.25 ±0.082 28.62 ±2.55 19.08 ±0.208 35.32 ±0.462
n=5 8.32 ±2.10 0.561 ±0.070 4.59 ±0.346 9.62 ±0.357 37.01 ±1.48
n=10 6.40 ±0.652 0.630 ±0.127 5.06 ±0.499 4.06 ±0.297 37.87 ±3.22

MeGraph(h=5)
EdgePool(τc=2)

n=1 5.04 ±1.03 0.685 ±0.077 6.08 ±1.40 5.40 ±0.843 28.52 ±2.16
n=5 3.44 ±1.13 0.533 ±0.064 2.00 ±1.28 0.921 ±0.149 5.20 ±1.57

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 2.47 ±0.529 0.607 ±0.081 0.591 ±0.172 0.574 ±0.073 1.21 ±0.148
ηv=0.3 3.61 ±1.36 0.582 ±0.052 0.578 ±0.231 1.69 ±0.572 1.95 ±0.322
ηv=0.3, τc=4 1.59 ±0.444 0.535 ±0.091 0.317 ±0.104 0.474 ±0.170 1.32 ±0.272
ηv=0.5, τc=4 2.00 ±0.648 0.514 ±0.040 1.10 ±0.288 0.986 ±0.130 2.11 ±0.766
ηv=0.3, τc=4 (X-Pool) 1.39 ±0.478 0.602 ±0.110 0.736 ±0.230 1.78 ±0.254 3.36 ±0.873
ηv=0.3, τc=4 (w/o pw) 1.82 ±0.627 0.628 ±0.093 0.604 ±0.067 0.797 ±0.299 2.25 ±0.230

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.57 ±0.670 0.679 ±0.098 3.18 ±0.583 0.976 ±0.270 3.83 ±1.06
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Table 24: Graph Theory Benchmark results on Lobster graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 23.92 ±0.319 1.06 ±0.166 11.93 ±1.32 38.44 ±0.065 40.46 ±0.350
n=5 10.89 ±1.47 0.544 ±0.067 3.66 ±0.424 20.12 ±0.105 28.81 ±1.14
n=10 7.35 ±2.50 0.631 ±0.067 2.59 ±0.517 10.52 ±0.619 28.47 ±1.65

MeGraph(h=5)
EdgePool(τc=2)

n=1 6.00 ±1.82 0.785 ±0.062 4.35 ±1.51 13.75 ±0.675 30.49 ±2.18
n=5 1.93 ±0.861 0.543 ±0.073 1.07 ±0.114 2.05 ±0.393 11.39 ±5.43

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 2.02 ±0.791 0.447 ±0.123 0.705 ±0.133 1.66 ±0.270 2.23 ±0.378
ηv=0.3 6.01 ±1.52 0.521 ±0.028 0.707 ±0.202 3.04 ±0.250 2.70 ±0.212
ηv=0.3, τc=4 1.90 ±0.449 0.489 ±0.069 0.671 ±0.165 1.30 ±0.106 2.62 ±0.849
ηv=0.5, τc=4 3.27 ±0.716 0.451 ±0.090 0.941 ±0.324 2.82 ±0.803 4.04 ±0.527
ηv=0.3, τc=4 (X-Pool) 2.67 ±0.486 0.494 ±0.109 1.01 ±0.194 2.79 ±0.343 4.16 ±0.886
ηv=0.3, τc=4 (w/o pw) 1.85 ±0.432 0.473 ±0.069 0.892 ±0.277 1.77 ±0.329 4.33 ±1.71

Graph-UNets h=5,n=9,ηv=0.3,τc=4 4.85 ±1.48 0.782 ±0.026 3.74 ±0.361 2.96 ±0.443 4.25 ±0.544

Table 25: Graph Theory Benchmark results on Cycle graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 18.75 ±0.066 0.534 ±0.022 22.35 ±0.149 24.07 ±0.009 21.47 ±0.060
n=5 3.39 ±0.304 0.027 ±0.001 25.11 ±0.325 12.44 ±1.05 21.81 ±0.102
n=10 0.352 ±0.060 0.011 ±0.003 26.54 ±1.16 8.65 ±1.02 24.09 ±0.360

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.594 ±0.212 0.074 ±0.029 9.11 ±1.88 4.07 ±0.364 21.53 ±0.070
n=5 0.060 ±0.032 0.014 ±0.003 13.44 ±6.40 0.103 ±0.016 24.05 ±0.204

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.066 ±0.036 0.015 ±0.006 0.241 ±0.049 0.090 ±0.037 0.342 ±0.186
ηv=0.3 2.45 ±0.873 0.015 ±0.001 0.709 ±0.226 8.36 ±0.261 0.488 ±0.267
ηv=0.3, τc=4 0.060 ±0.030 0.019 ±0.003 0.312 ±0.236 0.226 ±0.050 0.562 ±0.209
ηv=0.5, τc=4 0.451 ±0.203 0.014 ±0.004 0.252 ±0.124 1.05 ±0.524 4.30 ±1.90
ηv=0.3, τc=4 (X-Pool) 0.494 ±0.292 0.096 ±0.028 0.468 ±0.220 1.08 ±0.130 0.860 ±0.292
ηv=0.3, τc=4 (w/o pw) 0.159 ±0.209 0.017 ±0.008 1.23 ±0.928 0.461 ±0.118 8.26 ±3.70

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.144 ±0.073 0.035 ±0.010 3.21 ±0.893 0.439 ±0.089 5.91 ±1.31

Table 26: Graph Theory Benchmark results on Pseudotree graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 1.93 ±0.239 1.71 ±0.281 2.78 ±0.098 6.27 ±0.004 4.23 ±0.034
n=5 0.061 ±0.024 0.942 ±0.094 1.74 ±0.299 1.54 ±0.006 4.15 ±0.086
n=10 0.037 ±0.022 0.775 ±0.094 1.84 ±0.260 0.126 ±0.038 4.06 ±0.037

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.404 ±0.096 1.75 ±0.133 1.50 ±0.494 2.25 ±0.280 3.97 ±0.270
n=5 0.141 ±0.022 0.999 ±0.054 1.16 ±0.069 0.148 ±0.034 3.12 ±0.202

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.130 ±0.069 0.912 ±0.073 0.669 ±0.080 0.115 ±0.015 0.797 ±0.079
ηv=0.3 0.048 ±0.030 0.839 ±0.077 0.758 ±0.134 0.246 ±0.021 0.838 ±0.023
ηv=0.3, τc=4 0.106 ±0.054 0.814 ±0.092 0.663 ±0.076 0.133 ±0.028 0.845 ±0.101
ηv=0.5, τc=4 0.071 ±0.048 1.03 ±0.186 0.583 ±0.065 0.171 ±0.038 0.868 ±0.034
ηv=0.3, τc=4 (X-Pool) 0.564 ±0.155 0.966 ±0.172 0.977 ±0.054 0.611 ±0.065 1.10 ±0.036
ηv=0.3, τc=4 (w/o pw) 0.080 ±0.033 0.971 ±0.072 0.956 ±0.230 0.276 ±0.017 1.13 ±0.321

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.467 ±0.065 1.09 ±0.072 1.71 ±0.295 0.721 ±0.092 2.25 ±0.327
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Table 27: Graph Theory Benchmark results on Geo graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 5.79 ±0.630 0.424 ±0.023 11.85 ±0.391 12.49 ±0.035 14.82 ±0.056
n=5 1.02 ±0.772 0.407 ±0.040 8.37 ±0.468 5.10 ±0.435 14.33 ±0.079
n=10 0.304 ±0.125 0.404 ±0.061 9.41 ±0.759 0.803 ±0.162 14.33 ±0.136

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.60 ±0.880 0.347 ±0.033 10.17 ±2.04 4.87 ±0.777 11.91 ±0.451
n=5 0.232 ±0.061 0.273 ±0.018 2.70 ±0.288 0.575 ±0.127 6.92 ±2.36

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.188 ±0.100 0.288 ±0.020 2.04 ±0.225 0.562 ±0.186 2.42 ±0.333
ηv=0.3 1.38 ±0.617 0.330 ±0.025 4.40 ±1.15 1.37 ±0.083 5.45 ±0.465
ηv=0.3, τc=4 0.230 ±0.070 0.231 ±0.034 1.99 ±0.549 0.454 ±0.057 2.69 ±0.369
ηv=0.5, τc=4 0.374 ±0.148 0.368 ±0.043 3.95 ±0.319 0.777 ±0.122 4.61 ±0.717
ηv=0.3, τc=4 (X-Pool) 1.04 ±0.502 0.362 ±0.031 2.32 ±0.440 2.37 ±0.260 5.08 ±0.737
ηv=0.3, τc=4 (w/o pw) 0.233 ±0.046 0.261 ±0.035 2.58 ±0.617 1.09 ±0.226 4.85 ±0.805

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.49 ±0.451 0.400 ±0.020 4.63 ±0.647 2.42 ±0.458 7.36 ±1.62

Table 28: Graph Theory Benchmark results on SBM graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 1.14 ±0.084 3.28 ±0.135 3.05 ±0.171 1.43 ±0.020 3.47 ±0.026
n=5 0.420 ±0.018 3.14 ±0.131 2.77 ±0.383 0.100 ±0.050 3.18 ±0.093
n=10 0.704 ±0.264 3.29 ±0.063 2.70 ±0.235 0.012 ±0.005 2.97 ±0.051

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.786 ±0.145 2.79 ±0.226 2.49 ±0.692 0.547 ±0.059 3.35 ±0.195
n=5 0.525 ±0.136 2.88 ±0.300 2.37 ±0.336 0.058 ±0.031 3.01 ±1.07

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.783 ±0.149 2.80 ±0.172 2.16 ±0.449 0.076 ±0.044 1.98 ±0.497
ηv=0.3 1.16 ±0.131 3.51 ±0.312 2.03 ±0.429 0.058 ±0.027 1.86 ±0.098
ηv=0.3, τc=4 0.926 ±0.087 2.62 ±0.179 1.99 ±0.290 0.062 ±0.027 1.57 ±0.205
ηv=0.5, τc=4 0.798 ±0.255 3.14 ±0.234 2.05 ±0.375 0.063 ±0.013 1.70 ±0.049
ηv=0.3, τc=4 (X-Pool) 0.935 ±0.106 2.60 ±0.374 2.16 ±0.204 0.056 ±0.014 1.87 ±0.111
ηv=0.3, τc=4 (w/o pw) 0.788 ±0.063 2.52 ±0.100 1.38 ±0.131 0.484 ±0.063 2.21 ±0.169

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.51 ±0.138 3.57 ±0.569 1.96 ±0.240 1.71 ±0.115 2.77 ±0.160

Table 29: Graph Theory Benchmark results on BA graphs, all results are obtained using our codebase.

Category Model SPsssd MCC Diameter SPss ECC

Baselines
(h=1)

n=1 0.004 ±0.001 2.81 ±0.142 0.092 ±0.021 − 0.128 ±0.006
n=5 0.007 ±0.002 3.65 ±0.660 0.098 ±0.014 − 0.091 ±0.011
n=10 0.011 ±0.006 3.72 ±0.376 0.122 ±0.038 − 0.080 ±0.004

MeGraph(h=5)
EdgePool(τc=2)

n=1 0.006 ±0.004 2.00 ±0.380 0.101 ±0.020 − 0.084 ±0.017
n=5 0.003 ±0.001 2.00 ±0.240 0.104 ±0.011 − 0.052 ±0.010

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 0.007 ±0.003 1.77 ±0.403 0.089 ±0.008 − 0.126 ±0.027
ηv=0.3 0.013 ±0.004 1.67 ±0.333 0.084 ±0.008 − 0.086 ±0.005
ηv=0.3, τc=4 0.011 ±0.005 1.42 ±0.252 0.073 ±0.015 − 0.163 ±0.007
ηv=0.5, τc=4 0.008 ±0.004 1.71 ±0.403 0.074 ±0.009 − 0.156 ±0.021
ηv=0.3, τc=4 (X-Pool) 0.009 ±0.003 1.22 ±0.242 0.088 ±0.021 − 0.076 ±0.006
ηv=0.3, τc=4 (w/o pw) 0.009 ±0.003 1.42 ±0.209 0.068 ±0.017 − 0.068 ±0.017

Graph-UNets h=5,n=9,ηv=0.3,τc=4 0.024 ±0.009 2.84 ±0.777 0.091 ±0.01 − 0.179 ±0.0227
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Table 30: Graph Theory Benchmark results on mixed, ER, Caveman and Star graphs, all results are obtained
using our codebase.

Category Model MCC ECC

mix ER Caveman Star mix ER

Baselines
(h=1)

n=1 3.46 ±0.211 2.91 ±0.206 0.015 ±0.004 0.144 ±0.031 0.316 ±0.003 0.346 ±0.006
n=5 3.29 ±0.261 3.35 ±0.205 0.014 ±0.003 0.078 ±0.021 0.228 ±0.008 0.289 ±0.008
n=10 3.51 ±0.323 3.53 ±0.375 0.018 ±0.006 0.065 ±0.005 0.212 ±0.008 0.414 ±0.102

MeGraph(h=5)
EdgePool(τc=2)

n=1 1.25 ±0.167 0.749 ±0.058 0.018 ±0.005 0.135 ±0.055 0.150 ±0.011 0.320 ±0.071
n=5 1.11 ±0.143 0.723 ±0.073 0.017 ±0.005 0.052 ±0.017 0.125 ±0.010 0.345 ±0.064

MeGraph
S-EdgePool

Variants
(h=5, n=5)

τc=3 1.07 ±0.034 0.714 ±0.039 0.017 ±0.002 0.072 ±0.016 0.137 ±0.013 0.232 ±0.035
ηv=0.3 0.908 ±0.153 0.627 ±0.090 0.026 ±0.007 0.125 ±0.026 0.128 ±0.014 0.248 ±0.012
ηv=0.3, τc=4 1.10 ±0.085 0.709 ±0.092 0.019 ±0.004 0.073 ±0.012 0.129 ±0.009 0.224 ±0.053
ηv=0.5, τc=4 1.12 ±0.219 0.722 ±0.128 0.026 ±0.008 0.058 ±0.010 0.147 ±0.017 0.219 ±0.042
ηv=0.3, τc=4 (X-Pool) 1.01 ±0.166 0.838 ±0.078 0.029 ±0.007 0.107 ±0.021 0.119 ±0.008 0.213 ±0.027
ηv=0.3, τc=4 (w/o pw) 1.13 ±0.059 0.622 ±0.073 0.019 ±0.003 0.075 ±0.015 0.126 ±0.016 0.307 ±0.062

Graph-UNets h=5,n=9,ηv=0.3,τc=4 1.06 ±0.171 0.859 ±0.092 0.041 ±0.007 0.057 ±0.010 0.153 ±0.012 0.34 5±0.133

33


	Introduction
	Notations, Backgrounds and Preliminaries
	Graph Network (GN) Block
	Graph Pooling

	Methods
	Connecting Multi-scale Graphs into a Mega Graph
	Mega Graph Message Passing
	Module Choice and Innovation
	Computational Complexity and Discussion

	Experiments
	Experimental Settings
	Perfomance on LRI Tasks
	Generality of MeGraph
	Ablation Study

	Related Work
	Limitations and Future Work
	Appendix
	 Appendix
	Code and Reproducibility
	Dataset Details
	Dataset Statistics and Metrics
	Graph Theory Benchmark

	Method Details
	Cross Update Function
	S-EdgePool
	Edge Score Generation
	Select, Connect, Reduce and Expand
	Pseudo Code

	GFuN
	Encorder and Decoder
	Architecture Variants

	Theoretical Discussions
	Smaller Number of Aggregation Steps for Capturing Long-Range Interactions
	MeGraph can degenerate to standard GNNs

	Implementation and Training Details
	Additional Experiment Results
	Experimental Protocol
	Visualization
	Other Real-Wrold Datasets
	GFuN
	Synthetic Datasets
	Varying GN block
	Graph Theory Dataset



