
Supplementary Material: Aligning Gradient and
Hessian for Neural Signed Distance Function

A Implementation Details

Network design. As our method requires that the implicit function has at least second-order
smoothness, we combine our method with SIREN [25] and Neural-Pull [5] that leverage the Softplus
activation function. For SIREN-based MLP, we use a 4-layer SIREN-based MLP with 256 nodes in
each layer. We use the Adam [16] optimizer with a learning rate of 5× 10−5, a batch size of 15K,
and a total of 10K iterations. For combining our term with Neural-Pull [5], we use a 8-layers fully
connected network architecture with 512 nodes in each layer. We use the Adam optimizer with a
learning rate of 0.0001, a batch size of 10K, and 10K iterations. We also evaluate our method with
multi-image input with NeuS [27]. We use the same architecture as Neural-Pull which is an 8-layer
MLP with 256 nodes in each layer, and a skip connection is used to connect the input with the output
of the fourth layer. We use the Adam [16] optimizer with a learning rate that is first linearly warmed
up from 0 to 0.0005 in the first 5K iterations, then controlled by the cosine decay schedule to the
minimum learning rate of 0.000025. We sample 512 rays per batch and train our model for 300k
iterations (for the ‘w/o mask’ setting).

Loss. As discussed in Section 3.4 of the main paper, our proposed loss term Ealign (fθ) can be inte-
grated with the existing methods by combining it with Eold (fθ). Due to our overfitting experiments
were mainly done by combining with SIREN [25], we only modified the weights of Eold (fθ) in
SIREN (without normal) from Wold = (3000, 100, 50) to Wnew = (7000, 600, 50). When it comes
to combining with other methods, i.e., Neural-Pull [5] and NeuS[27], we did not change the Wold in
them. For Ealign (fθ), according to ablation study results in the table in Section 4.3 of the main paper,
we determined the initial weight α of this item to be 6. The annealing factor τ remains 6 during the
first 30% iterations, then linearly decreases to 0.0001 during the 30% to 60% iterations, and finally
decreases to 0 at the termination, i.e., τ = (6, 0.3, 6, 0.6, 0.0001, 0). The annealing mechanism is
followed by DiGS [6]. So we called the series of τ for Ealign (fθ) in our paper as Dalign, and DDiGS
for DiGS. Here "D" stands for "decay".

Sampling To evaluate our Ealign, we additional sample points near the surface for the methods with
point clouds as input. Suppose that pi is a point in input P , we define the Gaussian function rooted
at pi and take the distance to its k-th nearest neighbor (k = 50) as the standard deviation. Then we
sample points from each distribution. In the case of NeuS [27] with multi-image input, we adopt the
original sampling points provided by NeuS on the ray for evaluation.

B Additional Experiments

B.1 Ablation Studies

Our ablation studies are conducted over the ShapeNet [10] dataset where each shape is discretized
into 3K points.

Comparison to Wold and DiGS To further clarify that our method is independent of the Wnew and
Dalign assigned. We designed our ablation study with DiGS. DiGS [6] is also an unoriented point

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



cloud reconstruction method based on SIREN [25]. Unlike us, DiGS takes the Wold and has its own
weights DDiGS = {100, 0.2, 100, 0.4, 0, 0} of its loss term EDiGS (fθ). Therefore, by incorporating
DiGS, we can effectively compare Wold and Wnew as well as assess the differences between DDiGS
and Dalign, and it is a straightforward and intuitive way to compare our methods with DiGS. We
conduct comprehensive experiments with DiGS [6] and show the statistics in Tab. 1, which shows
that when we apply Wnew or Dalign to DiGS, the results deteriorated. Similarly, when Wold or DDiGS
are applied to our method, they do not yield effective results.

Wold Wnew DDiGS Dalign
Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

DiGS [6]

✓ ✓ 95.82 4.44 4.59 4.94 78.87 27.34
✓ ✓ 92.19 6.37 6.42 5.75 70.11 30.67

✓ ✓ 91.92 7.08 4.79 3.54 77.73 21.96
✓ ✓ 91.02 7.08 4.83 3.44 73.77 25.32

Ours (SIREN)

✓ ✓ 90.92 6.99 6.94 6.51 66.50 30.73
✓ ✓ 91.55 6.90 7.65 7.14 64.99 33.62

✓ ✓ 93.06 6.52 5.07 5.33 80.17 25.17
✓ ✓ 96.52 3.31 3.38 3.64 88.71 18.28

Table 1: Quantitative comparison with DiGS [6] and ablation study of loss weights.

Mean

GT
dC dH

Bbox-sampling 0.32 4.51
k=1 0.32 4.90
k=25 0.28 5.87
k=50 (ours) 0.19 2.98
k=75 0.26 4.31
k=100 0.28 5.34

Table 2: Effects of different sampling strategies under SRB.

Effect of sampling strategy Instead of uniformly sampling within the bounding box, we adopt a
strategy similar to IGR [11] and NeuralPull [5], which involves sampling points around the input
point set.

We have two primary reasons for this choice. Firstly, our primary interest lies in the 0-isosurface
rather than other level sets. While the inferred distance field might exhibit slight differences from
actual distances, this discrepancy doesn’t negatively impact the 0-isosurface. Secondly, we intend to
enforce the alignment between the gradient and the Hessian only within a thin shell encompassing the
true surface. This alignment property ceases to hold outside the thin shell, as the SDF may become
non-differentiable.

To evaluate various sampling strategies, we conducted comparisons under SRB [29]. The comparative
statistics in Table 2 indicate that sampling around the surface is a better strategy. Specifically, k = 50
is the recommended choice.

Comparison to initialization methods We investigate the effect of the multi-frequency geometric
initialization (MFGI), the results in Tab. 3 show it produces a little better performance. However, it
can not handle concave parts of shape for ours and DiGS with MFGI, see Fig. 1. Further, unlike our
approach, DiGS cannot consistently yield better results if switching to the SIREN initiation.

B.2 Run-time Performance

The second-order optimization increases the overhead of the back-propagation. We include IGR [11],
SIREN [25] and DiGS [6] for comparison. We set the batch size to 15K for all the methods and
utilized the network with four hidden layers, 256 units for each layer for the SIREN-based methods,
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Ours (SIREN) GTOurs (MFGI)DiGS (MFGI) DiGS (SIREN)

Figure 1: Visual comparison of our method to DiGS under different initialization methods.

Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

Ours (SIREN init.) 96.52 3.31 3.38 3.64 88.71 18.28
Ours (MFGI init.) 96.53 3.29 3.14 2.69 89.64 17.59

Table 3: Ablation study about initialization methods with MFGI.

which are the default setting for our method. Tab. 4 reports the timing cost spent in a single iteration.
Roughly speaking, the timing costs of DiGS and ours are higher than SIREN since DiGS and ours
need a second-order optimization. However, ours is more computationally efficient than IGR.

IGR SIREN DiGS Ours

# parameters 1.86M 264.4K 264.4K 264.4K
time [ms] 50.73 11.52 36.28 40.10

Table 4: Timing costs per iteration. The comparison is made among IGR [11], SIREN [25], and
DiGS [6] without the supervision of normals. Timing statistics are reported in milliseconds (ms).

C Evaluation Metrics

To compare the performance of different reconstruction methods, we use the same evaluation metrics
as ConvONet [26], i.e., Chamfer distances, F-Score, and Normal consistency. We denote Mg and Mp

as the ground-truth mesh (or point cloud) and the mesh of the predicted result, respectively. Let P1

and P2 be the randomly sampled points on the ground-truth mesh (or point cloud) and the predicted
mesh.

Chamfer Distance The Chamfer distance between two point clouds P1, P2 is defined as follows:

Chamfer (P1, P2) =
1

2|P1|
∑

p1∈P1

min
p2∈P2

d(p1, p2)

+
1

2|P2|
∑

p2∈P2

min
p1∈P1

d(p1, p2),

(1)

where d(p1, p2) is the straight-line distance between points p1, p2. We use the L1 norm following
ConvONet [26].

F-Score The F-Score between the two point clouds P1 and P2 at a given threshold t is given by:

F-Score (t, P1, P2) =
2 Recall Precision
Recall + Precision

, (2)

3



where

Recall (t, P1, P2) =

∣∣∣∣{p1 ∈ P1, s.t. min
p2∈P2

d (p1, p2) < t

}∣∣∣∣
Precision (t, P1, P2) =

∣∣∣∣{p2 ∈ P2, s.t. min
p1∈P1

d (p2, p1) < t

}∣∣∣∣ (3)

Normal consistency The normal consistency between two point clouds P1, P2 is defined as follows:

NormalC. (P1, P2) =
1

2|P1|
∑

p1∈P1

np1 · nclosest (p1,P2)

+
1

2|P2|
∑

p2∈P2

np2
· nclosest (p2,P1),

(4)

where
closest(p, P ) = argmin

p′∈P
d (p, p′) (5)

D Experimental Setting for Separate Dataset

D.1 SRB

We evaluated the baselines using their official source code. All methods utilized 2563 grids (SPSR [15]
and iPSR [12] used octrees of depth 8) to extract the final mesh. We trained DiGS and SIREN with
four hidden layers, each containing 256 units, and the total number of iterations was set to 10K, the
same as in our method. Other parameters for each method were used with their default settings.

In Table 5, we present the relevant comparison statistics on the Surface Reconstruction Bench-
mark [29]. Our method achieves the highest scores for all shapes except for a slight gap compared to
Daratech and DC. Visual comparisons are shown in Fig. 2.

We also conducted a comparison between our method and DiGS, following DiGS’ evaluation setting.
Table 6 illustrates that our method outperforms DiGS in terms of Hausdorff distance. We explain
more about DiGS’ evaluation setting. DiGS operates at a resolution of 5123 and uses Chamfer
distance and Hausdorff distance at the original scale. However, DiGS does not specify the number of
evaluation points. On the other hand, the Shape as Points version operates at a resolution of 2563
and employs Chamfer distance, F-Score, and Normal Consistency. To ensure a fair comparison, we
adopted DiGS’ metrics but sampled 100K evaluation points, following the settings of Shape as Points
in this paper.

Mean Anchor Daratech DC Gargoyle Lord Quas
Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑

SPSR* 4.36 75.87 6.93 46.14 4.20 83.22 3.40 85.89 4.37 70.65 2.85 93.60

SIREN 18.24 38.74 38.31 5.05 6.19 52.30 46.24 75.47 35.50 7.25 6.53 54.58
SAP 6.19 57.21 8.33 46.73 7.76 48.42 5.11 60.34 4.27 75.66 5.54 54.61
iPSR 4.54 75.07 7.53 44.29 4.20 83.51 3.52 84.36 4.49 69.87 2.91 93.53
PCP 6.53 47.97 9.04 37.63 7.23 36.08 5.82 45.09 6.17 49.71 4.30 72.09
CAP-UDF 4.54 74.75 7.68 43.92 3.96 82.78 3.61 84.03 4.40 70.82 3.06 92.19
DiGS 4.16 76.69 6.63 46.52 3.62 85.54 3.32 86.11 4.19 73.34 3.04 91.86
Ours(SIREN) 3.86 78.80 5.63 52.50 3.44 84.95 3.45 85.12 4.06 76.76 2.73 94.66

Table 5: Comparison on Surface Reconstruction Benchmark [29].

Mean Anchor Daratech DC Gargoyle Lord Quas
GT GT Scans GT Scans GT Scans GT Scans GT Scans

dC dH dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗ dC dH dC⃗ dH⃗

DiGS 0.19 3.52 0.29 7.19 0.11 1.17 0.20 3.72 0.09 1.80 0.15 1.70 0.07 2.75 0.17 4.10 0.09 0.92 0.12 0.91 0.06 0.70
Ours(SIREN) 0.19 2.98 0.28 4.79 0.24 1.78 0.20 2.52 0.13 1.84 0.14 1.88 0.10 2.77 0.19 4.56 0.15 1.82 0.14 1.13 0.09 0.95

Table 6: Comparison on Surface Reconstruction Benchmark [29] using the evaluation settings of
DiGS[6].

4



Input  SPSR* SIREN  SAP DiGSiPSR CAP-UDFPCP GTOurs

Figure 2: Visual comparison of our method to other methods under SRB [29].

D.2 ABC and Thingi10K

We report the results of baselines using their source code. All methods leverage 2563 grids, and
SPSR [15], iPSR [12] and PGR [19] use the depth 8 during the mesh extraction phase. For SAL [1]
and IGR [11], we trained them with 20K iterations and 15K iterations, respectively. We conduct
10K iterations for DiGS and SIREN, the same as ours, where the SIREN network has four hidden
layers, each containing 256 neurons. For PGR, we use the officially recommended parameters
for the 10K-point input (alpha: 1.2, wk: 16). For the supervision methods POCO [8] and Neural
Galerkin [13] (without normals), we retrained them with 10K points under ShapeNet [10] to validate
their generalization ability. Other parameters remain the same with the default settings.

We show the visual comparison of different approaches on ABC [17] with 10K points in Fig. 3 and
Fig. 4. The comparison shows that Our method is better at recovering thin geometry features and can
achieve a good trade-off between smoothness and feature preservation.

D.3 ShapeNet

We report all baselines using their code. All methods leverage 2563 grids (SPSR [15], iPSR [12],
and PGR [19] use the octree of depth 8) to extract the final mesh. We trained DiGS and SIREN
with four hidden layers, each layer containing 256 units. The total number of iterations is set to
10K. We conduct 10K iterations for DiGS and SIREN, the same as ours, and train SAL and IGR
within 20K iterations and 15K iterations, respectively. For NSP [30], we follow the parameters
used in its main paper (1024 input points with 1024 Nyström samples and no regularization) and
set the Nyström samples to 3000 for 3K input points, respectively, without regularization.For PGR,
we use the officially recommended parameters for sparse inputs (alpha: 2, wmin: 0.04). For the
supervision methods POCO [8], we retrain them with 3K points under ShapeNet [10], respectively.
More parameters of each method follow the default setting. We give the comparison statistics under
the settings of in Tab. 9. The visual comparison is given Fig. 5. Both qualitative and quantitative
comparisons show that our method can faithfully recover fine geometric details and thin structures,
outperforming the other methods.

D.4 DFAUST

Shape space learning requires training a single model to learn to represent multiple shapes from a
class of related shapes, which is more challenging than the single overfitting shape. For the encoder,
we adopt the encoder from Convolutional Occupancy Network [26]. Specifically, we project the
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Input  SPSR* SIRENIGR  SAP

DiGS iPSR POCO⁺

Neural-Pull

Input  SPSR* SIRENIGR  SAPNeural-Pull

PGR GTOurs

DiGS iPSR POCO⁺PGR GTOurs

Figure 3: Visual comparison of our method to other methods under ABC [17].

DiGS iPSR POCO⁺PGR GTOurs

DiGS iPSR POCO⁺PGR GTOurs

Input  SPSR* SIRENIGR  SAPNeural-Pull

Input  SPSR* SIRENIGR  SAPNeural-Pull

Figure 4: Visual comparison of our method to other methods under Thingsi10K [32].

sparse on-surface point features obtained using a modified PointNet [23] onto a regular 3D grid,
then use a convolutional module to propagate sparse on-surface point features to the off-surface area,
and finally obtain the query feature using bilinear interpolation. For the decoder, we use the SIREN
network has three hidden layers. Further, we adopt the FiLM conditioning [9] that applies an affine
transformation to the network’s intermediate features as SIREN is weak in handling high-dimensional
inputs [9, 22]. We train our models for 200 epochs using AMSGrad optimizer [24] with an initial
learning rate of 0.0001 and decay to 0.000001 using cosine annealing [20]. We divided the training
set into mini-batches: a batch contains 32 different shapes (accumulate batches), where each shape is
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Input  SPSR* SIRENIGR OSPNSP*

Input  SPSR* SIRENIGR OSPNSP*

DiGS iPSR POCO⁺PGR GTOurs

DiGS iPSR POCO⁺PGR GTOurs

Figure 5: Visual comparison of our method to other methods under ShapeNet [10].

randomly sampled to produce 10K points. The experiments are conducted with 8 RTX 3090 graphics
cards.

For baselines, we use the pre-trained model of IGR [11], SAL [1], SALD [2], DualOctreeGNN [28],
and DiGS [6], we also retrain the IGR and DualOctreeGNN for the version without normals super-
vision. Therefore, this baseline is omitted. The visual comparison of different approaches on the
DFAUST [7] dataset is available in Fig. 6.

DualOctreeGNN* GT meshOursSAL⁺ DualOctreeGNN DiGS
SALD*⁺IGR* IGR

Figure 6: Visual comparison of shape space learning on DFAUST [7].
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D.5 DTU

Here we also employ our loss to NeuS [27] with multi-image input. NeuS also leverage SoftPlus
activation same as NeuralPull [5] and IGR [11] to enable second-order optimization. We sample
512 rays per batch and train our model for 300k iterations as NeuS’s training settings (‘w/o mask’).
Further, we compared our method with LSA combined with NeuS. Fig. 7 and Tab. 7 both shows that
our methods consistently improve the accuracy for multi-image input. Note that our method achieves
comparable performance to LSA with multi-image input, but it outperforms LSA when it comes to
point cloud reconstruction, as shown in main paper.

Ours (NeuS)NeuS Ours (NeuS)NeuS

Figure 7: visual comparison to NeuS [27] on DTU dataset [14].

Mean scan_24 scan_37 scan_40 scan_55 scan_63 scan_65 scan_69 scan_83 scan_97 scan_105 scan_106 scan_110 scan_114 scan_118 scan_122
Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓ Chamfer ↓

NeuS [27] 0.84 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54
LSA (NeuS) [21] 0.78 0.88 0.90 0.80 0.41 1.13 0.63 0.58 1.37 1.16 0.83 0.51 1.26 0.33 0.48 0.52
Ours (NeuS) 0.78 0.83 0.88 0.92 0.58 0.96 0.82 0.98 0.94 0.89 0.89 0.61 0.91 0.44 0.43 0.58

Table 7: Comparison on DTU dataset [14].

D.6 Large Scans

To evalute the geneiablity of supervised methods, we test the ability to handle huge-size point clouds
using three shapes from ThreedScans [18]. We randomly sample about 300K points from each shape.
We include SIREN [25] with ground-truth oriented normals, PCP [3], DiGS [6] and the learnable
method of POCO [8] for comparison. All methods we used leverage 5123 grids to extract the mesh.
We conduct 50K iterations for DiGS[6] and SIREN[25], where the SIREN network has four hidden
layers, each containing 256 neurons, the same as ours, For the supervision method POCO [8], we
retrained them with 10K points under ShapeNet [10] to validate its generality. Other parameters
remain the same with the default settings.

The quantitative comparison statistics are reported in Tab. 8 and the visual comparison is available in
Fig. 8. PCP and DiGS tend to produce smooth results without geometry details, where the smoothing
energy of DiGS weakens the geometric details. POCO is supervision based and thus weak in the
generalization ability with different point clouds resolution not available in the trainset even with Test
Time Augmentation. It can be observed that, apart from SIREN, our method can better reconstruct
richer and more detailed features.

Mean Std. Eagle Dragon Hosmer
Normal C. ↑ Chamfer ↓ F-Score ↑ Normal C. Chamfer F-Score Normal C. ↑ Chamfer ↓ F-Score ↑ Normal C. ↑ Chamfer ↓ F-Score ↑ Normal C. ↑ Chamfer ↓ F-Score ↑

SIREN* [25] 98.38 0.96 63.61 0.30 0.17 19.62 98.74 1.16 42.55 98.21 0.84 81.40 98.21 0.87 66.89

PCP [3] 94.32 4.44 11.83 2.58 1.41 9.41 97.27 3.01 12.00 93.16 5.83 2.33 92.51 4.47 21.15
DiGS [6] 97.41 0.92 63.78 0.62 0.22 21.91 98.08 1.10 42.24 97.31 0.67 86.06 96.84 0.98 63.04

POCO+ [8] 85.97 3.02 31.01 9.10 2.09 20.67 95.89 1.43 46.66 77.99 5.39 7.57 84.03 2.24 38.79
Ours (SIREN) 97.44 0.99 98.91 0.59 0.41 1.69 98.10 1.45 96.95 97.11 0.70 99.93 97.04 0.81 99.85

Table 8: Quantitative comparison on the shapes from [18].
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SIREN* GTOurs DiGS POCO⁺PCP

Figure 8: Visual comparison of different approaches on ThreedScans [18] with 10K points. Our
method is comparable to the “with normals” version of SIREN.

E More Results

E.1 3D Scene

We follow the default training setting on 3D Scene[31] dataset. We provide additional visual results
in Fig. 9. Our method, when combined with either SIREN [25] or Neural-Pull [5], yields significant
improvements even with only 20K points for the scene-level reconstruction.

Input Nerual-Pull GTOurs (SIREN)DiGSSIRENOurs (Nerual-Pull)

Figure 9: visual comparison on 3D Scene[31].

E.2 Noisy Input

To test whether our method can handle noisy point clouds, we conducted experiments with SIREN [25]
to evaluate its performance with noisy input.

We add Gaussian noise to the three shapes with different standard variations γ = {0.005, 0.01, 0.02}.
At the same time, we adjust our weights α of term Ealign to α = {0.06, 0.6, 6, 60}. We also modified
Dalign, to be specific, we either kept the original decay strategy or avoided decay by maintaining
a fixed τ . Each of the sampled point clouds consists of 20,000 points. The schedule followed our
former training setting on SIREN. The visual results can be seen in Fig. 10. From the results, it can
be observed that larger weights can yield smoother results and our method is robust to small noise
with default configurations.
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SIRENInput
GT

Figure 10: visual comparison on noisy input.
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airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean std.

Normal C. ↑

SPSR∗ [15] 95.30 92.85 95.98 93.43 95.02 97.35 95.03 96.19 96.93 95.53 94.65 98.67 94.61 95.50 3.30
NSP∗ [30] 86.04 85.37 91.30 91.08 87.83 93.70 90.45 92.95 94.94 90.18 87.66 96.87 91.30 90.74 5.48

SAL [1] 77.52 78.04 90.64 90.32 79.57 91.74 86.09 94.60 86.35 90.44 77.05 97.59 87.68 86.69 9.66
IGR [11] 74.48 73.98 88.47 86.00 75.23 76.79 83.46 92.61 78.43 82.07 73.97 82.29 83.22 80.85 11.88
SIREN [25] 88.42 80.93 78.58 77.01 84.08 89.76 84.80 78.84 84.98 80.28 86.70 90.27 84.30 83.79 10.20
DiGS [6] 97.19 93.86 94.61 93.18 93.98 97.50 95.59 96.05 98.12 96.11 94.18 99.02 96.28 95.82 4.44
OSP [4] 94.97 91.87 95.23 92.90 95.44 97.56 93.00 95.63 92.62 95.70 95.90 97.51 93.23 94.73 3.94
iPSR [12] 92.45 88.80 93.26 92.51 92.64 95.35 93.70 94.54 96.39 92.41 89.66 97.56 92.63 93.22 5.26
PGR [19] 85.57 86.85 94.09 91.25 91.88 95.59 90.63 95.17 91.14 93.55 91.03 97.80 90.19 91.90 4.93

POCO+ [8] 96.81 94.23 97.28 93.52 96.56 98.29 95.92 96.86 97.56 96.87 96.65 99.02 93.77 96.41 3.53

Ours (SIREN) 97.82 94.24 97.06 94.57 96.63 96.21 96.52 92.74 98.47 97.54 97.38 99.22 96.36 96.52 3.31

Chamfer ↓

SPSR∗ [15] 2.73 4.08 5.06 6.66 5.83 4.08 3.97 6.26 1.73 5.31 6.00 2.36 6.50 4.66 4.64
NSP∗ [30] 19.44 7.61 9.57 6.07 11.75 7.08 7.33 13.65 2.45 8.24 10.14 3.82 7.96 8.85 6.96

SAL [1] 52.97 45.43 21.19 14.25 55.97 23.83 34.35 13.93 13.33 17.25 68.27 6.54 23.29 29.98 31.86
IGR [11] 12.44 69.77 34.50 24.30 58.89 91.40 55.51 19.87 68.71 46.77 75.63 83.02 60.22 62.54 48.44
SIREN [25] 26.12 38.23 33.62 42.33 23.52 17.84 46.18 34.34 65.53 23.49 21.36 30.22 42.08 34.19 46.77
DiGS [6] 2.44 3.87 8.50 4.82 7.69 4.45 3.83 5.95 1.35 4.50 6.63 2.36 3.23 4.59 4.94
OSP [4] 5.85 4.40 6.02 9.28 5.97 4.20 11.91 6.63 9.09 5.09 5.74 5.15 9.06 6.80 6.61
iPSR [12] 4.17 6.08 6.35 7.22 6.97 5.40 4.27 7.20 2.10 7.28 7.81 4.60 7.84 5.95 5.97
PGR [19] 7.27 8.17 7.19 8.41 7.69 6.22 8.52 7.78 4.93 7.45 8.85 3.70 9.28 7.34 4.81

POCO+ [8] 2.00 3.64 3.76 5.30 4.02 2.93 2.47 4.13 1.37 3.91 4.99 2.18 6.40 3.62 4.21

Ours (SIREN) 1.72 2.92 3.63 4.61 3.77 3.64 2.40 8.46 1.05 2.97 3.93 1.84 3.03 3.38 3.64

F-Score ↑

SPSR∗ [15] 90.17 76.96 67.50 69.99 65.21 81.29 79.09 56.36 95.66 70.81 61.00 94.69 69.64 75.28 25.76
NSP∗ [30] 50.61 46.86 38.65 57.83 30.18 54.11 60.14 28.52 91.31 44.29 33.47 81.70 63.80 52.42 28.55

SAL [1] 8.73 15.46 24.86 34.22 11.06 23.62 26.27 31.98 28.40 30.07 8.37 62.90 29.98 25.76 22.43
IGR [11] 1.77 10.28 56.52 47.66 12.76 15.74 31.11 60.90 4.44 34.99 14.17 21.77 29.49 26.28 35.91
SIREN [25] 45.30 29.34 17.52 15.28 39.76 45.30 42.28 16.07 44.51 22.96 26.04 47.63 27.59 32.34 30.13
DiGS [6] 93.08 83.44 53.57 77.66 68.33 77.55 85.41 62.75 98.57 76.56 68.14 95.84 84.40 78.87 27.34
OSP [4] 43.02 73.47 65.35 38.96 57.37 80.52 57.39 55.29 41.30 75.01 61.78 84.08 35.03 59.12 25.82
iPSR [12] 72.59 62.60 58.69 66.97 59.01 73.75 80.01 53.79 93.43 62.92 50.46 91.29 64.98 68.42 26.36
PGR [19] 44.70 42.12 46.98 57.14 46.95 57.69 48.46 50.78 62.57 43.66 38.29 84.75 44.64 51.44 23.12

POCO+ [8] 96.21 82.62 81.33 82.85 83.37 93.08 93.74 72.98 99.30 83.13 71.51 95.31 74.99 85.42 33.13

Ours (SIREN) 98.96 93.13 84.21 85.80 83.56 90.42 91.39 64.41 97.69 91.17 89.79 95.49 87.21 88.71 18.28

Table 9: Class-by-class comparison of the surface reconstruction quality on 3K-point clouds of
ShapeNet [10].
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