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Abstract

The Signed Distance Function (SDF), as an implicit surface representation, provides
a crucial method for reconstructing a watertight surface from unorganized point
clouds. The SDF has a fundamental relationship with the principles of surface
vector calculus. Given a smooth surface, there exists a thin-shell space in which the
SDF is differentiable everywhere such that the gradient of the SDF is an eigenvector
of its Hessian matrix, with a corresponding eigenvalue of zero. In this paper, we
introduce a method to directly learn the SDF from point clouds in the absence
of normals. Our motivation is grounded in a fundamental observation: aligning
the gradient and the Hessian of the SDF provides a more efficient mechanism
to govern gradient directions. This, in turn, ensures that gradient changes more
accurately reflect the true underlying variations in shape. Extensive experimental
results demonstrate its ability to accurately recover the underlying shape while
effectively suppressing the presence of ghost geometry.

1 Introduction

In recent years, the neural signed distance function (SDF) has demonstrated its capability to represent
high-fidelity geometry [37, 16, 8, 53, 1, 19]. Existing approaches primarily employ neural networks
to map coordinates to their corresponding signed distance values. Depending on whether or not
supervision is used, these approaches can be classified into two categories: learning-based methods
and optimization-based methods, where the former fits data samples to their corresponding ground-
truth implicit representations [37, 16, 8, 22, 21] and the latter directly infer the underlying SDF
from point clouds [1, 19, 5, 3, 48] or multi-image [45, 29, 35]. Despite significant advancements
in SDF-based surface reconstruction, both types of methods have their drawbacks. The supervised
reconstruction methods may not generalize well [42] on shapes or point distributions that are not
present in the training data. The optimizing-based methods, on the other hand, struggle to resolve the
ambiguity of the input point cloud, particularly when normal information is absent. In this paper, our
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focus is primarily on optimization-based reconstruction techniques for point clouds without normal
information.

The majority of optimization-based approaches utilize first-order constraints to regulate the variation
of the SDF. For example, the Eikonal term [19, 40, 53] is commonly employed to ensure that the
gradients are unit vectors. However, as pointed out in [6], the Eikonal term is weak in its ability
to regulate the direction of the gradients. As a result, it is challenging to prevent the emergence of
ghost geometry (the level sets of the SDF are highly disordered) and unnecessary shape variations
even when the Eikonal term is enforced. To address these issues, various second-order smoothness
energy formulations [54, 6] are proposed to steer the direction of the gradients to change toward a
desirable configuration. However, it entails considerable difficulty to regulate the extent to which
the smoothness term is enforced. A commonly seen artifact is that the resulting surface may be
excessively smooth.

In this research, we re-examine the problem of surface reconstruction based on surface vector calculus,
and introduce a novel loss to facilitate the inference of a faithful SDF directly from raw point clouds
without oriented normals. An interesting observation is that within the narrow thin-shell space of the
underlying surface, where the real SDF is differentiable everywhere in the narrow thin-shell space,
the gradient of the SDF is an eigenvector of its Hessian matrix and the corresponding eigenvalue is
zero. Specially, when a point is situated on a surface, the normal vector transforms into an eigenvector
of the Hessian of the SDF, with the corresponding eigenvalue being zero. In essence, the gradient and
Hessian of the SDF must be aligned within a thin-shell region surrounding the underlying surface.
This alignment allows for more effective control over the direction of the gradients. Building on the
key observation, we develop a new loss function that promotes the alignment of the gradient and
Hessian of the SDF, rather than relying on smoothness energy. We have conducted a comprehensive
evaluation of our proposed approach on a variety of benchmarks and compared it to recently proposed
reconstruction methods. Extensive experimental results show that our approach outperforms the
state-of-the-art techniques, whether overfitting a single shape or learning a shape space. It can not
only accurately recover the underlying shape but also suppress the occurrence of ghost geometry,
which verifies the effectiveness of the gradient-Hessian alignment.

2 Related Work

2.1 Traditional Methods

Traditional reconstruction methods can be classified into two categories: explicit and implicit. Explicit
methods focus on establishing direct connections between input points, while implicit methods aim to
fit an implicit field that conforms to the given points and normals. Roughly speaking, popular explicit
reconstruction techniques utilize computational geometry methods, such as Delaunay triangulation or
Voronoi diagrams, to infer connections between points. These methods can produce well-tessellated
triangle mesh surfaces [26, 14, 47]. However, they may struggle to ensure manifoldness, particularly
when the input point cloud contains defects such as irregular point distribution, noise, or missing
parts. In contrast, implicit reconstruction techniques [25, 23, 39] are capable of generating manifold
and watertight surfaces. However, the majority of these methods necessitate that the input point cloud
is equipped with normal information.

In the event that the provided point cloud is devoid of normals, it is necessary to either estimate
the normals and orientations prior [52] to surface reconstruction or devise a novel reconstruction
framework that can operate in the absence of normal information [20, 27]. In essence, all of them
have to estimate normals either prior to or during the process of surface reconstruction. As a result,
these approaches remain heavily reliant on the quality of the estimated normals. In cases where the
provided point cloud is of poor quality, it becomes challenging for these methods to overcome the
inherent ambiguity introduced by the absence of normal information.

2.2 Supervision-based Learning Methods

Learning-based methodologies have demonstrated a superior capacity for reconstruction, particularly
in the context of neural implicit function [51]. They optimize the network to implicitly encode a signed
distance field or occupancy field with the supervision of ground truth. Preceding methodologies
primarily employ object-level priors [37, 34, 18] to encode shapes, which are referred to as global
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priors. However, the utilization of global priors restricts the generation ability as the network is unable
to deal with shapes that are absent from the training set. Subsequently, numerous methodologies
concentrate on local data priors [22, 16, 8, 21] to enhance generalization capacity by utilizing
small receptive fields. The approaches for acquiring local data priors encompass regular grid [22],
KNN [17, 16, 8], and octree [46, 44] and so on. Although local data priors enhance the generation
ability of learning-based methodologies, the priors derived from limited data may result in excessively
smoothed surfaces. At the same time, the reconstruction performance may further deteriorate if the
distribution of the test point cloud significantly deviates from the training data [42].

2.3 Optimization-based Learning Methods

To enhance the generalization ability, the direct fitting of 3D representations from raw point clouds
without supervision has been extensively investigated in recent years, enabling end-to-end prediction
of the target surface. The majority of optimization-based reconstructions necessitate the fitting of
individual shapes with specific network parameters, where the parameters are acquired by imposing
additional constraints. SAL/SALD [1, 2] employs unsigned distances to facilitate sign-agnostic
learning. IGR [19] and Neural-Pull [5] primarily utilize Eikonal terms to constrain the field to be an
SDF. Additionally, several methodologies [3, 4, 55] have been modified from Neural-Pull in pursuit of
enhanced quality. DiGS [6] incorporates Laplacian energy into neural implicit representation learning
for unoriented point clouds. In summary, the preponderance of existing methodologies constrain the
norm of gradients or minimize smoothness energy to attain equilibrium between geometric details
and overall simplicity, but this inevitably results in ghost geometry or over-smoothed reconstruction
outcomes. In this paper, our emphasis is on the alignment of the gradients and the Hessian of the
SDF to more effectively regulate the direction of the gradients.

3 Method

3.1 Neural signed distance function

Given an unoriented point cloud P restricted in the range Ω : [−1, 1]× [−1, 1]× [−1, 1], our task is
to find a neural signed distance function (SDF) fθ : R3 7→ R, such that fθ predicts a signed distance
value for an arbitrary query point q ∈ Ω, where the neural function fθ is parameterized by θ and can
be assumed to be C2-continuous everywhere in the domain. We use Sl to denote the level-set surface
at the value of l, i.e.,

Sl =
{
q ∈ R3 | fθ(q) = l

}
. (1)

The underlying surface can be naturally obtained by extracting the zero level-set surface S0, through
the use of contouring algorithms, such as Marching cubes [30]. The task of this paper is to fit the
high-fidelity implicit representation without supervision.

3.2 Surface vector calculus related to SDF
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Figure 1: A 2D visual for differential property of SDF
for circle. From left to right: SDF with gradient, mini-
mum (0) and maximum eigenvalues of the Hessian ma-
trix with their corresponding eigenvector.

In order to fit the SDF, there are typically three
types of boundary conditions for constraining fθ:
(1) Dirichlet condition fθ(p) = 0 that requires
each point p ∈ P to be situated on S0 as far
as possible, (2) Eikonal condition ∥∇fθ∥2 = 1
that enforces fθ be a distance field with unit gra-
dients, and (3) Neumann condition ∇fθ = N
that aims to align the gradients with the normal
field N . Existing neural implicit representations
incorporate the aforementioned boundary con-
ditions as constraints, either explicitly [19, 40]
or implicitly [5, 1]. However, it is important
to note that the Neumann condition cannot be
enforced due to the absence of oriented normals.

According to the surface vector calculus [32],
the SDF has a fundamental relationship with the
differential properties of a smooth surface. Let J∇fθ denote the Jacobian matrix of the gradient ∇fθ,
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or equivalently the Hessian matrix Hfθ of fθ. Since this matrix is symmetric and diagonalizable,
we can find the eigenvectors and eigenvalues of Hfθ for any point where fθ is differentiable (a
narrow thin-shell space surrounding the base surface). By differentiating both sides of the identity
∥∇fθ∥2 = 1, we get:

Hfθ∇fθ(q) = 0, (2)

which implies that ∇fθ(q) is exactly an eigenvector of the Hessian Hfθ (q), with a corresponding
eigenvalue of 0. To be more detailed, when q lies on the surface, the gradient represents the normal
vector at q. Consequently, we have

HfθN (q) = 0. (3)

Additionally, the other two eigenvectors of Hfθ (q) define the principal directions at q [32, 36], with
the eigenvalues respectively being the opposite of the corresponding principal curvatures. If q is off
the surface but in the differentiable region, the three eigenvectors reflect the differential properties of
the closest surface point of q, i.e., the projection of q onto the surface. In summary, the eigenvectors
of the Hessian can disclose the fundamental properties of the underlying surface.

A similar property holds in the 2D setting. In Fig. 1, we provide a 2D circle as a toy example to
illustrate this property. It’s evident that in the vicinity of the base surface, the Hessian matrix of the
SDF consistently exhibits two eigenvectors: one aligned with the gradient, and the other orthogonal
to the gradient. Moreover, we visualize the distribution of the eigenvalues using a color-coded style,
with the eigenvalue corresponding to the gradient being 0.

3.3 Gradient-Hessian Alignment

It should be noted that even if the underlying surface is infinitely smooth, the SDF may not necessarily
be smooth everywhere. From a geometric perspective, the SDF is non-differentiable at medial-axis
points with at least two nearest projections onto the surface. The neural implicit function fθ, being at
least C2-smooth, is unlikely to be identical to the real SDF. We can make a reasonable assumption
that fθ resembles the real SDF in the differentiable region that in the non-differentiable region. In
light of this, it is reasonable to enforce the alignment between the gradients and the Hessian for points
within a thin-shell space of appropriate width.

Based on the aforementioned analysis, we propose a loss function to promote the alignment of the
Gradient-Hessian:

Lalign(q) = ∥Hfθg(q)∥22 (4)

with

g(q) =
∇fθ(q)

∥∇fθ(q)∥2
. (5)
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Figure 2: The level-sets, from left to right, show the distance fields learned by SIREN [40], SIREN
with dirichlet energy [28], laplican energy [6], and hessian energy [54], DiGS [6] and ours with 100
points (black) as input. The black lines represent zero-isosurface. Our methods effectively suppress
the ghost geometry with the concern of the gradient directions.
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DiGSCAP-UDF Ours

Figure 3: Visual comparisons on SRB [49].

Chamfer F-Score
mean ↓ std. ↓ mean ↑ std. ↓

SPSR∗ [23] 4.36 1.56 75.87 18.57

SIREN [40] 18.24 17.09 38.74 31.26
SAP [38] 6.19 1.75 57.21 11.66
iPSR [20] 4.54 1.78 75.07 19.18
PCP [3] 6.53 1.75 47.97 14.50
CAP-UDF [55] 4.54 1.82 74.75 18.84
DiGS [6] 4.16 1.44 76.69 18.15

Ours (SIREN) 3.86 1.10 78.80 16.01

Table 1: Quantitative comparison on SRB [49].
The methods marked with ‘*’ require point nor-
mals.

Difference from the Eikonal term. By enforcing the Eikonal term, we can prevent the SDF from
degenerating into a trivial field, such as fθ = 0 almost everywhere. But for a distance field rooted at
any surface, ∥∇fθ∥ = 1 always holds except at the non-differentiable points. In practice, ∥∇fθ∥ = 1
is evaluated at discrete points, and the number of network parameters may significantly exceed the
number of sample points. Consequently, specifying only ∥∇fθ∥ = 1 can result in ghost artifacts in
the reconstructed surface, such as bulging effects, redundant parts, or excessive surface variations.
For instance, consider the last row of Fig. 2. The reconstructed surfaces may differ significantly from
the desired surface, even when ∥∇fθ∥ = 1 holds almost everywhere. This observation motivates us
to seek more effective control over the gradient direction.

Why not smoothness energy. In previous literature, various forms of smoothness energy, such
as Dirichlet Energy [28], Hessian energy [9, 54], and Laplacian energy [6], have been employed.
Generally, the inclusion of smoothness terms can encourage smoothness in the SDF, reducing
variations, and thereby mitigating the emergence of ghost geometries.

However, for these smoothing-based approaches, while they can reduce the occurrence of ghost
geometry, they often sacrifice the ability to accurately represent geometric details. In contrast, our
regularization term enforces the alignment between the gradient and the Hessian, which significantly
differs from enforcing simple smoothness. As shown in Fig. 2, we created a ’L’ shape with 100
boundary points, following the same experimental setup as DiGS [6], to illustrate the contrast between
various approaches. Smoothing-based approaches tend not to reduce the smoothness energy to zero,
even at termination. In contrast, our regularization term can approach zero more closely. Moreover,
aligning the gradient and the Hessian follows an inherent property of the SDF, independent of the
specific case. This sets our approach apart from smoothing-based methods that require case-by-case
tuning of smoothing weights. As a result, our approach exhibits superior feature-preserving ability.

We conducted two ablation studies in Section 4.3, which clearly demonstrate that our alignment loss
term not only more effectively suppresses the occurrence of ghost geometry but also yields more
faithful reconstruction results than traditional smoothing-based approaches.

3.4 Loss function

Based on the aforementioned discussion, our neural function fθ has to be at least C2 continuous. In
this paper, we consider two types of activation functions. The first activation function is Sine, which
facilitates learning high-frequency information as pointed out in SIREN [40]. Obviously, Sine is
C inf continuous and satisfies our requirements. Additionally, Neural-Pull [5] leverages the SoftPlus
activation function, which is a smooth version of ReLU and can also serve our purpose.

To this end, we establish the entire loss function by integrating the alignment loss into the existing
loss configuration such that the network optimization can be formulated as

argmin
θ

{Eold (fθ) + αEalign (fθ)} , (6)
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Normal C. Chamfer F-Score IOU
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓ mean↑ std.↓

SPSR∗ [23] 90.58 3.30 4.66 4.64 75.28 25.76 90.58 6.77
NSP∗ [50] 90.74 5.48 8.85 6.96 52.42 28.55 79.08 12.41

SAL [1] 86.69 9.66 29.98 31.86 25.76 22.43 60.62 18.61
IGR [19] 80.85 11.88 62.54 48.44 26.28 35.91 33.33 24.51
SIREN [40] 83.79 10.20 34.19 46.77 32.34 30.13 41.14 15.82
DiGS [6] 95.82 4.44 4.59 4.94 78.87 27.34 89.54 8.83
OSP [4] 94.73 3.94 6.80 6.61 59.12 25.82 50.84 12.56
iPSR [20] 93.22 5.26 5.95 5.97 68.42 26.36 85.01 9.34
PGR [27] 91.90 4.93 7.34 4.81 51.44 23.12 78.34 11.17

POCO+ [8] 96.41 3.53 3.62 4.21 85.42 23.13 94.40 5.55
Ours (SIREN) 96.52 3.31 3.38 3.64 88.71 18.28 89.80 6.47

Table 2: Quantitative comparison of surface reconstruction under ShapeNet [13] with 3K points. The
methods marked with ‘∗’ require normals, and the methods marked with ‘+’ are supervision based.

where Ealign (fθ) is given by ∑
q∈Q

βqLalign(q), (7)

and Eold (fθ) is the original loss function of existing works (the details will be discussed in the
experiments). We leverage SIREN [40] without the normal version and Neural-Pull [5] in our
experiment. Since the alignment effect between gradients and Hessian should be more emphasized
near the underlying surface, we leverage an adaptive weighting scheme inspired by [15]:

βq = exp (−δ ∗ |fθ(q)|) , (8)

we set δ = 10 by default. At the same time, we set the default value of α to 6. More details can be
checked in our supplementary material.

4 Experiments

Metrics. The indicators for comparison include normal consistency, chamfer distances, and F-Score,
where normal consistency (%, abbreviated as ‘Normal C.’) reflects the degree to which the normals of
the reconstructed surface agree with the normals of the ground-truth surface, chamfer distance (scaled
by 103, using L1-norm) measures the fitting tightness between the two surfaces, and F-Score (%)
indicates the harmonic mean of precision and recall (completeness). We set the default threshold of
F-Score to 0.005. All meshes are uniformly scaled to [−0.5, 0.5], and 100K points are sampled from
each mesh for evaluation.

4.1 Optimization-based Surface Reconstruction

Surface Reconstruction Benchmark (SRB). The Surface Reconstruction Benchmark (SRB) [49]
contains five shapes, each of which has challenging features, e.g., missing parts and rich details. The
approaches for comparison include screened Poisson surface reconstruction (SPSR) [23], SIREN [40],
Shape as points (SAP) [38], iPSR [20], Predictive Context Priors (PCP) [3], CAP-UDF [55] and
DiGS [6]. Note that SPSR leverages normals given by the input scans. As shown in Tab. 1, our
method outperforms the existing methods, as evidenced by superior results in both Chamfer distance
and F-score metrics. In particular, the visual comparison presented in Fig. 3 demonstrates that our
method is capable of accurately recovering the hole feature of the Anchor model, despite the absence
of points on the inner wall. Furthermore, it successfully preserves the adjacent gaps of the Lord
Quas model. In addition, we compared our approach with DiGS using SRB, following the evaluation
settings of DiGS. Detailed performance statistics can be found in the supplementary material.

ShapeNet. The ShapeNet dataset [13] comprises a diverse collection of CAD models. We follow
the splitting of [50] for the 13 categories of shapes with total of 260 shapes. Our comparison is
performed using 3K points. The baseline methods include Screened Poisson Surface Reconstruction
(SPSR) [23], NSP [50], SAL [1], IGR [19], SIREN [40], DiGS [6], OSP [4], iPSR [20] and PGR [27].
Note that SPSR and NSP require normal inputs. To ensure the validity of our experiments, we provide
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Figure 4: Comparison of our method to other methods under ShapeNet [13], ABC [24], and
Thingi10K [57].

ground-truth normals to those that require normal information. Additionally, we include the learnable
baselines Shape as Points (SAP) [38] and POCO [8] for comparison and retrain them from scratch
on ShapeNet with 3K points. Based on the quantitative results presented in Tab. 2 and the visual
comparison in Fig. 4. Our method effectively suppresses unnecessary surface variations and adapts
the implicit representation to the inherent complexity encoded by the point cloud. Furthermore, our
reconstruction accuracy is comparable to supervised methods. Specifically, our method outperforms
POCO in Normal Correctness, Chamfer, and F-Score, but lags slightly behind POCO in terms of
IOU.

ABC and Thingi10K. The ABC dataset [24] contains a variety of CAD meshes, while
Thingi10K [57] comprises shapes with rich geometric details. We follow [16] to perform split-
ting for each dataset and randomly sample 10K points from each mesh. Each dataset contains
100 shapes. The baseline methods include Screened Poisson Surface Reconstruction (SPSR) [23],
SAL [1], IGR [19], SIREN [40], Neural-Pull [5], Shape as Points (SAP) [38], DiGS [6], iPSR [20],
and PGR [27]. Note that we found that the supervised version of SAP does not generalize well
to shapes not present in the training set (ShapeNet) when using a global PointNet-based encoder.
Therefore, we compare our approach against the unsupervised version of SAP. We also include the
supervised method POCO [8] for comparison. To assess the generalization ability of supervised
methods, we retrain them using 10K points on ShapeNet. The quantitative comparison results are
presented in Tab. 3. Furthermore, the visual comparison on ABC [24] and Thingi10K [57] (see Fig. 4)
demonstrates that our method can effectively recover CAD features such as small holes and thin
plates and has ability to accurately recover high-fidelity geometric details.

Normal C. Chamfer F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

SIREN [40] 84.26 3.46 7.38 4.47 53.94 29.13
Ours (SIREN) 88.82 3.33 7.14 4.12 58.37 36.97

Neural-Pull [5] 82.05 5.34 33.96 17.14 20.99 25.46
Ours (Neural-Pull) 87.32 5.11 12.04 9.79 35.82 28.86

Table 4: Quantitative comparison on 3D
Scene [56].

3D Scene. Finally, we conducted tests on a 3D
scene dataset [56] by sampling 20K points for
each model. The quantitative comparison results
are presented in Tab. 4 and visual comparison in
Fig. 5. Our method, when combined with either
SIREN [40] or Neural-Pull [5], yields significant
improvements even with only 20K points for the
scene-level reconstruction.

Notably, our method effectively captures both the details and overall shape of these challenging
scenes.

4.2 Shape Space Learning

The D-Faust [7] dataset contains high-resolution raw scans (triangle soups) of 10 humans with various
poses. We follow DualOctreeGNN [46] to perform splitting that 6K scans are used for training and
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ABC Thingi10K

Normal C. Chamfer F-Score Normal C. Chamfer F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓ mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

SPSR∗ [23] 95.16 4.48 4.39 3.05 74.54 26.65 97.15 2.95 3.93 1.79 77.03 23.71

SAL [1] 86.25 8.39 17.30 14.82 29.60 18.04 92.85 5.01 13.46 7.97 27.56 14.64
IGR [19] 82.14 16.12 36.51 40.68 43.47 40.06 90.20 10.61 27.80 34.8 54.28 39.99
SIREN [40] 82.26 9.24 17.56 15.25 30.95 22.23 88.30 6.53 17.69 13.47 26.20 19.74
Neural-Pull [5] 94.23 4.57 6.73 5.15 42.67 10.75 96.15 2.80 5.89 1.12 46.44 8.53
SAP [38] 81.59 10.61 15.18 16.60 45.88 33.67 92.60 7.03 10.61 13.84 53.32 31.91
DiGS [6] 94.48 6.12 6.91 6.94 66.22 32.01 97.25 3.30 5.36 5.59 74.45 27.11
iPSR [20] 93.15 7.47 4.84 4.06 71.59 24.96 96.46 3.57 4.41 2.94 74.88 22.72
PGR [27] 94.11 4.63 4.52 2.13 68.91 27.86 96.80 3.25 4.22 2.01 72.86 22.98

POCO+ [8] 92.90 7.00 6.05 6.80 68.29 26.05 95.16 5.00 5.61 9.42 73.92 25.79

Ours (SIREN) 96.50 3.95 3.72 2.48 83.50 19.28 97.92 2.90 3.34 3.14 89.68 17.11

Table 3: Quantitative comparison on ABC [24] and Thingi10K [57]. Each raw point cloud has 10K
points.

Input Nerual-Pull GTOurs (SIREN)SIRENOurs (Nerual-Pull)

Figure 5: Visual comparison of our method to other methods under 3D Scene [56].

DualOctreeGNNIGR Ours

DualOctreeGNN*

DiGS

SALD*⁺IGR* SAL⁺

Figure 6: Visual comparison on DFAUST [7].

Normal C. Chamfer F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

IGR∗ [19] 92.02 3.34 29.01 33.61 73.32 14.05
DualOctreeGNN∗ [46] 97.65 0.34 1.78 3.70 97.48 1.03

SAL+ [1] 96.77 0.81 2.82 4.67 91.35 9.15
SALD∗+ [2] 97.04 0.92 3.06 1.32 88.56 12.73

IGR [19] 57.93 3.40 48.56 2.35 6.54 0.11
DiGS [6] 87.60 1.91 11.87 4.56 37.77 7.11
DualOctreeGNN [46] 92.42 0.45 3.02 2.38 85.77 3.50
Ours (SIREN) 95.43 0.41 2.95 2.21 88.75 2.51

Table 5: Quantitative comparison on DFAUST [7].
All methods marked with ’∗’ means it leverages
with normals in the training stage and marked
with ’+’ means supervised.

2K scans for testing. In the training phase, we adopt the encoder following Convolutional Occupancy
Networks [41]. Besides, we adopt the FiLM conditioning [11] that applies an affine transformation to
the network’s intermediate features as SIREN is weak in handling high-dimensional inputs [11, 33].
The baseline approaches include IGR [19], SAL [1], SALD [2], DualOctreeGNN [46] and DiGS [6].
Also, we further demonstrate the results of IGR, as well as the results of DualOctreeGNN trained
without normals. As shown in Fig. 6, although IGR can generate well details, it yields spurious
planes away from the input. SAL, supervised with unsigned distance, can only produce smooth
results. Additionally, SALD, with the support of normal supervision, can generate more details, but its
reconstruction accuracy is even worse than SAL since it suffers from a large systematic misalignment
that does not respect input poses.

Normal C. Chamfe F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

α = 0.06 91.02 4.34 4.55 4.10 76.82 29.41
α = 0.6 92.65 3.95 4.17 4.20 80.44 23.46
α = 6 96.52 3.31 3.38 3.64 88.71 18.28
α = 60 93.04 1.03 2.19 0.73 82.91 24.73

Table 6: Effect of weights of Lalign.

By contrast, DualOctreeGNN gets the most
impressive results since the well-designed oc-
tree network can capture local prior for details.
However, the performance of either IGR or Du-
alOctreeGNN is compromised without normals.
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DiGS cannot yield reliable results though it
is also based on SIREN. To summarize, our
method can learn shape space without requiring input normals or additional supervision but still
produces faithful shapes. It’s important to note that the resulting surfaces of DualOctreeGNN for
point clouds without input normals are not watertight, despite the small Chamfer distances.

4.3 Ablation Study

Our ablation studies were conducted on the ShapeNet dataset [13], which comprises 13 categories of
shapes, with 20 shapes per category for a total of 260 shapes, each represented by 3K points. We use
SIREN as the activation function for our baseline.

Comparison with smoothness energies In Figure 7, we increased the weighting coefficient of the
regularization term to 1×103, 1×105, and 1×107, respectively, for both our approach and those based
on smoothing. It’s evident that even with a large weight, our regularization term consistently produces
high-fidelity surfaces, in contrast to the smoothing-based approaches, whereas their reconstruction
results may become overly smooth or even fail (Note that double layers for Dirichlet energy).

A similar trend is observed in the 3D context. As illustrated in Figure 9, our method excels in
reconstructing faithful and high-fidelity shapes from input data with 100K points, while the other
approaches tend to produce over-smoothed results.

We also conducted an ablation study to compare the quantitative performance of our energy term with
that of Dirichlet Energy [28] and Hessian Energy [6]. The results presented in Tab. 8 demonstrate
that our energy term Ealign (fθ) significantly improves the performance. It’s worth noting that
the comparison between DiGS [6] (with a Laplacian energy) and ours has been made in previous
subsections, which shows that ours has a superior performance. Therefore, in this subsection, we do
not include Laplacian energy for comparison.
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Figure 7: Ablation study on the weighting coefficient of the regularization term.

Effect of weights of Lalign. We conducted an ablation study to evaluate the effect of the weight α
of Lalign. By selecting different values, i.e., α = {0.06, 0.6, 6, 60}, we keep the statistics in Tab. 6,
which demonstrates that the best performance was achieved when the weight was set to 6.

Normal C. Chamfer F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

δ = 0 91.85 7.22 4.73 3.91 79.95 22.38
δ = 1 91.85 7.23 4.72 3.52 79.94 22.38
δ = 10 96.52 3.31 3.38 3.64 88.71 18.28
δ = 100 90.65 6.93 4.81 3.77 80.12 25.41

Table 7: Effect of adaptive per points weights.

Effect of adaptive per points weights.
We demonstrate the effectiveness of the
adaptive weight βq for each query in
Tab. 7. We also compare the performance
of different decay parameters δ used to
compute βq in Eq. 8, and find that δ = 10
yields the best results.
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Normal C. Chamfer F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

Dirichlet Energy 92.91 7.48 4.30 3.75 77.67 23.83
Hessian energy 93.28 7.21 4.38 3.85 81.12 25.41

Ours 96.52 3.31 3.38 3.64 88.71 18.28

Table 8: Quantitative comparison to Smooth En-
ergy.

Comparison to LSA. Recently, LSA [31] pro-
posed enforcing alignment between the gradient
of each level set and the gradient of the 0-level
set to account for the direction of the gradient.
However, it is important to note that the gradi-
ent of the 0-level set may not align with the true
surface normals for its results. As such, using
the gradient of the 0-level set as a reference may not be particularly effective. We present results
for SIREN [40] using both our loss and LSA under six shapes from the Stanford Scanning dataset
with 2 million points same as the settings of LSA in its main paper. As shown in Fig. 8, our method
effectively eliminates ghost geometry in empty areas due to incorrect gradient direction, while LSA
does not. Tab. 9 presents the comparison statistics for three different approaches: 1) our methods
combined with SIREN [40], 2) original SIREN and 3) LSA.

SIREN Ours (SIREN)LSA (SIREN)

Figure 8: Visual comparison with SIREN [40] and
LSA [31] on Stanford Scanning dataset.

Normal C. Chamfer F-Score
mean↑ std.↓ mean↓ std.↓ mean↑ std.↓

SIREN 93.37 5.58 7.19 7.57 74.82 29.21
LSA (SIREN) 96.40 1.04 4.10 1.19 86.38 7.37

Ours (SIREN) 98.25 1.03 2.19 0.73 97.66 4.15

Table 9: Quantitative comparison to LSA [31].

Dirichlet energy


( SIREN w/o n )

Laplacian energy


( DiGS w/o n )

Ours


( SIREN w/o n )

Hessian energy


( SIREN w/o n )

Figure 9: Comparison with smoothness energies in 3D con-
text.

Input OursDiGS Input OursDiGS

Figure 10: Our method encountering
challenges while handling sparse in-
puts.

5 Conclusion

In this paper, we propose a novel approach for surface reconstruction from unoriented point clouds
by aligning the gradient and the Hessian of the Signed Distance Function (SDF). Unlike existing
smoothness energy formulations that minimize SDF volatility, our approach offers more effective
control over gradient direction, allowing the implicit function to adapt to the inherent complexity of
the input point cloud. Comprehensive experimental results demonstrate that our approach effectively
suppresses ghost geometry and recovers high-fidelity geometric details, surpassing state-of-the-art
methods in terms of reconstruction quality.

Our current algorithm still has a few drawbacks. Firstly, it struggles with processing super sparse
inputs, such as sketch point clouds or LiDAR data (as shown in Figure 10). The inherent challenge
arises from completing extensive missing parts and closing the gaps between the input stripes.
Secondly, it faces difficulties when dealing with large-scale scenes, like those from Matterport3D [12],
mainly due to the neural networks’ catastrophic forgetting issue. Representing large-scale scenes
within a single network becomes exceedingly challenging. In our future work, we plan to address these
challenges. To handle sparse inputs more effectively, we are considering implementing a supervision
mechanism. Additionally, we aim to adopt a sliding window strategy, similar to approaches like
DeepLS [10] and BlockNeRF [43], to mitigate the catastrophic forgetting issue.
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