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Abstract

Recent methods in geometric deep learning have introduced various neural net-
works to operate over data that lie on Riemannian manifolds. Such networks are
often necessary to learn well over graphs with a hierarchical structure or to learn
over manifold-valued data encountered in the natural sciences. These networks
are often inspired by and directly generalize standard Euclidean neural networks.
However, extending Euclidean networks is difficult and has only been done for
a select few manifolds. In this work, we examine the residual neural network
(ResNet) and show how to extend this construction to general Riemannian man-
ifolds in a geometrically principled manner. Originally introduced to help solve
the vanishing gradient problem, ResNets have become ubiquitous in machine
learning due to their beneficial learning properties, excellent empirical results, and
easy-to-incorporate nature when building varied neural networks. We find that our
Riemannian ResNets mirror these desirable properties: when compared to existing
manifold neural networks designed to learn over hyperbolic space and the manifold
of symmetric positive definite matrices, we outperform both kinds of networks in
terms of relevant testing metrics and training dynamics.

1 Introduction

In machine learning, it is common to represent data as vectors in Euclidean space (i.e. Rn). The
primary reason for such a choice is convenience, as this space has a classical vectorial structure,
a closed-form distance formula, and a simple inner-product computation. Moreover, the myriad
existing Euclidean neural network constructions enable performant learning.

Despite the ubiquity and success of Euclidean embeddings, recent research [41] has brought attention
to the fact that several kinds of complex data require manifold considerations. Such data are various
and range from covariance matrices, represented as points on the manifold of symmetric positive
definite (SPD) matrices [26], to angular orientations, represented as points on tori, found in the
context of robotics [43]. However, generalizing Euclidean neural network tools to manifold structures
such as these can be quite difficult in practice. Most prior works design network architectures for a
specific manifold [11, 17], thereby inefficiently necessitating a specific design for each new manifold.

We address this issue by extending Residual Neural Networks [23] to Riemannian manifolds in a way
that naturally captures the underlying geometry. We construct our network by parameterizing vector
fields and leveraging geodesic structure (provided by the Riemannian exp map) to “add" the learned
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vectors to the input points, thereby naturally generalizing a typical Euclidean residual addition. This
process is illustrated in Figure 1. Note that this strategy is exceptionally natural, only making use of
inherent geodesic geometry, and works generally for all smooth manifolds. We refer to such networks
as Riemannian residual neural networks.

Figure 1: An illustration of a manifold-
generalized residual addition. The traditional
Euclidean formula p← p+ v is generalized
to p ← expp(v), where exp is the Rieman-
nian exponential map.M is the manifold and
TpM is the tangent space at p.

Though the above approach is principled, it is under-
specified, as constructing an efficient learnable vector
field for a given manifold is often nontrivial. To re-
solve this issue, we present a general way to induce
a learnable vector field for a manifoldM given only
a map f :M → Rk. Ideally, this map should cap-
ture intrinsic manifold geometry. For example, in the
context of Euclidean space, this map could consist of
a series of k projections onto hyperplanes. There is
a natural equivalent of this in hyperbolic space that
instead projects to horospheres (horospheres corre-
spond to hyperplanes in Euclidean space). More gen-
erally, we propose a feature map that once more relies
only on geodesic information, consisting of projec-
tion to random (or learned) geodesic balls. This final
approach provides a fully geometric way to construct
vector fields, and therefore natural residual networks,
for any Riemannian manifold.

After introducing our general theory, we give con-
crete manifestations of vector fields, and therefore
residual neural networks, for hyperbolic space and the manifold of SPD matrices. We compare the
performance of our Riemannian residual neural networks to that of existing manifold-specific net-
works on hyperbolic space and on the manifold of SPD matrices, showing that our networks perform
much better in terms of relevant metrics due to their improved adherence to manifold geometry.

Our contributions are as follows:

1. We introduce a novel and principled generalization of residual neural networks to general
Riemannian manifolds. Our construction relies only on knowledge of geodesics, which capture
manifold geometry.

2. Theoretically, we show that our methodology better captures manifold geometry than pre-
existing manifold-specific neural network constructions. Empirically, we apply our general
construction to hyperbolic space and to the manifold of SPD matrices. On various hyperbolic
graph datasets (where hyperbolicity is measured by Gromov δ-hyperbolicity) our method
considerably outperforms existing work on both link prediction and node classification tasks.
On various SPD covariance matrix classification datasets, a similar conclusion holds.

3. Our method provides a way to directly vary the geometry of a given neural network without
having to construct particular operations on a per-manifold basis. This provides the novel
capability to directly compare the effect of geometric representation (in particular, evaluating
the difference between a given Riemannian manifold (M, g) and Euclidean space (Rn, || · ||2))
while fixing the network architecture.

2 Related Work
Our work is related to but distinctly different from existing neural ordinary differential equation
(ODE) [9] literature as well a series of papers that have attempted generalizations of neural networks
to specific manifolds such as hyperbolic space [17] and the manifold of SPD matrices [26].

2.1 Residual Networks and Neural ODEs

Residual networks (ResNets) were originally developed to enable training of larger networks, previ-
ously prone to vanishing and exploding gradients [23]. Later on, many discovered that by adding
a learned residual, ResNets are similar to Euler’s method [9, 21, 37, 45, 53]. More specifically,
the ResNet represented by ht+1 = ht + f(h, θt) for ht ∈ RD mimics the dynamics of the ODE
defined by dh(t)

dt = f(h(t), t, θ). Neural ODEs are defined precisely as ODEs of this form, where
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the local dynamics are given by a parameterized neural network. Similar to our work, Falorsi and
Forré [15], Katsman et al. [29], Lou et al. [36], Mathieu and Nickel [38] generalize neural ODEs
to Riemannian manifolds (further generalizing manifold-specific work such as Bose et al. [3], that
does this for hyperbolic space). However, instead of using a manifold’s vector fields to solve a neural
ODE, we learn an objective by parameterizing the vector fields directly (Figure 2). Neural ODEs
and their generalizations to manifolds parameterize a continuous collection of vector fields over
time for a single manifold in a dynamic flow-like construction. Our method instead parameterizes
a discrete collection of vector fields, entirely untethered from any notion of solving an ODE. This
makes our construction a strict generalization of both neural ODEs and their manifold equivalents
[15, 29, 36, 38].

2.2 Riemannian Neural Networks

Past literature has attempted generalizations of Euclidean neural networks to a number of manifolds.

Hyperbolic Space Ganea et al. [17] extended basic neural network operations (e.g. activation
function, linear layer, recurrent architectures) to conform with the geometry of hyperbolic space
through gyrovector constructions [51]. In particular, they use gyrovector constructions [51] to build
analogues of activation functions, linear layers, and recurrent architectures. Building on this approach,
Chami et al. [8] adapt these constructions to hyperbolic versions of the feature transformation and
neighborhood aggregation steps found in message passing neural networks. Additionally, batch
normalization for hyperbolic space was introduced in Lou et al. [35]; hyperbolic attention network
equivalents were introduced in Gülçehre et al. [20]. Although gyrovector constructions are algebraic
and allow for generalization of neural network operations to hyperbolic space and beyond, we note
that they do not capture intrinsic geodesic geometry. In particular, we note that the gyrovector-based
hyperbolic linear layer introduced in Ganea et al. [17] reduces to a Euclidean matrix multiplication
followed by a learned hyperbolic bias addition (see Appendix D.2). Hence all non-Euclidean learning
for this case happens through the bias term. In an attempt to resolve this, further work has focused
on imbuing these neural networks with more hyperbolic functions [10, 49]. Chen et al. [10] notably
constructs a hyperbolic residual layer by projecting an output onto the Lorentzian manifold. However,
we emphasize that our construction is more general while being more geometrically principled as
we work with fundamental manifold operations like the exponential map rather than relying on the
niceties of Lorentz space.

Yu and De Sa [55] make use of randomized hyperbolic Laplacian features to learn in hyperbolic
space. We note that the features learned are shallow and are constructed from a specific manifestation
of the Laplace-Beltrami operator for hyperbolic space. In contrast, our method is general and enables
non-shallow (i.e., multi-layer) feature learning.

SPD Manifold Neural network constructs have been extended to the manifold of symmetric positive
definite (SPD) matrices as well. In particular, SPDNet [26] is an example of a widely adopted SPD
manifold neural network which introduced SPD-specific layers analogous to Euclidean linear and
ReLU layers. Building upon SPDNet, Brooks et al. [5] developed a batch normalization method to
be used with SPD data. Additionally, López et al. [34] adapted gyrocalculus constructions used in
hyperbolic space to the SPD manifold.

Symmetric Spaces Further work attempts generalization to symmetric spaces. Sonoda et al. [50]
design fully-connected networks over noncompact symmetric spaces using particular theory from
Helgason-Fourier analysis [25], and Chakraborty et al. [7] attempt to generalize several operations
such as convolution to such spaces by adapting and developing a weighted Fréchet mean construction.
We note that the Helgason-Fourier construction in Sonoda et al. [50] exploits a fairly particular
structure, while the weighted Fréchet mean construction in Chakraborty et al. [7] is specifically
introduced for convolution, which is not the focus of our work (we focus on residual connections).

Unlike any of the manifold-specific work described above, our residual network construction can be
applied generally to any smooth manifold and is constructed solely from geodesic information.

3 Background
In this section, we cover the necessary background for our paper; in particular, we introduce the reader
to the necessary constructs from Riemannian geometry. For a detailed introduction to Riemannian
geometry, we refer the interested reader to textbooks such as Lee [32].
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Figure 2: A visualization of a Riemannian residual neural network on a manifoldM. Our model
parameterizes vector fields on a manifold. At each layer in our network, we take a step from a point
in the direction of that vector field (brown), which is analogous to the residual step in a ResNet.

3.1 Riemannian Geometry

A topological manifold (M, g) of dimension n is a locally Euclidean space, meaning there exist
homeomorphic1 functions (called “charts") whose domains both cover the manifold and map from
the manifold into Rn (i.e. the manifold “looks like" Rn locally). A smooth manifold is a topological
manifold for which the charts are not simply homeomorphic, but diffeomorphic, meaning they are
smooth bijections mapping into Rn and have smooth inverses. We denote TpM as the tangent space
at a point p of the manifoldM. Further still, a Riemannian manifold2 (M, g) is an n-dimensional
smooth manifold with a smooth collection of inner products (gp)p∈M for every tangent space TpM.
The Riemannian metric g induces a distance dg :M×M→ R on the manifold.

3.2 Geodesics and the Riemannian Exponential Map

Geodesics A geodesic is a curve of minimal length between two points p, q ∈M, and can be seen as
the generalization of a straight line in Euclidean space. Although a choice of Riemannian metric g
onM appears to only define geometry locally onM, it induces global distances by integrating the
length (of the “speed" vector in the tangent space) of a shortest path between two points:

d(p, q) = inf
γ

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt (1)

where γ ∈ C∞([0, 1],M) is such that γ(0) = p and γ(1) = q.

For p ∈ M and v ∈ TpM, there exists a unique geodesic γv where γ(0) = p, γ′(0) = v and the
domain of γ is as large as possible. We call γv the maximal geodesic [32].

Exponential Map The Riemannian exponential map is a way to map TpM to a neighborhood around
p using geodesics. The relationship between the tangent space and the exponential map output can
be thought of as a local linearization, meaning that we can perform typical Euclidean operations
in the tangent space before projecting to the manifold via the exponential map to capture the local
on-manifold behavior corresponding to the tangent space operations. For p ∈M and v ∈ TpM, the
exponential map at p is defined as expp(v) = γv(1).

One can think of exp as a manifold generalization of Euclidean addition, since in the Euclidean case
we have expp(v) = p+ v.

1A homeomorphism is a continuous bijection with continuous inverse.
2Note that imposing Riemannian structure does not considerably limit the generality of our method, as any

smooth manifold that is Hausdorff and second countable has a Riemannian metric [32].
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Figure 3: An overview of our generalized Riemannian Residual Neural Network (RResNet) method-
ology. We start by mapping x(0) ∈ M(0) to χ(1) ∈ M(1) using a base point mapping h1. Then,
using our paramterized vector field ℓi, we compute a residual v(1) := ℓ1(χ

(1)). Finally, we project
v(1) back onto the manifold using the Riemannian exp map, leaving us with x(1). This procedure can
be iterated to produce a multi-layer Riemannian residual neural network that is capable of changing
manifold representation on a per layer basis.

3.3 Vector Fields
Let TpM be the tangent space to a manifoldM at a point p. Like in Euclidean space, a vector field
assigns to each point p ∈M a tangent vector Xp ∈ TpM. A smooth vector field assigns a tangent
vector Xp ∈ TpM to each point p ∈M such that Xp varies smoothly in p.

Tangent Bundle The tangent bundle of a smooth manifoldM is the disjoint union of the tangent
spaces TpM, for all p ∈M, denoted by TM :=

⊔
p∈M TpM =

⊔
p∈M{(p, v) | v ∈ TpM}.

Pushforward A derivative (also called a pushforward) of a map f :M→N between two manifolds
is denoted by Dpf : TpM→ Tf(p)N . This is a generalization of the classical Euclidean Jacobian
(since Rn is a manifold), and provides a way to relate tangent spaces at different points on different
manifolds.

Pullback Given ϕ :M→N a smooth map between manifolds and f : N → R a smooth function,
the pullback of f by ϕ is the smooth function ϕ∗f onM defined by (ϕ∗f)(x) = f(ϕ(x)). When the
map ϕ is implicit, we simply write f∗ to mean the pullback of f by ϕ.

3.4 Model Spaces in Riemannian Geometry
The three Riemannian model spaces are Euclidean space Rn, hyperbolic space Hn, and spherical
space Sn, that encompass all manifolds with constant sectional curvature. Hyperbolic space manifests
in several representations like the Poincaré ball, Lorentz space, and the Klein model. We use the
Poincaré ball model for our Riemannian ResNet design (see Appendix A for more details on the
Poincaré ball model).

3.5 SPD Manifold
Let SPD(n) be the manifold of n × n symmetric positive definite (SPD) matrices. We recall
from Gallier and Quaintance [16] that SPD(n) has a Riemannian exponential map (at the identity)
equivalent to the matrix exponential. Two common metrics used for SPD(n) are the log-Euclidean
metric [16], which induces a flat structure on the matrices, and the canonical affine-invariant metric
[12, 42], which induces non-constant negative sectional curvature. The latter gives SPD(n) a
considerably less trivial geometry than that exhibited by the Riemannian model spaces [2] (see
Appendix A for more details on SPD(n)).

4 Methodology
In this section, we provide the technical details behind Riemannian residual neural networks.

4.1 General Construction
We define a Riemannian Residual Neural Network (RResNet) on a manifoldM to be a function
f :M→M defined by
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f(x) := x(m) (2)

x(0) := x (3)

x(i) := expx(i−1)(ℓi(x
(i−1))) (4)

for x ∈M, where m is the number of layers and ℓi :M→ TM is a neural network-parameterized
vector field overM. This residual network construction is visualized for the purpose of intuition in
Figure 2. In practice, parameterizing a function from an abstract manifoldM to its tangent bundle is
difficult. However, by the Whitney embedding theorem [33], we can embedM ↪→ RD smoothly
for some dimension D ≥ dimM. As such, for a standard neural network ni : RD → RD we can
construct ℓi by

ℓi(x) := projTxM(ni(x)) (5)

where we note that TxM⊂ RD is a linear subspace (making the projection operator well defined).
Throughout the paper we call this the embedded vector field design3. We note that this is the same
construction used for defining the vector field flow in Lou et al. [36], Mathieu and Nickel [38], Rozen
et al. [44].

We also extend our construction to work in settings where the underlying manifold changes from
layer to layer. In particular, for a sequence of manifolds M(0),M(1), . . . ,M(m) with (possibly
learned) maps hi :M(i−1) →M(i), our Riemannian ResNet f :M(0) →M(m) is given by

f(x) := x(m) (6)

x(0) := x (7)

x(i) := exphi(x(i−1))(ℓi(hi(x
(i−1))))∀i ∈ [m] (8)

with functions ℓi :M(i) → TM(i) given as above. This generalization is visualized in Figure 3. In
practice, ourM(i) will be different dimensional versions of the same geometric space (e.g. Hn or
Rn for varying n). If the starting and ending manifolds are the same, the maps hi will simply be
standard inclusions. When the starting and ending manifolds are different, the hi may be standard
neural networks for which we project the output, or the hi may be specially design learnable maps
that respect manifold geometry. As a concrete example, our hi for the SPD case map from an SPD
matrix of one dimension to another by conjugating with a Stiefel matrix [26]. Furthermore, as shown
in Appendix D, our model is equivalent to the standard ResNet when the underlying manifold is Rn.

Comparison with Other Constructions We discuss how our construction compares with other
methods in Appendix E, but here we briefly note that unlike other methods, our presented approach is
fully general and better conforms with manifold geometry.

4.2 Feature Map-Induced Vector Field Design
Most of the difficulty in application of our general vector field construction comes from the design
of the learnable vector fields ℓi : M(i) → TM(i). Although we give an embedded vector field
design above, it is not very principled geometrically. We would like to considerably restrict these
vector fields so that their range is informed by the underlying geometry ofM. For this, we note
that it is possible to induce a vector field ξ :M→ TM for a manifoldM with any smooth map
f :M→ Rk. In practice, this map should capture intrinsic geometric properties ofM and can be
viewed as a feature map, or de facto linearization ofM. Given an x ∈ M, we need only pass x
through f to get its feature representation in Rk, then note that since:

Dpf : TpM→ Tf(p)Rk,

we have an induced map:
(Dpf)

∗ : (Tf(p)Rk)∗ → (TpM)∗,

where (Dpf)
∗ is the pullback of Dpf . Note that TpRk ∼= Rk and (Rk)∗ ∼= Rk by the dual space

isomorphism. Moreover (TpM)∗ ∼= TpM by the tangent-cotangent space isomorphism [33]. Hence,
we have the induced map:

(Dpf)
∗
r : Rk → TpM,

3Ideal vector field design is in general nontrivial and the embedded vector field is not a good choice for all
manifolds (see Appendix B).
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obtained from (Dpf)
∗, simply by both precomposing and postcomposing the aforementioned iso-

morphisms, where relevant. (Dpf)
∗
r provides a natural way to map from the feature representation to

the tangent bundle. Thus, we may view the map ℓf :M→ TM given by:
ℓf (x) = (Dxf)

∗
r(f(x))

as a deterministic vector field induced entirely by f .

Learnable Feature Map-Induced Vector Fields We can easily make the above vector field con-
struction learnable by introducing a Euclidean neural network nθ : Rk → Rk after f to obtain
ℓf,θ(x) = (Dxf)

∗(nθ(f(x))).

Feature Map Design One possible way to simplify the design of the above vector field is to further
break down the map f :M→ Rk into k maps f1, . . . , fk :M→ R, where ideally, each map fi is
constructed in a similar way (e.g. performing some kind of geometric projection, where the fi vary
only in terms of the specifying parameters). As we shall see in the following subsection, this ends up
being a very natural design decision.

In what follows, we shall consider only smooth feature maps f : M → Rk induced by a single
parametric construction gθ :M→ R, i.e. the k dimensions of the output of f are given by different
choices of θ for the same underlying feature map4. This approach also has the benefit of a very
simple interpretation of the induced vector field. Given feature maps gθ1 , . . . , gθk :M → R that
comprise our overall feature map f :M→ Rk, our vector field is simply a linear combination of
the maps∇gθi :M→ TM. If the gθi are differentiable with respect to θi, we can even learn the θi
themselves.

4.2.1 Manifold Manifestations
In this section, in an effort to showcase how simple it is to apply our above theory to come up with
natural vector field designs, we present several constructions of manifold feature maps gθ :M→ R
that capture the underlying geometry ofM for various choices ofM. Namely, in this section we
provide several examples of f : M → R that induce ℓf : M → TM, thereby giving rise to a
Riemannian neural network by Section 4.1.

Figure 4: Example of a horosphere in
the Poincaré ball representation of hy-
perbolic space. In this particular two-
dimensional case, the hyperbolic space
H2 is visualized via the Poincaré disk
model, and the horosphere, shown in
blue, is called a horocycle.

Euclidean Space To build intuition, we begin with an
instructive case. We consider designing a feature map for
the Euclidean space Rn. A natural design would follow
simply by considering hyperplane projection. Let a hyper-
plane wTx+ b = 0 be specified by w ∈ Rn, b ∈ R. Then
a natural feature map gw,b : Rn → R parameterized by the
hyperplane parameters is given by hyperplane projection
[14]: gw,b(x) =

|wT x+b|
||w||2 .

Hyperbolic Space We wish to construct a natural feature
map for hyperbolic space. Seeking to follow the construc-
tion given in the Euclidean context, we wish to find a
hyperbolic analog of hyperplanes. This is provided to us
via the notion of horospheres [24]. Illustrated in Figure
4, horospheres naturally generalize hyperplanes to hyper-
bolic space. We specify a horosphere in the Poincaré ball
model of hyperbolic space Hn by a point of tangency
ω ∈ Sn−1 and a real value b ∈ R. Then a natural feature
map gω,b : Hn → R parameterized by the horosphere
parameters would be given by horosphere projection [4]:
gω,b(x) = − log

(
1−||x||22
||x−ω||22

)
+ b.

Symmetric Positive Definite Matrices The manifold of SPD matrices is an example of a manifold
where there is no innate representation of a hyperplane. Instead, given X ∈ SPD(n), a reasonable
feature map gk : SPD(n) → R, parameterized by k, is to map X to its kth largest eigenvalue:
gk(X) = λk.

4We use the term “feature map" for both the overall feature map f : M → Rk and for the inducing
construction gθ : M → R. This is well-defined since in our work we consider only feature maps f : M → Rk

that are induced by some gθ : M → R.
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General Manifolds For general manifolds there is no perfect analog of a hyperplane, and hence
there is no immediately natural feature map. Although this is the case, it is possible to come up with
a reasonable alternative. We present such an alternative in Appendix B.4 together with pertinent
experiments.

Example: Euclidean Space One motivation for the vector field construction ℓf (x) = (Dxf)
∗
r(f(x))

is that in the Euclidean case, ℓf will reduce to a standard linear layer (because the maps f and (Dxf)
∗

are linear), which, in combination with the Euclidean exp map, will produce a standard Euclidean
residual neural network.

Explicitly, for the Euclidean case, note that our feature map f : Rn → Rk will, for example, take the
form f(x) = Wx,W ∈ Rk×n (here we have b = 0 and W has normalized row vectors). Then note
that we have Df = W and (Df)∗ = WT . We see for the standard feature map-based construction,
our vector field ℓf (x) = (Dxf)

∗(f(x)) takes the form ℓf (x) = WTWx.

For the learnable case (which is standard for us, given that we learn Riemannian residual neural net-
works), when the manifold is Euclidean space, the general expression ℓf,θ(x) = (Dxf)

∗(nθ(f(x)))
becomes ℓf,θ(x) = WTnθ(Wx). When the feature maps are trivial projections (onto axis-aligned
hyperplanes), we have W = I and ℓf,θ(x) = nθ(x). Thus our construction can be viewed as a
generalization of a standard neural network.

Dataset Disease Airport PubMed CoRA
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11

Task LP NC LP NC LP NC LP NC

Sh
al

lo
w

Euc 59.8±2.0 32.5±1.1 92.0±0.0 60.9±3.4 83.3±0.1 48.2±0.7 82.5±0.3 23.8±0.7

Hyp [41] 63.5±0.6 45.5±3.3 94.5±0.0 70.2±0.1 87.5±0.1 68.5±0.3 87.6±0.2 22.0±1.5

Euc-Mixed 49.6±1.1 35.2±3.4 91.5±0.1 68.3±2.3 86.0±1.3 63.0±0.3 84.4±0.2 46.1±0.4

Hyp-Mixed 55.1±1.3 56.9±1.5 93.3±0.0 69.6±0.1 83.8±0.3 73.9±0.2 85.6±0.5 45.9±0.3

N
N

MLP 72.6±0.6 28.8±2.5 89.8±0.5 68.6±0.6 84.1±0.9 72.4±0.2 83.1±0.5 51.5±1.0

HNN [17] 75.1±0.3 41.0±1.8 90.8±0.2 80.5±0.5 94.9±0.1 69.8±0.4 89.0±0.1 54.6±0.4

RResNet Horo 98.4±0.3 76.8±2.0 95.2±0.1 96.9±0.3 95.0±0.3 72.3±1.7 86.7±6.3 52.4±5.5

Table 1: Above we give graph task results for RResNet Horo compared with several non-graph-based
neural network baselines (baseline methods and metrics are from Chami et al. [8]). Test ROC AUC
is the metric reported for link prediction (LP) and test F1 score is the metric reported for node
classification (NC). Mean and standard deviation are given over five trials. Note that RResNet
Horo considerably outperforms HNN on the most hyperbolic datasets, performing worse and worse
as hyperbolicity increases, to a more extreme extent than previous methods that do not adhere to
geometry as closely (this is expected).

5 Experiments
In this section, we perform a series of experiments to evaluate the effectiveness of RResNets on tasks
arising on different manifolds. In particular, we explore hyperbolic space and the SPD manifold.

5.1 Hyperbolic Space
We perform numerous experiments in the hyperbolic setting. The purpose is twofold:

1. We wish to illustrate that our construction in Section 4 is not only more general, but also
intrinsically more geometrically natural than pre-existing hyperbolic constructions such as HNN
[17], and is thus able to learn better over hyperbolic data.

2. We would like to highlight that non-Euclidean learning benefits the most hyperbolic datasets.
We can do this directly since our method provides a way to vary the geometry of a fixed neural
network architecture, thereby allowing us to directly investigate the effect of changing geometry
from Euclidean to hyperbolic.

5.1.1 Direct Comparison Against Hyperbolic Neural Networks [17]

To demonstrate the improvement of RResNet over HNN [17], we first perform node classification
(NC) and link prediction (LP) tasks on graph datasets with low Gromov δ-hyperbolicity [8], which
means the underlying structure of the data is highly hyperbolic. The RResNet model is given the
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AFEW[13] FPHA[18] NTU RGB+D[48] HDM05[39]

SPDNet 33.24±0.56 65.39±1.48 41.47±0.34 66.77±0.92

SPDNetBN 35.39±0.93 65.03±1.35 41.92±0.37 67.25±0.44

RResNet Affine-Invariant 35.17 ±1.78 66.53±01.64 41.00 ±0.50 67.91 ±1.27

RResNet Log-Euclidean 36.38±1.29 64.58±0.98 42.99±0.23 69.80±1.51

Table 2: We run our SPD manifold RResNet on four SPD matrix datasets and compare against
SPDNet [26] and SPDNet with batch norm [5]. We report the mean and standard deviation of
validation accuracies over five trials and bold which method performs the best.

name “RResNet Horo." It utilizes a horosphere projection feature map-induced vector field described
in Section 4. All model details are given in Appendix C.2. We find that because we adhere well
to the geometry, we attain good performance on datasets with low Gromov δ-hyperbolicities (e.g.
δ = 0, δ = 1). As soon as the Gromov hyperbolicity increases considerably beyond that (e.g.
δ = 3.5, δ = 11), performance begins to degrade since we are embedding non-hyperbolic data in an
unnatural manifold geometry. Since we adhere to the manifold geometry more strongly than prior
hyperbolic work, we see performance decay faster as Gromov hyperbolicity increases, as expected.
In particular, we test on the very hyperbolic Disease (δ = 0) [8] and Airport (δ = 1) [8] datasets.
We also test on the considerably less hyperbolic PubMed (δ = 3.5) [47] and CoRA (δ = 11) [46]
datasets. We use all of the non-graph-based baselines from Chami et al. [8], since we wish to see how
much we can learn strictly from a proper treatment of the embeddings (and no graph information).
Table 1 summarizes the performance of “RResNet Horo" relative to these baselines.

Moreover, we find considerable benefit from the feature map-induced vector field over an embedded
vector field that simply uses a Euclidean network to map from a manifold point embedded in Rn. The
horosphere projection captures geometry more accurately, and if we swap to an embedded vector field
we see considerable accuracy drops on the two hardest hyperbolic tasks: Disease NC and Airport NC.
In particular, for Disease NC the mean drops from 76.8 to 75.0, and for Airport NC we see a very
large decrease from 96.9 to 83.0, indicating that geometry captured with a well-designed feature map
is especially important. We conduct a more thorough vector field ablation study in Appendix C.5.

5.1.2 Impact of Geometry

A major strength of our method is that it allows one to investigate the direct effect of geometry in
obtaining results, since the architecture can remain the same for various manifolds and geometries
(as specified by the metric of a given Riemannian manifold). This is well-illustrated in the most
hyperbolic Disease NC setting, where swapping out hyperbolic for Euclidean geometry in an RResNet
induced by an embedded vector field decreases the F1 score from a 75.0 mean to a 67.3 mean and
induces a large amount of numerical stability, since standard deviation increases from 5.0 to 21.0.
We conduct a more thorough geometry ablation study in Appendix C.5.

5.2 SPD Manifold

A common application of SPD manifold-based models is learning over full-rank covariance matrices,
which lie on the manifold of SPD matrices. We compare our RResNet to SPDNet [26] and SPDNet
with batch norm [5] on four video classification datasets: AFEW [13], FPHA [18], NTU RGB+D
[48], and HDM05 [39]. Results are given in Table 2. Please see Appendix C.6 for details on the
experimental setup. For our RResNet design, we try two different metrics: the log-Euclidean metric
[16] and the affine-invariant metric [12, 42], each of which captures the curvature of the SPD manifold
differently. We find that adding a learned residual improves performance and training dynamics
over existing neural networks on SPD manifolds with little effect on runtime. We experiment with
several vector field designs, which we outline in Appendix B. The best vector field design (given in
Section 4.2), also the one we use for all SPD experiments, necessitates eigenvalue computation. We
note the cost of computing eigenvalues is not a detrimental feature of our approach since previous
works (SPDNet [26], SPDNet with batchnorm [5]) already make use of eigenvalue computation5.
Empirically, we observe that the beneficial effects of our RResNet construction are similar to those of
the SPD batch norm introduced in Brooks et al. [5] (Table 2, Figure 5 in Appendix C.6). In addition,
we find that our operations are stable with ill-conditioned input matrices, which commonly occur
in the wild. To contrast, the batch norm computation in SPDNetBN, which relies on Karcher flow

5One needs this computation for operations such as the Riemannian exp and log over the SPD manifold.
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Dataset Disease Airport PubMed CoRA
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11

G
N

N

GCN [31] 69.7±0.4 81.4±0.6 78.1±0.2 81.3±0.3

GAT [52] 70.4±0.4 81.5±0.3 79.0±0.3 83.0±0.7

SAGE [22] 69.1±0.6 82.1±0.5 77.4±2.2 77.9±2.4

SGC [54] 69.5±0.2 80.6±0.1 78.9±0.0 81.0±0.1

G
G

N
N HGCN [8] 74.5±0.9 90.6±0.2 80.3±0.3 79.9±0.2

Fully HNN [10] 96.0±1.0 90.9±1.4 78.0±1.0 80.2±1.3

G-RResNet Horo 95.4±1.0 97.4±0.1 75.5±0.8 64.4±7.6

Table 3: Above we give node classification results for G-RResNet Horo compared with several
graph-based neural network baselines (baseline methods and metrics are from Chami et al. [8]). Test
F1 score is the metric reported. Mean and standard deviation are given over five trials. Note that
G-RResNet Horo obtains a state-of-the-art result on Airport. As for the less hyperbolic datasets,
G-RResNet Horo does worse on PubMed and does very poorly on CoRA, once more, as expected
due to unsuitability of geometry. The GNN label stands for “Graph Neural Networks" and the GGNN
label stands for “Geometric Graph Neural Networks."

[28, 35], suffers from numerical instability when the input matrices are nearly singular. Overall, we
observe our RResNet with the affine-invariant metric outperforms existing work on FPHA, and our
RResNet using the log-Euclidean metric outperforms existing work on AFEW, NTU RGB+D, and
HDM05. Being able to directly interchange between two metrics while maintaining the same neural
network design is an unique strength of our model.

6 Riemannian Residual Graph Neural Networks

Following the initial comparison to non-graph-based methods in Table 1, we introduce a simple graph-
based method by modifying RResNet Horo above. We take the previous model and pre-multiply the
feature map output by the underlying graph adjacency matrix A in a manner akin to what happens
with graph neural networks [54]. This is the simple modification that we introduce to the Riemannian
ResNet to incorporate graph information; we call this method G-RResNet Horo. We compare directly
against the graph-based methods in Chami et al. [8] as well as against Fully Hyperbolic Neural
Networks [10] and give results in Table 3. We test primarily on node classification since we found
that almost all LP tasks are too simple and solved by methods in Chami et al. [8] (i.e., test ROC is
greater than 95%). We also tune the matrix power of A for a given dataset; full architectural details
are given in Appendix C.2. Although this method is simple, we see further improvement and in
fact attain a state-of-the-art result for the Airport [8] dataset. Once more, as expected, we see a
considerable performance drop for the much less hyperbolic datasets, PubMed and CoRA.

7 Conclusion

We propose a general construction of residual neural networks on Riemannian manifolds. Our
approach is a natural geodesically-oriented generalization that can be applied more broadly than
previous manifold-specific work. Our introduced neural network construction is the first that de-
couples geometry (i.e. the representation space expected for input to layers) from the architecture
design (i.e. actual “wiring” of the layers). Moreover, we introduce a geometrically principled feature
map-induced vector field design for the RResNet. We demonstrate that our methodology better
captures underlying geometry than existing manifold-specific neural network constructions. On a
variety of tasks such as node classification, link prediction, and covariance matrix classification, our
method outperforms previous work. Finally, our RResNet’s principled construction allows us to
directly assess the effect of geometry on a task, with neural network architecture held constant. We
illustrate this by directly comparing the performance of two Riemannian metrics on the manifold of
SPD matrices. We hope others will use our work to better learn over data with nontrivial geometries
in relevant fields, such as lattice quantum field theory, robotics, and computational chemistry.

Limitations We rely fundamentally on knowledge of geodesics of the underlying manifold. As such,
we assume that a closed form (or more generally, easily computable, differentiable form) is given for
the Riemannian exponential map as well as for the tangent spaces.
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Appendix

A Riemannian Geometry: Relevant Reference Material

Here we give some relevant reference material that provides the reader with the fundamental oper-
ations used for the Poincaré ball model of hyperbolic space, as well as the two Riemannian SPD
manifold structures employed.

A.1 The Poincaré Ball Model

Hyperbolic space can be represented via several isometric models. We use the Poincaré ball model,
which is defined by the set {

x ∈ Rn | ∥x∥22 < − 1

K

}
, (9)

where K < 0 is the space’s constant negative curvature together with the metric given in the table
below. We give a summary of hyperbolic operations in Table 4.

Manifold Euclidean Rn Poincaré Ball Hn

Dimension, dim(M) n n

Metric gx, gE (λK
x )gE, where gE = I

Tangent Space, TxM Rn Rn

Projection, projTxM(v) v v

Exp Map, expx(v) x+ v x⊕K

(
tanh

(√
|K|λ

K
x ∥v∥2

2

)
v√

|K|∥v∥2

)
Geodesic Distance, d(x, y) ∥y − x∥2 1√

|K|
cosh−1

(
1− 2K∥x−y∥2

2

(1+K∥x∥2
2)(1+K∥y∥2

2
)
)

Table 4: Summary of Poincaré ball operations. We provide equivalent operations on Euclidean space
for reference. ⊕K denotes Möbius addition [51], and λK

x = 2
1+K∥x∥2

2
, a conformal factor.

A.2 The SPD Manifold

We provide a summary of operations on the manifold of SPD matrices, in Table 5. For the SPD
manifold, we illustrate the differences between the affine-invariant and log-Euclidean metrics. exp
and log denote the matrix exponential and logarithm, respectively.

Manifold Euclidean Rn SPD(n) Affine-Invariant SPD(n) Log-Euclidean

Dimension, dim(M) n n(n+1)
2

n(n+1)
2

Metric gx, gE tr(X−1UX−1V ) tr((D logX(U))TD logX(V ))

Tangent Space, TxM Rn {V | V = V T } {V | V = V T }
Projection, projTxM(v) v V+V T

2
V+V T

2

Exp Map, expx(v) x+ v X exp(X−1V ) exp(log(X) + V )

Geodesic Distance, d(x, y) ∥y − x∥2 ∥ log(X−1Y )∥F ∥ log(Y )− log(X)∥F

Table 5: Summary of SPD operations. We provide equivalent operations on Euclidean space for
reference. We use both the affine-invariant and log-Euclidean metrics.
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B Vector Field Design

Recall from the main paper that we can design a neural network-parameterized vector field ℓi :M→
TM for an embedded manifoldM of dimension D, simply by defining a standard neural network
ni : RD → RD and then setting:

ℓi(x) := projTxM(ni(x)). (10)

Though this vector field design is frequently trivial (assuming the manifold has a natural embedding
in Rn), it may be highly inefficient if an easy-to-implement but suboptimal embedding is used. This
is especially the case if manifold structure is underexploited in the construction of such an embedding
(see Section 4.1). In this section, we give a natural embedded vector field design for hyperbolic space,
a more geometric feature map-induced vector field design for hyperbolic space, and explore a variety
of possible vector field designs for the SPD manifold. In the general setting, note that obtaining
a parsimonious (with respect to either representational dimension or parameter count) vector field
design that is sufficiently expressive is nontrivial.

B.1 Vector Field Design for Hyperbolic Space

For the embedded hyperbolic vector field design, we apply the general design construction referenced
above. Note that Hn is an n-dimensional manifold with a trivial Rn+1 embedding given by any
coordinate representation. Thus we need only parameterize a neural network ni : Rn+1 → Rn+1

and set
ℓi(x) = projTxHn(ni(x)) (11)

to obtain our neural network-parameterized vector fields. Observe that this vector field design is
efficient and expressive, since TxHn ∼= Rn, but is perhaps too expressive in that the vector field is not
constructed around the geodesic geometry of hyperbolic space. For this, we employ the horosphere
projection-induced vector field design introduced in Section 4.2 of the main paper. We simply fix a
number of horospheres, randomly initialize them, and then further learn hyperparameters specifying
a given horosphere.

B.2 Vector Field Design for the SPD Manifold

Let SPD(n) be the manifold of n × n SPD matrices with canonical metric, as in the main paper.
We recall from Gallier and Quaintance [16] that SPD has a Lie structure with algebra consisting of
n × n symmetric matrices, denoted S(n). The Riemannian exponential map (or equivalently, the
matrix exponential map) is a bijection between S(n) and SPD(n). Recall by Lie symmetry [16]
that the tangent space at X ∈ SPD(n) is given by:

TXSPD(n) = S(n) := {P | P = PT }. (12)

Observe that due to this tangent space structure, instead of utilizing the vector field construction given
in Section 4.1 that requires an explicit projection operator, we may opt for more amenable designs
oriented around the SPD manifold’s Lie structure. We develop a variety of constructions below.

B.2.1 Design 1: Embedded

We can observe that SPD(n) is trivially embedded in Rn2

, and so are its tangent vectors; we will
use this observation to construct a simple vector field parameterization. Let vec : Rn×n → Rn2

be
row-major matrix vectorization and let vec−1 : Rn2 → Rn×n be its inverse. Given a neural network
ni : Rn2 → Rn2

and an X ∈ SPD(n), we may set:

ℓi(X) = projTXSPD(n)(vec−1(ni(vec(X)))) (13)

where projTXSPD(n) symmetrizes a matrix in the tangent space of the identity matrix, before trans-
forming it back to the tangent space of X . It is given by:

projTXSPD(n)(V ) =
V + V T

2
. (14)
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Although this vector field representation is expressive, it also provides unneeded flexibility. For
example, the intrinsic dimension of TXSPD(n) ∼= S(n) is n(n+1)

2 , but the ni map to all of Rn2

.
Based on this observation, we exploit tangent vector structure in the following vector field design to
retain expressiveness while increasing efficiency.

B.2.2 Design 2: Structured

Observe that our tangent spaces satisfy TXSPD(n) ∼= S(n), and moreover that SPD(n) ⊂ S(n).
We know that S(n) has dimension n(n+1)

2 since each symmetric matrix is uniquely determined by

its upper triangular part. Let ι : R
n(n+1)

2 ↪−→ S(n) be the row-major injection of the upper triangular
part into a symmetric matrix and let ι−1 : S(n) ↠ R

n(n+1)
2 be its inverse. Given a neural network

ni : R
n(n+1)

2 → R
n(n+1)

2 and an X ∈ SPD(n), we may set:

ℓi(X) = ι(ni(ι
−1(X))). (15)

Note that there is no longer any need for a projection to symmetric matrices, since we incorpo-
rate this structure directly into our vector field design. Moreover note that since TXSPD(n) ∼=
S(n) ∼= R

n(n+1)
2 , this vector field design is maximally expressive while being maximally efficient

(representationally).

B.2.3 Design 3: Parsimonious

Although Design 2 is maximally expressive and efficient, in some cases where expressivity is less
of a concern we may want a a reasonable parsimonious vector field design. Our answer to this is to
directly parameterize a symmetric matrix via its upper triangular portion. To be explicit, let our vector
field be parameterized by euclidean parameters v ∈ R

n(n+1)
2 and, for X ∈ SPD(n), be given by:

ℓi(X) = ι(v) (16)

This is a learnable vector field induced by a single tangent vector. Although highly efficient, its
location-agnosticism makes it highly inexpressive.

B.2.4 Design 4: Parsimonious Spectral

One may also consider exploiting manifold-specific structure in the context of Design 3 to produce a
more expressive vector field that remains fairly efficient parametrically. A vector field design that
accomplishes this is one that allows a map from the spectrum of the local SPD matrix to the spectrum
of the symmetric matrix in the vector field construction. We let spec : SPD(n)→ Rn be the spectral
map that takes SPD matrices to a vector of their eigenvalues, sorted in descending order. To be
explicit, let our vector field be parameterized by Q ∈ O(n)6, a neural network fi : Rn → Rn, and,
for X ∈ SPD(n), be given by:

ℓi(X) = Qdiag(fi(spec(X)))QT (17)

where diag : Rn → Rn×n is the diagonal injection map. Observe that the spectrum of the symmetric
matrix now depends locally on X , allowing for considerably more expressivity than in Design 3 at the
cost of a low-dimensional neural network map fi : Rn → Rn. Moreover, the orthogonal constraint
on P may be preserved throughout optimization via one of a variety of easy-to-implement methods
[1, 6].

Design 1 is naive, but very inefficient. Design 2 exploits manifold structure to be maximally efficient
while being maximally expressive. Design 3 showcases the other extreme (relative to Design 1) and
gives a maximally parsimonious vector field construction. Design 4 showcases a more flexible version
of Design 3 that allows for considerably greater learning capability7 while still being representationally
efficient. The purpose of describing these designs is to underscore the trade-off between expressivity
and parameter-efficiency in designing parameterized vector fields (Designs 1 and 2 vs. Designs 3
and 4) as well as the need to utilize manifold-specific structure to obtain a maximally expressive and
efficient vector field design (Design 1 vs. Design 2). Additionally, we highlight that expressivity for
parameter-constrained vector field designs can be nontrivially increased with insignificant overhead
via the introduction of manifold-specific dependencies (Design 3 vs. Design 4).

6O(n) is the group of orthogonal matrices.
7Verified empirically.
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B.3 Vector Field Design for Spherical Space

For the spherical vector field design, we again apply the general design construction referenced at the
start of Appendix B. Similar to Hn, Sn is an n-dimensional manifold which we treat as embedded in
Rn+1. Hence we parameterize a neural network ni : Rn+1 → Rn+1 and set

ℓi(x) = projTxSn(ni(x)) (18)

to obtain our neural network-parameterized vector fields. As in the hyperbolic case, this vector field
design is efficient and expressive, since TxSn ∼= Rn.

B.4 Feature Map-induced Vector Fields for General Manifolds

There is no perfect analog of a hyperplane for general manifolds. Hence, there is no immediately
natural feature map in the general case. Despite this, we attempt to present a reasonable analog to
hyperplane projection that extends to general manifolds. In particular, for a geodesically complete8

manifoldM, consider specifying a pseudo-hyperplane by a point p ∈ M and a non-zero vector
v ∈ TpM \ {0} whose orthogonal complement we exponentiate at the base point p to give the
following definition:

hp,v = expp({w ∈ TpM|wT v = 0}) (19)

This definition9 has the benefit of reducing to the usual Euclidean hyperplane definition when the
manifold under consideration is Rn. However, this hyperplane definition is not particularly suitable for
general manifolds since it assumes geodesic completeness, which may not hold. Here we propose an
alternative general definition of a hyperplane that exponentiates the intersection of a local orthogonal
complement with a closed ball of radius r, B̄r(0) ⊂ TpM, given below:

hp,v,r = expp(B̄r(0) ∩ {w ∈ TpM|wT v = 0}) (20)

Notice that this hp,v,r pseudo-hyperplane is a strict generalization of hp,v that does not require
geodesic completeness (since r is finite), and that in the limit as r →∞ we recover hp,v .

A general feature map can then be defined by projecting to such a pseudo-hyperplane:

gp,v,r(x) = min
y∈hp,v,r

dM(x, y) (21)

where dM is the induced geodesic distance onM.

We test this general construction for hyperbolic space and compare it with the horosphere projection
construction in Appendix C.4. The general construction performs reasonably well, but does not
perform as well as the horosphere projection we give in this section. A more natural and performant
manifold-dependent map can frequently be obtained by carefully considering the particular structure
of the manifold (e.g. the spectral projection we give for SPD(n)).

C Experimental Details

Experiments on Hyperbolic Space

C.1 Datasets

We apply our hyperbolic RResNet to node classification and link prediction on four graph datasets
with varying δ-hyperbolicity.

Airport (δ = 1). Airport is a dataset consisting of 2236 nodes where nodes represent airports and
edges represent airline routes [8]. For node classification, each airport is given a label corresponding

8A manifold M is said to be geodesically complete if any geodesic can be followed indefinitely [32].
9This notion was originally introduced in the context of hyperbolic space in Ungar [51].
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to the population of the country it is in. Each airport has a 4-dimensional feature vector consisting of
geographic information.

Pubmed (δ = 3.5) and CoRA (δ = 11). Pubmed and CoRA are both citation networks consisting of
2708 and 19717 nodes each [46, 47]. In citation networks, each node represents a paper and edges
indicate a shared author between papers. Each node has a label consisting of what academic subareas
the paper belongs to.

Disease (δ = 0). Disease is a synthetic dataset generated by simulating the SIR disease spreading
model [8]. Node labels for classification indicate whether a node was infected or not and node
features indicate a particular node’s susceptibility to the disease.

C.2 Architectural and Training Details

All of our testing uses the Poincaré ball model [41] to represent hyperbolic space. We use a similar
setup to Chami et al. [8] to test RResNet’s performance on hyperbolic space. First, in order to
reduce the parameter count, we use a linear layer from the input dimension to a lower dimension
before using RResNet as an encoder. For link-prediction tasks we use a Fermi-Dirac decoder and for
node-classification tasks we use a linear decoder [8].

For our results using a feature map induced vector field, we take the projection onto a fixed number
of horospheres. Each horosphere is randomly initialized with ω drawn uniformly from Sn−1 and
b ∼ N (0, 1). We pass the horocycle projections to a linear layer followed by a Euclidean nonlinearity
(typically ReLU [40]). During the training of each network, ω and b are optimized using the same
optimizer as the rest of the network. For further details regarding implementation, please see the
accompanying Github code.

Horosphere projections are not the only natural feature map one can use, one alternative we exper-
imented with was using parametetrized real eigenfunctions of the hyperbolic Laplacian as feature
maps but we were unable to achieve similar performance to horosphere projections (results were
significantly worse).

We use 250 horospheres for Disease, Airport, and CoRA and 50 horospheres for Pubmed. Models
were trained for 500, 10000, 5000, and 5000 epochs for Disease, Airport, Pubmed, and CoRA,
respectively, with the Adam optimizer [30]. All other hyperparameters, such as learning rate and
weight decay, were determined using random search.

All experiments were run on a single NVIDIA Quadro RTX A6000 48GB GPU.

C.3 Comparison Between Embedded and Horocycle-induced Vector Field Designs

Dataset Disease (δ = 0) Airport (δ = 1) Pubmed (δ = 3.5) CoRA (δ = 11)

RResNet Embedded 75.0±5 83.0±2.0 73.2±1.0 59.6±1.0

RResNet Horo 76.8±2.0 96.9±0.3 71.4±2.2 52.4±5.5

Table 6: Node classification results for RResNet with two different vector field designs (test F1 score
is the metric given).

In order to investigate the effect vector field design has, we look at the performance of RResNet when
using the embedded or horosphere projection-induced vector field in Table 8. On more hyperbolic
datasets (Disease and Airport), the more geometrically principled design attains higher F1 scores.
This effect is reversed on the less hyperbolic datasets (Pubmed and CoRA), indicating that a more
geometrically principled vector field only helps when the data geometry is similar to the model
geometry, as expected.

C.4 Comparison Between Horocycle-induced and Pseudo-Hyperplane-induced Vector Field
Designs

In Table 7 we compare the RResNet construction with vector fields induced by projection to pseudo-
hyperplanes (as defined in the main paper in Section 4.2) for hyperbolic space (RResNet Pseudo-
Hyperplane) to the horocycle projection-induced vector field RResNet construction (RResNet Horocy-
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Dataset Disease (δ = 0) Airport (δ = 1) Pubmed (δ = 3.5) CoRA (δ = 11)

RResNet Horocycle 76.8±2.0 96.9±0.3 71.4±2.2 52.4±5.5

RResNet Pseudo-Hyperplane 77.2±0.4 90.3±4.5 66.7±5.0 41.4±5.7

Table 7: Node classification results for RResNet with two different vector field designs (test F1 score
is the metric given).

cle). Note that RResNet Pseudo-Hyperplane performs worse for most tasks, although the construction
is more general (as mentioned in the main paper).

C.5 Ablation Study

Nonlinearity Ablation

Dataset Disease (δ = 0) Airport (δ = 1) Pubmed (δ = 3.5) CoRA (δ = 11)

RResNet Horo w/o Nonlinearity 71.9±9.2 96.9±3.0 71.2±1.1 49.6±2.0

RResNet Horo 76.8±2.0 96.9±0.3 71.4±2.2 52.4±5.5

Table 8: Node classification results for RResNet with and without a nonlinearity between layers (test
F1 score is the metric given).

To study the expressiveness of the horocycle induced vector field design, we ablate the nonlinearity
in the vector field. With the nonlinearity, the F1 score either increases or remains the same across all
datasets, which the advantage being most pronounced for Disease.

Geometry Ablation

Dataset Disease (δ = 0)

RResNet Embedded (Euclidean) 67.3±21.0

RResNet Embedded (Hyperbolic) 75.0±5.0

RResNet Feature Map (Euclidean) 73.1±3.4

RResNet Feature Map (Hyperbolic) 76.8±2.0

Table 9: Node classification results of RResNet with different vector field designs and model geometry
(test F1 score is the metric given). When swapping geometry for a specific model, all hyperparameters
are kept the same, which we are able to do easily with our architecture.

We look at the performance of varying RResNets on the most hyperbolic dataset to identify the effect
model geometry has in Table 9. As expected, using hyperbolic space yields higher F1 scores with
lower standard deviations. In particular, the high standard deviation of 21.0 for “RResNet Embedded
(Euclidean)" indicates that it fails to properly learn in a number of trials.

Residual Connection Ablation

It is reasonable to try other residual connection implementations outside of our natural geometric
Riemannian exp-map based implementation. In particular, one may try to implement a Riemannian
residual neural networks directly via a gyrovector [51] addition. We give the results in Table 10 and
show that not only is this method less desirable geometrically, but also gives worse results on our
chosen benchmarks. The Euclidean model is given as a baseline and the Riemannian ResNet here is
a reference. All models are implemented with a comparable number of parameters and are two layer
residual neural networks.
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Dataset Airport (δ = 1)

Euclidean 69.4±1.8

Gyrovector 60.8±0.9

RResNet Horo 75.9±2.5

Table 10: Node classification results for RResNet with three different residual connection designs
(test F1 score is the metric given).

Experiments on the SPD Manifold

C.6 Datasets

We apply our SPD architecture on four different video recognition tasks. For all tasks, we generate
covariance or correlation matrices sampled from each video’s frames. Given frames t ∈ {1, . . . , T}
and their corresponding feature vectors xt ∈ Rn, we generate a n× n covariance matrix by sampling
the frames: X = 1

T−1

∑T
t=1(xt − µ)(xt − µ)T . Optionally, we can divide the matrices by the

standard deviations to instead generate correlation matrices. For certain tasks, we find that these have
better conditioning.

While covariance and correlation matrices are positive semi-definite, they are not necessarily SPD. In
fact, they are only SPD if the set of sampled vectors, {x1, . . . , xT }, consists of n linearly-independent
vectors. If the sampled vectors xt, xt+1, are similar, which is the case for neighboring frames of a
video, the matrices may be close to singular. This phenomenon poses issues in downstream tasks
such as taking a matrix logarithm, which can create numerical instability. For all tasks, we preprocess
our data by removing covariance matrices which fail a Cholesky decomposition.

AFEW. AFEW [13] is an emotion recognition dataset consisting of 1,345 videos and 7 classes. As
done in Brooks et al. [5], Huang and Gool [26], we use covariance matrices created from 20× 20
video frames, flattened into 400-dimensional xt vectors.

FPHA. The First-Person Hand Action Benchmark (FPHA) [18] consists of 1,175 videos of humans
performing 45 different tasks. The dataset includes the (x, y, z) coordinates of 21 joint locations
from a human hand. Following the approach of Hussein et al. [27], for each frame, we flatten the
coordinates into a 63-dimensional vector xt. We then take the correlation matrices. We use subjects
1-3 for training and 4-6 for validation.

NTU RGB+D. NTU RGB+D [48] is an action recognition dataset which includes the 3D locations
of 25 body joints. NTU RGB+D is a large scale dataset with 56,880 videos and 60 tasks. For our xt

vectors, we use the flattened versions of 3D joint coordinates as feature vectors. Our matrices have
dimension 75.

HDM05. Mocap Database HDM05 [39] is another action recognition dataset which includes 3D
locations of 31 joints. Following the task designed in Huang and Gool [26], the goal is to classify
each video clip into one of 117 action classes. We use the covariance matrices provided in Brooks
et al. [5].

C.7 Architectural Details

Given a dataset of covariance matrices, our goal is to classify a matrix into one of several classes.
To illustrate, we give our architecture for the AFEW task as an example. Because of how costly it
would be to parameterize vector fields at this dimension, we use a BiMap layer [26], BiMapdi

di+1
:

SPD(di)→ SPD(di+1) as a base point remapping from 400× 400 matrices to 50× 50 matrices.
We use vector field design 4 from Appendix B. In the context of this problem, we have:

ℓ1(X) = Qdiag(f1(spec(X)))QT (22)

where f1 : R50 → R50, spec : SPD(50) → R50, P ∈ O(50) (spec is defined above in Appendix
B). In practice, we experiment with a variety of f1 designs, such as sequences of linear layers or 1D
convolutions. Note the vector field is a map ℓ1 : SPD(50)→ T SPD(50). We express our forward
pass as

20



0 5 10 15 20 25 30 35 40 45
Epoch

0

10

20

30

40

50

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

AFEW Classification Task

SPDNet
SPDNetBN
RResNet Affine-Invariant
RResNet Log-Euclidean

0 20 40 60 80 100 120 140
Epoch

20

30

40

50

60

70

80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

FPHA Classification Task

SPDNet
SPDNetBN
RResNet Affine-Invariant
RResNet Log-Euclidean

0 25 50 75 100 125 150 175
Epoch

50

55

60

65

70

75

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

HDM05 Classification Task

SPDNet
SPDNetBN
RResNet Affine-Invariant
RResNet Log-Euclidean

0 5 10 15 20 25 30 35 40 45
Epoch

0

10

20

30

40

50

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

NTU RGB+D Classification Task

SPDNet
SPDNetBN
RResNet Affine-Invariant
RResNet Log-Euclidean

Figure 5: Validation accuracies for our RResNet compared to the SPDNet [26] and SPDNetBN
[5] baselines. For each model, results are averaged over five trials. Error bars denote one standard
deviation away from the mean accuracy. We observe that our model converges faster and achieves
higher accuracies than SPDNet and SPDNetBN.

g(x) = expBiMap40050 (x)(ℓ1(BiMap40050 (x))) (23)

which is a map g : SPD(400)→ SPD(50). Our exp map depends on the Riemannian metric we
choose on the manifold. Thereafter we apply a logarithm to the eigenvalues of the 50× 50 matrices
(this helps linearize features [5]). Lastly we flatten the matrices and use a linear map from dimension
2500 to dimension 7 (representing the 7 different emotions). We use a simple cross entropy loss [19]
to train the model.

C.8 Results

We compare our RResNet design above (Appendix C.7) to SPDNet [5, 26], a network architecture for
SPD matrix learning. All models have a comparable number of parameters. To replicate the results of
Brooks et al. [5], we use a learning rate of 5 · 10−2 for the baseline. We find that any higher learning
rate causes training instability. However, we observe that our model remains stable with a learning
rate of 1 · 10−1. Our model has faster convergence and achieves a higher accuracy than SPDNet and
SPDNetBN (see Table 2 in the main paper and Figure 5 above). Moreover, our model’s ability to
switch out geometries (as given by the log-Euclidean and affine-invariant metrics) gives the ability to
outperform prior work on all tasks.

C.9 Comparison Between Vector Field Designs

For the SPD manifold, we illustrate differences between our four different vector field designs
outlined in Appendix B on the AFEW task. Results are given in Table 11. Note that the chosen
spectral map-induced vector field is very efficient in terms of parameter count and performs best in
terms of accuracy.

C.10 Ablation Study

Nonlinearity Ablation
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AFEW[13] Number of Parameters

Naive 34.90±0.74 6,290,007
Structured 34.76±1.07 1,664,407
Parsimonious 34.82 ±1.82 38,782
Spectral Map 36.38±1.29 45,057

Table 11: We compare the accuracy of our four vector field designs for the SPD manifold. We see
that the spectral map provides the best balance of accuracy and parameter efficiency.

We ablate the nonlinearity in the spectral map design in Table 12, and find that the nonlinearity
slightly improves performance. For AFEW, we use a one layer vector field, which is why the reported
accuracies are the same.

AFEW FPHA NTU RGB+D HDM05

Aff-Inv w/o Nonlinearity 35.17±1.78 65.03±2.22 41.27±0.22 65.92±1.27

Aff-Inv 35.17 ±1.78 66.53±1.64 41.00 ±0.50 67.91 ±0.66

Log-Euc w/o Nonlinearity 36.38±1.29 65.25±2.14 42.87±0.83 68.73±1.75

Log-Euc 36.38±1.29 64.58±0.98 42.99±0.23 69.80±1.51

Table 12: We show that classification accuracy either improves or remains the same with the
nonlinearity. For AFEW, we use one layer in the vector field, which is why the reported accuracies
are the same.

Geometry Ablation

We study the geometry of the SPD manifold by comparing our Riemannian ResNet to a Euclidean
ResNet. For the Euclidean network, we treat each matrix as a Euclidean vector by flattening it into a
length n× n vector. We then pass it through a Euclidean ResNet. Our results in Table 13 show that
the Riemannian ResNets (Aff-Inv and Log-Euc) perform significantly better across all datasets.

AFEW FPHA NTU RGB+D HDM05

Euclidean 30.08±1.36 30.72±1.03 34.63±3.10 0.80±0.10

Aff-Inv 35.17 ±1.78 66.53±1.64 41.00 ±0.50 67.91 ±1.27

Log-Euc 36.38±0.24 64.58±0.98 42.99±0.23 69.80±1.51

Table 13: We show that the Euclidean ResNet performs worse across all datasets, and fails for
HDM05.

Residual Connection Ablation

Similar to the gyrocalculus used in Ganea et al. [17], López et al. [34] have extended gyrovector
operations to the manifold of SPD matrices. In particular, the authors define Möbius addition as
X ⊕ Y =

√
XY
√
X for SPD matrices X,Y . It is reasonable to ask how this purely algebraic,

non-geometric construct performs when used to implement a residual connection. With this choice
of addition, the residual connection for a ResNet specific to the SPD manifold would have the form
ℓi(X) + X =

√
ℓi(X)X

√
ℓi(X). In Table 14, we show that this choice of addition struggles to

reach the accuracy of our Riemannian ResNet design.

Experiments on Spherical Space

C.11 Dataset

We wish to explore the generality of our method: in particular, our ability to vary geometry without
constructing entirely new operations for each manifold. We repeat one of the experiments tested on
our hyperbolic RResNet, swapping out the hyperbolic manifold for the spherical manifold.
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AFEW FPHA NTU RGB+D HDM05

Gyrovector 23.23±0.98 61.33±4.74 40.77±3.10 5.69±2.15

Aff-Inv 35.17 ±1.78 66.53±1.64 41.00 ±0.50 67.91 ±1.27

Log-Euc 36.38±1.29 64.58±0.98 42.99±0.23 69.80±1.51

Table 14: We show that the Riemannian ResNet model with Möbius addition struggles to reach
the classification accuracies of our exponential map design. The difference is most pronounced on
HDM05, where the gyrovector model struggles to learn meaningful representations.

CoRA. This dataset is described above in Appendix C.1. With δ = 11, CoRA is the least hyperbolic
of the datasets tested with our hyperbolic RResNet. As such, we wanted to try swapping the RResNet
geometry to better match the data geometry.

C.12 Architectural Details

The design of our spherical RResNet is identical to that of our hyperbolic RResNet (described in
Appendix C.2), aside from switching the geometric representation from hyperbolic to spherical. As
before, we first have a linear layer to move from the input dimension to a lower dimension. Then we
use our RResNet as an encoder. Here we only test link prediction, so we use a Fermi-Dirac decoder.

We train for 2000 epochs using the Adam optimizer [30], and we again found all hyperparameters via
random search.

C.13 Results

We give results for link prediction on CoRA, displayed in Table 15. Mean and standard deviation
across 5 separate trials are reported.

Dataset CoRA
Hyperbolicity δ = 11

H
yp

RResNet 88.9±0.2

RResNet Graph 87.6±0.9

Sp
he

re RResNet 90.7±1.0

RResNet Graph 91.7±0.4

Table 15: Test accuracy of various models, in terms of ROC AUC.

We find that even the most basic spherical RResNet design, which does not use a feature map,
outperforms both hyperbolic RResNets. This indicates that our model improves when endowed with
geometry more suitable for given data. Additionally, our model’s flexibility allows us to easily obtain
such results without altering the architecture.

D Theoretical Results

In this section we give a variety of theoretical results that demonstrate the principled nature of our
Riemannian ResNet construction.

D.1 Reduction to Standard ResNet in Euclidean Case

We show that our construction agrees with the standard ResNet when the underlying manifold is
Euclidean space and when we are using the embedded vector field design. This aligns with our
intuition and shows that our construction is a natural generalization of previous work.

Proposition 1. WhenM(i) ∼= Rdi , our RResNet with the embedded vector field design is a standard
residual network.
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Proof. Note that the embedded vector fields take the form:
ℓi(x) = projTxRn(ni(x)) = ni(x) (24)

for a parameterized neural network ni : Rdi−1 → Rdi , meaning that our ℓi are standard neural
networks. The hi : Rdi−1 → Rdi can be replaced by Euclidean linear layers that go from dimension
di−1 to dimension di. Also observe since expx(v) = x+v, our neural network construction becomes:

f(x) = x(m) (25)

x(0) = x (26)

x(i) = exphi(x(i−1))(ℓi(hi(x
(i−1)))) (27)

= hi(x
(i−1)) + ℓi(hi(x

(i−1))) (28)

= hi(x
(i−1)) + ni(hi(x

(i−1))) (29)

where the last equality holds ∀i ∈ [m]. Moreover, if all di are the same, we can use the identity map
for our hi, implying:

x(i) = x(i−1) + ni(x
(i−1)) ∀i ∈ [m] (30)

Hence our neural network architecture reduces precisely to that of Euclidean residual neural networks.

D.2 Hyperbolic Neural Networks (HNNs) [17] Learn via a Hyperbolic Bias

We make note of the fact that although the gyrovector generalization of Euclidean networks offered
by Ganea et al. [17] is algebraic and generalizable to many manifolds such as hyperbolic space and
the manifold of SPD matrices [34], the linear layer of the construction is Euclidean, except for the
hyperbolic bias addition. We illustrate this in what follows.
Proposition 2. For x ∈ Hn and hyperbolic matrix-vector multiplication [17] defined by

M⊗(x) = tanh

(
||Mx||
||x||

tanh−1(||x||)
)

Mx

||Mx||
(31)

where M : Rn → Rn is a linear map, we have

M⊗
2 (M⊗

1 (x)) = tanh

(
||M2||||M1x||
||x||

tanh−1(||x||)
)

M2M1x

||M2||||M1x||
= (M2M1)

⊗(x) (32)

Proof. For two linear maps of the same size M1,M2 we have:

M⊗
2 (M⊗

1 (x)) = tanh

(
||M2M

⊗
1 (x)||

||M⊗
1 (x)||

tanh−1(||M⊗
1 (x)||)

)
M2M

⊗
1 (x)

||M2M
⊗
1 (x)||

(33)

= tanh

 ||M2M
⊗
1 (x)||

tanh
(

||M1x||
||x|| tanh−1(||x||)

) ( ||M1x||
||x||

tanh−1(||x||)
) M2M

⊗
1 (x)

||M2M
⊗
1 (x)||

(34)

= tanh

(
||M2||||M1x||
||x||

tanh−1(||x||)
)

M2M1x

||M2||||M1x||
= (M2M1)

⊗(x) (35)

We see that we have cancellation that de facto reduces the learning of two hyperbolic linear layers
with no hyperbolic bias to the learning of a single hyperbolic layer. Inductively, this precise argument
applies to any number of layers. This reduction is characteristic to what one sees in the case of
Euclidean networks, and more importantly, from the above equation we see that learning hyperbolic
linear layers de facto reduces to learning Euclidean linear maps (M1 and M2 above) that are placed
in between an initial Riemannian log map (taken at the origin) and a trailing Riemannian exp map
(taken at the origin).

Thus, the main non-Euclidean, hyperbolic construct in Ganea et al. [17] is the hyperbolic bias,
introduced in Section 3.2 of Ganea et al. [17]. Our method is distinctly different in that even simple
residual linear layers make use of geodesic information; hence, learning does not reduce to the
Euclidean case.

24



E Comparison with Other Constructions

Here we elaborate on how our method compares with other constructions, elucidating a claim made
in the main paper. We note that compared to other methods, our construction is fully general (in the
sense that it extends to all Riemannian manifolds) and better conforms with geometry. For example,
general methods like HNN [17], HGCN [8], and SPDNetBN [5] use the fact that hyperbolic space
and the SPD manifold are spaces with everywhere non-negative curvature, meaning that geodesics
are unique. As such, core building blocks of these models globally project to a Euclidean space via a
map known as the Riemannian log map, which can be thought of as an inverse to the exponential map.
This global projection relies on the choice of a particular base point (equivalent to the base point
in the exp map definition), which is arbitrarily selected. Once this projection has taken place, prior
methods usually simply perform a Euclidean operation, and project back to the manifold via the usual
Riemannian exp. This system does not generalize to manifolds which are not globally diffeomorphic
to Euclidean space (note this is quite restrictive and different from being locally diffeomorphic to
Euclidean space), and furthermore, the reliance on fundamentally Euclidean operations and arbitrary
base point destroys the geodesic geometry: the log map can be thought of as linearizing manifold
geometry with respect to a certain base point—the further away points are from this base point, the
more distorted the projected geometry.

More specialized methods like Chen et al. [10], Shimizu et al. [49] instead work with algebraic
operations that exist only for hyperbolic space. These do not generalize to arbitrary manifolds, which
limits potential applications. By comparison, our method simultaneously generalizes to arbitrary
manifolds and directly conforms with underlying geometry.
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