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Abstract

Recent work has shown that language models’ (LMs) prompt-based learning ca-
pabilities make them well suited for automating data labeling in domains where
manual annotation is expensive. The challenge is that while writing an initial
prompt is cheap, improving a prompt is costly—practitioners often require signifi-
cant labeled data in order to evaluate the impact of prompt modifications. Our work
asks whether it is possible to improve prompt-based learning without additional
labeled data. We approach this problem by attempting to modify the predictions
of a prompt, rather than the prompt itself. Our intuition is that accurate predic-
tions should also be consistent: samples which are similar under some feature
representation should receive the same prompt prediction. We propose EMBROID,
a method which computes multiple representations of a dataset under different
embedding functions, and uses the consistency between the LM predictions for
neighboring samples to identify mispredictions. EMBROID then uses these neigh-
borhoods to create additional predictions for each sample, and combines these
predictions with a simple latent variable graphical model in order to generate a final
corrected prediction. In addition to providing a theoretical analysis of EMBROID,
we conduct a rigorous empirical evaluation across six different LMs and up to 95
different tasks. We find that (1) EMBROID substantially improves performance over
original prompts (e.g., by an average of 7.3 points on GPT-JT), (2) also realizes
improvements for more sophisticated prompting strategies (e.g., chain-of-thought),
and (3) can be specialized to domains like law through the embedding functions.

1 Introduction

Acquiring labeled data for domains like medicine and law is essential to training machine learning
models or performing basic data analysis (e.g., “how many contracts contain a choice-of-forum
clause" or “how many patient medical histories discuss an adverse reaction to a drug?”) [15, 18, 19].
However, building large labeled datasets is difficult, and efforts like [25] show that manual labeling
with domain experts is cost-prohibitive. Recent works have begun exploring if language models
(LMs) could learn annotation tasks in-context [6] and replace manual labeling at scale [13, 15, 23, 31].
The promise of this approach is that LMs’ in-context capabilities enable them to learn tasks from
descriptions of the the task (i.e., prompts). However, the challenge is that producing high performance
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Figure 1: The EMBROID method for prompt-patching.

prompts is still expensive, as practitioners require labeled data in order to measure the impact
of modifications to a prompt [51]. Existing work has thus focused on how domain experts can
optimally construct prompts for a task (prompt-engineering), while minimizing reliance on labeled
data [41, 58, 64]. Yet, because language models are sensitive to even small changes in prompt
language, these techniques are imperfect and still produce erroneous predictions [2, 8, 38, 51, 70].

Our work approaches the challenge of improving prompt performance without labels from an
orthogonal perspective: given the predictions of any prompted LM, can we identify and correct
mis-predictions using unlabeled data? We describe this as the problem of prompt-patching. In
the context of data annotation tasks, prompt-patching methods should meet three goals. First, they
should be theoretically explainable, so that practitioners can understand when and how to apply them.
Second, they should be fast, so that practitioners can efficiently integrate them into existing workflows.
Finally, they should rarely be wrong, so that they don’t worsen the performance of predictions.

Our work presents EMBROID: a method for automatically identifying and correcting LM predictions
with unlabeled data and no expert supervision. Recent work has shown that for many tasks, samples
close-by in embedding spaces (produced by models like BERT) have the same label [7]. EMBROID
applies this intuition to the prompt-patching regime. Specifically, after LM predictions for all samples
have been generated, EMBROID retrieves the k most similar samples for each input, under N different
embedding functions. For each embedding function, EMBROID computes a scaled-modified majority
vote over the LM’s predictions for the k retrieved samples. EMBROID then combines these N votes
with the original LM prediction for the test sample using a simple latent variable graphical model
that is learned with a fast method-of-moments estimator [14]. The intuition behind EMBROID is
that good prompts are smooth with respect to their predictions over a dataset—samples which are
proximate under an embedding function should receive consistent predictions. Thus, modifying
the predictions of a prompt to increase neighborhood agreement can improve the accuracy of those
predictions. Lastly, because a single embedding space may imperfectly capture similarities between
samples, retrieving neighbors from multiple embedding spaces improves robustness [28, 40].

Because EMBROID relies on weak-supervision—the subject of recent rigorous study [7]—it is
possible to theoretically analyze and explain why and when EMBROID will improve performance. In
particular, we find that performance is a function of the quality of the embeddings and the performance
of the initial prompt. We also empirically study EMBROID, conducting experiments over six LMs,
on up to 95 tasks, with several different prompt strategies. We find that EMBROID rarely worsens
performance, and often improves F1 by a substantial margin. For instance, EMBROID improves
GPT-3.5 by an average of 4.9 points F1 per task, and GPT-JT by an average of 7.3 points per task.
The magnitude of EMBROID’s gains are such that it enables a 1.3B parameter model to outperform
an instruction-tuned 6.7B parameter model. EMBROID is also complementary to advanced prompt
engineering strategies, and achieves performance improvements when applied to prompts designed
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using chain-of-thought [64], AMA [2], and selective annotation [58]. Finally, EMBROID can be
extended to specialized domains like law, through the use of already-available domain specific
embeddings.

Succinctly, our contributions in this paper are: (1) EMBROID, a simple prompt-patching framework
for improving LM predictions over text classification tasks; (2) a theoretical analysis of EMBROID
which explains performance improvements in terms of embedding smoothness and base accuracy;
and (3) an empirical evaluation of EMBROID covering up to 95 tasks and six different LMs.

2 Related work

Improving LM performance Improving the in-context generalization abilities of LMs has been
intensely studied. The first family of approaches focuses on adapting LMs in order to make them more
amenable to prompting. This includes task-specific finetuning [26, 27, 47], training on instruction
data [9, 59], RLHF [50], and weight-surgery methods which attempt to “correct” incorrect information
stored in model weights [10, 22, 43, 44]. A second family of approaches explores strategies for
optimizing prompts to models, either through the specific textual features of the prompt [29, 45,
64], the use of task decompositions or LM recursion [2], implicit prompt representations [36, 37],
or external databases [46]. Prompt-patching, in contrast, focuses on identifying mistakes in the
predictions generated from a particular prompt. The most related approaches are aggregation methods,
in which the outputs of multiple prompts are combined with an ensembling method [2, 41]. We find
that EMBROID outperforms many such baselines, and can be applied to enhance their outputs.

Weak supervision EMBROID leverages statistical techniques developed in the weak supervision
literature. The objective in weak supervision is to generate probabilistic labels for unlabeled data by
combining the predictions of multiple noisy heuristics [14, 53, 54, 57, 62, 66]. EMBROID’s novelty
is that it uses embeddings to construct additional synthetic predictions, which are combined with the
original predictions. In contrast, recent weak supervision approaches which incorporate embeddings
use them to produce more fine-grained accuracy parameters [7], detect and discard training points [34],
and as the basis for label propagation with final weak supervision predictions [52].

3 Problem setup and background

Problem setup Our problem setup comprises three elements: an unlabeled dataset, predictions
from a LM for each sample in this dataset, and embedding representations of our dataset. Our goal is
to improve the accuracy of LM predictions, by using the embedding representations to identify and
correct predictions likely to be incorrect. Because recent work has explored how predictions from
multiple prompts can be combined for a task [2], we present a generalized version of EMBROID in
which we have access to multiple LM predictions. In our empirical evaluation however, we show that
EMBROID performs well regardless of the number of predictions per sample available.

More formally, we focus on a binary classification task where x ∈ X denotes a sentence or paragraph
and y ∈ Y = {−1, 1} is the binary label. We assume we are given an unlabeled dataset D = {xi}nu

i=1
of nu points. Each point x is sampled i.i.d. from a distribution Px, and there exists a true underlying
distribution P on the joint (x, y). Following the true few-shot regime [51], we assume the only labels
available are those used in the prompt. We denote a language model (e.g., GPT-3) as λLLM, and a
task-specific prompt as ϕ, which prepends task instructions to input x (e.g., “Does the clause contain
an audit provision? Yes or No."). We consider the “prompt” to include both the task description and
the in-context samples, consistent with [70]. The prediction this prompt induces for λLLM over x is
λLLM(ϕ(x)) ∈ Y .1 Varying ϕ by changing the task description, in-context demonstrations, or punctu-
ation will alter the prediction generated for x. For a set of m prompts [ϕ1, . . . , ϕm], we denote their
respective predictions on x as a vector of weak sources λ(x) = [λLLM(ϕ1(x)), . . . , λLLM(ϕm(x))].
For convenience, we denote λLLM(ϕi(x)) as λi(x) or λi when the x is obvious, and similarly use λ
instead of λ(x). We distinguish between two regimes: in the single-prompt regime with m = 1, we
have access to a LM prediction for each point x, while in the multi-prompt regime with m > 1, we
have access to multiple predictions.

1We assume a task-specific mapping function which allows a practitioner to associate a text generation from
an LM to a particular class prediction in Y .
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Algorithm 1 EMBROID: Correcting LLMs with embeddings

Input: Unlabeled data D, LLM predictions λ(x) for each x ∈ D, embedding models E =
{E1, . . . , EN}, shrinkage parameter τ , nearest neighbors parameter k
for all unlabelled x ∈ D do

for all embedding models Ej ∈ E do
Compute k-nearest neighbors NNj,k(x)
Compute smoothed neighborhood prediction λsm,j(x) using λ, NNj,k(x), and τ using eq. (2)

end for
end for
Solve graphical model Pr(y,λ(x),λsm(x)) in eq. (3) with triplet method over D (Algorithm 2).
for all unlabeled x ∈ D do

Sample ŷx ∼ P̂r(y|λ(x),λsm(x))
end for
Output: Label set Ŷ = {ŷx |x ∈ D}

We assume access to N embedding models E = [E1, . . . , EN ], each represented as a fixed mapping
Ei : X 7→ Zi from an input x to an embedding vector z. These auxiliary embedding models
provide representations of x which encode different types of similarity information. Through model
repositories like HuggingFace [65], it is possible to download a number of models which generate
representations for text sentences (e.g., BERT or RoBERTa [12, 42]). These models have the property
that semantically similar sentences are close-by in embedding space [7, 28, 40].

Weak supervision background Weak supervision uses a graphical model to combine votes from
multiple noisy sources into a single prediction, by estimating the accuracy of each source. It mod-
els Pr(y,λ(x)) as a latent variable graphical model and uses ŷ = argmaxyP̂r(y|λ(x)) to produce
label estimates, where P̂r represents the learned model. The graphical model is based on a graph
G = (V,E), where V = y ∪ λ and E consists of edges from y to each λj . We assume no dependen-
cies between sources, although simple extensions can incorporate them [61]. The formal graphical
model is:

Pr(y,λ(x)) =
1

Z
exp(θyy︸︷︷︸

(I)

+ θ⊤λ(x)y︸ ︷︷ ︸
(II)

) (1)

where Z is the partition function used for normalization, (I) represents a label balance term with
parameter θy controlling the prior of Pr(y = 1), and (II) represents the source accuracy term
where each θi is an accuracy parameter for the ith source. Note that from this model, sources are
conditionally independent: λi ⊥⊥ λj |y for any i, j ∈ [m]. Our use of this model has two steps. First,
we must learn the accuracy parameters of Pr(y,λ(x)) without access to y. We use the triplet method
introduced in [14], which is an efficient method-of-moments estimator for the parameters. Then, at
inference we compute P̂r(y|λ(x)). Appendix B contains more details.

4 EMBROID

First, EMBROID uses the embedding models E to compute additional votes for each x. Let
NNj,k(x) ⊂ D be the k-nearest neighbors of sample x under the embedding function Ej . We define
the smoothed neighborhood prediction vector λsm,j(x) ∈ {−1, 0, 1}m as follows, with λsm,j [i](x)
being the ith element:

λ̃j [i](x) =
1

k

∑
x̃∈NNj,k(x)

λi(x̃)

λsm,j [i](x) =


1 λ̃j [i](x) > τ+

i

−1 λ̃j [i](x) < τ−
i

0 o.w.
,

(2)
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where τ+i ∈ [−1, 1] and τ−i ∈ [−1, 1] act as shrinkage parameters for λi which control the level of
agreement amongst the neighbors of x necessary to generate a particular vote. The scalar λsm,j [i](x) is
the average vote of λi amongst the neighbors of x in Ej . When λsm,j [i](x) is sufficiently positive, i.e.,
λsm,j [i](x) > τ+i , EMBROID sets λsm,j [i](x) to be a positive vote. When λsm,j [i](x) is sufficiently
negative, i.e., λsm,j [i](x) < τ−i , EMBROID sets λsm,j [i](x) to be a negative vote. Otherwise,
λsm,j [i](x) is set to be an abstain. The intuition is that λsm,j [i](x) will be an accurate vote over x
whenever two conditions are met: (1) the LM is generally accurate, i.e., λj is usually correct, and (2)
Ej is smooth, i.e., nearest-neighbors share the same task label.

Next, we augment our base model in equation (1) to incorporate these auxiliary neighborhood
predictions λsm = [λsm,1, . . . , λsm,N ] ∈ {−1, 0, 1}Nm computed using the embeddings:

Pr(y,λ,λsm) =
1

Z
exp

(
θyy + θ⊤λy +

N∑
j=1

α⊤
j λsm,jy

)
, (3)

where the vector αj ∈ Rm represents the quality parameters for the jth embedding model when
used with the m different prompts. To solve this model and produce label estimates, we note that it
has the same format as (1) if we concatenate λ and λsm into one set of weak sources. Therefore, we
can use the triplet method from [14] to learn parameters and output estimates P̂r(y|λ(x),λsm(x))
for each x ∈ D at inference time (see Appendix B for details).

Parameters θ and αj in (3) allow us to trade-off two different sources of information—one presented
by directly prompting an LM to obtain a label and the other by incorporating similarity information
from the embedding models—and to further account for varying error modes among the embedding
models. Our use of the neighborhood predictions in (3) yields a more expressive model than the
standard weak supervision framework solely on LLM predictions in (1), which we can recover when
k = 0, and can thus help make corrections to the LLM predictions. In practice, we find that setting
τ+i = τ−i = E[λi] (i.e., the average source vote) yields good performance (Appendix G).

5 Theoretical analysis

We analyze EMBROID, discussing the advantages of using λsm in addition to λ, and show that
embedding smoothness and base prediction accuracy play a critical role in information gain. Appendix
F provides synthetics demonstrating these tradeoffs and comparing to weak-supervision baselines.

First, we provide a result on the generalization error of our model
P̂r(y|λ,λsm). Define the generalization error as the expected cross-entropy loss,
L(λ,λsm,D) = Ey,λ(x),λsm(x),D[− log P̂r(y|λ(x),λsm(x))]. We use [λ1, . . . , λ(N+1)m] to
represent [λ,λsm] and denote by amax = maxi E [λi(x)y] the largest accuracy (scaled to [−1, 1])
of any source, and by bmin = mini,j{E [λiλj ] , Ê [λiλj ]} the minimum expected pairwise product
between any two sources. Assume that all sources are better than random, e.g., Pr(λi = y) > 0.5.
These terms and assumptions are from using the triplet method.

Proposition 5.1. Suppose that the data x, y,λ,λsm follows the model in (3). The generalization
error of P̂r(y|λ,λsm) can be decomposed into

L(λ,λsm,D) ≤ H(y|λ,λsm)︸ ︷︷ ︸
Irreducible Error

+
C(N + 1)m

nu︸ ︷︷ ︸
Variance

+o(1/nu),

where C =
3(1−b2min)

8b2min(1−a2
max)

(
1

b4min
+ 2

b2min

)
.

In the bound above, the variance term comes from estimation error when learning the parameters
via the triplet method. The irreducible error depends on quality of λ and λsm. If knowledge of the
LLM prediction and neighborhood prediction significantly reduces uncertainty in y, the conditional
entropy term H(y|λ(x),λsm(x)) is low.

Information gain from using both λ,λsm We compare upper bounds on generalization error when
both λ,λsm are modeled versus when only λ is modeled, as in (1) corresponding to classical weak
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supervision. Based on the bound in Proposition 5.1, modeling both λ and λsm increases the variance
term by a constant multiplicative factor.

Here, we examine how the irreducible error is affected, that is, the difference H(y|λ)−H(y|λ,λsm).
Since this quantity is always nonnegative, we focus on bounding the pointwise difference in condi-
tional entropy—which we call the information gain—for a given x0 on which the LLM is incorrect.
For simplicity, suppose we have one embedding E. An embedding E is M -smooth with respect to
the label if

Pr(ỹ = c|y = c, ∥E(x)− E(x̃)∥ ≤ ε) ≥ ME(ε), (4)

where c ∈ Y , ε > 0 and ME(·) ∈ [0, 1] is decreasing in its input. Note that this definition requires
knowledge of ground-truth labels, and is thus impossible to use as a metric for selecting which
embeddings to use.

Define βi = Pr(λi = y) as the accuracy of λi and pλ = Pr(y = 1|λ(x0)) as the prediction on x0

given only access to λ. Let εk = maxx̃∈NNk(x) ∥E(x)− E(x̃)∥ be the maximum distance between
x0 and its k neighbors. Without loss of generality, assume the label on x0 is y = 1.

Theorem 5.2. Assume that E is M -smooth. The pointwise information gain on x0 is

H(y|λ(x0))−H(y|λ(x0),λsm(x0)) ≥

2(1− pλ)

[ m∏
i=1

[
1− exp[−2k(βNNk,i − 0.5)2]

]
− 0.5

]

where βNNk,i = Prx̃∼NNk
(λi(x̃) = y) ≥ βiME(εk) is the neighborhood accuracy.

A few observations on the bound are in order.

• Improvement over WS: If the neighborhood accuracy is bounded sufficiently far from 1
2

and k is large, using EMBROID has better irreducible error than just using λ. For example,
setting m = 1, k = 10, βNNk,i = 0.7, and pλ = 0.25 gives us an improvement of 0.076
nats.

• Smoothness: If E is highly smooth, then ME(εk) will be large and irreducible error will
be small.

• Base prediction accuracy: If the original sources λ have high accuracy (βi), irreducible
error will be small.

Additionally, we observe that if pλ is a high-quality prediction close to the true label 1, the information
gain is small. Choice of the k parameter presents a performance trade-off: increasing k will increase
εk and incorporate farther-away, less reliable predictions, but it will also reduce the noise of the
majority vote. We also comment on the information gain when using both λ and λsm over just λsm

in Appendix C.

6 Results

Our empirical evaluation focuses on three questions: (1) How robust is EMBROID’s performance
across LMs? (2) How does EMBROID, as a prompt-patching method, compare to high performance
prompt-engineering methods? (3) How sensitive is EMBROID to the embeddings and dataset size?

Tasks We study tasks where sentence embeddings can capture information relevant to the task,
leading us to focus on sentence classification datasets. We consider a collection of 95 class-balanced
sentence classification tasks, derived from binarizing existing multi-class legal, scientific, and general
domain classification benchmarks like CUAD, AGNews, DBpedia-14, FewRel, and several others [21,
25, 30, 67, 69].2 Example tasks include, “Classify if the following texts discuss a recording label” or
“Classify if the following contractual clauses contain an audit rights provision.”

2We hope to explore multi-class extensions and more complex reasoning tasks in future work.
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LM Win rate (%) Avg. Improvement (F1)

API-Access Models J1-Jumbo (176B) 72.2 10.6
GPT-3.5 (> 170B) 80.6 4.9

Open Source Bloom (7.1B) 91.2 10.1
OPT (6.7B) 91.2 11.6

Instruction Tuned GPT-JT (6B) 89.1 7.3

Table 1: We evaluate the extent to which EMBROID improves the original prompt on different models
in terms of win rate and relative improvement (defined in-line). All models are run with three trials.
For each model, we report the percentage of tasks (across all trials) for which EMBROID improves,
and the average improvement (in F1 points). Additional details provided in Appendix.

Choice of embedding models Following prior work illustrating the benefits of domain specific
representation [20, 71], EMBROID uses different embeddings for each task domain. For law tasks, we
rely on two BERT-variants trained on different legal corpora [24, 71]. For science tasks, we rely on
three BERT-variants trained on science, biology, and medical texts [3, 17, 35]. For general domain
tasks, we rely on BERT, Roberta, and SentenceBert embeddings [12, 42, 55].

Prompts Prompts are constructed using fixed instructions, and by manually selecting three random
samples (from each class) as in-context demonstrations (Appendix E). We follow the true few-shot
regime [51], in that we assume the only labeled data available to the data scientist are the labels
used for in-context demonstrations. Prior work has found this regime to most realistically represent
real-world workflows.

Models We evaluate on two API-access models: GPT-3.5 (text-davinci-003) and J1-
Jumbo [39]. Because API models raise significant privacy and compliance concerns for data scientists
working with sensitive data [16], we also evaluate on open-source models. We select models in the
6-7B parameter range, as these are the largest models which fit on commonly available 40GB A100
machines. Specifically, we evaluate Bloom [56] and OPT [68]. Given the increasing popularity of
instruction-tuning, we also evaluate on GPT-JT [60], an 6.7B parameter instruction tuned version of
GPT-J. Because of cost-constraints, we evaluate API-access models on a representative selection of
12 tasks, while evaluating all other models on the full suite of 95 tasks. Appendix D provides details.

6.1 By how much does prompt-patching improve performance?

Performance across LM families We examine if EMBROID achieves improvements for different
types of LMs. For each LM, we select three different combinations of in-context demonstrations (i.e.,
three prompts), generate predictions for each prompt, and apply EMBROID to independently each
prompt’s predictions. This produces 3×95 = 285 trials for open-source models, and 3×12 = 36 trials
for API-models. We report win-rate, i.e., the proportion of trials for which EMBROID outperforms
the original predictions, and improvement, i.e., the average difference in F1 points (across all trials)
between EMBROID and the original predictions.

As Table 1 illustrates, EMBROID improves performance for a substantial proportion of prompts, by a
substantial margin, across all models. On GPT-3.5 for instance, EMBROID achieves a win-rate of
80.6%, with an average of improvement of 4.9 points. EMBROID also improves for open source
models, with a win-rate of 91.2% on OPT-6.7 and an average improvement of 11.6 points. Finally,
EMBROID achieves similar gains on an instruction tuned model, with a win-rate of 89.1% and an
average improvement of 7.3 points.

Performance when prompts are good We additionally investigate how EMBROID’s performance
improvements change as a function of the performance of the base prompt. Hypothetically, one could
imagine that better performing prompts are smoother with respect to embeddings, thus diminishing
(or negating) EMBROID. In Figure 2 (upper left), we plot the improvement of EMBROID against the
performance of the base prompt for GPT-JT. Even when the base prompt performs well (i.e., F1 >
0.8), EMBROID improves on 89% of tasks by an average of 4.1 points.
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LM MV Liger FlyingSquid AMA EMBROID-1 EMBROID-3
J1-Jumbo 47.4 48.7 50.5 60.7 60.4 64.5
GPT-3.5 81.4 82.5 82.1 84.7 83.9 86.0
Bloom-7.1B 54.6 55.8 54.3 63.0 64.7 69.1
OPT-6.7 46.1 46.8 46.3 56.3 59.8 64.2
GPT-JT 69.3 69.4 70.1 74.6 75.1 79.0

Table 2: We evaluate how EMBROID compares to common ensemble approaches for improving
prompt prediction performance. All ensemble baselines are run with three sets of predictions.
EMBROID-1 is run with one set of predictions, and EMBROID-3 is run with three set of predictions.
For each method, we report the average macro-F1 over all tasks. We observe that EMBROID-
1 is competitive with ensemble methods which use many more predictions, while EMBROID-3
outperforms all other methods by a substantial margin.

Measuring performance in parameter count A trend in recent literature has been to measure the
magnitude of improvements to prompt performance in terms of parameter count [2], by showing how
a particular method makes a smaller method equivalent in performance to a larger model. We find that
EMBROID enables the non-instructed tuned 1.3B GPT-Neo model to outperform an instruction tuned
6.7B model; across all trials, GPT-JT scores an average F1 of 67.8, while EMBROID +GPT-Neo-1.3B
scores an average of 68.5.

6.2 Comparing prompt-patching to prompt-engineering

Our work distinguishes between prompt-construction methods—which control how a prompt is
generated—and prompt-patching methods—which attempt to identify and correct errors in the
predictions produced by a prompt. We use EMBROID to further study the difference between these
frameworks in two ways. First, we compare EMBROID’s performance improvement over a base
prompt to that of several specialized prompting strategies. Second, we examine the extent to which
EMBROID—when applied to the predictions produced by these prompting strategies—can generate
further performance improvements. We study three prompting strategies:

1. Ensemble strategies, in which the predictions of multiple prompts are combined using an
unsupervised ensembling model. Specifically, we compare to two ensembling methods pre-
viously studied for LLMs (AMA [2] and majority vote [41]), one ensembling method which
incorporates embedding information (Liger [7]), and one well regarded weak supervision
baseline (FlyingSquid [14]). Each baseline is run over the predictions generated by three
different prompts.

2. Chain-of-thought prompting [64], in which for each in-context demonstration, we provide a
step-by-step explanation for the demonstration’s label.

3. Selective annotation (SA) [58], in which we use embeddings to select a subset of k data
samples to label, and then, for each input sample, retrieve the most similar samples (under
some embedding function) from this pool to use as in-context demonstrations.

Ensemble methods We evaluate two versions of EMBROID. In the first version, we run EMBROID
with the predictions of only one prompt (EMBROID-1). In the second version, we run EMBROID
with the predictions of three different prompts (EMBROID-3). Note that this requires performing
inference over the few-shot LM three times for each sample, which can be expensive. This baseline is
comparable to applying EMBROID to the outputs of an ensemble method. In Table 2, we observe that
EMBROID-1 is competitive with the ensemble baselines (while using substantially fewer predictions),
while EMBROID-3 consistently outperforms these baselines (across different LMs).

Chain-of-thought We compare EMBROID to chain-of-thought (CoT) prompting for a subset
of a representative subset of 10 tasks on GPT-3.5. For each task, we manually construct a base
prompt consisting of six demonstrations, and a CoT prompt where an explanation is provided for each
demonstration. We first find that EMBROID’s performance improvement over the base prompt exceeds
that of chain-of-thought prompting (Table 3). Using EMBROID to modify the base prompt is better
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Base prompt +CoT +EMBROID + CoT + EMBROID

76.3 80.1 81.9 85.4

Table 3: We evaluate EMBROID compared to, and applied to, CoT prompting on GPT-3.5 for a subset
of 10 tasks. We report the average across the studied tasks.
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Figure 2: Upper left: The EMBROID F1 plotted against the F1 score for the original prompt for
GPT-JT. Even for high performing prompts, EMBROID is capable of improving performance. The
dashed line y = x is plotted for visual aid. Upper right: A comparison of EMBROID to selective
annotation (SA) over all tasks for GPT-JT. Bottom left: For each task (using GPT-JT), we plot the
performance improvement of EMBROID against the average smoothness of the embeddings used.
We observe a positive correlation (r = 0.39). Bottom right: Across all tasks, we measure the
performance improvement of EMBROID against the size of the task.

on average than CoT prompting, outperforming CoT on six out of the ten tasks. Second, applying
EMBROID to predictions generated by a CoT prompt yields further improvements, outperforming
vanilla CoT predictions on eight of ten tasks.

Selective annotation (SA) We compare EMBROID to selective annotation with a label budget of
[6, 25, 50, 100] (Figure 2, upper-right). For each task, we run selective annotation using a domain
specific embedding. EMBROID (applied to a prompt with randomly chosen samples) outperforms
selective annotation with a label budget of 25 samples. When a label budget of 100 samples is
available, EMBROID improves the performance of a prompt constructed using selective annotation on
88% of tasks, by an average of 4.3 points.

6.3 Ablations

Finally, we perform several ablations of EMBROID to study how performance changes as a function
of (1) the domain specificity of the embedding used, (2) the quality of the embedding spaces used,
and (3) the size of the dataset. Additional ablations are presented in Appendix G.
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Domain specific embeddings improve performance We compare how performance on the legal
and science tasks changes when we shift from domain specialized embeddings to general domain
embeddings. On law tasks for GPT-JT, we find that using two legal embedding spaces outperforms
using BERT and RoBERTa for 77% of tasks, by up to 6 points F1 on certain tasks [24, 71]. For
science tasks for GPT-JT, we find that using two science embedding spaces [3, 35] outperforms using
BERT and RoBERTa for 92% of tasks, by up to 4.3 points F1 on certain tasks.

Embedding quality Building on Section 5, we compare EMBROID’s performance improvement
over the base prompt to the average smoothness of the embedding spaces with respect to each task
(Figure 2). We observe a positive correlation: smoother embedding spaces are associated with larger
performance gains (with a Pearson coefficient of r = 0.39). Applying this insight, we explore how
performance changes when extremely high quality embeddings are added. For a subset of 19 tasks we
generate OpenAI text-embedding-ada-002 embeddings, and find that adding them to EMBROID
improves performance by up to 13 points F1 (at an average of 2 points across all studied tasks).

Dataset size Finally, we study how EMBROID’s performance improvement changes as the dataset
size changes. Because EMBROID relies on nearest-neighbors in different embedding spaces, we
might expect performance to be poor when the dataset being annotated is small. In Figure 2 (bottom
right), we see that EMBROID achieves performance improvements even for “small” datasets with
only several hundred samples. ¯

7 Conclusion

We study the problem of improving prompt-based learning, by developing a method (EMBROID) for
detecting and correcting erroneous predictions without labeled data. We validate EMBROID across a
range of datasets and LMs, finding consistent improvement in many regimes. We take a moment to
address the societal impact of our work: while we do not foresee any direct harmful impacts arising
from our work, we caution that any use of language models in meaningful applications should be
accompanied by conversations regarding risks, benefits, stakeholder interests, and ethical safeguards.
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A Notation

The glossary is given in Table 4 below.

Symbol Used for

x Input sentence or paragraph x ∈ X .
y Binary task label y ∈ Y = {−1,+1}.
D Unlabeled dataset D = {xi}nu

i=1 of nu points.
P,Px The joint distribution of (x, y) and the marginal on x, respectively.
nl Number of labeled in-context examples used in querying the LLM (5-10 examples).
λLLM(·), ϕ(·) Users interact with a language model λLLM via a prompt ϕ on x.
m Number of prompts that we have access to.
λ λ(x) = [λ1(x), . . . , λm(x)] where λi(x) is shorthand for λLLM(ϕi(x)).
E The set of N embedding models, E = {E1, . . . , EN} where each embedding is represented as a

fixed mapping Ei : X 7→ Zi.
Z Partition function for normalization of (1).
θy, θ θy is a label balance parameter and each θi is a scalar accuracy parameter for the ith source in (1).
NNj,k(x) The k-nearest neighbors of x in embedding space Ej .
λsm λsm(x) = [λsm,1, . . . , λsm,N ] ∈ {−1, 0, 1}Nm, where λsm,j = [λsm,j [1], . . . λsm,j [m]] and λsm,j [i](x) is the

smoothed neighborhood prediction of λi(x) in Ej (eq. (2)).
τ+
i ,τ−

i Shrinkage parameters for determining when λsm,j [i](x) is set to 0, −1, or 1.
αj Vector of m accuracy parameters for Ej when used with m prompts in (3).
L(λ, λsm,,D) Generalization error of EMBROID ( expected cross-entropy loss).
amax The largest scaled accuracy of any source, amax = maxi E [λi(x)y].
bmin The smallest expected pairwise product between any two sources, bmin = mini,j{E [λiλj ] , Ê [λiλj ]}.
ME(·) An embedding is M -smooth if Pr(ỹ = c|y = c, ∥E(x)− E(x̃)∥ ≤ ε) ≥ ME(ε) for all c ∈ Y and any ε > 0,

where ME(·) ∈ [0, 1] is decreasing in its input.
βi The accuracy of λi, βi = Pr(λi = y).
pλ The prediction on x0 given only access to λ, pλ = Pr(y = 1|λ(x0)).
εk The maximum distance between x0 and its k neighbors, εk = maxx̃∈NNk(x) ∥E(x)− E(x̃)∥.

Table 4: Glossary of variables and symbols used in this paper.
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B Weak supervision background

In this section, we provide details on the inference and learning procedures for solving the graphical
model defined in equation (1). The content from this section is derived from [14] and [7].

Pseudolabel inference. To perform inference, we compute P̂r(y|λ(x)) for some x ∈ X . This is
done via Bayes’ rule and the conditional independence of weak sources:

Pr(y = 1|λ(x)) =
∏m

i=1 Pr(λi(x)|y = 1)Pr(y = 1)

Pr(λ(x))
. (5)

We assume that the class balance is known; for our datasets, the class balance is Pr(y = 1) = 0.5.
More generally, it can be estimated [53]. The latent parameter of interest in this decomposition is
Pr(λi = 1|y = 1), which corresponds to the accuracy of λi.

Algorithm 2 Triplet method [14]

Input: Dataset D, weak sources λ(x).
for i ∈ [m] do

for j, k ∈ [m]\i do
Estimate Ê [λiλj ] over D, and similarly estimate Ê [λiλk] and Ê [λjλk].

Compute âj,ki =

√∣∣∣∣ Ê[λiλj ]Ê[λiλk]

Ê[λjλk]

∣∣∣∣.
end for
Calculate average âi = Mean(âij,k ∀j, k ∈ [m]\i).
Compute estimated accuracy P̂r(λi = y) = 1+âi

2 .
end for
Output: Accuracies P̂r(λi = y) for all i ∈ [m].

Source parameter estimation: Triplet method. Previous approaches have considered how to
estimate Pr(λi = 1|y = 1) via the triplet method [14], which exploits conditional independence
properties. First, by the properties of the graphical model in (1), it holds that the accuracy of λi is
symmetric: Pr(λi = 1|y = 1) = Pr(λi = −1|y = −1) = Pr(λi = y) (Lemma 4 of [7]). Therefore,
Pr(λi = 1|y = 1) can be written in terms of E [λiy] with E [λiy] = 2Pr(λi = 1|y = 1)− 1.

Define ai = E [λiy]. The graphical model in (1) tells us that λiy ⊥⊥ λjy if λi ⊥⊥ λj |y, which holds
for all i, j ∈ [m] (Proposition 1 of [14]). As a result, E [λiy] × E [λjy] = E

[
λiλjy

2
]
= E [λiλj ],

which is a quantity that can be computed from observed LLM predictions. That is, we have that
aiaj = E [λiλj ]. If we introduce a third λk, we can generate a system of equations over ai, aj , ak in
terms of their pairwise rates of agreements:

aiaj = E [λiλj ] (6)
aiak = E [λiλk] (7)
ajak = E [λjλk] . (8)

Solving, we get that

|ai| :=

√∣∣∣∣E [λiλj ]E [λiλk]

E [λjλk]

∣∣∣∣, (9)

and likewise for aj , ak. If we assume that each weak source is better than random over the dataset,
then ai = |ai| > 0, so we can uniquely recover the accuracy of each source by selecting two other
sources and computing the above expression by using empirical expectations over D. We then set
P̂r(λi = 1|y = 1) = 1+âi

2 and plug this into the expression for Pr(y = 1|λ(x)) in (5).

This approach is formally described in Algorithm 2.

17



C Proofs

C.1 Proof of proposition 5.1

We note that [λ,λsm] can be viewed as a set of sources in the weak supervision set up used in [7, 14].
Therefore, we can apply Theorem 1 from [7] to our problem setting, noting that we do not perform
their clustering step and that our predictions do not abstain and output 0 in addition to {−1, 1}. We
have a total of (N + 1)m sources, so

L(λ,λsm,D) ≤ H(y|λ,λsm) +
3(1− b2min)

8b2min(1− a2max)

(
1

b4min

+
2

b2min

)
(N + 1)m

nu
+ o(1/nu). (10)

C.2 Proof of theorem 5.2

We can write the change in point-wise irreducible error as follows:

H(y|λ(x0))−H(y|λ(x0),λsm(x0)) = E [− log Pr(y|λ(x0)) + log Pr(y|λ(x0),λsm(x0))] (11)

= E
[
log

Pr(y|λ(x0),λsm(x0))

Pr(y|λ(x0))

]
(12)

= E
[
log

(
Pr(λ(x0),λsm(x0)|y) Pr(y)

Pr(λ(x0),λsm(x0))
· Pr(λ(x0))

Pr(λ(x0)|y) Pr(y)

)]
(13)

= E
[
log

Pr(λsm(x0)|λ(x0), y)

Pr(λsm(x0)|λ(x0))

]
. (14)

Next, we use the fact that λ(x0) ⊥⊥ λsm(x0)|y to simplify the expression into

E
[
log

Pr(λsm(x0)|y)
Pr(λsm(x0)|y = 1)Pr(y = 1|λ(x0)) + Pr(λsm(x0)|y = −1)Pr(y = −1|λ(x0))

]
. (15)

The exact λsm(x0) is unknown but is drawn from the distribution Pr(λsm|y = 1) since x0’s label is
1. Then, this expression becomes an expectation over λsm:

Eλsm|y=1

[
log

Pr(λsm|y = 1)

Pr(λsm|y = 1)pλ + Pr(λsm|y = −1)(1− pλ)

]
. (16)

Given that our λsm is high-quality, we suppose that λsm(x0) all equal 1 with high probability, and
then we can lower bound our expression by

Pr(λsm = 1|y = 1) log
Pr(λsm = 1|y = 1)

Pr(λsm = 1|y = 1)pλ + Pr(λsm = 1|y = −1)(1− pλ)
. (17)

The key quantity of interest is Pr(λsm = 1|y = 1) =
∏m

i=1 Pr(λsm,[i] = 1|y = 1). We focus on
bounding Pr(λsm,[i] = 1|y = 1) next. Suppose that the k neighbors of x0 are x1, . . . , xk. Define
pj = Pr(λi(xj) = 1|y = 1) for all j ∈ [k]. Note that λi(xj) ⊥⊥ λi(xj′)|y for any j, j′ ∈ [k] (while
λsm,[i] as a whole is dependent on y, individual neighbors are still conditionally independent). Then,
the event that λsm,[i] = 1|y = 1 is as least as likely as the event that Binomial(k,mini∈[k] pi) ≥ k

2 .
Let pmin = mini∈[k] pi, and assume that pmin ≥ 1

2 . Then,

Pr(λsm,[i] = 1|y = 1) ≥ Pr
(

Binomial(k, pmin) ≥
k

2

)
= Pr

(1
k

k∑
j=1

Xj ≥
1

2

)
(18)

= Pr
(1
k

k∑
j=1

Xj ≥ pmin −
(
pmin − 1

2

))
, (19)
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where Xj ∼ Bernoulli(pmin). Next, let δ = pmin − 1
2 . We can apply Hoeffding’s inequality to get

Pr
(

Binomial(k, pmin) ≥
k

2

)
= Pr

(1
k

k∑
j=1

Xj ≥ pmin − δ
)
= 1− Pr

(1
k

k∑
j=1

Xj ≤ pmin − δ
)
≥ 1− exp(−2δ2k)

(20)

= 1− exp(−2k(pmin − 0.5)2). (21)

All that’s left is to lower bound pmin. Without loss of generality, suppose that pmin corresponds to an
arbitrary pj = Pr(λi(xj) = 1|y = 1). We can decompose this probability into

Pr(λi(xj) = 1|y = 1) = Pr(λi(xj) = 1, y(xj) = 1|y = 1) + Pr(λi(xj) = 1, y(xj) = −1|y = 1)
(22)

= Pr(λi(xj) = 1|y(xj) = 1)Pr(y(xj) = 1|y = 1) + Pr(λi(xj) = 1|y(xj) = −1)Pr(y(xj) = −1|y = 1).
(23)

Since Pr(λi(xj) = 1|y(xj) = 1) is over all xj ∼ Px, this quantity is just equal to the accuracy
of λi, ai. Next, recall that ∥E(xj) − E(x)∥ ≤ εk, where εk = maxxi∈NN(x) ∥E(x) − E(xi)∥
is the maximum distance from the k neighbors to x. Then, we can write Pr(y(xj) = 1|y = 1)
as Pr(y(xj) = 1|y = 1, ∥E(xj) − E(x)∥ ≤ εk) ≥ ME(εk), since we have assumed that E is
M -smooth. We can now bound pmin:

pmin ≥ aiME(εk) + (1− ai)(1−ME(εk)). (24)

Therefore, we have that

Pr(λsm = 1|y = 1) ≥
m∏
i=1

[
1− exp[−2k(aiME(εk)− 0.5)2]

]
. (25)

Before we plug in Pr(λsm = 1|y = 1) into (17), we simplify the expression. Note that Pr(λsm =
1|y = 1) can be written as

∏m
i=1 pi for some pi, and Pr(λsm = 1|y = −1) can be written as∏m

i=1(1− pi). A simple proof by induction shows that
∏m

i=1(1− pi) ≤ 1−
∏m

i=1 pi. Therefore, we
can write that (17) is lower bounded by

Pr(λsm = 1|y = 1) log
Pr(λsm = 1|y = 1)

Pr(λsm = 1|y = 1)pλ + (1− Pr(λsm = 1|y = 1))(1− pλ)
(26)

Let’s abbreviate Pr(λsm = 1|y = 1) as x and define the function

f(x) = x log
x

xpλ + (1− x)(1− pλ)
. (27)

We note that for x ≥ 0.5, f(x) is convex and can thus be lower bounded by f(x) ≥ f ′(0.5)(x− 0.5).
We compute f ′(x) = 1−pλ

xpλ+(1−x)(1−pλ) , so f ′(0.5) = 2(1− pλ). Therefore, f(x) ≥ 2(1− pλ)(x−
0.5). Our final bound on the pointwise difference in irreducible error on x0 is

H(y|λ(x0))−H(y|λ(x0),λsm(x0)) ≥ 2(1− pλ)

[ m∏
i=1

[
1− exp[−2k(aiME(εk)− 0.5)2]

]
− 0.5

]
.

(28)

Information gain from using λ,λsm over λsm We briefly comment on the opposite direction—
how much does using both LLM predictions and neighborhood predictions help over just using
neighborhood predictions?

The quantity we aim to lower bound is H(y|λsm(x0))−H(y|λ(x0),λsm(x0)) for a point of interest
x0. We can write this quantity as

H(y|λsm(x0))−H(y|λ(x0),λsm(x0)) = E
[
log

Pr(λ(x0)|y)
Pr(λ(x0)|λsm(x0))

]
(29)
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Without loss of generality, suppose that the true label on x0 is y = 1, and that for each λi, the
neighborhood around x0 consists of a balanced mix of λi = 1 and λi = −1. Then, with high
probability we have that Pr(y = 1|λsm(x0)) = pλsm ≈ 0.5. From our proof of Theorem 5.2, we can
thus write

H(y|λsm(x0))−H(y|λ(x0),λsm(x0)) = Eλ(x0)

[
log

Pr(λ(x0)|y = 1)

Pr(λ(x0)|y = 1)pλsm + Pr(λ(x0)|y = −1)(1− pλsm)

]
(30)

≥ Pr(λ(x0) = 1|y = 1)) log
Pr(λ(x0) = 1|y = 1)

Pr(λ(x0) = 1|y = 1)pλsm + Pr(λ(x0) = 1|y = −1)(1− pλsm)
(31)

≥ 2(1− pλsm)(Pr(λ(x0) = 1|y = 1)− 0.5) (32)

If λ on x0 has high accuracy and pλsm is low, then we can have significant point-wise information
gain from modeling both λ and λsm rather than just λsm.
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D Datasets

Motivation. We study the performance of our method across a diverse collection of task definitions.
In our setting, a task definition denotes a specific classification that a data scientist wishes to perform.
For instance, a data scientist working on quantifying the breadth of legal issues that individuals face
may wish to identify which posts in an online forum refer implicate legal issues related to housing.

This evaluation strategy is motivated by the observation that task definitions vary in their smoothness
across embedding spaces, as different embeddings may do a better job of capturing features relevant
for the task. For instance, out-of-the-box Sentence-BERT embeddings are better than traditional
BERT at capturing the topicality of a sentence [55]. By focusing on a broad range of task definitions,
we can better forecast how our method might perform for new tasks that practitioners may need to
create classifiers for. We also avoid issues with leakage that may arise as the practice of finetuning
LLMs on tasks increases [9].

In total, we study 95 distinct task definitions, encompassing 100,418 total samples. Each task varies
between 108 and 3308 samples.

Legal tasks. The emergence of LLMs is exciting for law and finance, where expert-annotations
are especially difficult to acquire [4, 18, 19]. Drawing on recent benchmarks and released datasets
framing the potential use cases for LLMs in law, we study the following datasets:

• CUAD [25]: The original CUAD dataset consists of 500 contracts spanning an array of
sectors, with clauses manually into one of 41 legal categories. Following [18], we adapt the
original dataset for clause-by-clause classification. We turn each clause type into a binary
classification task, where the objective is to distinguish clauses of that type from clauses of
other types (i.e. “negatives”). Negative clauses are sampled randomly so as to make the task
class balanced. We ignore clauses for which there are insufficient annotations in the original
dataset.

• Learned Hands [33]: The Learned Hands dataset consists of legal questions that individuals
publicly posted to an online forum (r/legaladvice). The questions have been coded by experts
into legal categories according to the Legal Issues Taxonomy [32]. We consider several such
issue classes, and create a binary classification task for each issue. Negative clauses are
sampled randomly so as to make the task class balanced. Because these questions can be
long, we truncate them at 50 tokens.

Science tasks. LLMs have generated similar excitement for medical and science informatics applica-
tions [1, 4]. We study established classification/extraction benchmarks.

• Chemprot [30]: ChemProt consists of sentences from PubMed abstracts describing chemical-
protein relationships. We study seven relations, and create a binary task for each one. Each
task is class balanced, with negatives sampled from the other relations.

• RCT [11]: The RCT dataset consists of PubMed abstracts for papers discussing randomized
control trials, where sentences in the abstract are annotated according to their semantic role
(e.g., background, methods, results, etc). There are five roles, and we create a binary task
for each one. Each task is class balanced, with negatives sampled from the other relations.

General domain tasks. Finally, we study the following “general domain” tasks, derived from popular
sentence classification and information extraction benchmarks.

• FewRel [21]: This is a relationship classification/extraction dataset, where each sample
corresponds to a sentence mentioning the relationship between two entities. We select
20 relations, and for each relation construct a binary classification task with 700 positive
instances of the relation, and 700 randomly sampled sentences (corresponding to other
relations).

• Spam Detection [67]: We study the YouTube spam detection task from the WRENCH
benchmark. This task requires classifying YouTube comments as spam/not spam.

• Toxic content detection [5]: This task requires classifying whether posted comments are
toxic or not. We use a sampled subset of the CivilComments dataset.
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• AG News [69]: The original dataset organizes news snippets into four categories: World,
Sports, Business, and Science/Technology. We create a separate task for each category.
Negatives are sampled from the remaining classes.

• DBPedia [69]: DBPedia is a 14-way ontology classification dataset. We convert this into 14
distinct tasks, corresponding to each of the ontology types.

Table 5: Legal tasks

Task Description/Intent Size
Affiliate License-Licensee (CUAD) Does the clause describe a license grant to a li-

censee (incl. sublicensor) and the affiliates of such
licensee/sublicensor?

208

Anti-Assignment (CUAD) Does the clause require consent or notice of a party
if the contract is assigned to a third party?

1212

Audit Rights (CUAD) Does the clause discuss potential audits? 1224

Cap On Liability (CUAD) Does the clause specify a cap on liability upon the
breach of a party’s obligation?

1262

Change Of Control (CUAD) Does the clause give one party the right to termi-
nate if such party undergoes a change of control?

426

Competitive Restriction Exception (CUAD) Does the clause mention exceptions or carveouts
to Non-Compete, Exclusivity and No-Solicit of
Customers?

226

Covenant Not To Sue (CUAD) Does the clause mention if a party is restricted
from contesting the validity of the counterparty’s
ownership of intellectual property?

318

Effective Date (CUAD) Does the clause mention when the contract be-
comes effective?

246

Exclusivity (CUAD) Does the clause mention an exclusive dealing com-
mitment with the counterparty?

770

Expiration Date (CUAD) Does the clause mentions a date when the con-
tract’s term expires?

892

Governing Law (CUAD) Does the clause mentions which state/country’s
laws govern interpretation of the contract?

910

Insurance (CUAD) Does the clause mention a requirement for insur-
ance?

1040

Ip Ownership Assignment (CUAD) Does the clause mention if intellectual property
created by one party become the property of the
counterparty?

590

Irrevocable Or Perpetual License (CUAD) Does the clause describe a license grant that is
irrevocable or perpetual?

300

Joint Ip Ownership (CUAD) Does the clause provide for joint or shared owner-
ship of intellectual property between the parties to
the contract?

198

License Grant (CUAD) Does the clause describe a license granted by one
party to its counterparty?

1430

Liquidated Damages (CUAD) Does the clause award either party liquidated dam-
ages for breach or a fee upon the termination of a
contract (termination fee)?

226

Minimum Commitment (CUAD) Does the clause specifies a minimum order size or
minimum amount or units pertime period that one
party must buy from the counterparty?

778
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Table 5 – continued from previous page
Task Description/Intent Size

No-Solicit Of Employees (CUAD) Does the clause restricts a party’s soliciting or hir-
ing employees and/or contractors from the coun-
terparty, whether during the contract or after the
contract ends (or both).

150

Non-Compete (CUAD) Does the clause restrict the ability of a party to
compete with the counterparty or operate in a cer-
tain geography or business or technology sector?

450

Non-Disparagement (CUAD) Does the clause require a party not to disparage
the counterparty?

108

Non-Transferable License (CUAD) Does the clause limit the ability of a party to trans-
fer the license being granted to a third party?

558

Notice Period To Terminate Renewal (CUAD) Does the clause requires a notice period to termi-
nate renewal?

234

Post-Termination Services (CUAD) Does the clause subject a party to obligations af-
ter the termination or expiration of a contract, in-
cluding any post-termination transition, payment,
transfer of IP, wind-down, last-buy, or similar com-
mitments?

816

Renewal Term (CUAD) Does the clause mention a renewal term for after
the initial term expires?

398

Revenue-Profit Sharing (CUAD) Does the clause require a party to share revenue
or profit with the counterparty for any technology,
goods, or services?

784

Rofr-Rofo-Rofn (CUAD) Does the clause provide a party with a right of first
refusal?

698

Source Code Escrow (CUAD) Does the clause requires one party to deposit its
source code into escrow with a third party, which
can be released to the counterparty upon the oc-
currence of certain events (bankruptcy, insolvency,
etc.)?

126

Termination For Convenience (CUAD) Does the clause state that one party can terminate
this contract without cause (solely by giving a
notice and allowing a waiting period to expire)?

442

Uncapped Liability (CUAD) Does the clause state that a party’s liability is un-
capped upon the breach of its obligation in the
contract?

302

Volume Restriction (CUAD) Does the clause describe a fee increase or con-
sent requirement if one party’s use of the prod-
uct/services exceeds certain threshold?

328

Warranty Duration (CUAD) Does the clause mentions the duration of any war-
ranty against defects or errors in technology, prod-
ucts, or services provided under the contract?

326

BU (Learned Hands) Does the text discuss issues relating to business or
intellectual property?

200

CO (Learned Hands) Does the text discuss issues relating to courts and
lawyers?

194

CR (Learned Hands) Does the text discuss issues relating to criminal
issues?

644

ES (Learned Hands) Does the text discuss issues relating to estates or
wills?

182

FA (Learned Hands) Does the text discuss issues relating to family or
divorce?

794
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Table 5 – continued from previous page
Task Description/Intent Size

HE (Learned Hands) Does the text discuss issues relating to health? 248

HO (Learned Hands) Does the text discuss issues relating to housing? 1270

MO (Learned Hands) Does the text discuss issues relating to payments
or debt?

740

TO (Learned Hands) Does the text discuss issues relating to accidents
or harassment?

454

TR (Learned Hands) Does the text discuss issues relating to cars or
traffic?

516

WO (Learned Hands) Does the text discuss issues relating to employ-
ment or job?

726

Table 6: Science tasks

Task Description/Intent Size
Agonist (Chemprot) Does the sentence describe an agonist relationship? 896

Antagonist (Chemprot) Does the sentence describe an antagonist relationship? 1330

Downregulator (Chemprot) Does the sentence describe a downregulator relationship? 3038

Part_of (Chemprot) Does the sentence describe a part-of relationship? 1210

Regulator (Chemprot) Does the sentence describe a regulator relationship? 2876

Substrate (Chemprot) Does the sentence describe a substrate relationship? 2384

Upregulator (Chemprot) Does the sentence describe an upregulator relationship? 2404

Background (RCT) Does the sentence describe background on the study? 2000

Conclusions (RCT) Does the sentence state a conclusion? 2000

Methods (RCT) Does the sentence describe a scientific experimental method? 2000

Objective (RCT) Does the sentence describe the goal of the study? 2000

Results (RCT) Does the sentence describe experimental results? 2000

Table 7: General domain tasks

Task Description/Intent Size
Business (AGNews) Does the article discuss business news? 2000

Sports (AGNews) Does the article discuss sports news? 2000

Technology (AGNews) Does the article discuss technology news? 2000

World (AGNews) Does the article discuss global affairs or world events? 2000

Civil Comments Does the sentence contain toxic or hateful content? 2500

Album (DBPedia) Is the entity discussed in the sentence an example of a album? 2000

Animal (DBPedia) Is the entity discussed in the sentence an example of a animal? 2000

Artist (DBPedia) Is the entity discussed in the sentence an example of a artist? 2000

Athlete (DBPedia) Is the entity discussed in the sentence an example of a athlete? 2000

Building (DBPedia) Is the entity discussed in the sentence an example of a build-
ing?

2000

Company (DBPedia) Is the entity discussed in the sentence an example of a com-
pany?

2000

Educational institution (DBPedia) Does the sentence discuss a school, university, or college? 2000
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Table 7 – continued from previous page
Task Description/Intent Size

Film (DBPedia) Is the entity discussed in the sentence an example of a film? 2000

Mean of transportation (DBPedia) Does the sentence discuss a car, ship, train, or plane? 2000

Natural place (DBPedia) Is the entity discussed in the sentence an example of a natural
landscape or environment?

2000

Office holder (DBPedia) Is the entity discussed in the sentence an example of a office
holder?

2000

Plant (DBPedia) Is the entity discussed in the sentence an example of a plant? 2000

Village (DBPedia) Is the entity discussed in the sentence an example of a village? 2000

Written work (DBPedia) Is the entity discussed in the sentence a writing? 2000

Architect (FewRel) Does the text mention an architect? 600

Composer (FewRel) Does the text mention a musical composer? 600

Country (FewRel) Does the text mention a country? 600

Developer (FewRel) Does the text mention development? 600

Director (FewRel) Does the text mention a film director? 600

Distributor (FewRel) Does the text mention a film distributor? 600

Father (FewRel) Does the text mention a father? 600

Genre (FewRel) Does the text mention the genre of a song or artist? 600

Instrument (FewRel) Does the text mention an instrument? 600

League (FewRel) Does the text mention a sports competition, league, or divi-
sion?

600

Military Branch (FewRel) Does the text mention a military branch? 600

Movement (FewRel) Does the text mention an art movement? 600

Occupation (FewRel) Does the text mention a professional occupation? 600

Participating Team (FewRel) Does the text mention a sports team? 600

Platform (FewRel) Does the text mention an online platform? 600

Sibling (FewRel) Does the text mention a sibling? 600

Successful Candidate (FewRel) Does the text mention an election winner? 600

Taxonomy Rank (FewRel) Does the text mention a taxonomy class of animals? 600

Tributary (FewRel) Does the text mention a tributary? 600

Winner (FewRel) Does the text mention a competition winner? 600

YouTube Spam Detection Does the comment ask the user to check out another video? 1836
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E Prompts

We construct a prompt for each task by randomly selecting three examples of each class to use as
in-context demonstrations [51]. We manually defined “instructions” for each task. An example of an
abridged prompt is shown in Figure 3.

Figure 3: An example of the instruction classification prompt for the dbpedia_animal task, with two
in-context demonstrations. Here, the task instructions are in red, the in-context demonstrations are in
blue, and the sample for which we want a label is in green.
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F Synthetics

We conduct synthetic experiments which provide additional insights on EMBROID.

For our setup, we create two equal clusters of data of 500 points each, C1 and C2, in R2. We assign
labels to the points in each cluster i.i.d. according to a probability p, where Pr(y = 1|x ∈ C1) = p and
Pr(y = 1|x ∈ C2) = 1− p. When p = 0.5, both the clusters have a uniform label distribution (non-
smooth) while p = 1 ensures each cluster has one class (smooth). We set k = 20, τ+ = P (λi = 1)
and τ− = P (λi = −1).

Improvement over weak supervision. We show that EMBROID offers improvement over methods
that only use λ. We fix p = 0.8 and βi = Pr(λi = y) = 0.6 for each i ∈ [m]. We compare
EMBROID against the standard weak supervision approach from [14], which requires m ≥ 3, in
Figure 4a.

Smoothness. EMBROID’s performance depends on the smoothness of the embedding as defined
in eq. (4). We consider one LM prediction m = 1 and vary the smoothness p from 0.5 to 1.0 and
generate predictions using βi = 0.6. Figure 4b exhibits that EMBROID’s accuracy is positively
correlated with the embedding smoothness.

Base prediction accuracy. Finally, we show that EMBROID’s performance depends on the base
prediction accuracy, βi. We consider m = 1 and set p = 0, βi = 0.8. We use a parameter ρ to denote
the probability that λi is incorrect on points in cluster C1. As ρ varies from 0 to 1, the predictions of
λi become biased towards 1 and effectively reduces βi to 0.5. In Figure 4c, we observe that as the
base prediction accuracy decreases, EMBROID’s performance decreases and eventually goes below
the base LM performance.
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Figure 4: Synthetic experiments. (a) Comparison of EMBROID to weak supervision by varying
number of LLM sources. Increasing sources consistently improves both EMBROID and WS and
the gains remain constant. (b) EMBROID’s performance as embedding smoothness (eq. (4)) varies.
EMBROID’s accuracy linearly improves as a function of embedding smoothness. (c) EMBROID’s
performance with varying probability of LLM being incorrect in C1. As the LM becomes incorrect,
the cluster becomes less homogeneous and this degrades EMBROID’s performance.

G Ablation

We perform additional ablations of EMBROID. We focus on two aspects:

• The role of τ−/τ+.

• The impact of weak supervision in combining λsm,j .

G.1 Ablation over τ

In our experiments, we set τ+i = τ−i = E[λi], or the average vote of source λi. This has the following
effect on the neighborhood vote λsm,j [i] for source λi under Ej :

• When the average vote for a source λi in a neighborhood under Ej for x is more negative
than the average overall vote for a source, then λsm,j [i](x) = −1.
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Figure 5: We analyze how F1 changes for different settings of τ+i /τ−i for GPT-JT on a task. Observe
that setting τ+i = τ−i = E[λi] (denoted as the orange triangle) produces close-to-optimal perfor-
mance.

LM Base prompt Majority vote aggregation EMBROID

j1-jumbo 0.498 0.569 0.604
openai_text-davinci-003 0.806 0.844 0.855
bloom-7b1 54.7 61.2 64.7
opt-6.7b 48.2 56.1 59.8
GPT-JT-6B-v1 67.8 73.2 75.1

Table 8: We evaluate how EMBROID compares to a majority vote aggregation over neighborhood
vote vectors. We report macro-F1 average across all tasks and prompts, mirroring results in Table 1.

• When the average vote for a source λi in a neighborhood under Ej for x is more positive
than the average overall vote for a source, then λsm,j [i](x) = 1.

In general, we find that this setting provides good performance, while requiring no additional tuning
or validation. For example, the Figure 5 below compares a setting of τ+i /τ−i against the F1 score for
GPT-JT on ag_news_business.

G.2 Role of weak supervision aggregation

We quantify the extent to which performance gains are derived from (1) the computation of λsm,
as opposed to (2) the use weak-supervision [14] to combine λsm and λ. Specifically, we replace
Equation 3 with a simple majority vote classifier which combines the original prediction with the
computed neighborhood votes.

G.3 Choice of embeddings

We provide additional discussion on how practitioners may go about choosing embeddings for
EMBROID. At the outset, we note that selecting/evaluating embeddings is particularly difficult in
our regime, where practitioners do not have access to labeled data. Importantly, this motivates
Embroid’s “mixture of embeddings” approach. Previous methods (e.g., Liger [7]) operate on only
a single embedding space. Thus, practitioners must be certain that the embedding space chosen is
good for a task, and a poorly chosen embedding space will reduce performance. Because EMBROID
ensembles different embedding spaces, practitioners can be less certain in the quality of any individual
embedding space.

A natural strategy may be to start with an initial large set of candidate embeddings, and drop
embeddings according to task-specific measurements (akin to feature selection). Several criteria may
be used to determine which embeddings to maintain:
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• Looking at the MLM loss of the embedding model (e.g. BERT) on the task data. Prior
literature on domain specificity has suggested that this may be a promising heuristic [71].

• Looking to the performance of embedding models on other related tasks may also be
helpful [38, 71].

• Looking at the extent to which a potential embedding space generates embeddings which
are geometrically similar to embeddings already included in Embroid. If the embedding
space is similar, then the additional value of incorporation is low.

The number of embeddings used presents a bias-variance tradeoff. Under Proposition 5.1, increasing
the number of embedding spaces (1) increases the variance due to estimation error, but lowers (2)
the conditional entropy of H(y|λ). Precisely characterizing this tradeoff is challenging because the
variance is an upper bound, and H(y|λ) can only be estimated. However, these bounds/estimates
can be used to derive heuristic stopping rules: for instance, add embedding spaces until the marginal
decrease in the conditional entropy is less than the upper bound on the marginal increase in variance.
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H Experiments

H.1 Implementation details

Compute Inference for API-access models (e.g., GPT-3.5 and J1-Jumbo) were run using the HELM
API [38]. Inference for open source models (OPT, GPT-JT, and Bloom) were run using the Manifest
library [49] on 40GB A100 NVIDIA GPU machines.

Hyperparameters EMBROID was run with k = 10, τ+i = P (λi = 1), and τ−i = P (λi = −1).

H.2 Space demand

We provide additional information on the space requirements for EMBROID. First, we clarify
that EMBROID requires only one large model. This model can be on the order of GPT-3 (176B
parameters), or a much smaller open-source equivalent like GPT-JT (7B parameters). Next, EMBROID
requires embeddings from 2-3 additional models. However, as our results show, these models can be
relatively small. For instance, we rely on BERT-base and SentenceBERT models–both of which are
approximately 110 million parameters. Finally, the latent variable graphical model has 2 parameters
for class prior and 1+N parameters per LLM prediction, where N is the number of embedding spaces.
So, when EMBROID is run on a single LLM’s predictions with two embedding spaces, the total
number of parameters is 2 + (1+2)*1 = 5.

H.3 Runtime

In terms of time complexity, we observe that computing LLM predictions is the largest bottleneck.
On a dataset of 1800 samples for instance:

• Computing predictions on GPT-3.5 takes 1440 seconds (24 minutes).
• Computing embeddings using BERT takes 5 seconds.
• Computing nearest-neighbors using the (unoptimized) scikit-learn library takes 3 seconds.
• Solving the Embroid graphical model takes less than a second.

API-model tasks Due to cost constraints, we study the API access models (GPT-3.5 and J1-Jumbo)
on a subset of tasks. These are:

• ag_news_world
• ag_news_sports
• dbpedia_educational institution
• dbpedia_athletechemprot_regulator
• chemprot_upregulator
• rct_objective
• rct_methods
• CUAD_Audit Rights
• CUAD_Non-Compete
• learned_hands_HE
• learned_hands_HO
• few_rel_architect
• few_rel_league

H.4 Robustness across models

We provide the results for each LM on each task as CSV files in the supplemental attachment. We
visualize the improvements in Table 1 below, by plotting the original prompt performance on the
x-axis, and the performance after EMBROID on the y-axis (Figure 6).
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Figure 6: We visualize the improvement from EMBROID over the base prompt for each model’s tasks.
All models except for gpt-neo-1.3B were run thrice per task, with each run using different in-context
samples for the prompt. Each dot corresponds to a task. The x-axis measures the average macro F1
of the base prompt, and the y-axis measures the average macro F1 of EMBROID (across all runs).
Because GPT-3.5 and J1-Jumbo are studied on a subset of 12 tasks, there are fewer dots in the plot.

H.5 Comparison to AMA

We visualize the improvements in Table 2 below, by plotting the performance of AMA on the x-axis,
and the performance of EMBROID-3 on the y-axis (Figure 7).

H.6 Chain-of-thought experiments

We compare EMBROID to chain-of-thought (CoT) [64] on the following tasks:

• ag_news_business

• ag_news_sports

• CUAD_Affiliate License-Licensee

• CUAD_Audit Rights

• dbpedia_album

• dbpedia_building

• few_rel_architect

• few_rel_country

• learned_hands_HO

• learned_hands_MO
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Figure 7: We visualize the improvement from EMBROID over AMA [2] for each model’s tasks.
Each dot corresponds to a task. The x-axis measures the average macro F1 of AMA, and the y-axis
measures the average macro F1 of EMBROID. Because GPT-3.5 and J1-Jumbo are studied on a subset
of 12 tasks, there are fewer dots in the plot.

We manually write logical chains for each prompt. Because CoT primarily succeeds on “large”
models [64], we focus our experiments on GPT-3.5.

H.7 Comparison to GPT-4

GPT-4 [48] was made publicly available after this work was completed. Nonetheless, we of-
fer preliminary results evaluating EMBROID on predictions produced by GPT-4. We evaluated
EMBROIDEmbroid+GPT-4 on a subset of 14 tasks. These are:

• ag_news_world
• ag_news_sports
• dbpedia_educational institution
• dbpedia_athletechemprot_regulator
• chemprot_upregulator
• rct_objective
• rct_methods
• CUAD_Audit Rights
• CUAD_Non-Compete
• learned_hands_HE
• learned_hands_HO
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• few_rel_architect
• few_rel_league

We note that overall, GPT-4 appears to saturate our evaluated tasks, scoring greater than 95% on 5 of
them. Given that we evaluate on publicly accessible benchmarks, this could be explained by leakage
into GPT-4’s pre-training data. We find that EMBROID is strictly better than the base prompt on 42%
of tasks, and effectively equivalent or better (i.e., no worse than 1 point F1) on 73% of tasks. On two
tasks Embroid improves by 4+ points.

Though EMBROID ’s absolute gains over base prompts may diminish for stronger base LMs like GPT-
4, our evaluation and findings focused on open-source models because of their practical feasibility.
Such models are cheaper and better suited for sensitive domains, as they allow data to remain on-
premises. This is a particularly salient concern for applications in medicine, law, or government.
On these models, we found that EMBROID offered substantial gains, with a win-rate > 88% and an
average improvement > 7 points F1.

H.8 Comparison to self-consistency

We evaluate EMBROID against self-consistency [63] over GPT-3.5, and find that (1) it can provide
competitive performance to self-consistency, and (2) that it can improve predictions generated from
self-consistency.

We study a subset of five tasks: ag_news_business, CUAD_Audit Rights, dbpedia_album,
few_rel_architect, learned_hands_HO. For self-consistency, we generate 5 predictions per
sample, using a temperature of 0.7. For each task, we consider a “base” prompt which does not use
chain-of-thought, but otherwise uses the same task instructions and in-context demonstrations. For
4/5 tasks, EMBROID applied to the output of the base prompt outperforms self-consistency. On all
tasks, EMBROID applied to the predictions generated from self-consistency improve performance, by
a median of six points.

We additionally note one important distinction between self-consistency and EMBROID. While
self-consistency requires multiple predictions from a LM for a single sample (thus accruing additional
cost in hardware usage or API calls), Embroid requires only one prediction per-sample.

H.9 Multi-class experiments

We present initial results evaluating EMBROID in the multi-class setting. We create a multi-
class version of the contract classification task by combining five different binary classifica-
tion datasets: CUAD_Audit right, CUAD_Governing law, CUAD_Non-compete, CUAD_Volume
restriction, and CUAD_Expiration date. The total size of this dataset is 1858, with the largest
class (602 samples) occurring nearly 3.5x as much as the smallest class (165 samples).

We evaluate a one-vs-all version of EMBROID, where EMBROID is applied five times—each time
predicting one of the classes. A final class prediction is generated by comparing each of the class-
specific EMBROID classifier’s predicted probability for the class, and choosing the class with the
highest probability. Overall, we find that this variant of EMBROID improves the quality of the base
prompt (by 4 points on balanced-accuracy and 1.6 points on macro-F1).
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