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Figure 1: CoLLAT yields fine-grained audio-to-text grounding by token-level alignment of audio-text
with a locked pretrained text embedding space, which (a) enables fine-grained audio understanding
and novel multimodal capabilities (e.g., audio-guided image generation); and (b) achieves superior
performance across both unimodal (audio, text) and multimodal (e.g., audio and text) settings.

Abstract

Humans can easily understand various audio concepts, but conventional audio clas-
sification models fail due to their inability to predict unseen classes during training.
To address this challenge, recent literature has explored contrastive language-audio
pretraining to learn an audio understanding model using natural language supervi-
sion from a pretrained language model. However, despite their reasonable zero-shot
performance in audio understanding, these models typically fail to achieve optimal
performance while preserving the text understanding capabilities of the pretrained
language model. They also perform poorly when comprehending audio clips with
multiple audio concepts. To bridge these gaps, we propose CoLLAT: Contrastive
Locked Language and Audio Tuning. This is a framework to effectively learn an
audio understanding model with a locked language model, which is learned using a
novel pretraining objective for audio-to-text grounding to yield fine-grained audio
understanding. Our extensive experiments, which include several downstream ap-
plications such as audio classification, cross-modal retrieval, audio captioning and
audio-guided image generation, demonstrate that CoLLAT yields state-of-the-art
performance for audio understanding. Additionally, it unlocks audio guidance to
applications built on top of pretrained language models.
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1 Introduction

Motivation. The sound perception system in humans is capable of understanding complex audio
concepts and interpreting them in a way that allows us to interact with our environment effectively [21].
For example, when humans listen to a sound clip of a duck quacking followed by a dog whimpering
while birds chirp in the background (see example in Fig. 1a), they can easily discern various audio
concepts (e.g., a duck quacking, a dog whimpering, birds chirp) in that sound clip, enabling them
to construct a holistic understanding of the sound clip. However, conventional audio classification
models [22, 24, 30, 10, 25] that aim to associate audio recordings with one or more categories from
a set of predefined categories fail to be competitive with the human auditory system due to their
inability to predict unseen classes during training. To address this issue, recent literature has explored
contrastive language-audio pretraining [13, 7] to learn an audio understanding model using natural
language supervision. These methods aim to learn an audio encoder and a text encoder simultaneously,
which produce a joint embedding space for audio and text. The joint embedding space is learned
to preserve the correspondence of audio-text pairs present in the pretraining dataset. Such a joint
embedding space creates an open vocabulary for audio-language correspondence, enabling new
audio-language capabilities such as zero-shot audio classification and audio+language guided image
generation. However, existing works on contrastive language-audio pretraining [13, 35, 7] lack the
following strengths.

First, previous works [13, 35, 7] typically initialize their text encoder using CLIP [27] – a strong pre-
trained text encoder. However, these techniques [7, 13] often fail to achieve optimal performance for
audio-language understanding without fine-tuning the text encoder (i.e., by keeping the text encoder
frozen). In Fig. 1b, we report the performance of a set of baselines, where CLAP, AudioCLIP, and
Cons-CLAP models fine-tune the pre-trained CLIP text encoder, while the rest keep the text encoder
frozen. As can be seen, fine-tuning the text encoder improves cross-modal (e.g., zero-shot audio
classification) performance, but it comes at the cost of losing its language understanding capabilities.
This could be attributed to the lack of sufficient textual information in publicly available audio-text
datasets (e.g., AudioSet [8]), which are relatively smaller in size compared to the datasets used to
originally pretrain CLIP1. In this work, we study the possibility of achieving SOTA performance for
audio-text understanding with a pretrained text encoder that remains locked. Incorporating audio
understanding without tuning the CLIP text encoder is not only beneficial for capitalizing the pre-
trained text encoder’s existing capabilities, but it also enables audio or audio+text guidance to any AI
application that uses text-guidance from the CLIP text encoder (e.g., CLIP-guided image generation)
without needing to retrain the application-specific model (e.g., diffusion model of a CLIP-guided
image generation pipeline). Recent studies on language-visual pretraining [3, 4] have demonstrated
that matching the sizes of the encoders is vital for achieving strong cross-modal performance while
keeping one encoder locked. Nevertheless, most existing audio-text pretraining methods use audio
encoders that are substantially smaller in size compared to the text encoder. Building upon this
observation, we propose an audio-text pretraining architecture that jointly scales both the audio and
language encoders, allowing for strong cross-modal performance with locked language tuning.

Second, existing contrastive audio-text pretraining techniques [35, 7, 13] have limited efficacy when
understanding complex audio clips with multiple audio concepts (see results in Table 2). This
shortcoming could be attributed to the absence of explicit fine-grained cross-modal grounding in
these techniques, as they solely depend on global embeddings – i.e., a single vector summarizing
the semantic content of a given text/audio input, to maintain the correspondence between audio
and text. Although such global embedding alignment methods achieve reasonable performance in
audio understanding, encoding audio and text into global embeddings will lose much fine-grained
information, which is critical to distinguish hard audio-text pairs. In contrast, the token-level
embeddings of the intermediate layers of transformer-based encoders for text and audio possess
better understanding of fine-grained concepts as they have one or more token-level embeddings
dedicated to each fine-grained concept in an audio/text input. Despite the knowledge in such token-
level embeddings are explicitly exploited in other domains for fine-grained cross-modal grounding
(e.g., text-image [34, 37] and text-video [39]), to the best of our knowledge, none of the previous
audio-text pretraining techniques have explored this. To bridge this research gap, this work studies
the importance of exploiting token-level audio-text alignment along with the global-level alignment
to yield better fine-grained understanding of audio-text correspondence.

1CLIP’s original pretraining dataset is almost 200 times larger than AudioSet.
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Contributions. The contributions of this work are to propose:

• A neural architecture for effective contrastive audio-language pretraining that yields SOTA
performance for audio-text understanding while keeping the text encoder locked.

• An improved audio-text pretraining objective function that explicitly encourages the model
to learn fine-grained audio-text grounding to unlock complex audio comprehension.

We verify the superiority of our proposed framework using a diverse set of experiments – zero-shot
audio classification, cross-modal retrieval, audio captioning and audio-guided image generation,
which shows that our framework yields SOTA performance for both unimodal (audio or text) and
multimodal (audio and text) understanding, while capitalising on the existing capabilities of the text
encoder (e.g., text-guided image generation) and alleviating its substantial cost of re-training.

2 Related Work

2.1 Audio-to-Text Grounding

Audio-to-text grounding refers to establishing a connection between textual concepts and audio
concepts. In earliest research efforts [22, 24, 30, 10, 25], the audio-to-text grounding problem was
approached as a classification task that utilized machine learning models to link audio recordings to
pre-defined class labels. These approaches explored various machine learning models, spanning from
traditional machine learning models such as Support Vector Machine [19, 31, 32], to advanced neural
architectures like Convolutional Neural Networks (CNN) [26, 23, 14] and transformers [10, 18].
These models were designed to operate on either static [22, 24, 30] or trainable [12] time-frequency
transformations of raw audio. While these approaches were successful in predicting the class labels
used during training, they often struggled to predict novel audio concepts.

To address this challenge, recent works [35, 13, 7, 5] have explored that how to learn a joint embedding
space to preserve the correspondence between audio and text with the language supervision from
pretrained text encoders. This approach enables an open vocabulary for audio concepts to unlock
applications such as zero-shot audio classification. These works typically employ two separate
encoders: one for audio and one for text. Each encoder maps the given input, such as an audio clip or
text prompt, to an embedding vector that preserves the knowledge of the input. These models learn
the parameters of the encoders using a contrastive loss function [27], which aims to ensure that the
embeddings of corresponding text-audio pairs are similar to each other while pushing the embeddings
of dissimilar pairs further apart.

To exploit the language comprehension abilities of large pretrained text encoders [27, 28], these
studies often initialize the text encoder with a pretrained model like CLIP [27]. These text encoders
typically have billions of parameters and are trained using large-scale datasets such as LAION. For
the audio encoder, different works adopt various architectures – Wav2CLIP adopts ResNet-based
architecture [1], AudioCLIP employs ESResNeXt [12], and CLAP uses CNN14 [17]. Then, these
works jointly train the audio and text encoder to preserve audio-text correspndence. In addition to the
differences in audio encoder architecture, these works vary in how they construct text prompts and
their use of auxiliary objectives. For example, AudioCLIP [13] creates text prompts by concatenating
the discrete class labels of an audio clip from datasets like AudioSet [9]. On the other hand, CLAP [7]
utilizes a set of audio-text datasets that provide semantically and syntactically meaningful captions for
each audio clip to train their model. Additionally, AudioCLIP [13] incorporates auxiliary objectives
to preserve audio-image and image-text correspondences along with the audio-text correspondance.

Despite these differences, all these works fail to yield optimal performance for audio-text understand-
ing without fine-tuning the text encoder – i.e., keeping the weights of the pretrained text encoder.
Previous studies [4, 3] suggest that this may be due to the size mismatch of the audio and text
encoders observed in previous works [7, 13] (see Figure 2a). As shown in Fig. 2b, simply scaling
the audio encoder to match the size of the text encoder does not result in optimal performance too,
especially given the relatively small dataset available with audio-text pairs. To address this issue,
recent studies [3, 4] in other multimodal domains propose the use of neural architectures [4], that
enable joint scaling of the sizes of multimodal encoders. Nevertheless, to the best of our knowledge,
such architectures have not been explored in the context of audio-text understanding.

To bridge this gap, our work proposes a novel neural architecture for audio-text pretraining that solves
the size mismatch problem in existing works, enabling our model to achieve optimal performance for
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Figure 2: (a) Size ratio of audio and text encoders across different methods; and (b) zero-shot
audio classification performance of CLAP (using FSD50K) with different audio encoder sizes, while
keeping the size of the text encoder fixed to that of CoLLAT.
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Figure 3: (a) Overview of CoLLAT, consisting of the Token Interaction Module for mapping audio
tokens to text tokens by adopting a series of blocks as detailed in (b).

audio-to-text understanding without the need for fine-tuning the text encoder. The strenghts of our
architecture is three-fold: (1) it preserves the language understanding capabilities of the pretrained
text encoder, resulting in better audio-to-text grounding even with a relatively small audio-text
dataset; (2) it is compatible with text encoders of any scale, making it more viable for learning audio
understanding using evolving language models; and (3) it maps audio embeddings into the same
representation space as the pretrained text encoder, introducing audio-guided controllability to any
downstream application that relies on text guidance from the pretrained text encoder.

2.2 Token-level Grounding

Existing audio-text contrastive pretraining techniques [35, 7, 13] do not explicitly consider the fine-
grained alignment of audio concepts and textual concepts. These methods are only trained to align
the global embeddings (i.e., last layer output from the encoders which summarizes all the concepts
in the corresponding input) from the encoders. Such global embeddings may not be able to capture
the individual concepts in complex audio clips containing multiple audio concepts. In contrast,
the token-level hidden representations of audio/text encoders can effectively represent fine-grained
concepts. Therefore, it is crucial to have token-level alignment between audio and text to achieve a
more fine-grained understanding of audio.

This research challenge has been deeply studied in text-visual domain. For example, the works
in [39, 2, 34, 37] have shown the importance of aligning the token-level hidden representation of
the visual and text encoders to yield fine-grained visual understanding. The same concept has also
been shown to be important for similar other learning tasks such as knowledge distilliation [38, 33].
However, token-level contrast between audio and text modalities has not been well-studied in previous
audio-text pretraining methods. Some works [16, 11] have focused on explicit token-level attention
for audio-related downstream applications like audio captioning, but they are limited to specific tasks.
Therefore, our work introduces token-level alignment as an auxiliary task for conventional contrastive
audio-text pretraining to yield fine-grained audio understanding.
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3 CoLLAT

Our model aims to learn fine-grained audio understanding with the help of a pretrained text encoder,
without fine-tuning the text encoder. Unlike existing techniques that use separate audio and text
encoders, our model shares the pretrained text encoder, which remains frozen during training, for
both audio and text encoding. The main strengths of this architecture are twofold: (1) it allows us
to use large pretrained language encoders (with billions of parameters) for the text encoder without
introducing a significant mismatch between the encoders used for audio and text, as this architecture
scales the encoder size for each modality jointly; and (2) it enables us to leverage the implicit
knowledge (i.e., intermediate layers) in the text encoder to encode audio. By using a frozen shared
text encoder for both audio and text encoding, the corresponding audio-text pairs are forced to
implicitly align their token-level embeddings to produce similar global embeddings. Figure 3 (a)
shows a high-level schematic of the proposed model architecture.

We reuse the pretrained CLIP text encoder [27] as our text encoder, but our model is compatible with
any other pretrained text encoder at any scale. This text encoder expects the static token embeddings
of the given text prompt as input. To encode audio in a way that is compatible with the pretrained text
encoder, we adopt a transformer-based audio encoder [10] to produce token-level embeddings for the
audio tokens (i.e., patches in the log mel spectrogram) and a cross-attention-based token interaction
module to produce corresponding text token embeddings from the audio token embeddings. As
shown in Fig. 3 (a), our model takes either audio and/or text as inputs and produces corresponding
embeddings while preserving audio-text correspondence. We formally define our architecture and
training objectives below.

Let D = {Xa, Xt} be a set of audio-text pairs, where each pair is represented as {xa, xt}. Here,
xa ∈ RF×T is the processed audio clip represented as a log mel spectrogram with F spectral
components (e.g. Mel bins) and T time bins; and xt is the tokenized text prompt explaining the audio
concepts in xa

i .

3.1 Model Architecture

For a given {xa, xt}, we preprocess xa as a sequences of patches of its 2D audio spectrogram and xt

as a sequence of tokens by tokenizing the text prompt via the pretrained BPE-based tokenizer in CLIP.
We denote these preprocessing functions for audio and text as preprocessa() and preprocesst(),
respectively, and the output from these functions as {xa

i }Mi=1 and {xt
j}Nj=1, respectively.

{xa
i }Mi=1 = preprocessa(x

a), {xt
j}Nj=1 = preprocesst(x

t)

Here, M and N denote the maximum lengths of the audio and text sequences, respectively. The audio
tokens {xa

i }Mi=1 are embedded using a transformer-based audio encoder [10] fa(), which returns
latent representations of the audio tokens {ha

i }Mi=1. The text tokens {xt
j}Nj=1 are initially embedded

using the static embedding matrix Et of the pretrained text encoder.
{ha

i }Mi=1 = fa(x
a), {ht

j}Nj=1 = Et · xt

The audio token embeddings are then passed through an audio-text token interaction module fa−t(),
which aims to predict the corresponding text token embeddings {ht

j}Nj=1 using the audio token
embeddings {ha

i }Mi=1 through fine-grained token alignment. The output from this module is denoted
as {ha−t

j }Nj=1 since it has the same number of tokens as the text token embeddings.

{ha−t
j }Nj=1 = fa−t({ha

i }Mi=1)

Our token interaction module consists of multiple cross-attention-based blocks [37] (see Fig.3 (b))
in series. These blocks take the currently predicted text token embeddings from the previous block
as input and attempt to denoise them using the audio token embeddings of the corresponding audio
clip. For the first block in the interaction module, we pass a set of random vectors as input, which are
randomly initialized following a normal distribution with a mean of zero and a standard deviation of
1. This series of token interaction blocks is analogous to a denoising pipeline[15] that is guided by
the audio token embeddings to produce the corresponding text token embeddings.

Finally, the global audio and text embeddings are produced by encoding {ht
j}Nj=1 and {ha−t

j }Nj=1

using the pretrained text encoder ft().
za = ft({ha−t

j }Nj=1), zt = ft({ht
j}Nj=1)

5



Our framework is trained using the following objective functions:

3.2 Cross-modal Token-Level Alignment Loss

To achieve the fine-grained grounding between audio and text while making CoLLAT agnostic to the
order of the classes presented in the text, this loss function aims to find one-to-one mapping between
text token embeddings {ht

j}Nj=1 from text and the produced text token embeddings {ha−t
j }Nj=1 using

audio and make those token-level embeddings close to each other. We formulate the cross-modal
token-level loss function as follows:

Lcross−token = ||g({ha−t
j }Nj=1)− {ht

j}Nj=1||1 (1)

where g denotes the function that reorder the token-level embeddings of an instance {ha−t
j }Nj=1 such

that the cross-modal token-level loss function is minimized, which is pre-computed before each
weight update. Given the time complexity of finding the optimal solution to g in Eq. 1, we greedily
compute g as follows: given the token embeddings of {ht

j}Nj=1 and {ha−t
j }Nj=1, we initiate the process

by starting from the right-most token embedding in {ht
j}Nj=1. This token is then paired with the

closest token embedding in {ha−t
j }Nj=1. Next, we proceed to the second token embedding from the

right in {ht
j}Nj=1, excluding the already mapped token embedding in {ha−t

j }Nj=1 from the possible
set to be paired with the selected text token embedding. We iterate this process until we obtain the
greedy one-to-one mapping between all the tokens in {ht

j}Nj=1 and {ha−t
j }Nj=1. We observed that

this greedy approach could produce optimal re-ordering unless there are very similar classes in the
same audio clip. Consequently, we do not anticipate a significant variation in the performance if the
optimal reordering can be achieved, which we leave as future work given the time complexity of
training the model with the optimal reordering.

3.3 Cross-modal Global Contrastive Loss

Motivated by [27], this objective function is introduced to preserve the global correspondence of the
audio-text pairs in the training dataset. Given the global embeddings of a batch B of audio and text
pairs {Za

B , Z
t
B}, we compute the similarity metric between audio and text pairs in B as:

Sa−t
B = τ ∗ (Za

B · Zt
B
T
), St−a

B = τ ∗ (Zt
B · Za

B
T )

where τ is a temperature parameter to scale the range of logits. The similarity matrix S ∈ R|B|×|B|

has |B| correct pairs in the diagonal and |B|2 − |B| incorrect pairs in the off-diagonal, where |B|
refers to the batch size. We formulate our cross-modal global contrastive loss for the batch B as
follows:

Lcross−global =
1

2|B|

|B|∑
i=0

log[softmax(Sa−t
B )(i,i)] + log[softmax(St−a

B )(i,i)] (2)

3.4 Unimodal Token-Level Alignment Loss

Despite the reasonable performance of CoLLAT with the aforementioned two objective functions,
we observed that the learned representations are not robust against weak perturbations of audio
such as jitter (see ablation study in Section 5 for more details). To address this challenge, previous
works [6, 40] adopts self-supervised objectives that aim to maximize the similarity of the embeddings
of two different yet correlated views produced by perturbing the same audio input. Motivated by these
works, we formulate our unimodal token-level loss for a given audio-text pair {xa, xt} to improve
the robustness our framework as follows:

Luni−token = ||{ha−t
j }Nj=1 − {h̃a−t

j }Nj=1||1 (3)

where {h̃a−t
j }Nj=1 is the token-level embeddings of the perturbed version of xa by adding a Gaussian

noise. This loss forces the model to understand all the token-level embeddings (i.e., fine-grained
concepts) of xa using its perturbed version.

Overall Objective. The final objective function of CoLLAT is as follows:
L = λ1 · Lcross−token + λ2 · Lcross−global + λ3 · Luni−token (4)

where λ1, λ2 and λ3 control the importance of each loss term.
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Table 1: Dataset Statistics
Task Audio Classification Cross-modal Retrieval Audio

Captioning
Audio-guided
Image Gen.

Dataset ESC-50 UrbanSound8K TUT FSD50K AudioSet VGGSound AudioCaps AudioCaps AudioCaps
# instances 2K 8K 6.3K 51K 20.4K 15K 46K 46K 46K
# classes 50 10 15 50 527 309 N/A N/A N/A
Metric Acc. Acc. Acc. MAP MAP MRR MAP@10 COCO Metrics N/A

4 Experimental Setup

4.1 Datasets

Training. We adopt the AudioSet dataset as the training dataset, which consists of 2,041,792 audio
and text label pairs collected using 10s long YouTube videos. Each audio clip can have multiple text
labels to represent different audio concepts in different granular levels.

Evaluation. We evaluate our model using four main downstream applications: (1) audio classification;
(2) cross-modal retrieval; (3) audio captioning; and (4) audio-guided image generation. We adopt 6
widely used real-world datasets to evaluate our model, which are shown in Table 1.

Pre-processing. We preprocess audio clips by representing them as 128-dimensional log Mel
filterbank (fbank) features, computed with a 25ms Hamming window every 10ms. This results in a
128×100t spectrogram as input to our audio encoder, where t is the length of the audio clip in seconds.
Next, we split the spectrogram into a sequence of N 16× 16 patches with an overlap of 6 in both time
and frequency dimensions, where N is the number of patches and the effective input sequence length
for the Transformer. We flatten each 16×16 patch to a 1D patch embedding of size 768 using a linear
projection layer, which we refer to as the patch embedding layer. Since the Transformer architecture
does not capture the input order information, and the patch sequence is also not in temporal order, we
add a trainable positional embedding (also of size 768) to each patch embedding to allow the model
to capture the spatial structure of the 2D audio spectrogram.

Following the findings in [7], we adopt the template of "This is a sound of [class label 1], [class label
2], .... and [class label C]" to generate a text prompt for an audio clip with C number of class labels.
Such templates have been shown to be more effective than simple concatenation [7]. Our decision to
not utilize natural language descriptions or a keyword-to-caption augmentation [36] in favor of simple
templates is due to the following reasons: (1) the cross-modal token-level loss function in CoLLAT
aims to explicitly map each token in the given text prompt with its corresponding counterpart in the
audio tokens (i.e., the patches in the Mel-Spectrogram of the audio). It may not be feasible to find
such a mapping for certain tokens in natural language descriptions (e.g., stop words, adjectives) with
the audio tokens. Consequently, having complex text prompts could adversely impact the training
of CoLLAT; and (2) CoLLAT maintains the text encoder frozen during training, as it was pre-trained
using text labels from the LAION dataset rather than natural language descriptions. Thus, attempting
to produce text embeddings for natural language descriptions using the CLIP text encoder to train
CoLLAT could introduce a data shift problem to negatively impact the training of CoLLAT.

Training Details. After performing a grid search, we set {λ1, λ2, λ3} as {1, 0.1, 0.01}. We
utilize a GPU cluster comprised of 8 V100 GPU cards for training CoLLAT. With this hardware
configuration, it takes approximately 320 GPU hours to train the model on AudioSet using the optimal
hyperparameter setting.

5 Results

5.1 Audio Classification

Table 2 presents a comparison of CoLLAT with five different baselines in audio classification. The
first baseline, called Supervise, trains a transformer from scratch without relying on features from
a pretrained joint embedding space, while the other four baselines learn a joint embedding space
between audio and text via contrastive pretraining. To conduct our experiments, we used five widely
used datasets: ESC-50, US8K, TUT, FSD50K, and AudioSet, under two settings: zero-shot (ZS) and
linear probe (LP). For zero-shot (ZS) setting, we first extract the embeddings for the audio clips and
the possible set of labels using the audio and text encoder in each baseline. Then, we compute cosine
distance between these text and audio embeddings to rank different class labels for a given audio clip.
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Table 2: Results for Audio Classification. Here, ZS and LP denote zero-shot and linear-probe
experimental setups for audio classification. For uni-label datasets – ESC-50, US8K and TUT,
Accuracy is reported as the metric. multi-label datasets (FSD50K and AudioSet) adopts MAP (Mean
Average Precision). Higher the value is better for both metrics.

ESC-50 (Acc) US8K (Acc) TUT (Acc) FSD50K (MAP) AudioSet (MAP)
ZS LP ZS LP ZS LP ZS LP ZS LP

Supervise N/A 0.53 N/A 0.63 N/A 0.60 N/A 0.32 N/A 0.24
YamNet N/A 0.85 N/A 0.78 N/A 0.63 N/A 0.50 N/A 0.27
Wav2CLIP 0.41 0.86 0.40 0.81 0.24 0.63 0.03 0.43 0.02 0.30
AudioCLIP 0.69 0.97 0.65 0.90 0.27 0.70 0.13 0.54 0.03 0.28
CLAP 0.77 0.96 0.73 0.88 0.30 0.72 0.14 0.59 0.06 0.32
CoLLAT 0.84 0.97 0.77 0.89 0.29 0.74 0.19 0.64 0.09 0.39
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Figure 4: (a) Zero-shot audio classification performance of CoLLAT for ESC-50 and FSD-50K:
solid line - when different intermediate layers are used to compute the token alignment loss (x axis
denotes the half of the index of the layer used to compute the loss); and dashed line - when the
number of cross-attention blocks in the token interaction module varies (x axis denotes the number of
cross attention blocks). (b) Ablation study with different backbone audio networks using ZS audio
classification. The pre-trained AST was pre-trained for audio classification using AudioSet.

For linear probe (LP) setting, we freeze our audio encoder as feature extractor and only train a 1-layer
transformer decoder to predict the class labels.

Our results show that the Supervise baseline does not perform well across all datasets, which suggests
that audio-text pre-training generally improves performance, particularly for tasks with limited
labeled data (such as ESC-50). Among the other baselines, CoLLAT outperforms them mostly across
all datasets. In particular, performance improvements from CoLLAT are significant for datasets
that consist of complex audio clips with multiple sound clips such as AudioSet and FSD50K. For
instance, CoLLAT outperforms the strongest baseline for the AudioSet dataset by 50% under zero-shot
setting and 22% under linear probe setting. This observation highlights the superiority of CoLLAT in
comprehending complex audio clips with multiple audio concepts.

Ablation Study using Zero-shot Audio Classification. In Fig. 4a, we provide ablations with
different layer selections for token-level loss computation and the performance of CoLLAT with
different number of cross-attention blocks. This ablation study guided to adopt the initial token-level
layer in the text encoder to compute the token-level loss functions and 8 cross-attention blocks in the
final architecture of the CoLLAT’s token interaction module. Table 4b presents CoLLAT’s performance
with different audio encoder choices, which shows pre-trained AST as the most suitable backbone
architecture. Additionally, we noticed that the AST backbone architecture converges faster compared

Table 3: (a) Ablation of loss functions using Zero-shot Audio Classification with clean and noisy
audio samples; (b) Results for Cross-modal Retrieval, following the experimental setups in [35]
and [36] for VGGSound and AudioCaps respectively. Higher is better for all the figures.

ESC-50 (Acc) FSD-50K (MAP)
clean noisy clean noisy

CoLLAT 0.84 0.59 0.19 0.17
(−)Lcross−token 0.81 0.50 0.13 0.11
(−)Luni−token 0.85 0.53 0.18 0.13
(−)Lcross−global 0.82 0.54 0.17 0.16

(a)

VGGSound (MRR) AudioCaps (MAP@10)
A→I I→A A→T T→A

Wav2CLIP 0.057 0.068 0.52 0.38
AudioCLIP 0.060 0.073 0.58 0.52
CLAP 0.063 0.074 0.57 0.47
CoLLAT 0.093 0.112 0.62 0.59

(b)
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Table 4: Results for Audio Captioning using the AudioCaps dataset. The experimental setup freezes
each model as a feature extractor and only train a 1-layer transformer decoder to predict text sequences.
We follow the DCASE challenge setup [20] and report standard COCO caption evaluation metrics.

BLEU1 BLEU2 BLEU3 BLEU4 CIDEr METEOR ROUGE SPICE
AudioCLIP 50.2 34.9 22.1 14.4 14.4 28.7 36.1 8.7
CLAP 48.4 31.7 20.4 13.4 13.7 30.2 35.1 8.9
CoLLAT 55.1 37.2 24.3 15.1 16.3 43.0 39.6 11.3
Human 65.4 48.9 37.3 29.1 28.8 91.3 49.6 21.6

A sound of thunder 
and a gentle rain

A sound of blowing 
a horn of a train

A sound of several 
birds chirping

“with a sea in the 
background”

“with a mountain 
in the 

background”

“with a waterfall 
in the 

background”

A sound of thunder 
and a gentle rain

A sound of blowing 
a horn of a train

A sound of several 
birds chirping

AUDIO CoLLAT CLAP AUDIO +TEXT CoLLAT CLAP

Figure 5: Audio-guided Image Generation Results

to the other backbones. This could be attributed to the stronger inductive biases present in the other
encoders as compared to AST [10].

We conducted an ablation study in Table 3a to demonstrate the significance of the loss functions
used in CoLLAT. The proposed token-level cross-modal loss function, Lcross−token, is shown to
play a crucial role in enhancing audio-understanding performance. This is especially evident in
FSD-50K, which consists of audio clips with multiple labels, where the performance for zero-shot
audio classification is improved by 46.2% in MAP. We also found that the robustness of CoLLAT
substantially improves with the use of the unimodal-token level loss, Luni−token, as it enhances the
zero-shot classification performance for noisy audio samples that are generated by adding Gaussian
noise with zero mean and 0.1 standard deviation. Luni−token improves the performance for such
samples by 11.3% and 30.8% for ESC-50 and FSD-50K, respectively.

5.2 Cross-modal Retrieval

Since pretrained CLIP text encoder maps text to a joint embedding space of images and text, being
able to map audio into the same CLIP embedding space (without fine-tuning the text encoder)
enables cross-modal retrieving capabilties between audio, text and images. Table 3b shows the results
collected for cross-modal retrieval task using the VGGSound and AudioCaps datasets. We adopt the
experimental setups proposed in [35] for the audio-image and image-audio retrieval tasks and [36]
for the audio-text and text-audio retrieval tasks. For a fair comparison, we train all the baselines with
a frozen text encoder.

As can be seen, CoLLAT outperforms all the baselines by as much as 47.6% and 51.4% in Mean
Reciprocal Rank (MRR) for the Audio-to-Image and Image-to-Audio retrieval tasks, and 13.4% and
6.7% in MAP for Audio-to-Text retrieval, and Text-to-Audio retrieval, respectively. We observed
that the performance improvements are particularly significant due to the ability of our approach to
understand fine-grained concepts to differentiate hard image-text pairs in the VGGSound.

5.3 Audio Captioning

We report the results for Audio Captioning using the AudioCaps dataset in Table. 4. Following [35],
we only trained a 1-layer transformer on top of the CoLLAT’s output, while keeping CoLLAT’s
parameters fixed to collect the results for audio captioning. We adopt the same experimental setting
for the baselines too. As can be seen, CoLLAT outperforms CLAP and AudioCLIP by 9.7%, 13.2%,
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42.4%, 9.7% and 26.9% in BLEU1, CIDEr, METEOR, ROUGE and SPICE respectively.
These results further show the ability of CoLLAT fine-grained details in the sound clip as it is needed
to generate a holistic caption for a given audio clip.

5.4 Audio-guided Image Generation

Given CoLLAT’s ability to produce corresponding text token-level embeddings for a given audio
clip, it can be naively used to provide guidance for any downstream application built on top of text
token embeddings from pretrained text encoders. We adopt text-guided image generation as one such
example. Most existing text-guided image generation models adopt token-level embeddings from
a pretrained text encoder to guide image generation using a given text prompt. Nevertheless, most
existing audio-to-text grounding techniques cannot be naively extended to introduce audio guidance
for such applications, as they are unable to generate token-level text embeddings for a given audio
prompt.

To evaluate this task, we adopt a pretrained text-guided image generation model following [29],
which requires text guidance from a pretrained CLIP text encoder. As a baseline, we adopt the same
architecture as CoLLAT, but trained only using Lcross−global. We denote this baseline as CLAP in
Figure 5. As shown in Figure 5, CoLLAT is capable of generating images that cover all the concepts
present in the given audio clip. This observation further confirms the potential of our approach to
comprehend complex audio clips with multiple concepts.

6 Broader Impact

Our work has a significant impact as it addresses the limitations of conventional audio understanding
models by enhancing their ability to predict finer-grained classes within complex audio clips. We
demonstrated that CoLLAT achieves state-of-the-art performance in audio understanding, as validated
by its success in various downstream applications. Furthermore, it unlocks the potential for audio
guidance in applications built upon pretrained language models. Thus, our work opens up possibilities
for improved audio-to-text grounding, advancing multimodal applications. Additionally, considering
the capability of CoLLAT to represent audio clips using either text or image, it holds promise in
enhancing accessibility and promoting inclusivity for individuals with diverse disabilities.

It is important to note that the model developed in this research does not possess the ability to
uniquely identify individuals in audio recordings for tasks such as speaker recognition and speaker
identification. CoLLAT does not possess the ability to comprehend information conveyed through
speech in audio clips. Given the privacy concerns associated with the generation of human faces using
audio-guided image generation models, it is advised to exercise caution and refrain from utilizing
them for such purposes. It is crucial to prioritize privacy and ethical considerations when applying
these technologies to avoid any potential misuse or infringement on individuals’ rights.

7 Conclusion

This work proposes CoLLAT, a novel framework for learning an audio understanding model using
natural language supervision from a locked pretrained language model. The proposed framework
effectively exploits the implicit knowledge in large language models instead of just relying on their
final global embeddings. We introduce a novel pretraining objective for CoLLAT that enforces token-
level alignment between audio and text modalities to yield fine-grained audio understanding. Our
results demonstrate that CoLLAT achieves state-of-the-art performance for downstream applications
such as audio classification, cross-modal retrieval and audio captioning. Since CoLLAT keeps the
pre-trained language model locked during training, our experiments also show that it unlocks new
applications such as audio-guided image generation.

Since CoLLAT can be considered a modality-agnostic framework for learning knowledge under-
standing models for new modalities with natural language supervision, extending CoLLAT to new
modalities (video) is an interesting future direction to explore. Another notable limitation of CoLLAT
is its inability to understand speech signals in the audio clips. Therefore, it could be worthwhile to
explore how to introduce speech signals to CoLLAT while preserving its existing capabilities.
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