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Abstract
Representational limits of message-passing graph neural networks (MP-GNNs),
e.g., in terms of the Weisfeiler-Leman (WL) test for isomorphism, are well under-
stood. Augmenting these graph models with topological features via persistent
homology (PH) has gained prominence, but identifying the class of attributed
graphs that PH can recognize remains open. We introduce a novel concept of
color-separating sets to provide a complete resolution to this important problem.
Specifically, we establish the necessary and sufficient conditions for distinguishing
graphs based on the persistence of their connected components, obtained from filter
functions on vertex and edge colors. Our constructions expose the limits of vertex-
and edge-level PH, proving that neither category subsumes the other. Leveraging
these theoretical insights, we propose RePHINE for learning topological features
on graphs. RePHINE efficiently combines vertex- and edge-level PH, achieving
a scheme that is provably more powerful than both. Integrating RePHINE into
MP-GNNs boosts their expressive power, resulting in gains over standard PH on
several benchmarks for graph classification.

1 Introduction
Topological data analysis (TDA) is a rapidly growing field that provides tools from algebraic topology
for uncovering the shape (or structure) of data, allowing for efficient feature extraction. Its flagship
tool is persistent homology (PH) [8], which seeks to characterize topological invariants (e.g., con-
nected components, loops) of an underlying manifold based on data samples. Notably, PH has been
successfully applied in many scientific domains, including computer vision [17, 27], drug design
[23], fluid dynamics [24], and material science [25].

For graphs, PH has been used to provide global topological signatures for graph-level prediction tasks
[2, 12, 14, 33, 39] and act as local message modulators in graph neural networks (GNNs) for node-
level tasks [4, 40]. By leveraging learnable filtration/vectorization maps, PH has also been integrated
into neural networks as a building block in the end-to-end learning process [2, 3, 13, 15, 26]. These
strategies allow us to exploit topological features to boost the predictive capabilities of graph models.
However, in stark contrast with the developments on the representational power of GNNs [1, 11, 28–
30, 34, 35, 37], the theoretical properties of PH on graphs remain much less explored. For instance,
open questions include: Which graph properties can PH capture? What is the characterization of
pairs of graphs that PH cannot separate? Can we improve the expressivity of PH on graphs?

In a recent work, Rieck [32] discusses the expressivity of PH on graphs in terms of the Weisfeiler-
Leman (WL) hierarchy [36]. The paper shows that, given different k-WL colorings, there exists a
filtration such that the corresponding persistence diagrams differ. This result provides a lower bound
for the expressivity in terms of WL hierarchy, but it does not describe the class of graphs which can
be distinguished via PH. In this paper, we aim to fully characterize this class of graphs.

∗Equal contribution.
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Theoretical contributions of this work

On vertex-level filtrations (Section 2 and Section 3.1):
Inconsistency issues due to injective vertex filtrations Lemma 1
Real holes (d =∞) ∼= Component-wise colors Lemma 2
Almost holes (b ̸= d, d ̸=∞) ∼= Separating sets Lemma 3
Distinct almost holes⇒ Color-separating set Lemma 4
Birth time of persistence tuples ∼= Vertex color Lemma 5
The expressive power of vertex-color filtrations Theorem 1

On edge-level filtrations (Section 3.2):
Almost holes ∼= Disconnecting sets Lemma 6
Reconstruction of disconnecting sets Lemma 7
The expressive power of edge-color filtrations Theorem 2

Vertex-level vs. edge-level filtrations (Section 3.3):
Vertex-level persistence ̸≻ edge-level persistence, and vice-versa Theorem 3

New method (RePHINE) (Section 4):
RePHINE is isomorphism invariant Theorem 4
RePHINE ≻ vertex-, edge-, and vertex- ∪ edge-level diagrams Theorem 5

Figure 1: Overview of our theoretical results.

We study the expressive power of PH on attributed (or colored) graphs, viewed as 1-dim simplicial
complexes. We focus on the class of graph filtrations induced by functions on these colors. Impor-
tantly, such a class is rather general and reflects choices of popular methods (e.g., topological GNNs
[15]). We first analyze the persistence of connected components obtained from vertex colors. Then,
we extend our analysis to graphs with edge colors. To obtain upper bounds on the expressive power of
color-based PH, we leverage the notion of separating/disconnecting sets. This allows us to establish
the necessary and sufficient conditions for the distinguishability of two graphs from 0-dim persistence
diagrams (topological descriptors). We also provide constructions that highlight the limits of vertex-
and edge-color PH, proving that neither category subsumes the other.

Based on our insights, we present RePHINE (short for “Refining PH by Incorporating Node-color
into Edge-based filtration”), a simple method that exploits a subtle interplay between vertex- and
edge-level persistence information to improve the expressivity of color-based PH. Importantly,
RePHINE can be easily integrated into GNN layers and incurs no computational burden to the
standard approach. Experiments support our theoretical analysis and show the effectiveness of
RePHINE on three synthetic and six real datasets. We also show that RePHINE can be flexibly
adopted in different architectures and outperforms PersLay [2] — a popular topological neural net.

In sum, our contributions are three-fold:

(Theory) We establish a series of theoretical results that characterize PH on graphs, including
bounds on the expressivity of vertex- and edge-level approaches, the relationship between these
approaches, and impossibility results for color-based PH — as summarized in Figure 1.

(Methodology) We introduce a new topological descriptor (RePHINE) that is provably more
expressive than standard 0-dim and 1-dim persistence diagrams.

(Experiments) We show that the improved expressivity of our approach also translates into gains
in real-world graph classification problems.

2 Preliminaries
We consider arbitrary graphs G = (V,E, c,X) with vertices V = {1, 2, . . . , n}, edges E ⊆
V × V and a vertex-coloring function c : V → X , where X denotes a set of m colors or features
{x1, x2, . . . , xm} such that each color xi ∈ Rd. We say two graphs G = (V,E, c,X) and G′ =
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(V ′, E′, c′, X ′) are isomorphic (denoted by G ∼= G′) if there is a bijection g : V → V ′ such that
(v, w) ∈ E iff (g(v), g(w)) ∈ E′ and c = c′ ◦ g. Here, we also analyze settings where graphs have
an edge-coloring function l.

A filtration of a graph G is a finite nested sequence of subgraphs of G, that is, G1 ⊆ G2 ⊆ ... ⊆ G.
Although the design of filtrations can be flexible [12], a typical choice consists of leveraging a
vertex filter (or filtration) function f : V → R for which we can obtain a permutation π of
n vertices such that f(π(1)) ≤ f(π(2)) · · · ≤ f(π(n)). Then, a filtration induced by f is an
indexed set {Gf(π(i))}ni=1 such that Gf(π(i)) ⊆ G is the subgraph induced by the set of vertices
Vf(π(i)) = {v ∈ V | f(v) ≤ f(π(i))}. Note that filtration functions which give the same permutation
of vertices induce the same filtration. Persistent homology keeps track of the topological features
of each subgraph in a filtration. For graphs G, these features are either the number of connected
components or independent cycles (i.e., 0- and 1-dim topological features, denoted respectively by
the Betti numbers β0

G and β1
G) and can be efficiently computed using computational homology. In

particular, if a topological feature first appears in Gf(π(i)) and disappears in Gf(π(j)), then we encode
its persistence as a pair (f(π(i)), f(π(j))); if a feature does not disappear in Gf(π(n)) = G, then
its persistence is (f(π(i)),∞). The collection of all pairs forms a multiset that we call persistence
diagram [5]. We use D0 and D1 to refer to the persistence diagrams for 0- and 1-dim topological
features respectively. Appendix A provides a more detailed treatment for persistent homology.

Recent works have highlighted the importance of adopting injective vertex filter functions. Hofer
et al. [13] show that injectivity of parameterized functions fθ : V → R is a condition for obtaining
well-defined gradients with respect to the parameters θ, enabling end-to-end filtration learning. Also,
Horn et al. [15] show that for any non-injective function, we can find an arbitrarily close injective
one that is at least as powerful at distinguishing non-isomorphic graphs as the original (non-injective)
function. However, Lemma 1 shows that filtrations induced by injective functions on vertices may
result in inconsistent persistence diagrams; namely, different diagrams for isomorphic graphs.

Lemma 1 (Injective vertex-based filtrations can generate inconsistent persistence diagrams).
Consider persistence diagrams obtained from injective vertex filter functions. There are isomorphic
graphs G ∼= G′ such that their persistence diagrams are different, i.e., DG ̸= DG′ .

To avoid inconsistent diagrams, we need to employ permutation equivariant filter functions — see
[32, Lemma 2]. Common choices include vertex degree [12], eigenvalues of the graph Laplacian
[2], and GNN layers [13], which are permutation equivariant by construction. Another option is to
define graph filtrations based on vertex/edge colors [15], which are also equivariant by design, i.e., if
G ∼= G′ with associated bijection g, then c(v) = c′(g(v)) ∀v ∈ V . Notably, color-based filtrations
generalize the GNN-layers case since we could redefine vertex/edge-coloring functions to take the
graph structure as an additional input. Thus, we now turn our attention to color-based filtrations.

Color-based filtrations. Let f : X → R be an injective function. Therefore, f must assign a
strict total order for colors, i.e., there is a permutation π : {1, . . . ,m} → {1, . . . ,m} such that
f(xπ(1)) < · · · < f(xπ(m)). We define the vertex-color filtration induced by f as the indexed set
{Gi}mi=1 where Gi = (Vi, Ei, ci, Xi), with Xi = {xπ(1), xπ(2), . . . , xπ(i)}, Vi = {v ∈ V | c(v) ∈
Xi}, Ei = {(v, w) ∈ E | c(v) ∈ Xi, c(w) ∈ Xi}, and ci = {(v, c(v)) | v ∈ Vi}. Similarly, we
can define the edge-color filtration induced by f as {Gi}mi=1 where Gi = (V,Ei, li, Xi) with Xi =
{xπ(1), . . . , xπ(i)}, Ei = {(v, w) ∈ E | l(v, w) ∈ Xi}, and li = {((v, w), l(v, w)) | (v, w) ∈ Ei}.

We denote the elements of a persistence diagram D as pairs (f(x(b)), f(x(d))), where x(b), x(d) ∈ X
are the colors associated with the birth and death of a hole (topological feature) in a filtration induced
by f(·). In the following, we use the notation {{·}} to denote multisets.

3 The power of 0-dim persistent homology under color-based filtrations
In this section, we analyze the representational power of persistent homology when adopting color-
based filtrations. We focus on the persistence of connected components (0-dimensional holes).
We separately discuss vertex-color (Section 3.1) and edge-color (Section 3.2) filtrations, and then
compare these approaches in Section 3.3. Proofs for all Lemmas and Theorems are in Appendix B.

3.1 Vertex-color filtrations
To help characterize the expressivity of persistent homology, we propose classifying persistence pairs
(f(x(b)), f(x(d))) as either real holes, almost holes, or trivial holes. In particular, if f(x(d)) ̸=∞
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and f(x(b)) ̸= f(x(d)), we say the pair (f(x(b)), f(x(d))) is an almost hole. If f(x(b)) = f(x(d)),
the pair is called a trivial hole. Finally, we call (f(x(b)), f(x(d))) a real hole if f(x(d)) =∞.

3.1.1 Real holes as connected components
Real holes denote topological features that persist until a filtration reaches the entire graph. Thus,
real holes from 0-dim persistence diagrams are associated with connected components, regardless of
the filtration. Regarding the relationship between filtrations and real holes, Lemma 2 establishes the
necessary and sufficient condition for the existence of a filtration that produces persistence diagrams
with distinct real holes. Such a condition is associated with the notion of component-wise colors.
Formally, let G and G′ be two graphs with connected components C1, . . . , Ck and C ′

1, . . . , C
′
k′ ,

respectively. Also, let Xi = {c(v) | v ∈ VCi
} be the set of colors in Ci and, similarly, X ′

i be the
colors in C ′

i. We say that G and G′ have distinct component-wise colors if {{Xi}}ki=1 ̸= {{X ′
i}}k

′

i=1.

Lemma 2 (Equivalence between component-wise colors and real holes). Let G and G′ be two
graphs. There exists some vertex-color filtration such that their persistence diagrams D0

G and D0
G′

have different multisets of real holes iff G and G′ have distinct component-wise colors.

3.1.2 Almost holes as separating sets
Now we turn our attention to the characterization of almost holes. Our next result (Lemma 3) reveals
the connection between almost holes and separating sets. Here, a separating set S of a graph G is a
subset of its vertices whose removal disconnects some connected component of G.

Lemma 3 (Almost holes and separating sets). Regarding the relationship between almost holes
and separating sets, the following holds:

1. Let (f(x(b)), f(x(d))) be an almost hole from a vertex-color filtration. Then the set S = {w ∈
V | f(c(w)) ≥ f(x(d))} is a separating set of G.

2. Let S be a separating set of G that splits a connected component C ⊆ G into k components
C1, C2, . . . , Ck. Then, there exists a filtration that produces k − 1 almost holes if the set of
colors of vertices in ∪ki=1VCi

is disjoint from those of the remaining vertices, i.e., {c(v) | v ∈
V \ ∪ki=1VCi

} ∩ {c(v) | v ∈ ∪ki=1VCi
} = ∅.

Figure 2: We cannot use color-based sepa-
rating sets to compare almost holes across
graphs. Although these filtrations produce
different almost holes, there is no way to
remove colors s.t. the resulting graphs have
different numbers of components.

The relationship between almost holes and separating sets
elucidated in Lemma 3 raises the question if we can use
separating sets (obtained from colors) to compare almost
holes across different graphs. The answer is no: even
if the diagrams of two graphs only differ in their multi-
sets of almost holes, the graphs might not have separat-
ing sets that split them into different numbers of com-
ponents. For instance, consider the graphs in Figure 2,
where numbers denote filter values. The persistence dia-
grams D0

G = {{(1,∞), (2, 3), (2, 3), (3, 3), (3, 4), (4, 4)}}
and D0

G′ = {{(1,∞), (2, 3), (2, 4), (3, 3), (3, 3), (4, 4)}}
only differ in almost holes. Still, we cannot pick colors
whose removal of associated vertices would result in differ-
ent numbers of components.

Next, we introduce the notion of color-separating sets (Def-
inition 1). Importantly, Lemma 4 leverages this definition to
characterize the graphs that can be distinguished based on
almost holes. Specifically, it establishes that whenever the
diagrams of two graphs differ in their multiset of almost holes, we can build a color-separating set.

Definition 1 (Color-separating sets). A color-separating set for a pair of graphs (G,G′) is a set of
colorsQ such that the subgraphs induced by V \{w ∈ V | c(w) ∈ Q} and V ′\{w ∈ V ′ | c′(w) ∈ Q}
have distinct component-wise colors.

We note that when G and G′ have identical component-wise colors, the sets {w ∈ V | c(w) ∈ Q}
and {w ∈ V ′ | c′(w) ∈ Q} induced by the color-separating set Q are separating sets for G and G′.
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Lemma 4 (Distinct almost holes imply distinct color-separating sets). LetD0
G,D0

G′ be persistence
diagrams for G and G′. If the diagrams D0

G, D0
G′ differ in their multisets of almost holes, then there

is a color-separating set for G and G′.

3.1.3 Bounds on the expressivity of vertex-color persistent homology
Regardless of the filtration, vertex-color PH always allows counting the numbers of connected
components and vertices of a graph. If all vertices have the same color, then we cannot have any
expressive power beyond β0 and |V |— when all vertices are added simultaneously, there cannot be
almost holes as the finite living times of the holes are 0. Also, all real holes are identical, and we
have D0 = {{(1,∞), . . . , (1,∞), (1, 1), ..., (1, 1)}}, with |D0| = |V |.
For graphs with m ≥ 1 colors, Lemma 5 shows that sets of birth times correspond to vertex colors.
As a consequence, if the multisets of vertex colors differ for graphs G and G′, then the corresponding
persistence diagrams are also different in all filtrations.

Lemma 5 (Equivalence between birth times and vertex colors). There is a bijection between the
multiset of birth times and the multiset of vertex colors in any vertex-color filtration.

From Lemma 5, we can recover the multiset of colors from the persistence diagram and, consequently,
distinguish graphs with different multisets. However, persistent homology uses vertex colors as input,
and we do not need persistence diagrams to construct or compare such multisets. This highlights
the importance of death times to achieve expressivity beyond identifying vertex colors. In fact, for
non-trivial cases, the expressivity highly depends on the choice of filtration.

We have discussed the importance of color-separating sets (Lemma 4) and component-wise vertex
colors (Lemma 2). With these notions, Theorem 1 formalizes the limits of expressivity that may be
achieved with suitable filtration and characterize which pairs of graphs can, at best, be distinguished
by comparing their persistence diagrams. Here, we only consider pairs of graphs that cannot be
distinguished by their multisets of colors, as this corresponds to a trivial case.

Theorem 1 (The expressive power of vertex-color filtrations). For any two graphs G and G′ with
identical multisets of colors {{c(v) : v ∈ V }} = {{c′(v) : v ∈ V ′}}, there exists a filtration such that
D0

G ̸= D0
G′ if and only if there is a color-separating set for G and G′.

3.2 Edge-color filtrations
We now consider the expressivity of 0-dim persistent homology obtained from edge-color filtrations.
The persistence diagrams are constructed exactly the same way. However, in this case, all holes are
born at the same time (all vertices appear in G0). This implies that all real holes are identical. Also,
the diagrams do not contain trivial holes since G0 does not have edges. All holes are either real holes
or almost holes (of the form (0, d)). We also note that persistence diagrams will always have almost
holes unless the graph is edgeless.

(b)(a)

Figure 3: (a) G and G′ differ in their multisets of colors, but no edge-color filtration can distin-
guish them. For instance, assume that f(‘blue’) = 1 < 2 = f(‘orange’). Then, D0

G = D0
G′ =

{{(0,∞), (0, 1), (0, 1), (0, 1)}}. The same holds for f(‘blue’) > f(‘orange’). (b) Graphs that have
different disconnecting sets, but for which we can find filtrations that lead to identical diagrams.

Analogously to separating sets in vertex-color filtrations, Lemma 6 characterizes edge-based almost
holes as disconnecting sets — a set of edges whose removal would increase the number of components.

Lemma 6 (Edge-based almost holes as disconnecting sets). Let (0, f(x(d))) be an almost hole
from an edge-color filtration. Then S = {e ∈ E | f(l(e)) ≥ f(x(d))} is a disconnecting set of G.

Lemma 6 tells us how to construct a disconnecting set from an almost hole. Now, suppose we are
given a disconnecting set S. Can we build an edge-color filtration for which S can be obtained from
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an almost hole? In other words, can we obtain a diagram with an almost hole (0, f(x(d))) such that
{e ∈ E | f(l(e)) ≥ f(x(d))} is equal to S? Lemma 7 shows that if the colors of edges in S are
distinct from those in E \ S, then there is a filtration that induces a persistence diagram with an
almost hole from which we can reconstruct S.

Lemma 7 (Reconstructing a disconnecting set). Let G = (V,E, l,X) be a graph and S ⊆ E be
a disconnecting set for G. If the set of colors of S is disjoint from that of E \ S, then there exists a
filtration such that S = {e ∈ E | f(l(e)) ≥ f(x(d))} for an almost hole (0, f(x(d))) ∈ D0.

3.2.1 Bounds on the expressivity of edge-color persistent homology
Similar to the vertex-color case, in any edge-color filtration, we have that |D0| = |V | and the number
of real holes is β0. Also, the lowest expressivity is achieved when all edges have the same color.
In this case, two graphs with different numbers of vertices or connected components have different
persistence diagrams (and can be distinguished); otherwise, they cannot be distinguished.

We have seen in Lemma 5 that vertex-color filtrations encode colors as birth times. In contrast,
birth times from edge-color filtrations are always trivially equal to zero. Thus, we cannot generalize
Lemma 5 to edge-color filtrations. Instead, we can show there are graphs with different multisets of
edge colors such that the graphs have the same persistence diagrams for any filtration (see Figure 3(a)).

Let us now consider lower limits for graphs with m > 1 edge colors. We can show that even
if two graphs have different disconnecting sets (obtained from colors), there are filtrations that
induce the same persistence diagrams. To see this behavior, consider the two graphs in Fig-
ure 3(b), where the deletion of blue edges disconnects one of the graphs but not the other. Al-
though we can build an edge-color filtration that separates these graphs (i.e., D0

G ̸= D0
G′), if

we choose f(‘green’) = 3, f(‘orange’) = 2, and f(‘blue’) = 1, we obtain D0
G = D0

G′ =
{{(0,∞), (0, 1), (0, 2), (0, 2), (0, 2), (0, 2)}}. Interestingly, even if two graphs have different sets
of edge colors, we might still find filtrations that induce identical diagrams. The reason is that unlike
vertex-color filtrations where trivial holes make sure that all vertices are represented in the diagrams,
in edge-color filtrations there are no trivial holes. As a result, persistence diagrams from edge-color
filtrations do not account for edges that do not lead to the disappearance of connected components.

Lemma 6 and Lemma 7 showed that edge-based almost holes can be characterized as disconnecting
sets, somewhat analogously to vertex-based almost holes as separating sets. We complete the analogy
by introducing the notion of color-disconnecting sets in Definition 2. We then use this notion to
fully characterize the the expressive power of edge-color persistent homology in Theorem 2. More
specifically, the existence of a color-disconnecting set between a given pair of graphs is a necessary
and sufficient condition for distinguishing them based on 0-dimensional persistence diagrams.

Definition 2 (Color-disconnecting sets). A color-disconnecting set for a pair of graphs (G,G′) is a
set of colors Q such that if we remove the edges of colors in Q from G and G′, we obtain subgraphs
with different numbers of connected components.

Theorem 2 (The expressive power of edge-color filtrations). Consider two graphs G and G′.
There exists an edge-color filtration such that D0

G ̸= D0
G′ if and only if there is a color-disconnecting

set for G and G′.

3.3 Vertex-color versus edge-color filtrations
To compare vertex- and edge-color persistence diagrams, we consider graphs with vertex-coloring
functions c(·) from which we derive edge-coloring ones l(·). In particular, for a graph G =
(V,E, c,X), its edge-coloring function l : E → X2 is defined as l(v, w) = {c(v), c(w)}.

(a) (b) (c)

Figure 4: Illustration of graphs that cannot be distinguished based on (a) edge-color filtrations, (b)
vertex-color filtrations, and (c) both vertex- and edge-color filtrations.
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Recall that only vertex-color filtrations can 1) encode multisets of colors and 2) have real holes
with different birth times. Naturally, we can find pairs of graphs (G,G′) for which we can
obtain D0

G ̸= D0
G′ from vertex-color filtrations, but not from edge-color ones. Consider the

graphs in Figure 4(a). The vertex-color filtration f(‘blue’) = 1, f(‘orange’) = 2 produces
D = {{(1,∞), (1,∞), (1, 2), (2, 2), (2, 2)}} and D′ = {{(1,∞), (1, 1), (2,∞), (2, 2), (2, 2)}}. How-
ever, there is no edge-color filtration that would tell them apart — there are only two possi-
ble edge-color filtrations, leading to either D = {{(0,∞), (0,∞), (0, 1), (0, 2), (0, 2)}} = D′, or
D = {{(0,∞), (0,∞), (0, 1), (0, 1), (0, 2)}} = D′.

We can also show that there are graphs that can be distinguished by edge-color filtrations but
not by vertex-color ones. Intuitively, one can think of this as a result of edge colors being more
fine-tuned. For instance, consider the graphs in Figure 4(b). We can separate these graphs using
the function f(‘orange’) = 1, f(‘blue-orange’) = 2, and f(‘blue’) = 3, which yields D0

G =
{{(0,∞), (0, 1), (0, 1), (0, 2), (0, 2), (0, 3)}} ≠ {{(0,∞), (0, 1), (0, 1), (0, 2), (0, 2), (0, 2)}} = D0

G′ .
However, since there is no color-separating set for G and G′, by Theorem 1, we have that DG = DG′

for all vertex-color filtrations. Theorem 3 formalizes the idea that none of the classes of color-
based filtrations subsumes the other. In addition, Figure 4(c) illustrates that there are very simple
non-isomorphic graphs that PH under both vertex- and edge-color filtrations cannot distinguish.

Theorem 3 (Edge-color vs. vertex-color filtrations). There exist non-isomorphic graphs that
vertex-color filtrations can distinguish but edge-color filtrations cannot, and vice-versa.

4 Going beyond persistent homology
We now leverage the theoretical results in Section 3 to further boost the representational capability of
persistent homology. In particular, we propose modifying edge-color persistence diagrams to account
for structural information that is not captured via the original diagrams. We call the resulting approach
RePHINE (Refining PH by incorporating node-color into edge-based filtration). Notably, RePHINE
diagrams are not only provably more expressive than standard color-based ones but also make 1-
dimensional topological features redundant. Additionally, we show how to integrate RePHINE into
arbitrary GNN layers for graph-level prediction tasks.

Edge-color diagrams with missing holes. A major drawback of edge-color filtrations is that
information about the multisets of (edge) colors is lost, i.e., it cannot be recovered from persistence
diagrams. To reconstruct disconnecting sets, we need the edge-color permutation given by the
filtration function and the number of edges — both of which cannot be deduced from diagrams alone.

To fill this gap, we introduce the notion of missing holes. Conceptually, missing holes correspond to
edges that are not associated with the disappearance of any connected component in a given filtration.
By design, we set the birth time of missing holes to 1 — this distinguishes them from real and
almost holes, which have birth times equal to 0. The death time of a missing hole corresponds to
the first filtration step f(x) that its corresponding edge color x appears. We note that missing holes
correspond to cycles obtained from 1-dim persistence diagrams.

As an example, consider the edge-color filtration in Figure 5, which produces D0 =
{{(0,∞), (0, 1), (0, 2), (0, 2), (0, 4)}}. We note that the orange edge and one of the orange-green ones
do not ‘kill’ any 0-dim hole. This results in the missing holes (1, 3) and (1, 4). Clearly, missing holes
bring in additional expressivity as, e.g., it would be possible to distinguish graphs that only differ in
the orange edge in Figure 5. Still, edge-color diagrams with missing holes are not more expressive
than vertex-color ones. For instance, they cannot separate the two graphs in Figure 3(a).

Augmenting edge-color diagrams with vertex-color information. To improve the expressivity
of persistent homology, a simple approach is to merge tuples obtained from independent vertex-
and edge-color filtrations. However, this would double the computational cost while only allowing
distinguishing pairs of graphs that could already be separated by one of the filtrations. Ideally, we
would like to go beyond the union of vertex- and edge-color persistence diagrams.

As in Section 3.3, we consider graphs with edge colors obtained from vertex-coloring functions. Also,
we assume that fv and fe are independent vertex- and edge-color filtration functions, respectively.
We propose adding two new elements to the tuples of edge-color diagrams with missing holes. Our
augmented tuple is (b, d, α, γ) where α and γ are the additional terms. Recall that, in any edge-
color filtration, G0 has |V | connected components. Then, we can associate real or almost holes of
edge-color diagrams with vertices in G. With this in mind, we define RePHINE diagrams as follows.
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RePHINE 
diagrams

Figure 5: RePHINE diagrams. At G1, one component dies and creates the almost hole (0, 1, 2, 1).
We also save that two nodes were discovered at 1 (fourth component), with colors equal to 2 (third
component). At step 2, two other holes are killed, resulting in two tuples (0, 2, 1, 2). At G3, we
obtain the missing hole (1, 3, 0, 0). Finally, G4 creates one almost hole and one missing hole.

Definition 3 (RePHINE diagram). The RePHINE diagram of a filtration on a graph G is a multiset
of cardinality |V |+ β1

G, with elements of form (b, d, α, γ). There are two cases:

• Case b = 0 (real or almost holes). Now, b and d correspond to birth and death times
of a component as in edge-color filtration. We set α(w) = fv(c(w)) and γ(w) =
minv∈N (w) fe({{c(w), c(v)}}), where w is the vertex that is associated with the almost or real
hole. Vertices are matched with the diagram elements as follows: An almost hole (b,d) cor-
responds to an edge merging two connected components, T1, T2. Each of these connected
components has exactly one vertex, wT1

or wT2
, which has not yet been associated with

any element of the RePHINE diagram. Let w = argmaxw′∈{wT1
,wT2

} fv(c(w
′)) , or if

fv(c(wT1
)) = fv(c(wT2

)), then w = argminw′∈{wT1
,wT2

} γ(w
′). The vertices that are as-

sociated with real holes are vertices that have not died after the last filtration step.
• Case b = 1 (missing holes). Here, the entry d is the filtration value of an edge e that did not kill

a hole but produces a cycle that appears at the filtration step associated with adding the edge e.
The entries α and γ take uninformative values (e.g., 0).

Figure 5 provides an example of RePHINE diagrams. Further details of the procedure can be found in
Appendix C. Notably, our scheme can be computed efficiently at the same cost as standard persistence
diagrams and is consistent — we obtain identical diagrams for any two isomorphic colored graphs.

Theorem 4 (RePHINE is isomorphism invariant). Let G, G′ be isomorphic graphs. Then, any
edge-color and vertex-color filtrations produce identical RePHINE diagrams for G and G′.

In addition, Theorem 5 shows that RePHINE diagrams are strictly more expressive than those from
both vertex- and edge-color filtrations, including 0- and 1-dim topological features. Figure 4(c)
provides an example of graphs that cannot be recognized by any color-based filtration, but for which
we can obtain distinct RePHINE diagrams.

Theorem 5 (RePHINE is strictly more expressive than color-based PH). Let D,D′ be the
persistence diagrams associated with any edge or vertex-color filtration of two graphs. If D ≠ D′,
then there is a filtration that produces different RePHINE diagrams. The converse does not hold.

Despite its power, there are simple non-isomorphic graphs RePHINE cannot distinguish. In particular,
if two graphs have one color, RePHINE cannot separate graphs of equal size with the same number
of components and cycles. For example, star and path graphs with 4 vertices of color c1 produce
identical RePHINE diagrams of the form {{(0, d, a, d), (0, d, a, d), (0, d, a, d), (0,∞, a, d)}}, where
d = fe({{c1, c1}}) and a = fv(c1) for arbitrary edge- and vertex-color filtration functions.

Combining RePHINE and GNNs. RePHINE diagrams can be easily incorporated into general
GNN layers. For instance, one can follow the scheme in [15] to combine non-missing hole information
with node features and leverage missing holes as graph-level attributes. However, here we adopt a
simple scheme that processes RePHINE tuples using DeepSets [38]. These topological embeddings
are then grouped using a pooling layer and concatenated with the graph-level GNN embedding. The
resulting representation is fed to a feedforward network to obtain class predictions. Formally, let
NG(u) denote the set of neighbors of vertex u in G, and h(0)u = c(u) for all u ∈ V . We compute
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Figure 6: Average learning curves for RePHINE, PH, and GCN on connected cubic graphs. RePHINE
can learn representations in cases where PH and GNNs struggle to capture structural information.
RePHINE shows better expressivity and fitting capability on Cub10-2 and Cub12-3.

GNN and RePHINE embeddings (denoted by r(ℓ)) at layer ℓ recursively as:

h̃(ℓ)u = AGG(ℓ)({{h(ℓ−1)
w | w ∈ NG(u)}}) ∀u ∈ V

h(ℓ)u = UPDATE(ℓ)
(
h(ℓ−1)
u , h̃(ℓ)u

)
∀u ∈ V

R(ℓ) = REPHINE(f (ℓ)v , f (ℓ)e , {{h(ℓ)u }}u∈V )

r(ℓ) = ϕ(ℓ)(
∑

d∈R(ℓ)

ψ(ℓ)(d))

where f (ℓ)v , f
(ℓ)
e , ψ(ℓ), ϕ(ℓ),AGG(ℓ), and UPDATE(ℓ) are arbitrary non-linear mappings, usually im-

plemented as feedforward neural nets. After L layers, we obtain the combined RePHINE-GNN
graph-level representation as [POOL1({r(ℓ)}ℓ) ∥ POOL2({h(L)

u }u)], where POOL1 is either mean or
concatenation, and POOL2 is an order invariant operation.

5 Experiments
In this section, we compare RePHINE to standard persistence diagrams from an empirical perspective.
Our main goal is to evaluate whether our method enables powerful graph-level representation,
confirming our theoretical analysis. Therefore, we conduct two main experiments. The first one
leverages an artificially created dataset, expected to impose challenges to persistent homology and MP-
GNNs. The second experiment aims to assess the predictive performance of RePHINE in combination
with GNNs on popular benchmarks for graph classification. All methods were implemented in
PyTorch [31], and our code is available at https://github.com/Aalto-QuML/RePHINE.

Synthetic data. We consider three datasets of cubic graphs (or 3-regular graphs): cub08, cub10,
and cub12 [6]. These graphs cannot be distinguished by 1-WL and color-based PH as all vertices
share the same color. Thus, we modify the datasets by changing the colors of 1, 2, or 3 vertices in
each graph sample, resulting in the modified datasets cub08-1, cub10-2, and cub12-3. Also, we
randomly partition each dataset and create a balanced binary classification task. We expect this to
keep the hardness of the task while allowing some distinguishability.

We compare standard 0-dim persistence diagrams from vertex-color filtrations (referred to as PH)
to 0-dim RePHINE (i.e., no missing holes). Both approaches are processed using DeepSets with
exactly the same structure and optimization procedure. Also, they operate on the original colors,
not on GNN embeddings. For completeness, we report results for a 2-layer graph convolutional
network (GCN) [22] followed by an MLP. We are interested in assessing if the persistence modules
can overfit the observed graphs. We also monitor if the methods obtain different representations for
each graph, measured in terms of the proportion of unique graph embeddings over training (which we
call expressivity). We provide further details and additional results with 1-dim persistence diagrams
in the supplementary material.
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Table 1: Predictive performance on graph classification. We denote in bold the best results. For ZINC,
lower is better. For most datasets, RePHINE is the best-performing method.

GNN Diagram NCI109 ↑ PROTEINS ↑ IMDB-B ↑ NCI1 ↑ MOLHIV ↑ ZINC ↓

GCN
- 76.46 ± 1.03 70.18 ± 1.35 64.20 ± 1.30 74.45 ± 1.05 74.99 ± 1.09 0.875 ± 0.009
PH 77.92 ± 1.89 69.46 ± 1.83 64.80 ± 1.30 79.08 ± 1.06 73.64 ± 1.29 0.513 ± 0.014
RePHINE 79.18 ± 1.97 71.25 ± 1.60 69.40 ± 3.78 80.44 ± 0.94 75.98 ± 1.80 0.468 ± 0.011

GIN
- 76.90 ± 0.80 72.50 ± 2.31 74.20 ± 1.30 76.89 ± 1.75 70.76 ± 2.46 0.621 ± 0.015
PH 78.35 ± 0.68 69.46 ± 2.48 69.80 ± 0.84 79.12 ± 1.23 73.37 ± 4.36 0.440 ± 0.019
RePHINE 79.23 ± 1.67 72.32 ± 1.89 72.80 ± 2.95 80.92 ± 1.92 73.71 ± 0.91 0.411 ± 0.015

Figure 6 shows the learning curves for 2000 epochs, averaged over five runs. Notably, for all datasets,
the expressivity of RePHINE is significantly higher than those from PH and similar to GNN’s. On
cub10-2, while PH and GNN obtain accuracies of around 0.5, RePHINE allows a better fit to the
observed data, illustrated by higher accuracy and lower loss values.

Real-world data. To assess the performance of RePHINE on real data, we use six popular datasets
for graph classification (details in the Supplementary): PROTEINS, IMDB-BINARY, NCI1, NCI109,
MOLHIV and ZINC [7, 16, 20]. We compare RePHINE against standard vertex-color persistence
diagrams (simply called PH here). Again, we do not aim to benchmark the performance of topological
GNNs, but isolate the effect of the persistence modules. Thus, we adopt default (shallow) GNN
architectures and process the persistence diagrams exactly the same way using DeepSets. We report
the mean and standard deviation of predictive metrics (AUC for MOLHIV, MAE for ZINC, and
Accuracy for the remaining) over five runs. We provide further implementation details in Appendix C.

Table 1 shows the results of PH and RePHINE combined with GCN [22] and GIN [37] models.
Notably, RePHINE consistently outperforms PH, being the best-performing method in 10 out of 12
experiments. Overall, we note that GIN-based approaches achieve slightly better results. Our results
suggest that RePHINE should be the default choice for persistence descriptors on graphs.

Table 2: PersLay vs. RePHINE: Accuracy results on graph classification.

Method NCI109 PROTEINS IMDB-B NCI1
PersLay 70.12 ± 0.83 67.68 ± 1.94 68.60 ± 5.13 68.86 ± 0.86
RePHINE+Linear 73.27 ± 1.69 71.96 ± 1.85 70.40 ± 2.97 74.94 ± 1.35

Comparison to PersLay [2]. We also compare our method against another topological neural
network, namely, PersLay. Since PersLay does not leverage GNNs, we adapted our initial design for
a fair comparison. Specifically, we compute RePHINE diagrams with learned filtration functions and
apply a linear classifier to provide class predictions. Also, we concatenate the vectorial representations
of the RePHINE diagrams with the same graph-level features obtained using PersLay. We refer to
our variant as RePHINE+Linear. Table 2 reports accuracy results over 5 runs on 4 datasets. For all
datasets, RePHINE+Linear achieves higher accuracy, with a significant margin overall.

6 Conclusion, Broader Impact, and Limitations
We resolve the expressivity of persistent homology methods for graph representation learning,
establishing a complete characterization of attributed graphs that can be distinguished with general
node- and edge-color filtrations. Central to our analyses is a novel notion of color-separating sets.

Much like how WL test has fostered more expressive graph neural networks (GNNs), our framework
of color-separating sets enables the design of provably more powerful topological descriptors such as
RePHINE (introduced here). RePHINE is computationally efficient and can be readily integrated into
GNNs, yielding empirical gains on several real benchmarks.

We have not analyzed here other types of filtrations, e.g., those based on the spectral decomposition
of graph Laplacians. Future work should also analyze the stability, generalization capabilities, and
local versions of RePHINE. Overall, we expect this work to spur principled methods that can leverage
both topological and geometric information, e.g., to obtain richer representations for molecules in
applications such as drug discovery and material design.
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Supplementary material: Going beyond persistent
homology using persistent homology

A Persistent homology
Persistent homology (PH) is one of the workhorses for topological data analysis (TDA). A cen-
tral idea underlying PH is to investigate the multiresolution structure in data through the lens of
low-dimensional topological features such as connected components (0-dimensional), loops (1-
dimensional), and voids (2-dimensional). Here, we provide a brief description of PH, and how it
extends to graphs. In particular, we do not present proofs and do not show that the constructions are
well-defined. For a detailed treatment, we refer the reader to [13], [9].

We will first define homological groups. They allow to characterise p-dimensional holes in a
topological space such as a simplicial complex. We present the theory for simplicial complexes, as
our focus is on 1-dimensional simplicial complexes (i.e. graphs).

Let K be a simplicial complex. The p-chains are formal sums c =
∑
aiσi, where ai ∈ Z/2Z and σi

are p-simplices in K. One can think of p-chain as a set of p-simplices such that ai = 1. Together
with componentwise addition, p-chains form the group Cp(K).

Now, consider a simplex σ = (v0, ..., vp) ∈ K. We can define a boundary for σ by

∂pσ =

p∑
j=0

(v0, ..., vj−1, vj+1, ..., vp),

i.e., ∂pσ is a sum of the (p − 1)-dimensional faces of σ. We can extend this to define a boundary
homomorphism ∂p : Cp(K) → Cp−1(K) where ∂p

∑
aiσi =

∑
ai∂pσi. Thus, we can define a

sequence of groups

...Cp+1(K)
∂p+1−−−→ Cp(K)

∂p−→ Cp−1(K)...,

each connected with a boundary homomorphism. This sequence is chain complex, and it is the last
definition we need in order to consider homology groups.

The pth homology group is a group of p-chains with empty boundary (i.e. ∂pσ = 0) such that each
of these particular p-chains (cycles) are a boundary of a different simplex in Cp+1(K). So, we can
define the homology group as the quotient space

Hp = ker∂p/Im∂(p+1).

The rank of Hp is equal to the pth Betti number (βp). Then, let us see how the homology groups can
be refined to gain persistent homology groups.

Persistent homology tracks the evolution of Betti numbers in a sequence of chain complexes. For
this, we need a filtration, which is an increasing sequence of simplicial complexes (Fi)

r
i=1 such that

F1 = ∅ ⊆ F2 ⊆ . . . ⊆ Fr = K. By constructing all homology groups for each of these simplicial
complexes, we can capture changes. New holes (or, homology classes) may emerge, or they may
be annihilated such that only the older remains. As such, we can associate a pair of timestamps, or
persistence points, (i, j) for every hole to indicate the filtration steps it appeared and disappeared.
The persistence of a point (i, j) is the duration for which the corresponding feature was in existence,
i.e., the difference |i − j|. We set j = ∞ if the hole does not disappear, i.e. is present at the last
filtration step. The extension to persistent homology groups and persistent Betti numbers is natural:

Hi,j
p = ker∂p/(Im∂(p+1) ∩ ker∂p),



and the pth persistent Betti number βi,j
p are given by the rank of Hi,j

p as earlier. Lastly, a persistent
diagram that consists of the persistent points (i, j) with multiplicities

µi,j
p = (βi,j−1

p − βi,j
p )− (βi−1,j−1

p − βi−1,j
p )

where i < j, encodes the persistent homology groups entirely by the Fundamental Lemma of
Persistent Homology.

For graphs, the filtration may be viewed as creating an increasing sequence of subgraphs. This entails
selecting a subset of vertices and edges of the graph at each step of the filtration. One can learn a
parameterized function f (e.g., a neural network) to assign some value to each σ ∈ K, and thereby
select the subsets Ki based on a threshold αi ∈ R. That is, f induces a filtration (Fi)

r
i=1 using a

sequence (αi)
r
i=1 such that α1 ≥ α2 ≥ . . . ≥ αr:

Fi ≜ F(f ;αi) = {σ ∈ K : f(σ) ≥ αi}.

We provide a detailed pseudocode in Algorithm 1 to compute the persistence diagram for an input
graph. The algorithm uses the Union-Find data structure, also known as a disjoint-set forest. The
code assumes we are given vertex-color filter values, stored in the variable vValues. The algorithm
returns a multiset containing 0- and 1-dimensional persistence tuples (i.e., persistence diagrams).

Algorithm 1 Computing persistence diagrams

Require: V,E, vValues ▷ Vertices, edges, and vertex-color filter values
uf← UNIONFIND(|V |)
pers0← zeros(|V |, 2) ▷ Initialize the persistence tuples
pers1← zeros(|E|, 2)
for e ∈ E do

(v, w)← e
eValues[e]← max(vValues[v], vValues[w])

end for
pers0[:, 1]← vValues ▷ Pre-set the ‘birth’ times
SINDICES, SVALUES← SORT(eValues)
for e,weight ∈ Pair(SINDICES, SVALUES) do ▷ Pair is equivalent to the zip function in Python

(v, w)← e
younger← uf.find(v) ▷ younger denotes the component that will die
older← uf.find(w)
if younger = older then ▷ A cycle was detected

pers1[e, 1]← weight
pers1[e, 2]←∞
continue

else
if vValues[younger] < vValues[older] then

younger, older, v, w← older, younger, w, v
end if

end if
pers0[younger, 2]← weight
uf.merge(v, w) ▷ Merge two connected components

end for
for r ∈ uf.roots() do

pers0[r, 2]←∞
end for
Dv ← JOIN(pers0, pers1)
return Dv
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B Proofs
B.1 Proof of Lemma 1: Vertex-based filtrations can generate inconsistent diagrams
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Figure S1: Filtrations induced by injective vertex filter functions for two isomorphic graphs.
Node ids are used as filter function. The top-row filtration induces the persistence diagram
D0

1 = {{(1,∞), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}}, while the second-row filtration produces D0
2 =

{{(1,∞), (2, 4), (3, 5), (4, 4), (5, 5), (6, 6)}}.

Proof. Consider a simple cyclic graph with 6 vertices that share the same color. Since the vertices are
structurally identical and have the same color, one would expect to get a single persistence diagram
irrespective of the labeling of the vertices. However, this is not the case. Consider two different
labelings for the vertices on the graph: ℓ1 = (v1, v2, v3, v4, v5, v6) and ℓ2 = (v1, v4, v2, v6, v3, v5)
(see Figure S1). Now, consider an injective vertex-based filtration where f(vi) > f(vj) if i > j. Then,
we obtain two different persistence diagrams, D1 = {{(1,∞), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}} and
D2 = {{(1,∞), (2, 4), (3, 5), (4, 4), (5, 5), (6, 6)}}. We note that for any choice of vertex-based
injective filter function on this cycle graph, we can follow a similar procedure to build two different
labelings such that the persistence diagrams are different.

B.2 Proof of Lemma 2: Equivalence between component-wise colors and real holes

Proof. We consider two arbitrary graphsG = (V,E, c,X) andG′ = (V ′, E′, c′, X ′) and an injective
filter function f : X ∪X ′ → R. We note that if G and G′ do not have the same number of connected
components (i.e., β0

G ̸= β0
G′ ), then G and G′ differ on the number of real holes, i.e., their multisets of

real holes are different trivially. Thus, we now assume β0
G = β0

G′ = k. We also assume both graphs
have same colors — if there is a color in G that is not in G′, the claim is trivial.

[⇒] Recall thatXi = {c(v) | v ∈ VCi} denotes the set of colors in the component Ci ⊆ G. Similarly,
X ′

i is the set of colors in C ′
i ⊆ G′. We want to show that if {{Xi}}ki=1 ̸= {{X ′

i}}ki=1, then there exists
a filtration such that the multisets of real holes are different. We proceed with a proof by induction on
the number of colors.

If there is only 1 color, component-wise colors cannot differ for graphs with β0
G = β0

G′ . Let us
thus consider 2 colors (say, b and w). For 2 colors, there are only three possibilities for what
Xh ∈ {{Xi}}ki=1 may be: {b}, {w} or {b, w}. Now, let us denote the multiplicities of {b}, {w} and
{b, w} in {{Xi}}ki=1 by n1, n2 and n3, respectively. Note that for G and G′ with β0

G = β0
G′ , we have

n1 + n2 + n3 = n′1 + n′2 + n′3. Thus, when {{Xi}}ki=1 ̸= {{X ′
i}}ki=1, there are four cases to consider:

1. n1 ̸= n′1, n2 ̸= n′2, n3 = n′3: Here, n2 + n3 ̸= n′2 + n′3 correspond to multiplicities of real
holes (w,∞) for G and G′ respectively, in a filtration that introduces the color w first.

2. n1 ̸= n′1, n2 = n′2, n3 ̸= n′3 : Again, n2 + n3 ̸= n′2 + n′3 correspond to multiplicities of
real holes (w,∞) for G and G′ respectively in a filtration that introduces the color w first.

3. n1 = n′1, n2 ̸= n′2, n3 ̸= n′3: Now, n1 + n3 ̸= n′1 + n′3 correspond to multiplicities of real
holes (b,∞) for G and G′ respectively in a filtration that introduces the color b first.

4. n1 ̸= n′1, n2 ̸= n′2, n3 ̸= n′3: Similarly, n1 + n3 ̸= n′1 + n′3 correspond to multiplicities of
real holes (b,∞) for G and G′ respectively in a filtration that introduces the color b first.

Note that cases as n1 ̸= n′1, n2 = n′2, n3 = n′3 are not possible as n1 + n2 + n3 = n′1 + n′2 + n′3.

Let us then assume that there are l colors, and there exists a permutation of the colors {c1, c2, ..., cl}
that induces a filtration giving different colored representatives.
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Let us consider graphs G and G′ with l + 1 colors. Now, if {{Xi}}ki=1 ̸= {{X ′
i}}ki=1 for subgraphs

of G and G′ with only l colors, the permutation {cl+1, c1, c2, ..., cl} induces a filtration where
the representatives of first l colors differ (and there may or may not be a difference also in the
representatives of the l+1-th color). However, if there are no such subgraphs, this means that each of
the pairs of unmatched component-colors contain the l + 1 th color. Now {c1, c2, ..., cl, cl+1} must
induce the wanted kind filtration, since now the representatives of each component are as in l colors.
The claim follows by the induction principle.

[⇐] Now, we want to prove that if there is a filtration such that the multisets of real holes differ, then
{{Xi}} ̸= {{X ′

i}}. We proceed with a proof by contrapositive.

Assume that {{Xi}} = {{X ′
i}}. Recall that, for a filter f , the color of the representatives of a real hole

associated with Ci is given by argminx∈Xi f(x). If {{Xi}} = {{X ′
i}}, it implies that the multisets of

colors of the representatives are identical. Finally, note that the birth times of real holes are functions
of these colors and, therefore, are identical as well.

B.3 Proof of Lemma 3: Almost holes and separating sets

Figure S2: Graph to help illustrate
the connectivity of almost holes.

Statement 1: We want to show that if (f(x(b)), f(x(d))) is an
almost hole, then S = {v ∈ V |f(c(v)) ≥ f(x(d))} is a separating
set of G = (V,E, c,X).

Proof. Let d = (f(x(b)), f(x(d))) be an almost hole. Then, we
know there is at least one vertex w of color c(w) = x(b) that gives
birth to a new connected component at the filtration step Gf(x(b)).
Also, there is a distinct vertex w′ such that w and w′ are not in
the same component at Gf(x(b)) but are connected at Gf(x(d)). The existence of w′ is guaranteed
since if there was no such w′ that gets connected to w at Gf(x(d)), d would be a real hole, or if
w was connected to all other nodes at Gf(x(b)), d would be a trivial hole. Figure S2 illustrates
a filtration on a 5-vertex graph with 5 colors. The filtration produces the persistence diagram
{{(1,∞), (2, 2), (3, 4), (4, 4), (5, 5)}}, with a single almost hole (3, 4). According to our description,
w corresponds to v3 (with x(b) = ‘grey’ and f(x(b)) = 3), and v1 could be a candidate to w′, for
instance.

The discovery of the vertices in T = {v ∈ V | f(c(v)) = f(x(d))} connects w to w′ since this set
is added at the step when the component associated with w dies at f(x(d)). Equivalently, T is a
separating set of Gf(x(d)). However, we want a separating set of G (not of Gf(x(d))). Finally, we note
that expanding T to S = {v ∈ V | f(v) ≥ f(x(d))} suffices to obtain a separating set of G.

Statement 2: Let S be a separating set of G that splits a connected component C ⊆ G into
k components C1, C2, . . . , Ck. Then, there exists a filtration that produces k − 1 almost holes
if the set of colors of vertices in ∪ki=1VCi is disjoint from those of the remaining vertices, i.e.,
{c(v) | v ∈ V \ ∪ki=1VCi

} ∩ {c(v) | v ∈ ∪ki=1VCi
} = ∅.

Proof. Let us denote by C1, C2, ..., Ck the connected components that S separates C into. We can
first set a restriction f |∪k

i=1VCi
to be any function mapping vertex colors to {1, 2, ..., | ∪ki=1 VCi |}—

i.e., vertices in ∪ki=1VCi
must take filtration values in {1, 2, ..., | ∪ki=1 VCi

|}. Similarly, we can set
f |V \∪k

i=1VCi
to be any function to {| ∪ki=1 VCi |+ 1, ..., |V |}.

The function f obtained by combining the domains of f |∪k
i=1VCi

and f |V \∪k
i=1VCi

is well defined
due to the assumption {c(v) | v ∈ V \ ∪ki=1VCi

} ∩ {c(v) | v ∈ ∪ki=1VCi
} = ∅. Since C1, C2 ... ,

Ck are not path-connected, the persistence diagram induced by f must have k holes that are born at
filtration steps in {1, 2, ..., | ∪ki=1 VCi

|}. Also, since the vertices of S are added at filtration steps in
{| ∪ki=1 VCi

|+ 1, ..., |V |}, all holes die, forcing the birth and death times to be different. Thus, there
must be one real hole corresponding to the connected component C and k − 1 almost holes.
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B.4 Proof of Lemma 4: Distinct almost holes imply distinct color-separating sets

Proof. We will consider two cases. The first one assumes that the multisets of real holes of DG and
DG′ are different. In the second case, we consider identical multisets of real holes and different
multisets of almost holes.

Case 1: multisets of real holes differ. By Lemma 2, we have that the graphs have distinct component-
wise colors - that is, an empty set is a color-separating set.

Case 2: D0
G and D0

G′ have identical real holes, but different multisets of almost holes. We want
to show that there is a color-separating set for G and G′. We note that we can split the condition of
distinct multisets of almost holes into two sub-cases: (i) There is some color x0 such that there are
more almost holes with birth time f(x0) in D0

G than in D0
G′ ; (ii) There is some color x0 such that

there are more almost holes with death f(x0) in D0
G than in D0

G′ .

Let us first consider case (i). By the definition of birth time, we have that Gf(x0) has more connected
components of color set {x0} than G′

f(x0)
. As such, {x ∈ X ∪ X ′|f(x) > f(x0)} is a color-

separating set for G and G′.

For case (ii), we assume that there are equally many births of almost holes associated to the the color
x0 — otherwise we return to case (i), for which we showed how to build a color-separating set. We
note that if there is a different number of connected components at any earlier filtration step than
when x0 is introduced (i.e. f(y) < f(x0)), then {x ∈ X ∪X ′|f(x) > f(y)} is a color separating
set — since Gf(y) and G′

f(y) do not have as many connected components, they cannot have identical
component-wise colors. However, if there is no such filtration step f(y), it follows that Gf(x0) and
G′

f(x0)
cannot have the same number of components. This follows since vertices of color x0 kill

more connected components in Gf(x0) than in G′
f(x0)

, while prior to this, the numbers of components
were equal. Therefore, {x ∈ X ∪X ′|f(x) > f(x0)} is a color-separating set.

B.5 Proof of Lemma 5: Equivalence between birth times and vertex colors

Proof. We consider a graph G = (V,E, c,X) and any injective vertex-color filter f : X → R from
which we obtain a persistence diagram D0. We want to show that there exists a bijection between the
multiset of birth times B = {{b | (b, d) ∈ D0}} and the multiset of vertex colors X = {{c(v) | v ∈ V }}.
Note that we can also represent a multiset as a pair B = (SB,mB) where SB is a set comprising
the distinct elements of B, and mB : SB → N is a multiplicity function that gives the number of
occurrences of each element of SB in the multiset. If there is a bijection g : SB → SX such that
mB = mX ◦ g, then we say that g is also a bijection between the multisets B and X .

We note that SX = Im[c] denotes the set of distinct colors in G. Without loss of generality, since
we are interested in filtrations induced by f on G, we can constrain ourselves to filter values on SX .
Thus, filtrations induced by f : SX → R are increasing (i.e., for any consecutive filtration steps j > i,
we have that Vj \Vi ̸= ∅) and produce filtration steps T = {f(x) | x ∈ SX }. Because such filtrations
are increasing, we have at least one vertex discovered at each step, resulting in the set of distinct
birth times SB = T . The mapping g : SX → SB where g(x) = f(x) for all x ∈ SX is a bijection.
By definition, the number of vertices discovered at step f(x) equals the number of persistence pairs
with birth time f(x), which is also equal to the number of vertices of color x. This implies that the
multiplicity of an element x in X is the same as its corresponding element g(x) in B.

B.6 Proof of Theorem 1: The expressive power of vertex-color filtrations

Proof. We consider graphs G = (V,E, c,X) and G′ = (V ′, E′, c′, X ′). and adopt the following
notation. We use X = {{c(v) | v ∈ V }} and X ′ = {{c′(v) | v ∈ V ′}} to denote the multisets of vertex
colors of G and G′. Also, we denote by C1, . . . , Ck the components of G, and by C ′

1, . . . , C
′
k′ the

components of G′. The set Xi = {c(w) | w ∈ VCi} denotes the distinct colors appearing in Ci.
Similarly, X ′

i = {c′(w) | w ∈ V ′
C′

i
} refers to the distinct colors in C ′

i.

[Forward direction⇒] D0
G ̸= D0

G′ → there is a color-separating set

The persistence diagrams D0
G and D0

G′ for graphs with X = X ′ have the same birth times. It implies
that if both the real holes and almost holes are identical, then the diagrams are also identical. As such,
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the assumption that D0
G ̸= D0

G′ gives that either (1) their multisets of real holes or (2) their multiset
of almost holes are different. In the following, we consider these two cases.

Regarding case (1), Lemma 2 gives that if D0
G ̸= D0

G′ with different multisets of real holes, then
we have that {{Xi}}ki=1 ̸= {{X ′

i}}ki=1. Whenever this happens, the forward direction holds as even an
empty set would work as a color-separating set here. Thus, it suffices to consider the case when D0

G
and D0

G′ only differ in their multisets of almost holes. In this case, we can directly leverage Lemma 4
to obtain that there is a color-separating set for G and G′.

[Backward direction⇐] Now we want to show that if there is a color-separating set Q ̸= ∅ for G and
G′, there exists a filtration such that D0

G ̸= D0
G′ .

IfQ = ∅, i.e. G andG′ have distinct component-wise colors, the claim follows by Lemma 2, withD0
G

andD0
G′ having different multisets of real holes. IfQ ̸= ∅, we can however use Lemma 2 to subgraphs

GV̄ and G′
V̄ ′ induced by V̄ = V \ {w ∈ V | c(w) ∈ Q} and V̄ ′ = V ′ \ {w ∈ V ′ | c′(w) ∈ Q} to

gain a filter function g such that the diagrams for these subgraphs differ. Now, let’s choose any a
filter function such that f(x) = g(x) ∀x ∈ X \Q AND the filtration values for vertices with colors
in X \ Q are smaller than those with colors in Q. It follows there is a filtration step j such that
Gj = GV̄ and G′

j = G′
V̄ ′ , and that the birth times for real holes (if the vertices of colors in Q do

not merge the real holes of the subgraphs) or almost holes (if the vertices of colors in Q do merge
components that would have been real holes in the subgraphs) differ. Thus, D0

G ̸= D0
G′ .

B.7 Proof of Lemma 6: Edge-based almost holes as disconnecting sets

Proof. Initially, when none of the edges are added, there must be |V | connected components. By
definition, each pair (0, d) ∈ D0 corresponds to the death of one component. It follows that Gf(x(d))

has c = |V | − | {(0, d) ∈ D0 | d ≤ f(x(d))} | connected components. If G has β0 connected
components, the subgraph with vertices V and edges E \ {e ∈ E | f(l(e)) ≥ f(x(d))} has more
than β0 connected components. Thus, {e ∈ E | f(l(e)) ≥ f(x(d))} is a disconnecting set of G.

B.8 Lemma 7: The reconstruction of a disconnecting set

Proof. Let π be the permutation of colors associated with a vertex-color filter function f , i.e.,
for a set of colors X = (x1, . . . , xm), we have that f(xπ(i)) < f(xπ(i+1)) ∀ i = 1, . . . ,m − 1.
Also, assume the colors associated with a disconnecting set S of a graph G = (V,E, l,X) is
XS = {xπ(k), xπ(k+1), . . . , xπ(m)}.

If S is a minimal disconnecting set, (0, f(xπ(k))) must be an almost hole in D since if we could
add edges W ⊆ S with color xπ(k) without killing some connected component of Gf(π(k−1)), the
set of edges S′ = S \W would form a proper disconnecting subset of a minimal disconnecting set
If S is not a minimal disconnecting, then there must be a proper subset S′ ⊂ S that is a minimal
disconnecting set of G. Now, we choose S′ to be included first in the filtration, followed by elements
of S \S′. Thus, in both cases, there is a filtration s.t. an almost-hole (0, f(xk)) appears, which allows
us to reconstruct S.

B.9 Proof of Theorem 2: The expressive power of edge-color filtrations
[⇐] We split the proof of the backward direction into three cases.

Proof. Case 1: The color-disconnecting set Q equals to X ∪ X ′. This is a trivial case. If
Q = X ∪ X ′, G and G′ have distinct number of connected components when all the edges are
removed from both graphs. This means |V | ≠ |V ′|. Now, if |V | ≠ |V ′|, then |D0

G| ≠ |D0
G′ | for any

filtration.

Case 2: The color-disconnecting set Q is an empty set. Now, the graphs have distinct number of
connected component (even if none of the edges are removed), i.e. β0

G ̸= β0
G′ . The diagrams differ

for any filtration since they have different numbers of real holes.

Case 3: The color-disconnecting set Q ̸= ∅ is a proper subset of X ∪ X ′: The existence of a
color-disconnecting set implies there is a set S ⊂ X ∪X ′ such that by removing the edges of colors
S, the two graphs will have different number of connected components. Without loss of generality,
we can assume that after removing the edges of colors S, G has more components than G′. Now,
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we note that in a filtration where the colors of S are added the latest, there must either be more
almost holes (0, f(x(d))) in D0

G than in D0
G′ with x(d) ∈ S, or alternatively β0

G ̸= β0
G′ . In both cases,

D0
G ̸= D0

G′ for some filter function f .

[⇒] To prove the forward direction of the Theorem, we consider the cases where the edge-color
diagrams differ in 1) their size, 2) the number of real holes, and 3) their almost holes.

Proof. Case 1: |DG| ≠ |DG′ |. Again, this corresponds to a trivial case, since if |DG| ≠ |DG′ |, then
|V | ≠ |V ′|. Now, Q = X ∪X ′ is a color-disconnecting set.

Case 2: DG and DG′ differ in their real holes. If there is a different count of real holes, then
β0
G ̸= β0

G′ , and Q = ∅ is a color-disconnecting set.

Case 3: DG and DG′ only differ in their almost holes. We now assume that |DG| = |DG′ | and
β0
G = β0

G′ , but DG ̸= DG′ . This means that there is some (0, d) ∈ D such that there are more almost
holes with this death time in DG than in DG′ , without loss of generality. There may be several such
almost holes (for which the diagrams differ) with distinct death times. Let’s denote the set of the
death times for these almost holes by D. Then, let dmin be the minimum of the death times in D,
i.e. dmin = mind∈D d. Let us show that the set Q = {x ∈ X ∪X ′ | f(x) > dmin} disconnects G′

into more connected components than G. For any lower filtration step, the induced subgraphs must
have as many connected components because the almost holes corresponding to those steps match,
and |DG| = |DG′ |, i.e. |V | = |V ′|, which means that at filtration step 0, we begin with equally
many connected components. At filtration step dmin, we connect more components in G than in G′

because there are more almost holes corresponding to this step in DG than in DG′ . Now, Q must be a
color-disconnecting set.

B.10 Proof of Theorem 3: Edge-color vs. vertex-color filtrations

Proof. This Theorem is proved in Section 3.3. In particular, Figure 3(a) provides an example of
pairs of graphs that can be distinguished by vertex-color filtrations but not from edge-color ones. On
the other hand, the graphs in Figure 3(b) can be distinguished by edge-color filtrations but not from
vertex-color ones. This concludes the proof.

B.11 Proof of Theorem 4: RePHINE is isomorphism invariant

Proof. RePHINE diagram’s isomorphism invariance stems from the fact that it is a function of
a filtration on graph, and this filtration is gained from isomorphism invariant colorings. If this
assumption is violated and the colorings are not gained in an invariant way, RePHINE diagrams can
also be inconsistent.

It is easy to check that the tuples (b,d) are isomorphism invariant - when b = 0, these tuples correspond
to diagrams gained from edge-color filtration. In this case, we can check the conditions given by
Theorem 2 and note none of the conditions may be met with isomorphic graphs. With regard to b = 1,
the set of missing holes is multiset of edge colors that did not appear in edge-color filtration diagram.
This set can thus be gained by considering the multiset of edge colours and the edge-color diagram,
which are both isomorphism invariant.

Further, it is also easy to see that the tuples (α, γ) are invariant. When b = 0, the set of α’s
corresponds to the multiset of vertex colours, and for each vertex, γ = minv∈N (w) fe({c(w), c(v)}).
However, the crucial part is how these two tuples are concatenated, i.e., how each of the vertices
are associated with real and almost-holes. In particular, we need to check when two connected
components are merged at a filtration step i and RePHINE compares the representatives (i.e. vertices
of a connected component which have not yet ’died’) of the two components, we will end up with
same diagram elements of form (b, i, α, γ) regardless of the order we add the edges of color with
filtration value i. In other words, while the RePHINE algorithm considers one edge at a time and does
only pairwise comparisons between merged connected components, the order or these comparisons
must not affect the decision on which vertices are associated with death time i. Let’s consider what
happens when adding all the edges of a color results in merging more than two components. Assume
there is a new connected components constituting of old connected components T1, T2, ..., Tn. Now,
there are two different cases. Assume first that there is a strict minimum among the vertex filtration
values of the old representatives. Then, any pairwise comparison will lead to choosing this minimum
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as the representative of the new connected component and all the other vertices will die at this
filtration step. Then, assume there is no strict minimum but a tie between two or more representatives.
Then, there will be comparisons based on γ, but choosing maximum of these is also permutation
invariant function. In case there are two (or more) representatives such that there is a tie based on
the vertex filtration values and γ values, choosing at random any of these leads to the same diagram.
Lastly, note that for each real hole, (b, d) = (0,∞), and so it does not thus matter how each of the
vertices are matched to the real holes, when rest of vertices are associated with almost-holes in an
invariant way.

B.12 Proof of Theorem 5: RePHINE is strictly more expressive than color-based PH
Let RG denote the RePHINE diagram for a graph G. Similarly, let Dv,G and De,G denote
persistence diagrams associated with vertex- and edge-color filtrations of G. We assume that
Dv,G = (D0

v,G,D1
v,G) and De,G = (D0

e,G,D1
e,G) include 0- and 1-dim persistence diagrams. We

want to show that for two graphs G and G′

(i) if there is a vertex-color filtration such that Dv,G ̸= Dv,G′ then there is a filtration that lead
toRG ̸= RG′ .

(ii) if there is a edge-color filtration such that De,G ̸= De,G′ then there is a filtration that lead to
RG ̸= RG′ .

These results would show that RePHINE is at least as expressive as color-based persistence diagrams.
We further show that

(iii) there is a pair of non-isomorphic graphs for which we can obtainRG ̸= RG′ but Dv,G =
Dv,G′ and De,G = De,G′ for all vertex- and edge-color filtrations.

Proof. Part (i): Dv,G ̸= Dv,G′ → RG ̸= RG′ . Let f be the vertex-color function associated with
the standard diagrams D. We can choose the RePHINE’s vertex-level function fv such that fv = f .
We note that the original diagrams can be obtained from an auxiliary edge-level filter function fa
where fa(u,w) = max(f(c(u)), f(c(w))). The procedure is described in Algorithm 1.

Let fe be the edge-color filter function of RePHINE. If we choose fe = fa, then RePHINE contains in
the second and third elements of its tuples exactly the same persistence information of the vertex-color
diagrams. Note that in this case, we do not even need to require injectivity of the edge-color filter
fe since the max function is not injective. Regarding the 1-dim features, for any tuple (d,∞) in the
1-dim persistence diagram, we have a missing hole (1, d, ·, ·) that comprises the same information.
Thus, we have constructed vertex- and edge-color functions such that Dv,G ̸= Dv,G′ → RG ̸= RG′ .

Part (ii): De,G ̸= De,G′ → RG ̸= RG′ . This is a trivial case as RePHINE consists of an augmented
version of standard edge-color diagrams. Let f be the edge-color (injective) filter function associated
with the standard diagrams. In this case, we can simply set fe = f , where fe is RePHINE’s edge-color
filter. Then, the first and second elements of RePHINE’s tuples correspond to De. Regarding the
1-dim features, the only difference is the way the information is encoded. While we adopted the
convention (1, d) for missing holes, the standard diagrams often use (d,∞). The relevant information
is the same. Therefore, RePHINE is at least as expressive as edge-color persistence diagrams.

Part (iii). To show that RePHINE is strictly more expressive than color-based PH, it suffices to
provide an example of two graphs for which there is a filtration such thatRG ̸= RG′ but these graphs
cannot be separated from any vertex- or edge-color filtration. We use the pair of graphs in Figure
3(c). We note that these graphs have no cycles, making 1-dim persistence information trivial.

We first note that their multisets of colors are identical and there is no color-separating sets for these
two graphs — i.e., there is no subset of colors whose removal would separate the graphs into distinct
component-wise colors. Thus, by Theorem 1, there is no vertex-color filtration s.t. Dv,G ̸= Dv,G′ .

Also, we have that |V | = |V ′| and X = X ′ and β0
G = β0

G′ , and there is no color-disconnecting set
for G and G′ (i.e., there is no edge colors whose removal would generate subgraphs with different
number of components). By Theorem 2, these graphs cannot be separated by any edge-color filtration.

However, if we choose the filter functions fv(‘blue’) = 1, fv(‘orange’) = 2,
fe(‘blue-blue’) = 4, and fe(‘blue-orange’) = 3, we obtain distinct RePHINE di-
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agrams given by RG = {{(0, 4, 1, 4), (0,∞, 1, 3), (0, 3, 2, 3), (0, 3, 2, 3)}} and RG′ =
{{(0,∞, 1, 3), (0, 4, 1, 3), (0, 3, 2, 3), (0, 3, 2, 3)}}.

C Implementation details
C.1 Datasets
Table S1 reports summary statistics of the real-world datasets used in this paper. For the IMDB-B
dataset, we use uninformative features (vector of ones) for all nodes. NCI1, NCI109, Proteins, and
IMDB-B are part of the TU Datasets2, a vast collection of datasets commonly used for evaluating
graph kernel methods and GNNs. MOLHIV is the largest dataset (over 41K graphs) and is part of the
Open Graph Benchmark3. We also consider a regression task using the ZINC dataset — a subset
of the popular ZINC-250K chemical compounds [19], which is particularly suitable for molecular
property prediction [7].

Table S1: Statistics of the datasets.
Dataset #graphs #classes #node labels Avg #nodes Avg #edges

NCI1 4110 2 37 29.87 32.30
IMDB-B 1000 2 - 19.77 96.53
PROTEINS (full) 1113 2 3 39.06 72.82
NCI109 4127 2 38 29.68 32.13
MOLHIV 41127 2 9 25.5 27.5
ZINC 12000 - 28 23.16 49.83

The cubic datasets (Cubic08, Cubic10, and Cubic12) comprise non-isomorphic 3-regular graphs
with 8, 10, and 12 vertices, respectively. These datasets contain 5 (Cubic08), 19 (Cubic10), and 85
(Cubic12) graphs and can be downloaded at https://houseofgraphs.org/meta-directory/
cubic. For each dataset, we create a balanced graph classification problem by randomly assigning
each graph a binary class. Also, since the graphs do not have node features, we add a scalar feature to
each vertex, i.e., c(v) = 1 for all v. However, this would make 1WL-GNNs and PH fail to distinguish
any pair of graphs. Thus, we change the features of some arbitrary vertices of each graph, making
c(v) = −1 for 1 vertex in graphs from Cubic08, 2 vertices in Cubic10, and 3 vertices in Cubic12
— we denote the resulting datasets as Cubic08-1, Cubic10-2, and Cubic12-3. Given the modified
datasets, we aim to assess if the existing methods can overfit (correctly classify all) the samples.

C.2 Models
We implement all models using the PyTorch Geometric Library [10].

Synthetic data. The GNN architecture consists of a GCN with 2 convolutional layers followed by
a sum readout layer and an MLP (one hidden layer) with ReLU activation. The resulting architecture
is: Conv(1, 36)→ Conv(36, 16)→ sum-readout→ BN(16)→ MLP(16, 24, 1), where BN
denotes a batch norm layer [18]. For the PH model, we consider standard vertex-color filtration
functions. In particular, we apply the same procedure as Hofer et al. [13], Horn et al. [15] to
compute the persistence tuples. We only consider 0-dim persistence diagrams. The filtration function
consists of an MLP with 8 hidden units and ReLU activation followed by a component-wise sigmoid
function: Sigmoid(MLP(1, 8, 4)) — i.e., we use 4 filtration functions with shared parameters.
Since we can associate persistence tuples with vertices, we concatenate the resulting diagrams to
obtain a |V | × (4 ∗ 2) matrix [D0

1,D0
2,D0

3,D0
4], where D0

i denotes the 0-dim diagram obtained using
the i-th filtration function. This procedure was also employed by Horn et al. [15]. The obtained
diagrams are processed using a DeepSet layer with mean aggregator and internal MLP function
(Ψ) with 16 hidden and output units, MLP(4 * 2, 16, 16). We then apply a linear layer on top
of the aggregated features. The overall DeepSet architecture is: MLP(4 * 2, 16, 16)→ Mean
Aggregator→ Linear(16, 16). Finally, we obtain class predictions using BatchNorm followed
by a single-hidden-layer MLP with 16 hidden units: BN(16)→ MLP(16, 16, 1).

RePHINE uses the same overall architecture as the PH model. The only differences are that i)
RePHINE tuples are 3-dimensional (as opposed to 2-dimensional in PH), and ii) RePHINE addi-

2https://chrsmrrs.github.io/datasets/
3https://ogb.stanford.edu
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tionally leverages an edge-level filtration function. Such a function follows the architecture of the
vertex-level one, i.e., Sigmoid(MLP(1, 8, 4)). We note that RePHINE tuples are 3-dimensional
instead of 4-dimensional because we removed their uninformative first component (equal to 0) since
we only use 0-dim diagrams. In other words, we do not leverage missing holes.

Regarding the training, all models follow the same setting: we apply the Adam optimizer [21] for
2000 epochs with an initial learning rate of 10−4 that is decreased by half every 400 epochs. We use
batches of sizes 5, 8, 32 for the cubic08, cubic10, and cubic12 datasets, respectively. All results are
averaged over 5 independent runs (different seeds). For all models, we obtain the expressivity metric
by computing the uniqueness of graph-level representations extracted before the final MLP, with a
precision of 5 decimals. Importantly, these choices of hyperparameters ensure that all models have a
similar number of learned parameters: 1177 (RePHINE), 1061 (PH), and 1129 (GCN).

Real-world data. For computing the standard vertex-color persistence diagrams, we use the
code available by Horn et al. [15], which consists of a parallel implementation in PyTorch of the
pseudocode in Algorithm 1. Moreover, we apply a multiple filtration scheme and concatenate the
0-dim persistence diagrams to form matrix representations — again similarly to the design in [15].
Then, we apply a DeepSet architecture of the form: MLP(TupleSize * nFiltrations, OutDim,
OutDim) → Mean Aggregator → Linear(OutDim, OutDim). We use MLPs to define vertex-
and edge-level filtration functions. For the 1-dimensional persistence tuples (or missing holes), we
first process the tuples from each filtration function using a shared DeepSet layer and then apply
mean pooling to obtain graph-level representations — this avoids possibly breaking isomorphism
invariance by concatenating 1-dimensional diagrams. We sum the 0- and 1-dim embeddings and send
the resulting vector to an MLP head. The resulting topological embeddings are concatenated with
last-layer GNN embeddings and fed into a final MLP classifier.

We carry out grid-search for model selection. More specifically, we consider a grid comprised
of a combination of {2, 3} GNN layers and {2, 4, 8} filtration functions. We set the number of
hidden units in the DeepSet and GNN layers to 64, and of the filtration functions to 16 — i.e.,
the vertex/edge-color filtration functions consist of a 2-layer MLP with 16 hidden units. For the
largest datasets (ZINC and MOLHIV), we only use two GNN layers. The GNN node embeddings
are combined using a global mean pooling layer. Importantly, for all datasets, we use the same
architecture for RePHINE and color-based persistence diagrams.

For the TUDatasets, we obtain a random 80%/10%/10% (train/val/test) split, which is kept identical
across five runs. The ZINC and MOLHIV datasets have public splits. All models are initialized with
a learning rate of 10−3 that is halved if the validation loss does not improve over 10 epochs. We
apply early stopping with patience equal to 40.

Comparison to PersLay. We followed the guidelines in the official code repository regarding the
choice of hyper-parameters. In particular, PersLay applies fixed filtration functions obtained from
heat kernel signatures of the graphs with different parameters, resulting in extended and ordinary
diagrams for 0 and 1-dimensional topological features. For RePHINE+Linear, we carry out a simple
model selection procedure using grid-search for the number of filtration functions ({4, 8}) and the
number of hidden units ({16, 64}) in the DeepSet models.

Hardware. For all experiments, we use Tesla V100 GPU cards and consider a memory budget of
32GB of RAM.

C.3 Computing RePHINE diagrams
Algorithm 2 describes the computation of RePHINE diagrams. The pseudocode has been written for
clarity, not efficiency. The replacement for∞ in real holes depends on the choice of edge and vertex
filter functions. In all experiments, we employed the logistic function to the output of the feedforward
networks (i.e., filtered values lie in [0, 1]) and used 1 to denote the death time of real holes.

D Additional experiments
Here, we complement the experiments on synthetic data, providing illustrations of the learned
persistence diagrams and reporting results obtained when we combine 0- and 1-dimensional diagrams.

In Figure S3, we show the concatenation of the learned persistence diagrams at the end of the training
procedure for RePHINE and PH (i.e., standard vertex-color filtrations). In these examples, the
RePHINE diagrams are different while the PH ones are identical. We can observe this behavior by
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Algorithm 2 RePHINE

Require: V,E, eValues, vValues ▷ Vertices, edges, and edge/vertex-color filter values
uf← UNIONFIND(|V |)
pers0← zeros(|V |, 4) ▷ Initialize the persistence tuples
pers1← zeros(|E|, 4)
pers0[:, 3]← vValues ▷ Pre-set the ‘birth’ times of each node
SINDICES, SVALUES← SORT(eValues)
for e,weight ∈ Pair(SINDICES, SVALUES) do ▷ Pair is equivalent to the zip function in Python

(v, w)← e
if pers0[v, 4] = 0 then

pers0[v, 4]← weight ▷ Save the first filtration step that a node is discovered
end if
if pers0[w, 4] = 0 then

pers0[w, 4]← weight
end if
younger← uf.find(v) ▷ younger denotes the component that will die
older← uf.find(w)
if younger = older then ▷ A cycle was detected

pers1[e, 1]← 1
pers1[e, 2]← weight
pers1[e, [3,4]]←∞
continue

else
if vValues[younger] = vValues[older] then

if pers0[younger, 4] < pers0[older, 4] then ▷ Additional disambiguation step
younger, older, v, w← older, younger, w, v ▷ Flip younger, older, and node ids

end if
else if vValues[younger] < vValues[older] then

younger, older, v, w← older, younger, w, v
end if

end if
pers0[younger, 2]← weight
uf.merge(v, w) ▷ Merge two connected components

end for
for r ∈ uf.roots() do

pers0[r, 2]←∞
end for
R ← JOIN(pers0, pers1)
returnR

carefully inspecting the multisets of vectors at each row of the concatenated tuples (each row of the
plots in Figure S3). For instance, consider the diagrams in Figure S3(b): in the RePHINE diagram for
the top graph, there is a row with 3 yellow entries which do not appear at the diagram for the bottom
graph. However, the representations obtained from Standard PH are identical for these graphs.

In Figure 6 we reported results using only 0-dimensional topological features. For completeness,
Figure S4 shows learning curves when exploiting both 0 and 1-dimensional diagrams. Overall, we can
again observe that RePHINE produces higher expressivity and better fitting capability in comparison
to vertex-color persistence diagrams.
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RePHINE Standard

(a) Cubic08-1

RePHINE Standard

(b) Cubic10-2

RePHINE Standard

(c) Cubic12-3

RePHINE Standard

(d) Cubic10-2

RePHINE Standard

(e) Cubic12-3

RePHINE Standard

(f) Cubic12-3

Figure S3: 0-dimensional diagrams obtained from RePHINE and PH (standard vertex-color filtrations).
These represent pairs of graphs for which the learning procedure in RePHINE could yield different
representations, whereas PH produced identical graph-level embeddings.
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Figure S4: Average learning curves for RePHINE and PH on cubic graphs, using both 0-dim and
1-dim persistence diagrams. Again, RePHINE can better fit the graph samples.
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