
Open Compound Domain Adaptation with Object
Style Compensation for Semantic Segmentation

– Supplementary Material –

Tingliang Feng1,2∗ Hao Shi1,3∗ Xueyang Liu1 Wei Feng1,2

Liang Wan1 Yanlin Zhou4 Di Lin1†
1College of Intelligence and Computing, Tianjin University

2Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University
3Department of Automation, Tsinghua University 4Dunhuang Academy

{fengtl, xyliu850569498, lwan}@tju.edu.cn shi-h23@mails.tsinghua.edu.cn
wfeng@ieee.org zhouyanlin@dha.ac.cn Ande.lin1988@gmain.com

1 Implementation Details

In our implementation, we adopt a warm-up strategy to pretrain the backbone network for 50,000
iterations. After the warm-up phase, we generate pseudo annotations for the training data in target
domain and determine the initial values of category-key features based on source images. Next,
we initialize the representative-key features and discrepancy features of each set in OLDM using a
First-Input, Fist-Output (FIFO) queue. To ensure comprehensive initialization of all sets in OLDM,
this phase extends over 4000 iterations. Upon completion, our method empowers the execution of
Discrepancy Memorization and Style Compensation.

2 Supplementary Experiments

In this section, we provide an extensive and comprehensive display of experiments. We have
structured this section into five subsections. The initial subsection provides an in-depth analysis of
the state-of-the-art comparison experiments outlined in the main paper. The subsequent subsection
focuses on conducting a sensitivity analysis of the hyperparameters mentioned in the main paper.
Following that, we evaluate OLDM in cross-model scenarios as the third subsection. The fourth
subsection delves into the analysis of the compensation effect. Lastly, the fifth subsection showcases
a broader range of visual results obtained from different datasets.

2.1 Comprehensive Experimental Results
In this section, we present a comprehensive experimental results of state-of-the-art methods in Table 1,
2, 3 and 4, which is related to the Table 7 in the main paper.

Table 1: Comparison with the state-of-the-art methods. Train: GTA5(Source), C-Driving(Target).
Test:C-Driving(Target). Related to the Table 7 (a) in the main paper.
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mIoU(T)
Source-only - 73.4 12.5 62.8 6.0 15.8 19.4 10.9 21.1 54.6 13.9 76.7 34.5 12.4 68.1 31.0 12.8 0.0 10.1 1.9 28.3

CDAS[4] OCDA 79.1 9.4 67.2 12.3 15.0 20.1 14.8 23.8 65.0 22.9 82.6 40.4 7.2 73.0 27.1 18.3 0.0 16.1 1.5 31.4
CSFU[5] OCDA 80.1 12.2 70.8 9.4 24.5 22.8 19.1 30.3 68.5 28.9 82.7 47.0 16.4 79.9 36.6 18.8 0.0 13.5 1.4 34.9
DACS[6] UDA 81.9 24.0 72.2 11.9 28.6 24.2 18.3 35.4 71.8 28.0 87.7 44.9 15.6 78.4 39.1 24.9 0.1 6.9 1.9 36.6
DHA[7] OCDA 79.9 14.5 71.4 13.1 32.0 27.1 20.7 35.3 70.5 27.5 86.4 47.3 23.3 77.6 44.0 18.0 0.1 13.7 2.5 37.1
AST[8] OCDA 82.3 20.3 70.7 11.2 31.8 25.8 23.1 37.5 72.5 26.5 86.3 48.1 30.1 78.4 48.1 25.6 0.0 18.2 1.1 38.8

ML-BPM[9] OCDA 85.3 26.2 72.8 10.6 33.1 26.9 24.6 39.4 70.8 32.5 87.9 47.6 29.2 84.8 46.0 22.8 0.2 16.7 5.8 40.2
Ours OCDA 87.3 23.5 76.0 27.9 35.9 29.3 22.3 43.8 75.6 39.0 90.3 55.5 40.6 84.0 55.0 30.5 0.0 21.8 0.0 44.1
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Table 2: Comparison with the state-of-the-art methods. Train: SYNTHIA(Source), C-Driving(Target).
Test:C-Driving(Target). Related to the Table 7 (b) in the main paper.
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mIoU16 mIoU11

Source-only - 33.9 11.9 42.5 1.5 0.0 14.7 0.0 1.3 56.8 76.5 13.3 7.4 57.8 12.5 2.1 1.6 20.9 28.1
CDAS[4] OCDA 54.5 13.0 53.9 0.8 0.0 18.2 13.0 13.2 60.0 78.9 17.6 3.1 64.2 12.2 2.1 1.5 25.3 34.0
CSFU[5] OCDA 69.6 12.2 50.9 1.3 0.0 16.7 12.1 13.6 56.2 75.8 20.0 4.8 68.2 14.1 0.9 1.2 26.1 34.8
DACS[6] UDA 62.1 15.2 48.8 0.3 0.0 19.7 10.3 9.6 57.8 84.4 35.2 18.9 67.8 16.0 2.2 1.7 28.1 36.5
DHA[7] OCDA 67.5 2.5 54.6 0.2 0.0 25.8 13.4 27.1 58.0 83.9 36.0 6.1 71.6 28.9 2.2 1.8 29.9 37.6
AST[8] OCDA 69.2 13.6 60.4 0.6 0.0 23.7 12.1 25.9 60.3 82.1 38.4 14.4 67.3 25.1 1.6 3.1 31.1 38.9

ML-BPM[9] OCDA 73.4 15.2 57.1 1.8 0.0 23.2 13.5 23.9 59.9 83.3 40.3 22.3 72.2 23.3 2.3 2.2 32.1 40.0
Ours OCDA 80.8 4.6 73.4 0.0 0.0 26.4 11.5 37.9 68.2 88.4 50.6 11.0 76.4 33.1 1.5 6.2 35.6 43.7

Table 3: Comparison with the state-of-the-art methods. Train: GTA5(Source), ACDC(Target).
Test:ACDC(Target). Related to the Table 7 (e) in the main paper.
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mIoU(T)
Source-only - 43.6 2.5 46.2 5.2 0.1 30.3 15.3 16.3 56.9 0.0 71.5 16.3 13.7 51.4 0.0 15.1 0.0 1.4 4.2 20.5

CDAS[4] OCDA 53.2 5.9 56.1 10.1 2.6 22.0 37.1 11.4 53.9 23.5 71.3 27.6 14.6 47.5 16.8 19.5 0.0 3.2 3.8 25.3
CSFU[5] OCDA 47.0 4.1 53.0 13.9 1.0 23.2 41.2 18.8 55.8 23.2 72.1 31.5 10.8 69.1 26.4 27.8 0.2 1.7 2.6 27.6
DACS[6] UDA 48.9 9.7 54.5 16.8 5.7 22.7 42.0 22.9 61.3 29.7 73.7 32.2 11.6 63.3 23.2 26.5 0.0 1.2 5.2 29.0
DHA[7] OCDA 49.8 5.2 59.1 10.2 3.1 25.6 47.8 27.9 65.1 32.0 75.2 29.0 12.2 61.5 20.5 32.4 0.0 1.0 2.0 29.5
AST[8] OCDA 51.3 7.2 60.2 19.3 8.6 29.8 48.6 18.5 58.3 29.8 74.8 35.3 9.5 70.3 28.4 24.8 3.1 2.7 3.2 30.7

ML-BPM[9] OCDA 48.4 5.0 58.2 25.3 10.0 35.1 50.4 26.7 66.8 33.3 75.8 32.1 16.7 73.5 16.8 26.6 0.2 3.9 4.6 32.1
Ours OCDA 72.1 18.7 50.9 26.5 14.3 34.5 46.4 11.4 61.4 34.7 72.5 31.5 5.6 72.1 44.2 65.1 10.5 5.2 0.2 35.7

Table 4: Comparison with the state-of-the-art methods. Train: SYNTHIA(Source), ACDC(Target).
Test:ACDC(Target). Related to the Table 7 (f) in the main paper.

Method Type ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
g

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
bi

ke

bi
ke

mIoU16

Source-only - 45.2 0.2 36.7 1.7 0.6 25.7 4.0 5.6 46.6 64.3 16.9 11.3 39.6 16.5 0.6 1.9 19.8
CDAS[4] OCDA 61.3 0.7 60.1 11.7 1.8 28.4 18.8 23.5 48.6 28.9 16.5 15.9 69.2 18.4 5.4 5.6 25.9
CSFU[5] OCDA 62.6 0.3 60.3 8.6 1.8 21.3 20.7 29.1 44.5 22.1 34.5 19.0 71.1 23.2 4.4 4.3 26.7
DACS[6] UDA 55.6 1.1 55.7 0.1 0.7 25.8 31.7 18.3 65.5 53.7 31.1 16.6 69.2 22.5 2.9 3.1 28.3
DHA[7] OCDA 55.5 1.1 57.2 0.7 0.8 26.6 22.7 24.6 65.8 58.4 29.6 23.9 70.8 19.5 5.4 4.2 29.2
AST[8] OCDA 60.1 1.3 60.3 5.3 0.2 25.4 27.7 18.6 63.9 67.2 30.2 25.1 70.1 20.3 4.3 2.2 30.1

ML-BPM[9] OCDA 66.7 1.7 62.4 10.8 1.4 30.8 23.9 29.2 62.6 69.0 31.6 14.6 71.8 22.9 6.8 4.5 31.9
Ours OCDA 75.8 5.2 64.9 13.5 4.2 28.6 25.1 31.1 66.2 59.4 35.1 29.5 69.5 36.2 4.2 6.2 34.7

2.2 Sensitivity Analysis of Hyper-parameters
We assess the impact of key hyperparameters on the segmentation performance, namely the memory
capacity M , the number of feature sets K, and the values of λ and γ. These hyperparameters govern
the capacity and update process of the Object-Level Discrepancy Memory (OLDM), as well as the
management of category-key, representative-key, and discrepancy features during the discrepancy
memorization phase.

Sensitivity Analysis of Memory Capacity We examine the influence on segmentation performance
by varying the number of discrepancy features in each set of OLDM (see Figure 1). We select
feature numbers from {10, 20, 30, 40, 50, 60, 70, 80}. As illustrated in Figure 1(a–b), insufficient
discrepancy features fail to adequately capture style changes in instances adapted from the target to
source domains, resulting in suboptimal performance. Conversely, an excess of discrepancy features
proves redundant and saturates performance. Moreover, it demands substantial computational
resources to search for appropriate discrepancy features from OLDM to compensate for style-related
features (see Figure 1(c–d)). By default, we set M = 50.
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Figure 1: The results of sensitivity analysis of memory capacity on the target and open domain of
C-Driving.
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Figure 2: The results of sensitivity analysis of ratio
λ on the target and open domain of C-Driving.

Sensitivity Analysis of ratio λ When up-
dating the category-key features, λ represents
a ratio that controls the information injection
of Fs(x, y) into Al in Eq.(1) of the main pa-
per. As depicted in Figure 2, we compare the
segmentation performance using different val-
ues of λ. Setting λ excessively large (e.g.,
λ = 0.1, 0.05, 0.01) renders the category-key
features susceptible to the influence of sub-
sequent features, compromising performance.
Conversely, an excessively small λ (e.g., λ =
0.0005, 0.0001) results in sluggish category-key
feature updates, leading to high sensitivity to the
initial value. By default, we use λ = 0.001.
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Figure 3: The results of sensitivity analysis of
score threshold γ in Eq.(2) on the target and open
domain of C-Driving.

Sensitivity Analysis of score threshold
γ When updating the representative-key and
discrepancy features, we introduce a score
threshold γ in Eq.(2) of the main paper to
select reliable object features. In Figure 3,
we investigate the effectiveness of different
threshold settings. Setting γ too small (e.g.,
γ = 0, 0.1, 0.2, 0.3) introduces more noise
into the object features used for updating the
representative-key and discrepancy features, hin-
dering the effective construction of OLDM.
Conversely, setting γ too large (e.g., γ =
0.7, 0.8, 0.9) imposes overly stringent selection
criteria, resulting in a limited number of features used to update the representative-key and discrep-
ancy features, thereby compromising the representativeness of the discrepancy features in OLDM.
By default, we use γ = 0.5.
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Figure 4: The results of sensitivity analysis of
score threshold γ in Eq.(4) on the target and open
domain of C-Driving.

We also introduce the score threshold γ to
ensure the accuracy of pseudo annotations in
Eq.(4) of the main paper. In Figure 4, we ana-
lyze the segmentation performance under dif-
ferent γ settings. Setting γ too small (e.g.,
γ = 0, 0.1, 0.2, 0.3) introduces noise into the
pseudo annotations, leading to erroneous guid-
ance for model training. Conversely, setting γ
too large (e.g., γ = 0.7, 0.8, 0.9) disregards the
majority of pixels, including some correctly pre-
dicted ones. This lack of constraints from the
target domain annotations prevents the model
from generating accurate annotations for target
domain images. By default, we use γ = 0.5.
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Figure 5: The results of sensitivity analysis of the
chosen number of compensation sets K on the
target and open domain of C-Driving.

Sensitivity Analysis of the selected number of
feature sets K Figure 5 illustrates our investi-
gation into various approaches for compensating
object features by modifying the number of sets
used. When a smaller number of sets is selected
for compensation, there is a risk of excluding the
sets that correspond to the correct category, re-
sulting in ineffective compensation. Conversely,
opting for a larger number of sets introduces er-
ror information due to the inclusion of excessive
categories. These redundant features offer mini-
mal performance enhancement while increasing
testing time. By default, we utilize K = 9.
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2.3 Evaluation of OLDM in Cross-Model Scenarios

Table 5: The results of the methods exchanging the
OLDMs of the model trained with C-Driving and ACDC
as target domains, respectively.

Train: GTA5, C-Driving Train: SYNTHIA, C-Driving
Test: C-Driving Test: C-Driving

w/o OLDM
mIoU(T) mIoU(O) mIoU16(T) mIoU(O)

36.6 39.7 28.1 36.8

w/o Cross-Model
mIoU(T) mIoU(O) mIoU16(T) mIoU(O)

44.1 46.9 35.6 48.5

w/ Cross-Model
mIoU(T) mIoU(O) mIoU16(T) mIoU(O)

44.0 46.8 35.1 48.1

Note that OLDM can be incorporated
into various segmentation networks. In
this context, we assess the performance
of OLDM when trained in conjunction
with one segmentation network and ap-
plied to another network. The results of
this evaluation are presented in Table 5.
Specifically, we examine the segmen-
tation performance on the C-Driving
dataset.

We train two of our models using GTA5
and SYNTHIA as source domains, while C-Driving serves as target domain. The performances of
these models on the C-Driving target domain are reported in the "w/o Cross-Model" row. Subse-
quently, we exchange the OLDMs between the two models. For the OLDM of the model trained
with SYNTHIA as source domain, we incorporate the missing three categories (terrain, truck, and
train) from the OLDM of the model trained with GTA as the source domain. The performances
after the exchange are presented in the "w/ Cross-Model" row. Notably, we observe that the model’s
performance on C-Driving does not significantly decrease following the OLDM exchange. This
finding suggests that the model is not highly sensitive to the choice of the source domain.

2.4 Analysis on Effect of Compensation

In Figure 6, we resort to t-SNE [10] to visually represent the distributions of three main categories
of source features, target features and compensated features in the 2D space. During the training
of the network, we obtain sets of source features and target features, respectively. Additionally,
by utilizing OLDM, we derive the compensated features corresponding to the target features. The
distribution of the source and target features is presented in Figure 6(a), whereas Figure 6(b) illustrates
the distribution of the source features and compensated features. It is evident that the distributions
of the same category in the target and source features are disparate, whereas the distributions of
the compensated and source features exhibit proximity. This observation highlights the efficacy of
OLDM in compensating for stylistic differences in target features.

(a) Distribution of source features and target features (b) Distribution of source features and compensated features

Road 
(Source)

Road 
(Source)

Road 
(Target/Compensated)

Road 
(Target/Compensated)

Car 
(Source)

Car 
(Source)

Car 
(Target/Compensated)

Car 
(Target/Compensated)

Building 
(Source)
Building 
(Source)

Building 
(Target/Compensated)

Building 
(Target/Compensated)

Figure 6: Distribution of three categories of source features, target features and compensated features
on GTA5(source) and C-Driving(target) datasets. A scatter point represents a feature, which is
embedded into the 2D space. The scatter points with the same color represent the features of same
categories in source, target/compensated features maps.
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2.5 More Visual Results
We present additional visual results for C-Driving, ACDC, Cityscapes, KITTI, and WildDash in
Figures 8, 9, 10, 11, and 12 at the end of the supplementary material. These visual illustrations
showcase the high-quality outputs generated by our segmentation network integrated with OLDM. We
also zoom in on some regions from the segmentation results in Figure 7. Our method of object-level
style compensation yields satisfactory segmentation results in complicated scenes where the objects
are overlapped or occluded.

Input DHA[7] ML-BPM[9] Ours Ground-TruthAST[8]

Figure 7: Visualizations of zoom-in segmentation results. We select the overlap pedestrian and
cars, whose appearances are too similar, making the segmentation difficult. Our method yields good
segmentation results on the overlap.

3 Limitation
3.1 Failure Cases
In order to offer a comprehensive insight into the limitations of our approach, Figure 13 presents
a selection of failure instances. In the first two failure cases, adverse weather conditions have
a detrimental impact on the overall image quality, making it challenging to accurately select the
appropriate discrepancy features from OLDM. Consequently, this results in subpar outcomes.

In the last two failure cases, certain categories in the input images (e.g., sky and road) exhibit
significant deviations from their corresponding category distributions. Despite the inclusion of
discrepancy features for each category in OLDM, the distribution disparities of certain categories
in the images pose challenges in selecting the corresponding category’s discrepancy features from
OLDM. Consequently, this difficulty ultimately results in unsatisfactory outcomes.

Input DHA [7] ML-BPM [9] Ours Ground-TruthAST [8]

Figure 13: Segmentation results of the failure cases on target and open domains.

3.2 Evaluation of OLDM in Cross-Dataset Scenarios
During the experiments, we assess the performance of adaptation and generalization in the target
and open domains, respectively. However, we have not examined the adaptation and generalization
performance on the same dataset. In this regard, we conduct training using C-Driving and ACDC
as target domains and GTA5 as source domain. Subsequently, we perform testing on the respective
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target domains of C-Driving and ACDC, as indicated by the entries "w/o Cross-Dataset" and "w/
Cross-Dataset" in Table 6. In the case of "w/ cross-dataset," although we conduct testing on the target
domains of ACDC and C-Driving, it can be viewed as an evaluation of generalization performance in
an open domain, since C-Driving and ACDC are utilized for network training separately.

Table 6: The results of the methods exchanging the test dataset
of two models trained with C-Driving and ACDC as target
domains, respectively.

Train: GTA5, C-Driving Train: GTA5, ACDC

w/o Cross-Dataset
Test: C-Driving(T) Test: ACDC(T)

ML-BPM[9] Ours ML-BPM[9] Ours
40.2 44.1 32.1 35.7

w/ Cross-Dataset
Test: ACDC(T → O) Test: C-Driving(T → O)

ML-BPM[9] Ours ML-BPM[9] Ours
26.4 30.2 32.7 35.2

In this context, we employ a per-
formance comparison between our
approach and the state-of-the-art
method ML-BPM in cross-dataset
scenarios. As depicted in the Ta-
ble 6, although both methods experi-
ence a decline in performance when
subjected to cross-dataset testing, our
method manages to achieve superior
results compared to the state-of-the-
art method. However, it is worth not-
ing that our method exhibits limitations in terms of generalization across datasets, leading to decreased
performance in open domain scenarios. Consequently, generalization power of OLDM in cross-
dataset scenarios still need to be improved.

4 Code Segment
Our code will be available at: https://github.com/fengtl/OLDM.
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Input DHA [7] ML-BPM [9] Ours Ground-TruthAST [8]

Figure 8: Segmentation results of various methods on the target and open domains of C-Driving.
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Input DHA [7] ML-BPM [9] Ours Ground-TruthAST [8]

Figure 9: Segmentation results of various methods on the target and open domains of ACDC.
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Input DHA [7] ML-BPM [9] Ours Ground-TruthAST [8]

Figure 10: Segmentation results of various methods on the open domain of Cityscapes.
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Input DHA [7] ML-BPM [9] Ours Ground-TruthAST [8]

Figure 11: Segmentation results of various methods on the open domain of KITTI.
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Input DHA [7] ML-BPM [9] Ours Ground-TruthAST [8]

Figure 12: Segmentation results of various methods on the open domain of WildDash.
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