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A Basic Volterra theory

In this section, we review the basic theory of Volterra integral equations. For a more comprehensive
treatment of this subject, see [2, Chapter 2]. A Volterra integral kernel is an integral kernel k defined
on D := {(t,7) : 0 < 7 <t < T}. We assume that k is continuous on D. A Volterra integral
operator V : C([0,T); R?) — C(]0, T]; R?) associated with the kernel k is defined as follows:

V() = / K(t, ) f(r) dr. (32)

Definition 1 ([2, Definition 2.1.1]). The resolvent kernel R : D — R corresponding to the given
Volterra integral kernel k is defined by either of the following resolvent equations:
t

R(t,7) = k(t,7) +/ k(t,v)R(v,T)dv (33a)

R(t,7) =k(t,7) +/ R(t,v)k(v,T) dv. (33b)

T

Proposition 5 ([2, Theorem 2.1.2]). Let R be the resolvent kernel corresponding to the Volterra
integral kernel k. Then, for any g € C([0, T); R?), the integral equation

9(t) = y(t) = (Vy)(1)
has a unique solution y € C([0,T]; R?), and this solution is given by

y(t) = g(1) +/0 R(t, s)g(s)ds.

B Technical lemmas

In this section, we present lemmas that will be used in the proof of Theorem|I] The following lemma
can be regarded as a continuous-time analogue of [4, Lemma 1].

Lemma 1. Let k € L2([0,T)?; R) be a positive semidefinite Hilbert-Schmidt kernel. Let K* and K*
be the Hilbert-Schmidt integral operators on L?([0, T); R) and L*([0, T); R?), respectively, which
are associated with the kernel k. Let a € L?([0,T];R) and let v = (v1, . .., vq) be a unit vector in
R<. Then, we have

inf {1<de,x>+<a(t)v,x(t)>} inf {;<K1§,§>+(a,§>},

z€L2([0,T];RY) | 2 T ¢eL?([0,T):R)

where the inner product on the left-hand side is defined in L*([0, T]; R?), and the inner product on
the right-hand side is defined in L*([0, T]; R).
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Proof. We define a quadratic function P on L2([0, T]; RY) as follows:

1
P(z) = 5 (K", %) 2 (o gy + (@80, 2(0) 120,110

d
1
= Z (2 <K1xi’xi>L2([07T];R) + v; <a(t),xi(t)>L2([07T];R)) .

Then, for any £ € L?([0, T]; R), we have

1
§<K1£a€>L2([O,T];R) + (@, &) 2(jo, 1);R)

I
.M&

v} <1<K §,€) L2(o,mm) + (@, ) L2 ([0, 17; R))

=1

a |l

<; <K1 (vi€) 7Ui€>L2([07T];R) + v; (a(t), vi€(t )>L2 [0,T); R))
i=1
:P(Ulf,...7vd§).

Thus, we have
1
inf —(K! t P
it ALwieg o) - el P 06180

> inf  P(x)

xGLz([O-,T]:Rd)
1

= inf — (K1 t )+

el {380 + 0501

We now prove that the reverse direction of this inequality also holds. Let Z = {i € {1,...,d} : v; #
0}. Then, for any = € L?([0, T]; R?), we have

P(:c)zZ(é (K, a;) +v; (a2 ) +Z< (Kla;,z; )

i€L i¢T

-5 (3 () (= 3)

>Z< geLQ[OT]R)( (K 1£§>+a§>>

i€L

. 1,
ot fLwieg o).

Taking the infimum of both sides yields

{;<de,x>+<a(t)u,x(t)>}z inf {;<K1€7£>+<a,€>},

in
x€L2([0,T];R?) £eL2([0,T);R)

which completes the proof. O

The following lemma shows that the non-negativity of a quadratic function on L2([0, T]; R%) can be
translated into the positive semidefininteness of a specific Hilbert-Schmidt kernel.

Lemma 2. Let k € L?([0,T)%R) be a symmetric Hilbert-Schmidt kernel and K be the correspond-

ing Hilbert-Schmidt integral operator on L*([0,T]; R?). Let b € L*([0,T];R?) and ¢ > 0. Then,
the inequality

1
Q(r) = §<K$790>L2([0,T];Rd) + (b, 7) L2((0,1);re) + ¢ >0 (34)
holds for all z € L?([0, T); RY) if and only if the following kernel is positive semidefinite:

(t,7) s ch(t, 7) — %b(t)b(r). (35)



Proof. (<) Assume that the kernel (33) is positive semidefinite. Then, for any z € L?([0, T]; R%),
we have

0< /O ! /0 ! (ck(t,f) - ;b(t)b(T)) 2(t)a(r) dtdr

T T 1 T 2
= c/o /0 k(t, )z (t)x(r) dtdr — B (/0 b(t)x(t) dt)

=c(Kz,z) — %(b, )2,

Thus, we have
1(Kx x) + (b :r}—kc—i oKz a:)—l(b z)?) +c i<b z)+1 2>0 (36)
2 ’ '  2c ' 2\ 2¢ " =

(=) We prove the contrapositive of the statement. Assume that the kernel (33) is not positive
semidefinite, i.e., there exists z € L*([0, T]; R?) such that ¢(K =z, z) — 3 (b, z)? < 0. We consider
two cases: when (¢) (b, z) = 0 and (i¢) (b, z) # 0. If (b, ) = 0, then we have (Kx,x) < 0. For an

arbitrary o € R, we have Q(ax) = "‘72 (Kx,x) + ¢, which is negative for a sufficiently large a.. If
(b, x) # 0, then we have - (b, az) 4+ 1 = 0 for some @ € R. For such e, by the equality in (36), we
have Q(azx) = 3‘—2 (c(Kz,z) — 5(b,z)?) < 0. O

C Proof of Theorem 1]

To prove the theorem, we introduce a generalization of the continuous PEP presented in Section 3]
which aims to obtain a convergence rate on f(X (1)) — f(2*), where f(z) = f(z) — &l — «*|]*.
Note that the continuous PEP presented here covers the continuous PEP in Section [3]as a special
case when p = 0. In order to prevent any notational overlap, we denote the constant v given in the
theorem statement by Vgjen.

Consider the following dynamical system:

X(t) = - /0 H(t,7)Vf(X(1))dr, 37)

In Appendix[C.I] we show its equivalence to the following form:
t
X = - [ 1) VI ) dr G8)
0

where f(z) := f(z) — £llz — x0]|*. Suppose we want to obtain a convergence guarantee in the form
of

FX(@) = F @) < A (0) (F @o) = F 7)) + pllao — 2 (39)
where A% is the given function in the theorem statement. If we define the exact PEP as follows:
FXM) = F@) _w g Flr) = F)
JEFo(RER) 2o — 2% 2o — z*|)?
XeC!([0,T]RY) (Exact PEP-F)
subject to X is a solution to (38) with X (0) = z¢
2™ is a minimizer of f,

then the convergence guarantee (39) holds with p = val(Exact PEP-F).

We now relax this problem by using the technique outlined in Sections [3.T]and 3.2} We first observe
that

Vf(x) = Vf(z) - plz - 2%
= Vf(x) = p(x = w0) + p(z” — o)



= Vf(z) 4 p(z* — x0).
Define two functions ¢ : [0, 7] — R and 7 : [0, 7] — R< as follows:

olt) = ———— (Fx(0) ~ ).

EEk
1) = e V() = T V() +

where v = (x* — x0)/||z* — zo]|. Then, we can derive the following equalities and inequalities:

l[zo — z*|

40 = o (VX (0). X ()
<(t),/0tHF(t,T) ) )d7->
o) < e (VX (1), X(0) — )
= o (VX)X — o 0 =) 0y
lxo_lgc*”?<vf()(()) t'()ds+x0—x*>

< v+//H 5.7) (v(7) — ;w)d7ds>
—<7(t),v+ /0 /T H (5, 7) (v(7) — ) dsd7->.

Thus, [Exact PEP-F can be relaxed as follows:

max — o(T) = A7(0)¢(0)
»€C ([0,T;R)
~€C([0,T];R?)
veR?, [|v]|=1
subjectto (¢ < / HY(t,7) (y(1) — ) dT> =0 vt € (0,7)

o(t) + <'y(t),v —|—/ / H (s,7) (y(1) — pv) dsd7'> <0 Vte(0,T).
0 Jr
(Relaxed PEP-F)
Since for any feasible solution to there is a corresponding feasible solution to

(Relaxed PEP-F) with the same objective value, we have val(Relaxed PEP-H) > val (Exact PEP-H).
Therefore, the convergence guarantee (39) holds with p = val(Relaxed PEP-F).

To obtain an upper bound of val (Relaxed PEP-H), we use Lagrangian duality. With the two Lagrange
multipliers Ay € C1([0,T];R) and Ay € C([0,T7; [0, 00)), the Lagrangian function £ is defined as

L(p,7,v; A1, A2)

= (T) = A7 (0)(0) — /OT Ax(t) (¢7(t) + <v(t), /Ot HY(t,7) (v(1) — pwv) dT>Rd) dt
—/OT A2 (t) ((p(t) + <’y(t)7v+/t /t HY(s,7) (7(1) — ) dsdT>>Rd> dt
ﬂﬂAWmﬂm/TMU< v (s, [ o) Ya
—/OT A2 (t) <<p( < / HF (s, 7)Y dsdT>>Rd) dt
—/OT(,M1 /HFtT)dT)< V)ga dt — /AQ V) ga dt



T t t
- (—uw) | [ #ren dsdt) (1(8), g
0 0 T
= L1(p; A1, A2) + La(7,v5 A1, A2),

where
L1 M1, ha) = 9(T) — AF(0)(0) / M ()(t) dt ~ / No(t)p(t) dt

and

La(7,0; A1, Xg) = —/T A1 (1) <7(t),/0t HEY (t,7)(1) dT>Rd dt

0

~ /0 " ) <7(t), /0 t / tHF(s,T)'y(T)dsdT>>Rd dt

_ /OT (_/Ml(t) /Ot HE(t,7) dT) (y(t),v)ga dt

- / Mo (t) (4(), ) dt

- /OT <_uA2(t) /O t /T t H(s,7) dsdt> (Y(t), v)ga dt.

When expressed in the inner products in function spaces, these functions can be written as
Li(p; M1, 22) = o(T) = AT(0)(0) — (i, ¢>L2([O,T];R) — (A, 90>L2([0,T];R)
1
»CZ (’7) Y )\17 )\2) = _5 <Kd’7a ’Y>L2([O7T];Rd) —2 <Ck(t)’l), ’Y(t»L?([O,T];]Rd) )
where K¢ is the Hilbert-Schmidt integral operator on L?([0, T']; R¢), associated with the symmetric
kernel k defined by
t
k(t,7) = M) H(t,7) + Aa2(t) / H(s,T)ds, t>r, 41)

and « is a function of time, defined as

aft) = % (u)\l(t) /Ot HY(t,7)dr + M2 (1) (1 - p/ot /Tt H(s,7) dsd7)> . 42)

Let the dual function be defined as Dual(Ay, A2) = sup,, ., ,, £(, 7, v; A1, A2). By weak duality, for

any feasible solution (A1, \2) to the dual problem, we have Dual(A1, A2) > val(Relaxed PEP-F).
Consequently, we have the convergence guarantee (39) with p = Dual(Aq, A2).

We proceed by computing the dual objective function. Because the function £, can be written as
T T
Li(p, A1, h2) = 9(T) = A (0)p(0) — / A(t)p(t)dt — | Aa(t)e(t) di
0 0
T

= (1) = A O)(0) = (Pl + [ (3= a0) (01t

= (L= MDY RAT) + (1(0) = A 0) () + [ (310 = 2a(0)) olt)

we can see that if any of the following conditions holds: (i) A1(0) # AE(0), (i4) M (T) # 1, or
(iii) A1(t) # A2(t) for some ¢, then sup,, £1(p; A1, A2) = oo, which implies Dual(A1, A2) = oc.
On the other hand, if A\;(0) = AF(0), A\{(T) = 1, and A;(t) = Xo(t) for all ¢, then we have

sup,, L£1(; A1, A2) = 0. In this case, using Lemma we can compute the dual objective function as
follows:

sup L(p,7,v; A1, A2)
RN



= sup Lo(7y,v; A1, A2)
~YEL2([0,T];R?),veRY, |Jv||=1

: L d
T ’YELZ([O,T};]}édn)fveRd,HUH:l {2 (K %7>L2([O’T];Rd) ey ’V(t»m([O’T];Rd)}

. 1,
= - EGLQI(I[%){‘T];R) {2 <K ga §>L2([O,T];]R) +2 <Oé, §>L2([O,T];R)} :

where K1 is the Hilbert-Schmidt integral operator on L?([0, T']; R), associated with the symmetric
kernel k defined in (#1). Using Lemma[2] we further simplify as

1
sup L(p,7,v; A1, A2) = —sup {_V : b} <K1£75>L2([0 T];R) +2 <a7£>L2([07T];]R) trvz 0}
P57 vER ”

. 1
inf {V : 3 <K1€7§>L2([0,T];R) +2 <a,§>L2([O’T];R) +v> 0}

veR
= ;Iel% {V : S>\1,)\27V = 0}

with Sy, x,.v (¢, 7) = vk(t,7) — 2a(t)(7), where the kernel % is defined in (#T)) and the function «
is defined in (#2)). Therefore, the Lagrangian dual objective function of can be written

as

inf,,eR {V : S>\1,>\2,V t 0} if )\1(0) = 0, /\1 (T) = 1,).\1(t> = )\2(t)

00 otherwise.

Dual(Ar, Ag) { 43)

To complete the proof of Theorem we note that weak duality implies Dual(Ay, As) >
val (Relaxed PEP-R) for all feasible dual variables (A1, \2). We choose \;(t) = A (t) and

A2(t) = AF(t). Then, by the assumption in the theorem statement, we have a(t) = o (t) and
SxiAsvgen = 0 and. Thus, Dual(A1, A2) < Vgjven, Which implies vgven > val )
Because the guarantee (39) holds with p = val(Relaxed PEP-F) as mentioned before, it also holds
with p = Vgiyen. This completes the proof. O

C.1 Equivalence between the expressions (37) and (38)

Note that

VX)) = VX () = u(X(1) = 20)

—VA(X /x

Xt))—i—u/o /0 H(s, 7)Vf(X(7))drds
))-i—u/o / H(s,7)dsVf(X(7))dr

Denote g(t) = Vf(X(t)) and §(t) = V(X (t)). Then, we have g(t) g(t) — (Vg)(t), where V is
the Volterra integral operator associated with the kernel k(¢,7) = —u f H (s, T)ds (see Appendix

By Proposition 5] we obtain
t
+ / R(t, 5)§(s) ds
0

where R is the resolvent kernel corresponding to the kernel & (see Appendix [A). Now, we can rewrite
(37) as follows:
t
=— / H(t,7)g(T)dr

/Htr (g +/TR(T,5)Q(s)dS) dr



/HtT dT—//HtS (s,7)g(7)drds
/HtT dT—/(/Hts ST)dS>()d
A(H@ﬂ+[fmﬁm®JMQMﬂW7

which is (38) with H¥ (t,7) = H(t,T) + f: H(t,s)R(s,T)ds.

Therefore, the form (37)) can be transformed into the form @) Conversely, a similar argument shows

that (38) can be written as (37) with H (t,7) = HF (¢, 1) f HF(t,s)k(s, ) ds. Therefore, these
two equivalent forms are in a one-to-one correspondence

D Proof of Theorem

To prove the theorem, we introduce a variant of the continuous PEP. For simplicity, we assume
tena = 1. Consider the following dynamical system defined in the theorem statement:

7/0 HE(t,7)\Vf(X (7)) dr. (44)

In Appendix [D.T] we show its equivalence to the following form:

= /0 HE (t, )V (X (7)) dr. (45)

Suppose we want to obtain a convergence guarantee in the form of

We define the exact performance estimation problem as follows:

2

| e @vix@yar| <o (F - Fxm). 6)

i

feFo®4R) M (Exact PEP-G)
XeC'([0,TRY)

subject to X is a solution to @3) with X (0) = z.

where M = f(zo) — f(X(T)). Then, the convergence guarantee (@) holds with p =
val (Exact PEP-G)).

Note that the time-varying function f; () parametrized by ¢ € (0,7 was defined as follows:
t
fo(z) = X6@) f(z) — </ )\G(T)Vf(X(T))dT,x> .
0

The following property plays a crucial role in the proof:

5 L - Fxa)]

y=X(t)

= X9(0) (fx) - FxX (@) = (VX ). X(0) - X(D))).

We now relax [Exact PEP-G| by introducing three functions ¢ : [0,7] — R, v : [0, T] — R%, and
N :[0,T] — R defined as follows:

olt) = - (A(X(0) ~ fux (1),



N(t) = - | F(X (1) = F(X(T)) = (VX(1), X(t) - X(T))| .
M

It follows from the chain rule and the convexity of f that

plt) = 3o {FX (1)~ fix(T) )
~ 7 |3 {fi0 - Fxap)| o P (The@LE)
=5e@N - (+00). [ BT ar).
N(t) <0
Therefore, can be relaxed as follows
T 2
G
weCEI(l%f(T];R) ‘ /0 o (rpy(r)dr
~veC([o,T1:R?)
NeC([0,T];R)
subjectto  (t) — AG(L)N( < / HE(t, ) d7> =0 Vte(0,7)
N(t) <0 vt e (0,T).

(Relaxed PEP-G)
Since any feasible solution to corresponds to a feasible solution to[Relaxed PEP-G| with
the same objective value, it follows that val (Relaxed PEP-GJ) > val ([Exact PEP-GJ). Consequently,

the convergence guarantee (46) holds with p = val(Relaxed PEP-GJ).

To obtain an upper bound of val(Relaxed PEP-GI), we use Lagrangian duality. With the Lagrange
multipliers A\; € C*([0,7];R) and A2 € C([0,T]; [0,00)), we define the Lagrangian function £ as
follows:

‘C:(Lpa 7> N7 )‘17 )‘2)
2

T
/0 o (T)y(r) dr
R4

. /OT " (@w 390N < / AC(t,7)y d7> d) dt

- /T Ao ()N (t) dt.
0

Let the dual function be Dual(A1, A2) = sup,, , x £(p,7, N; A1, A2). By weak duality, for any
feasible solution (A1, A2) to the dual problem, we have Dual(\1, Ay) > val(Relaxed PEP-GI). Con-
sequently, the convergence guarantee (@6) holds with p = Dual(\1, \2). Because it is sufficient
to obtain an upper bound of val(Relaxed PEP-G)) for our purpose, we compute the dual objective
function value for a specific choice of dual variables: A; () = v and \a(t) = vAC(¢).

Note that, by the definition of ¢, we have ©(0) = 1 and p(T) = 0, leading to fOT vo(t)dt =
v(p(T) — »(0)) = —v. Hence, the Lagrangian function can be simplified as

2

E(@?WaN;Ala)\Z):‘ +v

/OT % (T)y(r) dr

/< /HGtT dr>ddt




T T
vt / a8 (H)aC (F)y(t)y(r) dtdr
0 0

T
/ < / HE(t, 1) dT> dt
0 Rd

1
=v =5 EY V2o myme)
where K is the Hilbert-Schmidt integral operator associated with the symmetric kernel k£ defined as
k(t,7) =vHC (t,7) — 2% ()% (1), t>T,

which is positive semidefinite by the assumption made in the theorem statement. Thus, we have

Dual(\p, Ag) = v for Ay (£) = v and Ay(t) = vA%(t). This implies v > val (Relaxed PEP-GJ). Since
the convergence guarantee (@6) holds with p = val(Relaxed PEP-GJ) as mentioned before, the result
follows. O

D.1 Equivalence between the expressions (@) and ([@3)
Note that .

VAX(®) = A0V ) - [ AV () ar @)
Denote §(t) = A% (t)Vf(X (t)) and g(t) = V fi(X (t)). Then, we have

t \G T
90 =30~ [ Ja(atndr =0 - V)

where V is the Volterra integral operator associated with the kernel k(t, 7) = ;\\zgzg (see Appendix EI)

By Proposition 3} we obtain
t
+ / R(t,s)g(s)ds
0

where R is the resolvent kernel corresponding to the kernel % (see Appendix [A). We can now express
(@3 as follows:

—/0 HE(t, ")Vf(X(1))dr

YHG(t,T)
-}, e

G(
:_OI—{\GtT<g /RTS )dT
Y HE(t,T)

- ST THC(t,T) B
= - ; /\G(T)g(T)dT—/O ; WR(T,S)Q(S)deT

_ Y HC(t,T) Ndr — b s HE(t, s) ds
== || Seg 1mar= [ [ ey e

[ St e ([ it ey s

L OHCG(tT) HC(t, , _
:‘/0 (mﬂ*/ )M)ds)g(T)dT’

ich i - ] (t,r t HY (t,s)R(s,T
which is @3) with H (¢, 7) = AG(T)) + f M ds.
We can explicitly express the resolvent kernel R as follows:
AG(H)AC
P il O
AG(7)?2



To verity this, we check the resolvent equation (333)) as follows:

R(t,7) — k(t,7) — / k(t,v)R(v,T)dv
CXGNG(r) NG
- )\G(T)z 2\G
_A9mAG(n) A

()
")
() -
R X(r) A2 ),
(")
")

B )\G(t)}\G(T) NG
T G ()2 SYE

=0.

Thus, we obtain the explicit form for HE as follows:

_ HG t T) Y HC(t, s)R(s, )
G )
H%(t,7) = )\G(s) ds
)\G(T HE(t,7 7_)2/ H"(t,s) (49)

)\Gl(T)HG(t T)_dT{)\G(T)}/T HE(t,s)ds

Therefore, the form {@4) can be transformed into the form @5). Conversely, a similar argument
shows that (#3) can be written as @) with HE(¢t,7) = A\ (1)HE(t,7) — \9(7) f: HC(t,s)ds.
Therefore, these two equivalent forms are in a one-to-one correspondence.

E Derivation of novel ODE models

In this section, we derive the limiting ODEs for the triple momentum method (TMM) [[13]] and the
information-theoretic exact method (ITEM) [12].

E.1 TMM ODE

The triple momentum method (TMM), proposed in [[13]], is defined by the following update rule (we
follow the form in [[12) Section 2.2]):

Y = 1;\/@ (yh—1 = sV f (ye—1)) + (1 11\/\/Z>

21l = 1S (yk - ivf (?M)) + (1 —\/1s) zg.

Here, s = 1/L, where L is the smoothness parameter. To derive the limiting ODE for TMML
we assume that the iterates y;, and zj are approximated by smooth curves as Y (t;) ~ y; and

Z (tx) =~ zx, where tj :.k\/g, Substituting yr = Y (tx), yx—1 = Y (tg) — \/EY(tk), 2k = Z(tk),
and z 41 = Z(tx) + /sZ(tx) into yields

l_f(y \fY—sz(Y fy)) ( Hﬁ)z (50a)

(TMM)

1+ /fis 1+ /us
Z+\/§Z':\/;E(Y—in(Y)> + (1 —/us) Z, (50b)

where we omitted the input ¢, for the curves Y and Z. After some calculations, the equation (50al)
can be rewritten as

N/ 2,/1
Y =- 1_\//TY VAV (Y = vsY) + Tt

10



and the equation (50D) can be rewritten as

. 1
Zﬂ(YZMVf(Y)).
Thus, taking the limit s — 0 gives the following system of ODEs:
Y =2yu(Z-Y)
. 1
Z:\/ﬁ(Y—Z—NVf(Y)>.
This can be equivalently formulated as the following ODE:
Y 4+ 3/uY +2Vf(Y) =0,
which corresponds to[TMM ODE]in Section[3.3]

Comparison with the low-resolution TMM ODE in [11]. In [L1], a low-resolution limiting ODE
for TMM was derived as follows:

X +2iaX + Vf(X)=0,
where /i is a constant greater than the strong convexity parameter p. This ODE model differs from
TMM ODE|presented in our work. The reason for this difference lies in the choice of time stepsize.
We use a time stepsize of 1/ V'L, where L is the smoothness parameter used in TMM, whereas [11]

2—+/p/L

employed a different time stepsize, specifically —.

E.2 ITEM ODE

The information-theoretic exact method (ITEM), proposed in [12], is defined by the following update
rule:

(1-+ )i +2 (14 VT A ()
(1= ps)?
A A
= T 0o =" e+ (1=

(1- MS)Ak+1> o
ps ((1— ps)? Apgr — (1 + ps)Ag) 1
2(1+ ps + psAy) (yk BT (yk)> ’

where Ay = 0. Here, s = 1/L, where L is the smoothness parameter. To derive the limiting ODE for
ITEM] we assume that the iterates Ay, vy, and z, are approximated by smooth functions and smooth
curves as A(ty) = sAy, Y (tx) = yx, and Z (tx) = zx, where ty = k+/s.

Apt1 =

(ITEM)

Zk+1 = 2k +

We first compute the smooth function A : [0, 00) — [0, c0) that approximates the sequence { Ay }.
Substituting A, = A(tx)/s and Ap1 = LA(t) + ﬁA(tk) into the updating rule of {4}, we
obtain

Lot (L+ps)ta+2 (14 /(1+14) (1+,uA))7
AT T

where we omitted the input 5. After some calculations, (51) can be rewritten as
A=2/A(1+ pA)+0(Vs).

Letting s — 0 and solving the differential equation with the initial condition A(0) = 0, we have
At) = isinh2 (y/At). Note that this shows that the sequence {4} can be approximated as

A ~ i sinh? (y/msk).
Substituting Y = Y(tk), Yk—1 = Y(tk) — \/EY(tk), 2k = Z(tk), and 241 = Z(tk) + \/EZ(t}C)
into (ITEM|yields

Ay

= —V/sY —s —V/sY — L
Y= (1 — ps) A4 (Y VY = sVIY \[Y)) ’ (1 (1 — ps) A4

(D

) Z (52a)
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s (1= ps)?Apyr — (1+ ps)Ay) 1
2(1+ ps + s Ay) (Y_Z_ P (Y)>- (20

To obtain the limiting ODE for this discrete-time method, we first compute the limits of the coefficients
in (52) as follows:

Ao A Y (A ps) A — Ay
Vs <1 (1 _.US)Ak'+1> Vs < (1 — ps)Apqr )
- Ap — Ay o (/3
B '\/gAk+1 +o(v5)

Altr)

= A )

= 2y/pcoth (y/uty) + o0 (Vs),

Z4si=2+ b

and
1 ps (1= ps)? A — (1 + ps) Ax) _ (A — sAp) +o0(v5)
Vs 2(1 + ps + psAy) 2V/s (1 + pA(te))
p(Atre1) — Ate))
= “+ o0 S
25t A To W)
pA(ty)
=——— " — +0(\s
20+ a0 V)
= /utanh (\/uty) + o (Vs) .
Then, following the argument in Appendix [E.I| we can show that taking the limit s — 0 in (52)
yields the following system of ODEs:

Y = 2\/fcoth (yput) (Z = Y)
. 1
Z = \/utanh (\/ut) (Y - Z— MVf(Y)) .
This is equivalent to the following ODE:

Y +3y/mcoth (Vit) Y 4+ 2V £(Y) = 0,
which coincides with [TEM ODElin Section[3.3

F Equivalence verification of different forms of dynamics
In this paper, we frequently encounter the following form of integro-differential equation:

X(t) = - /O H(t, 7)g(r) dr. 53)

Using this expression, we can derive an expression for X (¢) — X (0) as follows:
t
X(t) — X(0) = / X(s)ds
0
t s
= / / H(s,7)g(7)drds (54)
o Jo

_ _/Ot /TtH(s,T) dsg(7) dr.

Applying the Leibniz integral rule, we can transform the integro-differential equation into the
following second-order ODE (see [[7, Appendix B.2.3]):

t

5 O0H (t,

X(t) +/ 7ét ™) o(r) dr + H(t, D)g(t) = 0. (55)
0

The following proposition is useful for establishing the equivalence of different forms of given ODE

model.
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Proposition 6. If there exist functions b(t), B(t), and c(t) such that one of the following conditions
holds:

H(t K
% = —b(t)H(t,7) — B(t) / H(s,7)ds, H(t,t) = c(t), (56)
or , !
St = —b(t) 2 — (1) + B(1) H(t,7), .
H(t,t) = c(t), 2en) = —b(t)c(t),
() = cl0), 22| = bl
then the integro-differential equation (33)) is equivalent to the following ODE:
X(t) +b(t) X (t) + B)(X(t) — X(0) + c(t)g(t) = 0. (58)
Proof. Substituting (36) into (33)), we have
t
0 :X(t)+/ [—b(t) / H(s,T) ds} g(T)dr + H(t, t)g(t)
= X(t) —b(t /HtT T)dr — B //H T)dsg(T)dr + H(t,t)g(t)
= X () +b()X (1) + B)(X (1) — X(0)) )g(t)-
Thus, if the condition (]3_3[) holds, then the dynamics (]3_3]} is equivalent to (38). It is easy to check that
the condition (57) implies the condition (56), which completes the proof. O

The following proposition is an immediate consequence of Proposition[6and can also be found in [[7,
Appendix B.2.3].

Proposition 7. The second-order ODE (538) with B(t) = 0 is equivalent to the dynamics (33)) with
the H-kernel defined as follows:

H(t,7) = c(r) exp (- / “bs) ds) .

In the following subsections, we derive equivalent formulations of the dynamical systems considered
in this paper. A detailed explanation is provided in Appendix and only the essential steps of the
proofs are presented in the subsequent subsections.

F.1 Equivalent forms of AGM-SC ODE

In [7], it was shown that{AGM-SC ODE]can be expressed as (33) with g(t) = V f(X (¢)) and
H(t,7) = e2VFr=1),

Equivalent form for applying Theorem ﬂ Since we have Vf(X(t)) = Vf(X(t) —

(X (t) — xo), we can rewrite[AGM-SC ODE]as follows:

X () +2y/pX (1) + p (X(1) — o) + V(X(1)) = 0. (59)

By substituting b(t) = 2./u, B(t) = p, and ¢(t) = 1 into Proposition@ we obtain the following
initial value problem:

2 F
PR + 2T uHE (1,7) = 0,

HE (1) =1, oH* (1) N
(t,1) 95 (s,m)=(t0) v

We claim that the following kernel is a solution to this problem:
HE (t,7) = (14 /u(r —t)) eVr—b), (61)
Verification of the initial conditions is straightforward:

HE(t,t) = (1 + Ju(t —t)) eVFED =1,

(60)
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OHF (s,7)
0s

= |[2vE—pr eI =2y

(s,7)=(t,t)

To show that (61) is a solution to the given PDE, it suffices to show that the kernels H (t,7) = e~ VH

and Ho(t,7) = te~ VP! satisfy the given PDE (without considering initial conditions). This can be
verified as follows:

2H,(t Hi(t
QAAEE%LIE QV/’a 1( ) 4 wHi(t,7) ( ) +»2V/’( V@je—v@“) +pu (e—v@ﬁ>
=0,
0% Ho(t
;27)+2¢7 ( )+MHﬂtﬂ (=2 + put) e VH?
+2¢ﬁ01—vﬂwéwm)+u(wﬂﬁﬂ
=0.
Therefore, can be equivalently expressed as the integro-differential equation (9) with
the kernel H* defined in .
Equivalent form for applying Theorem[2] As shown above, can be equivalently

expressed as the integro-differential equation 20) with HY(t,7) = (1+ /(1 — t)) eVF( = We
begin by expressing X (t) and X (£) — z in terms of V f(X (t)) as follows:

- /Ot HE(t, ")Vf(X(1))dr
_ /O "1+ VR — 1) VB0V F(X (1) dr,
X))~ | t / HO (s, 7) dsV F(X (1)) dr
_ /O [ e 0] Vi)

= /Ot(T — VTV (X (7)) dr.

Thus, we have
t t
—\/ﬁ/ VIV f(X (1)) dr = —\/ﬁeﬁt/ VROV (X (7)) dr
0 0

= —/lieV™ / (1+ V(s — 1) eVFT OV (X (7)) dr

(62)
t
+ eV [ (e = I (1)) dr
0
= eV X (t) + peVP (X () — x0).
Now, with A\“(t) = eV#, the transformation (48] can be rewritten as follows:
VAX0) = VX (0) Vi [ I dr
= eV (Vf( () + VEX () + p(X (1) ~ o) ) -
Thus, we can rewrite (39) as
X(t) + /uX(t) + e VRV f,(X (1)) = 0. (63)
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By applying Proposition [7, we can show that this ODE is equivalent to the integro-differential
equation (1) with

HE(t,7) = e VF exp (— /Tt ﬁds)

= VI exp (VT — 1))
= e VI,

(64)

F.2 Equivalent forms of the unified AGM ODE

In [7], it was shown that[Unified AGM ODE|can be expressed as (33) with g(¢) = V f(X (¢)) and

H(t,7) = si.nhz coshT’
sinh; coshy

where sinh; and cosh; denote the corresponding hyperbolic functions with the argument 4t.

Equivalent form for applying Theorem[I, We can rewrite[Unified AGM ODE]as follows:

X(t) + g (tanh, +3 coth) X (£) + (X (t) — 20) + VF(X(t)) = 0.
By substituting b(t) = 4 (tanh; +3 coth), B(t) = p, and ¢(t) = 1 into Proposition@ we obtain
the following initial value problem:

2 F F <
% + % (tanh; +3 cothy) (()HTY’T) + (u + %sech? —%‘ cschf) HY(t,7) =0,

5,7 65
I{F(Z‘:7 t) = 17 % = —% (tanht +3 COtht) . ( )
(s,7)=(t,t)
The following kernel is a solution to this problem:
inh, cosh,
HY(t,7) = (1+ coth? log (sech?) — coth} log (sechz)) Sy €Oy (66)

sinh; cosh; -

In order to show this, it is enough to verify the initial conditions and show that the kernels H; (¢, 7) =

(1 + coth? log (sechf)) sechy cschy and Hy(t,7) = cothy csch? satisfy the given PDE. We omit the
detailed proofs, as they only involve calculations.

F.3 Equivalent forms of TMM ODE

Using Proposition[7} we can show that[TMM ODE]can be expressed as (33)) with g(t) = V f(X(t))
and
H(t,T)= 2e3VH(T—1)

Equivalent form for applying Theorem[I, [TMM ODE]can be rewritten as follows:
X(t) 4 3y/pX (t) 4+ 2u (X (t) — x0) + 2V (X (t)) = 0.

Substituting b(t) = 3,/it, B(t) = 2p, and c(t) = 2 into Proposition@yields the following initial
value problem:

82]_{{;2(1?,7—) + 3\/ﬁ8HFaEt,T) + QﬂHF(t,T) _ O,
F _ AHY (s,7) (67)
HF (1) = 2, 2 (1) —6/J.

(s,7)=(t,t) -
The following kernel is a solution to this problem:

HE(t,7) = —2eVFT =1 4 4e2VR(T—1), (68)

To show this, it suffices to verify the initial conditions and show that the kernels H(t,7) = e~ V#

and H(t,7) = e~ 2VF satisfy the given PDE. We omit the detailed proofs, as they only involve
calculations.
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Equivalent form for applying Theorem 2} As shown above, TMM ODE] can be equivalently
expressed as (20) with HC (t,7) = —2eVH(T—1) 1 4¢2VE(—1) We start by expressing X (¢) and
X (t) — o in terms of V f (X (¢)):

X(t)—/t( 9 VE(T— t)+4€2frt) (X (1)) dr

0

viX
Y2 vaten _ 2f( )
X0 0= [ (e ") vjcx
0 \VH
After performing the calculations, we obtain
t
-2/ / VTN f(X (1)) dT = /ue*VPEX () + pe*VF (X (t) — o). (69)
0
Thus, we can express the transformation @8)) with A% (¢) = e2V#? as follows:

VX)) = 2P (VX W) + VEX (1) + p(X (@) — 20))
Thus, we can rewrite (39) as
X(t) + /uX(t) + 26 2VRV f(X (1)) = 0. (70)
By Proposition[7] this ODE is equivalent to the integro-differential equation (21 with
t
HE(t,7) = 2e~2VH exp (/ \/ﬁds>

— 262 exp ((r 1))
= 2¢~ VA(tFT)

(71)

F.4 Equivalent forms of ITEM ODE

Using Proposition[7} we can show that [TEM ODE]|can be expressed as (53) with g(t) = V f(X(t))
and

2 sinhz

sinh?

where sinh; denotes the corresponding hyperbolic function with the argument /.

H(t,7) =

Equivalent form for applying Theorem[I, We can rewrite [TEM ODEas follows:

X (t) + 3y/fcothy X (t) 4 2u (X (t) — o) + 2V (X (1)) = 0.

By substituting b(t) = 3,/mcothy, B(t) = 2u, and ¢(t) = 2 into Proposition@, we obtain the
following initial value problem:

2 7 F F
81{97t2(m) + 3/t cothy aHTgt’T) + (21 — 3p cschf) H(t,7) =0,

5, 72
HE(t,t) =2, 20— 6 ficoth, . (72)

(s,7)=(t:t)

The following kernel is a solution to this problem:
HF(t,7) = 4sinh, cosh, coth, csch? +2sinh, csch, (1 -2 cothf) . (73)

In order to show this, it is enough to verify the initial conditions and show that the kernels H; (¢, 7) =

cothy cschf and Ho(t,7) = cschy (1 -2 cothf) satisfy the given PDE. We omit the detailed proofs,
as they only involve calculations.

F.5 Equivalent forms of OGM-G ODE

[7] showed that[OGM-G ODE]can be expressed as (33) with g(t) = V f(X(¢)) and
(T —t)°

H(t,7)= =77
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Equivalent form for applying Theorem Since i = 0, we have f (x) = f(z), and consequently,
HY(t,7) = H(t, 7). Note that

booor? 272 (" (T —1)® 2% .
—/O me(X(T)) dr = — EDE /0 ((T — T))3Vf(X(T)) dr = mX(t). (74)
Thus, with A9 (t) = T2 /(T — t)?, the transformation (@8)) can be rewritten as follows:
; T2 Lot
VAX(®) = G VX W) ~ [ G VI ) e
= VX0 + X0
Thus, we can rewrite as
X(t) + ﬁx(t) + (TT%)QVﬂ(X(t)) =0. (75)

By applying Proposition [7, we can show that this ODE is equivalent to the integro-differential

equation (ZT) with
_ T — )2 t 1
H(t,7) = %“p (‘/ T—sds)

)2
= (TT72) exp (log(T —t) — log(T — 7)) (76)
_ T - -7)

T2 '

F.6 Equivalent forms of the unified AGM-G ODE

In [7), it was shown that[Unified AGM-G ODE]can be expressed as (33) with g(¢) = V f(X (¢)) and

sinh?._, coshr_,

H(t,7) =
t:7) sinh?:’pr coshy_,’

where sinhy_; and coshy_, denote the corresponding hyperbolic functions with the argument
V(T — ).

Equivalent form for applying Theorem[2 We begin by showing that[Unified AGM-G ODE]can
be equivalently expressed as the integro-differential equation (20) with

HY(t,7) = (1+ coth?.__log (sech?p_T) — coth?__log (sech?p_t)) sinhy_, coshy—,

sinhy_, coshp_,
This can be proven by showing that it satisfies the following initial value problem, for which we omit
the detailed calculations:

2 F
“’37{5“) + g (tanhp_¢ +3 cothp_,

b (= sech_,+ 3 oschd_) HF(h7) = 0 )

HE(t,t) =1, % = —% (tanhp_y +3 cothp_y) .

AHT (t,1)
) "

(s,m)=(t,t)

We proceed to translate the expression from (20) into (ZI). After performing the calculations, we can
express X (t) and X (t) — zo in terms of V f (X (¢)) as follows:

t
X(t)=— / (1+ coth?.__log (sech?p_T) — coth?__log (sech;zp_t))
0

sinh7_; coshr_; Vf(X(T)) dr,

sinhp_, coshp_,
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(1 + coth2TfT log (seChQTfT) — cothQTfT log (sechQTft))

X(t)—;v(]:/ot

" . cosh?_, B sinh?_, cothy_, csch?. Vf(X(T)) dr.
Vpsinhy_; coshp_ - Vi

This implies

¢ coth _TcschQ_T A
~ Vi / V(X () dr
0

csch?.
wcothp_y csch?_, . csch?.
- X (1) + p—— (X (1) — o). (78)
cschy cschy
2
As aresult, we can express the transformation [@8)) with A% (¢) = CZ&E{ t, as follows:
T

2
P cschy_,

Vi(X(1) =

"L (VX(0) + ViEcothr—s X(0)+ p(X () — a0) )

We can then rewrite [Unified AGM-G ODElas follows:

0= X(t) + ¥ (tanhp_, +3 cothy_) X (t) + V(X (1))

(tanhg_; +3 cothr_;) X (£) + u(X (t) — m0) + V(X (1)) (79)

sinh7._,

= X (t) + ¥ (tanhy_; + cothr_;) X (t) + V(X (t)).

I
Ja
=
ol el el

inh2
sinh7

By Proposition 7} this ODE is equivalent to the integro-differential equation (21)) with the kernel H G
given by

_ inh? ¢
HG(t, 7—) = SImA7_r exp (—\éﬂ (tanhT,s + COthTfs) dS)

sinh?p -

= SmiT;T exp ([log (coshr_s) + log (sinhT_s)]EZT) (80)

sinh7,
sinhp_4 coshp_; tanhp_

sinh?.
F.7 Equivalent forms of ITEM-G ODE
Using Proposition[7] we can show that[TEM-G ODE|can be expressed as (53) with g(t) = V f(X (t))

and s
Ht,r) = 2sinhy_,

)

sinh.

where sinh7_; denotes the corresponding hyperbolic functions with the argument /7i(T" — t).

Equivalent form for applying Theorem[2] We first show that[TEM-G ODE]can be equivalently
expressed as the integro-differential equation (20) with

HC (t,7) = 4sinhp_4 coshp_; cothp_ csch2T7T +2sinhr_; cschp_, (1 -2 cothQTﬂ.) .

This can be verified by showing that it is a solution to the following initial value problem, for which
we omit the calculations:

% + 3\/frcothp_y % + (21 + 3p cschf) H(t,7) =0, g
1
HF(t,1) = 2, 2 (1) = —6/ficothy_; . 81

(s,m)=(t,t)
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We now proceed to translate the expression from (20) into ZT). After performing the calculations,
we can express X (t) and X (t) — x¢ in terms of V (X (t)) as shown below:

t
X(t) = — / {4 sinhr_; coshyr_; cothp_, cschszT
0

+ 2sinhy_y cschy_ (1 — 2 coth%_T) }Vf(X(T)) dr,

X(t)—a:oz/ot

4 2
— cosh?_, cothy_, cscha. | +7 coshp_; eschyp_; (1 —2 coth2T_T)
1

Vi
2sinh?_, cothy_, csch3._

N

V(X (r))dr,

which implies

t cothp_, csch? SN
~ 2V / V(X (7)) dr
0 CSC. T
thy_; csch?._, . h2
Vi cothp_; cse T_tX(t) +MCSC Tt

12 1.2
cschr csch

(X(t) — 20)- (82)

. . h2
Consequently, we can express the transformation @8)) with \“(t) = CSCZ 7 as follows:
o T

32
cschr_,

VX)) = =5 (Vf(X(t)) + /ficothy_y X () + (X () — x0)> .
cschy

We can then rewrite as follows:
0= X(t) + 3\/mcothr_; X(t) + 2V (X (t))
= X(t) 4 3y/mcothr_y X () 4+ 2u(X (t) — x0) + 2V (X (1)) 83)

. . 2 sinh? .
= X () + Hicothy_, X () + L=t f,(X(t)).
sinh7

By Proposition[7} this ODE is equivalent to the integro-differential equation (ZI) with

_ 2sinh7
HE(t,7) = sin exp( f/ cothp_ Sals)

smh2

2sinh?._ t
= —F T exp ([log (sinhy_ )] _ (34)
e o (g Ginbr— )1 )

2sinhr_; sinhp_ .

sinh?,
G Computation of PEP kernels

In this section, we compute the PEP kernels for various ODE models considered in this paper.

G.1 AGM-SC ODE for minimizing function values

In Appendix we showed that EZEM-SE; ODE] can be equivalently expressed as the integro-
differential equation (9) with the kernel H* defined in (61). For this kernel, we compute the

following integrals:

¢
/HF(ST / (14 V(T — 8)) eVET=9) 45

[ T —8) efT S)T

s=T
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—(r — t)e\/ﬁ(T—t)7

t s t t
//HF(S,T)deS:/ / HY(s,7)dsdr
0 JO 0o Jr

t
= —/ (1 —t)eVFr=t) dr
0

t
_ {_1(7 _ eV 4 16\/17(7—15)}
\/'E H 7=0
Lo v Y
PR 7
Using these results, we compute the kernel 2- {)\F f HE(s,7) ds} and the function o' (t) as
follows:
i =) ovE(=T) — t)eVE(T—t)
(“)t{)\ (t)/T H"(s,7)d Bt{e ( T —t)eVH )}
0
i _ f —T)
=5 { (t—"1)e }
= e (
F ld [ \r Y -
a'(t) == N )1 —p H" (s,7)drds)
1d
_Ld g ma-n N
2 dt {e (\/ﬁte e ) }
1d
_1d Ry -
2 dt {\/ﬁte e }
1

= 3 \/ge—\/ﬁT_
Therefore, the PEP kernel @) can be computed as
SE(t, )—1/— {)\F / HE (s,7) }—QOéF(t)OéF(T)
— yeVA(T=T) _ 56—2ﬁT
fort > 7.
G.2 Unified AGM ODE

In Appendix [F2] we established the equivalence between [A and the integro-differential
equation (@) with the kernel H*" defined in (66). For this kernel we can verify that

/ HY(s,7)ds = / (1+ coth? log (sech?) — coth? log (sechi)) sinh, cosh, ds

sinh, cosh,

t 1 + coth? log (sech?

= sinh, cosh. / s g ( s) ds
r sinh, cosh,

t
— sinh, cosh, log (sechz) / coth, csch? ds

T

1 t
= sinh, cosh, {— cschi log sech§ }
\/ﬁ ( ) S=T

1 ¢
— sinh, cosh log (sechz) [— csch?
\/ﬁ s=T1

= \/1/7 csch? sinh,, cosh, (log (sechi) —log (sechtz)) ,
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t s t ot
/ / HY (s,7)drds z/ / HY (s, 1) dsdr
o Jo 0 Jr

n2 ot
_ & / sinh,; cosh, log (sechi) dr
Vi Jo
csch? log (sechtz)

N7

esch? [ 1 ‘
= L | — (sinh? + cosh? log (sech?) )}
\/ﬁ |: 7=0

t
/ sinh; cosh, dr
0

VH -
csch? log (secht2 ) [sinh2 !
- Vi { NG ]T_o
= i (1+ csch? log (sechf)) .

Thus, the kernel % {)\F(t) f: HFE (s,7) ds} and the function o' (¢) can be computed as follows:

O [ [ or 0 f sinh} 1 2 . 2 )
— t H dsp = — —— cschj sinh h, (1 hZ) — log (sech
5 {)\ ( )/T (s,7)ds 5 \ s \/ﬁcsc ¢ sinh; cosh (log (sech?) — log (sechy))

- % {\/ﬁslthT sinh, cosh, (log (sech?) — log (sechy)) }

sinh, cosh, 9
= —ma {log (Sechf) }

tanh; sinh, cosh,

. )
sinh?.

(Z{)\F(t)(l —M/Ot/OSHF(s,T)des)}

d ( sinh? 1
)

___1 4 2
= sinhzT p {log (secht )}
. \//.7/ tanht

2 sinh3.

Therefore, the PEP kernel (I0) can be computed as

SP(t7) = y% {AF(t) /: P (s,7) ds} — 2P (t)aF ()

tanhy sinh; cosh,  ptanh; tanh,

=V ) !
sinh7, 2sinh

T

tanh; tanh, tanh; sinh, sinh?
= (V—ECSCh%) .t 5 +v ! .1n2
sinh7- sinh7-

fort > 7.

G.3 TMM ODE for minimizing function values

In Appendix [F.3] we showed that can be equivalently expressed as the integro-differential
equation (9) with the kernel H*" defined in . For this kernel, we compute the following integrals:

¢ ¢
/ HY (s,7)ds = / (726‘/17(7—75) +462\/ﬁ(775)) ds
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(r—s) _ p2vA(T— s)}

S=T

(r—t) _ Qf(T t))

e
(e
/ (s,7)dsdr
A

\%\ a\

//HFSTdeS

62\/‘7('””) dr

_1 [ N 2@(T—t)r
1% 7=0

1 (1 —2e"VHE 4 6_2\/ﬁt) .
I
Thus, the kernel 2- {)\F(t) f: HE (s,7) ds} and the function o (¢) can be computed as follows:

9 [\r - _ O ayme-m) VE(T—t) _ 2\ /f(r—t)
(?t{)\ (t)/T H (S,T)ds} 815{ \/ﬁ(e —e )

2 0 { VE@E+T—2T) _ QW(T—T)}
\f at
_ 2ef(t+7-—2T)7

ol (t) = %% {)\F(t)(l u/ot /OSHF(S,T) des)}

= 1d e2VE(t=T) (1 _ Hl (1 — 9 VRt 6*2\/7”)
2dt 1

_ 1d {2 Vat—2T) 72\/;7T}
2dt
= JpeVF(t=2T),

Therefore, the PEP kernel (I0) can be computed as

t
SP(t7) = y% {/\F(t) / HE(5,7) ds} ~ 2 (t)a’ (1)
— 2V€\/ﬁ(t+7—2T) _ 2M6\/ﬁ(t+T—4T)
—9 (1/ _ Me—?ﬁT) oV/A(t+T—2T)

fort > .

G.4 ITEM ODE

In Appendix[F4} we showed that[TEM ODE]can be equivalently expressed as the integro-differential
equation (9) with the kernel H*" defined in (73)). For this kernel, we can verify that

/ HY (s,7)ds = / (4sinh; cosh; coth, esch? +2sinh, csch, (1-2 coth?)) ds

t
= 4 sinh, cosh, [— cschi]

1
2\/1
1 t
+ 2sinh, { cothy cschs}
\/ﬁ S=T

2
= — (— cscht2 sinh; cosh, + coth, + coth; csch; sinh, — cothT)

NG
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2
= \7 (f cschf sinh; cosh, + coth; cschy sinhT) ,

W

t s t ot
//HF(S,T)deSZ//HF(S,T)dsdT
0 JoO 0 Jr

2 t
= ﬁ /0 (— cschf sinh; cosh, 4+ coth; csch; sinhT) dr
= [ csch? sinhz +2 cothy cschy coshT]t

7=0

( 1+2 cotht2 —2 coth; cscht)

Ht\Ht\H

— (1 + 2 csch —2cothy cscht) .

t

Thus, the kernel 2- {)\F t) [*HE (s,7) ds} and the function o (¢) can be computed as follows:

T

0 ¢ d [ sinh? 2
— NPy | HF ds s = — t = (—csch?sinh, cosh, + cothy cschy sinh,
875{ ()/T (s,7) s} 5 {sinh%\/ﬁ< cschy sinh; cosh;, + coth, csch, sinh;)
B g - 2sinh, cosh, 2 cosh; sinh,
ot V#sinh7. VAsinh7,
_ 2sinh sinh,
B sinh%
F ld F A
a't)===<A" WA —-p H" (s,7)drds)
_1d sinht2 ( 1 9 )}
—— 1 — p— (1 + 2csch;y —2 cothy csch
T odt {sinh% 'u,u ( ¢ ! t)
1
= 1 + cosh
smh2 dt { o
_ /psinhy
- sinh7.

Therefore, the PEP kernel (I0) can be computed as

SF(t,7) = y% {)\F(t) /: HF (s,7) ds} —2aF (t)al (1)

2vsinh; sinh,  2psinh, sinh.-

sinh3. sinh7.
= 2csch, (v—n csch%) sinhy sinh,
fort > .

G.5 OGM-G ODE

In Appendix |F;5], we showed that m can be equivalently expressed as the integro-
differential equatlon (2T), using the kernel H“ defined in (76). Therefore, with C(tena) = 1/(T —

tena) and o (t) = C(tena) HE (tend, t), we can compute the PEP kernel (23)) as follows:
SC(t, 1) =vHC (t, 1) — 2% (t)a (1)
=vH(t,7) = 2C(tena)* H (tena, ) HE (tend, 7)

(T-t)(T—1) 3 2 (T — tena)(T —t) (T — tena)(T — 7)
N T2 (T = tena)? T2 T2
(o-2)nreo
T2 T2

fort > .
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G.6 AGM-SC ODE for minimizing velocity norms

In Appendix [FI] we showed that @ can be equivalently expressed as the integro-
differential equation (2I)), using the kernel H* defined in (64). Therefore, with teng = 7', C(T) =

VI and o€ (t) = C(T)H (T, t), we can compute the PEP kernel (23) as follows:
SC(t, 1) =vHC (t,7) — 2% (t)a (1)
= vHC(t,1) - 2C(T)?HC(T,t)HE (T, 7)
= pe VH _ 3672\/’771
2

fort > 7.

G.7 Unified AGM-G ODE

In Appendix [F.6] we showed that [Unified AGM-G ODE] can be equivalently formulated as the
integro-differential equation (Z1)), using the kernel H* defined in (80). Therefore, with C(tena) =
Vi

¥E sechp_y,,, cschr_y,,, and a®(t) = C(tena) HE (tend, t), we can compute the PEP kernel (23)
as follows:
SC(t, 1) =vHC (t,7) — 2% (t)a (1)
=vH(t,7) — 2C (tend)*HE (tends ) HE (tena, 7)
_sinhy_coshp_¢ tanhy
= —
sinh7-
. 2
[ o (sinhp_¢_ , coshr_y_ )" tanhp_; tanhp_
- 5 eChT_tend CbChT_tend s Sinfl%
I 5\ tanhp_;tanhp_, sinhQT_t tanhp_; tanhp_,
= (1/7 fcschT) — v —
sinh7 sinh7
fort > 7.

Verification of C(tcnq)X (fond) — —1Vf(X(T)). In order to apply the Dirac delta function
argument, we show that the solution X : [0,7") — R? to|Unified AGM-G ODE|can be continuously
extended to ¢ = T'. We employ a similar argument to the one presented in [10, Appendix D.3]. By
using the energy function in [7, Appendix F.5], we can show that || X (¢)||? is bounded. Thus, X is
uniformly continuous, implying that X can be continuously extended to t = T'.

Note that|Unified AGM-G ODE|can be expressed in the following form (see [7]):

sinh._, coshr_,

X(t):—/o H(t,7)Vf(X(r))dr, H(t,T)=

sinh}.__coshp_,
Thus, we have

. tend
C(tend)X(tend) = _C(tend) H(tendv T)Vf(X(T)) dr
0
tend * h2
VI s £(X (1)) d
0 2sinhy.__ coshp_,

T
- / ou(T)V (X (7)) dr,

T

where )
\/ﬁ SlnhT—tend
13

sinhy._ _ coshp_,

(1) = [0.tena)-

Now, it suffices to show oz — 7. To show this, we need to verify the following three conditions: ()
a(T) >0, (i7) fOT oy(1)dr — 1ast — T, and (iii) for every n € (0,T), we have [/ ay(7) dr —
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0 as t — T. Checking the conditions (i) and (i) is straightforward, so we only show (éi). The
integral can be computed as follows:

tend 1

T
/ ay(1)dr = \/,EsinhQT_teml / dr
0 0

sinh}.__coshp_,

tend

= sinh%_tend [csch%_T + log(tanh%_T)] o

which converges to 1 as tenqg — 7.

G.8 TMM ODE for minimizing velocity norms

In Appendix [F.3] we showed that TMM ODE]can be equivalently expressed as the integro-differential
equation (21), using the kernel H defined in (71). Therefore, with teng = 7', C(T) = %, and
a%(t) = C(T)H%(T,t), we can compute the PEP kernel (23) as follows:

Sxu(t, 1) = Z/HG(t,T) - QC(T)QI:IG(T, t)HG(T,T)
= 2yei\/ﬁ(t+7—) — 2Mei\/ﬁ(t+7—+2T)

— 2 (1/ — /JJ672\/ET> efﬁ(t""’-)
fort > .

G.9 ITEM-G ODE

In Appendix [F7] we showed that IITMEI can be equivalently formulated as the integro-
differential equation (21)), using the kernel H“ defined in (4). Therefore, with C(tena) =

% cschr_y,, and a%(t) = C(tena) HE (tena, t), we can compute the PEP kernel (23) as follows:
SC(t, 1) = vHC (t, 1) — 2% (t)a (1)
= vHE(t,7) — 2C (tena)* HE (tena, ) HE (tend, T)

. . . 2 . .
_ 2vsinhp_;sinhy_, sinh7._,  sinhp_;sinhy_,

2
—2peschp_y

sinh?, sinh7.
=2 cschzT (I/ — ,ucschzT) sinhr_; sinhp_ ,

fort > .

Verification of C'(tenq) X (fend) — —1Vf(X(T)). In order to apply the Dirac delta function

argument, we first show that the solution X : [0,7) — R? to[ITEM-G ODE|can be continuously
extended to ¢ = T'. We employ a similar argument to the one presented in [10, Appendix D.3]. By
using the conservation of the following quantity over time:

X(s)| s+ 2075 0) ~ 10,

1o 2 t
§HX(t)H +3\/ﬁ/ cothp_g
0

we can see that || X (¢)||? is bounded. Thus, X is uniformly continuous, implying that X can be
continuously extended to t = T'.

Note that [TEM-G ODE]can be expressed in the following form (see Appendix [F.7):

. t 2sinh?
(@) = [ BV dn Hen = o=t
0 sinhy._
Thus, we obtain
) tend
Cltend) X (tend) = =Cltena) [ Hltena, 7)V (X (7)) dr
0
tend 1 h2
_ %Vf(X(T))dT
0 sinh7_
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1 T
=3 | eV @)an

where
2\/1 sinh%_t

o (T cndl
() sinhg’a_T (0.t

end)

Now, it suffices to show oz — 7. To show this, we need to verify the following three conditions: (i)
a(T) >0, (i7) fOT ay(1)dr — 1ast — T, and (iii) for every n € (0,T), we have [/ a,(7) dr —
0 as t — T. Checking the conditions () and (7i) is straightforward, so we only prove (ii). The
integral can be computed as follows:

T tend 1
/ (1) dT = 2/psinh7._, . / ———s—dr
0 % Jo  sinhp_,
9 9 tend
=sinh7_, | {coth cschr_, +log(tanh7_ ) ,
en 2 7=0

which converges to 1 as teng — 7.

H Missing details from Section [3]

H.1 Optimality of the dual variables selected in the proof of Proposition 2]

In this subsection, we show that the multiplier functions A; (t) = t2/T% and Ao (t) = 2¢/T?, chosen in
the proof of Proposition is indeed an optimal solution for the dual problem miny, x, Dual(A1, Ag).
Since a dual feasible solution corresponds to a convergence proof using the corresponding weighted
integral of inequalities, and vice versa, this indicates that the obtained guarantee cannot be improved.

We can exclude the case A\; # \o, because Dual(A1,\2) = oo for that case. Let A €
C1([0,T];[0,00) with A(0) = 0 and A(T) = 1. The PEP kernel ([8) with \;(t) = A(2),
Ao(t) = A(t), and H(t,7) = 73/t can be computed as follows]

SA’AYV(LL,T) =v <A(t)H(t, T) + A(t)/ H(s, 1) ds) — %A(t)A(T)
73 A 3 .
—v (A(t)ts + 22 (- t)) - LAwie)
fort > 7.

Claim 1. The following statements hold:
(a) Forv =2/T? we have S ; ,(t,7) = 0 if and only if A(t) = t*/T?,

(b) For v € (0,2/T?), we have Saa,(tT) £ Oforal A € C*([0,T7;[0,00)) such that
A(0)=0and A(T) = 1.

Assuming that Claim |1/ holds, we proceed to show that the multiplier functions (A (¢), A2(t)) =
(t2/T?,2t/T?) form an optimal solution to the dual problem miny, , Dual(A1, A2). Because
Dual(A1,A2) = inf,e00){V : Saipw = 0}, we have Dual(t?/T2,2t/T?) = 2/T? by
Claim|1|(a). In addition, for A(t) which is not equal to ¢ — #2/T2, we have Dual(A, A) > 2/T2 by
Claim|1{(b). Therefore, we conclude that the multiplier functions (A1 (t), A2(t)) = (¢£2/T2,2t/T?)
minimize the dual function Dual(A1, Ag).

We now prove Claim |1} In the proof of Proposition [2, we showed that A(t) = t2/7? implies
Spazyr2(t, ) = 0. Assume Sy i o /72(t, 7) = 0. To prove that A(t) = t? /T, we first note that by
Proposition|[T] (e), we have

2 1 /. 2
0 < Sy payraltit) = A0 — 5 (A1)

'Note that the assumption Ao (£) = X1 (t) does not restrict the generality of the analysis, as failing to satisfy
this condition leads to Dual(A1, A2) = co.
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forall ¢ € (0,7"). Thus, we have

d A(t) 1
SA{VAD} = <= 85
= {VA® Neohks (85)
forallt € (0,T") with A(t) # 0. By the assumptions, we have 1/A(0) = 0 and \/A(1) = 1. Itis easy
to check that the only function L € C([0, T); R) satisfying L(0) = 0, L(T) = 1, and L(t) < 1/T
is L(t) = t/T. Therefore, we have A(t) = ¢ /T2, which proves Claim[](a). When v € (0,2/72),
we can use a similar argument as above to show that S, ; ,(t,7) # 0for A(t) = t2/T? (in this case,

the right-hand side of @) becomes a constant smaller than 1/7T). Claim (b) immediately follows
from the fact that Sy ; , = 0implies S 4 ; = 0 forall v > VE|

H.2 Correspondence between continuous and discrete PEP

In this subsection, we establish the connection between the continuous PEP presented in Section 3]
and the discrete PEP proposed in the work of Drori and Teboulle [4], by showing that the former can
be seen as the continuous-time limit of the latter.

H.2.1 Review of discrete PEP

We first review the discrete PEP presented in [4]. Note that the formulation and notation used
here differ slightly from those in [4]. The general form of the discrete-time method we consider is
represented by the following system of equations:
1
T =20 — Zhl,ovf(afo)

Ty =1x1 — % (h2,0V f(x0) + ho 1V f(21))

(86)
1
IN=IN-1T T (hnoVf(zo)+ - - +hynaV(zn_1)).
The exact PEP is defined as follows:
flan) — f(@")
feFo@®iR)  |lzg — a*|?
0., N ER? (Exact Discrete PEP)
subject to  {z;}2 is updated by the rule (86)
x* is a minimizer of f.
With two sequences {¢; } Y, in R and {; }}¥, in R?, defined as
1 *
Pi 1= W(f(l’z) — [ (")
iEol x (87)
i= o V. (@),
T g e Y

we can relax [Exact Discrete PEP| using a similar argument as in Section 3] Define the matrix
G € RINVHDXd a5 G = [0, ...,vn]T. Then, we have the following relaxation of [Exact Discrete
[PER:

max Lén
GGR(N+1)><J

pERNH1
veR?, [lvl=1 (Relaxed Discrete PEP)
subjectto Tr {GTA,‘_LI'G} < i1 —p; Yie {1, S ,N}

Tr {G"D,G +vu!] G} < —¢; Vie{0,...,N},

’This becomes clear by observing that the positive semidefiniteness of S AA, 18 equivalent to the positive
semidefiniteness of .S A4, and the fact that the kernel (¢, 7) +— A(t)A(7) is positive semidefinite.
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where the (N + 1) x (N + 1) matrices A;_1; and D; are defined as follows:

i—1

1 1
Ai_1 = 5(%‘4 — i) (Ui—1 — Ui)T + 5 kzzohz‘,k; (UZU{ + UkUiT) )
1 1 <-4
D, = §uzu;f + 5 ; ;Ohj’k (uzuf + UkUZT) .

With the two Lagrange multipliers, \y = (M, ..., A\)) € R¥jand Ao = (A3,...,A))) € RYF, the
following dual objective function can be obtained (see [4} Section 4.2]): B

: 3 . ' -
Dual(\q, \2) = {lnfueR {v: Sy =0} if (A, )\2) €

o0 otherwise,
with

2 = {0, 20) e RY x REF!: 23 = 0],
- | (88)
AV LAY =1, Aq—xﬁlmgzovm{1,...,N—1}}

and

qQ §A A2,V T
S)\17>\27V = |: 1/TL 2v ’
T T

where S Mg, isan (N + 1) x (N 4 1) matrix defined as follows (the explicit form can be found in

5H{l
= N N
S/\l,)\z,l/(ivj) =2 (Z >\Z1Ai71,z‘ + Z )\%DZ>
i=1 =0

LX) b + NS by, 2<i<N,0<j<i—2 (g9)

. . _ =j+1
=)L) i — AL 1<i<N, j=i—1
2X, 0<i<N-1,j=i
1, i=j=N.

Using a well-known property of the Schur complement (see [1, Appendix A.5.5]), we can show that
the condition S}, x,,, = 0 is equivalent to the following condition:

= L
Sxiaw = VS xew — S AAg 2 0. (90)
Thus, the dual objective function can be rewritten as follows:

infuer {¥: Sxi o =0} if (A, A2) €F
D) = {1 ! anemie

We now demonstrate how the discrete PEP can be used to establish a convergence guarantee for a given
discrete-time method. Let vg,s € (0, 00) be given, and suppose that the matrix S, , ..., defined
in (O0) is positive semidefinite, with appropriate multiplier vectors \; and \o. Using a similar ar-
gument as in Section |3} we can show that val(Exact Discrete PEP)) < val(Relaxed Discrete PEP) <

Dual(\1, A2) < Vgens- Consequently, this implies the following convergence guarantee:

fan) = F(27) < Vieas 2o — 27|

Therefore, the discrete PEP transforms the task of establishing the convergence guarantee for a
discrete-time method into the verification of the positive semidefiniteness of a specific matrix.

3Here, the (i, j)th entry of the matrix A is denoted as A(4, §).
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Example: AGM. As an example of the application of the discrete PEP presented above, Kim and
Fessler [S]] used it to analyze the convergence rate of Nesterov’s accelerated gradient method (AGM)
[8]], which can be represented as follows:

1+ /14462
Oiy1 = ——F——+
2
1
Yi+1 = T4 — ZVf(.’EZ) (AGM)
0; — 1
Tit1 = Yi+1 + ) (Yiv1 — ¥i),
i1

where 29 = yo and 6y = 1. Since this method can be expressed in the form of (86) (see [5) Section 3]),
we can apply the discrete PEP above. With the Lagrange multipliers A\ = 02 , /6% and \} = 6, /63,

the matrix S s, (4, 7) defined in can be computed as follows (see [5, Section 5]):

7 1SiSN 0 <iol
5>\1,>\2,V(i7j): 20027, 0<i<N-—-1,5=1
N
1, i=j=N (2]
1

-7 ([90,...,9N] 0o, ....0n]" +2diag{[93,...7e?v,1,0f}> .

Hence, the matrix S, »,,. defined in with v = # can be computed as follows:
N

.. o .o L iNg
S/\l,)\z,l/(lvj) = VS)\h)Q,V(Z?J) - §>‘2)‘]2
L T . 2 2 T
=—1(1[00,...,0n][00,...,0N]" +2diag< |6F,...,08_1,0
s, ( {168 60"}
L
(00, - ,6n] [60, -, On]"

204
L X ) . 92)
= erlag { 65, ...,0%_1,0] }
N
03 - 0 0
_ L] . : :
O] 0 - 0%, 0]’
0o --- 0 0
which is clearly positive semidefinite. Consequently, we have Dual(A1, A2) < #, implying the
N

following well-known convergence guarantee for[AGM}
* L *12
flan) = f(2") < o5 [lwo — 27|
205,

H.2.2 Continuous PEP as the limit of discrete PEP

In this subsection, we informally show that the continuous PEP presented in Section [3] can be
considered as the continuous-time limit of the discrete PEP presented in Appendix [H.2.T] By making
the approximation ¢ & k+/s and T ~ N./s, where s = 1/L, we establish a correspondence between
the iterations £ € {0,..., N} and the time ¢ € [0,7]. Under this approximation, we can see
that the iterates {x;} of the discrete-time method (86) converge to the solution X to the following
integro-differential equation:

X(t) = / H(t, )V f(X (7)) dr,

where H(t,7) = lim;s_o h%_’%, under the approximation X (k+/s) = xy, (see [[7, Appendix B.2.3]).
It follows that the sequences {p;} and {7;} defined in (7)) converge to the functions ¢ and v
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defined in Section under the approximations ¢ (k+/s) & ¢y /s and v(k+/s) = i /s. Using the
approximations \; (k+/s) &~ A} and Ay (k+v/5) =~ A5 /\/s, we can identify the Lagrangian multipliers
in the discrete PEP and the continuous PEP. Consequently, the condition (A1, A2) € =, where = is
the set defined in (88), is transformed into the following conditions: A;(0) = 0, \;(7") = 1, and
A1(t) = Ao(t) forallt € (0,T). The limiting kernel Sx, x, . (t,7) := lims_,0 Sx, x,.0 (t/V/5, T/1/5)
of the matrix defined in (89) can be computed as follows:

= . = t T
S>\17>\2,1/(t77—) = ;g% S/\1,>\27V <\/§7 \/g)

-+ 1
Vs
o t/NE |\t t/vs )
=l | (W) b M B e
k=T=+1
o 93)
-
= lim (AL(t) + VsAo (1)) H(t, 7) + v/sA2(2) H (74 /sk,7)

=M@)H(,T)+ )\g(t)/ H (s,7) ds

for t > 7. Note that this kernel coincides with the kernel & introduced in Section[3.2] As a result, we
can compute the limiting kernel S, x, ., = lims_0 S, x, 0 (t/4/S, 7/4/) of the matrix defined in
([©0) as follows:

t T B N EINIRYE
ﬁle%%&A2

—v (Al(t)H(t,T) () /: H (s,7) ds) - %Az(mgm

for t > 7. Note that this kernel coincides with the PEP kernel defined in (8). Consequently, it follows
from a limiting argument that the positive semidefininteness of the matrix (90) translates into the
positive semidefiniteness of the PEP kernel (8). Therefore, we observe that the continuous PEP
presented in Section [3]serves as a continuous-time counterpart to the discrete PEP in Appendix [H.21]

S}\l,)\g,lj(t77—) = Vll_l;% 5}\1,)\2,1/ <
94)

Example: AGM ODE. To provide an example for the relationship between the continuous PEP
and the discrete PEP discussed above, we consider AGM ODE] which is the continuous-time limit of
Before delving into the calculations, we note that the sequence {6; } involved in the update
rule of can be approximated as 6; = (i + 2)/2.

It is known that the limiting kernel of the difference matrix (h;j) for|JAGM]|can be computed as
lims h%7% = 73/t3 (see [1]]), which coincides with the H-kernel for[AGM ODE) presented

in Section [3} We now compute the continuous-time counterparts of the multipliers vectors A=
62 /0% and N, = 0,/03%:

92 t2
Ar(t) = lim ASY® = Jim 0521

s—0 s—0 0%/\ﬁ n ﬁ’

ALVE 0,/ 2t
A2(t) = lim 2= = lim 7t/2‘[ =_
s—0 S s—0 \/EGT/\/E T2

which coincides with the multiplier functions considered in the proof of Proposition 2] Next, we
compute the kernel Sy, »,.,, defined in (93):

Sy rg (B 7) = ALV H (£, 7) + Ao () / H (s,7) ds

t? 713 2t [t 73
e tm) 8%

tT

T2
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for t > 7. We can observe that this kernel is the limiting kernel of the matrix S A1 As,v defined in (@T).
With v = lim,_,o 55> = 7%, we can see that the kernel Sx, x, . (t,7) defined in (94) is the zero
YN

kernel, which aligns with the fact that the limiting kernel of the matrix Sy, , . defined in (92) is the
zero kernel. Hence, we can conclude that the continuous PEP applied to[AGM ODE]is consistent
with the discrete PEP applied to[AGM]

Before concluding this section, we highlight the significance and practicality of our continuous PEP
framework. We can observe that the analysis of the continuous PEP applied to|/AGM ODE/ involves
shorter and simpler computations compared to the analysis of the discrete PEP applied to|AGM]| This
observation suggests that the continuous PEP can serve as an accessible model for analyzing the
discrete PEP. In other words, by examining the continuous PEP for the corresponding continuous-time
dynamics, one can gain insights and guidance in analyzing the discrete PEP for a given discrete-time
method.

In particular, one non-trivial step in analyzing the discrete PEP is choosing appropriate Lagrangian
multipliers that makes the matrix (90) positive semidefinite. In existing literature, this step is typically
performed by numerically solving the dual problem, assisted by computers (see, for example,
[6,12]). However, in the continuous PEP, this step can be relatively straightforward. For instance,
in Appendix we analytically derived the optimal dual variables, namely \; (t) = t2/72 and
Ao (t) = 2t/T7, for After analyzing the continuous PEP for one can attempt
to set the Lagrange multiplier vectors in the discrete PEP for[AGM]| by discretizing the Lagrange
multiplier functions A\ () = ¢2/T?% and A2 () = 2t/T?. Indeed, the discretization \} = 62 | /63,
and \j = 0,/6% works well, as shown in Appendix[H.2.1]

H.3 Convergence rate of TMM ODE matches the known rate of TMM

The well-known convergence rate of TMM]is as follows (see [3| Theorem 4.19]):

F ) = 1 @) = S I9F @I = 5 o = 597 (o) =
< =i (£ ) = £ = 5197 ()l 05)
s o =9 () — I o = a7 )

In Appendix [E.I] we showed that[TMM ODE]is the limiting ODE of [TMM]under the approximations
t =~ /sk,T = /sN,and Y (\/sk) = yy. It is straightforward to check that taking the limit s — 0 in

the inequality (93) gives
" Iz * - * H *
FO@) = f @) = SIVT) =" P < T (f (o) = £ () + & o — 27)
which coincides with the convergence guarantee of obtained in Section[3.3]

H.4 Convergence rate of ITEM ODE matches the known rate of ITEM

In [[12]], the convergence rate of [TEM]is shown as follows:
* S 2
flyn) = f(z*) = 5 IVf (yn)ll
H 12 1 *|12
Py —sV P < g — =t 96

In Appendix [E-2] we showed that [TEM ODE]Jis the limiting ODE of [TEM]under the approximations
t ~ /sk, T ~ +/sN, and Y (/sk) = y. Because we can approximate the sequence { Ay} as

A ~ ﬁ sinh? (, / psk), we can check that taking the limit s — 0 in the inequality gives

FY(T)) = f (") = g 1Y (T) = 2*||* < pesch® (VaT) llyo — 2",

which coincides with the convergence guarantee of [TEM ODE]obtained in Section [3.3]
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1 —— AGM-SC ODE
1 - O(e=vH)

t
Figure 1: Comparison between the actual performance ofAGM-SC ODE]and the theoretical conver-
gence guarantee (28).

I Missing details from Section 4]

I.1 Numerical experiment for the convergence guarantee (28)

To empirically validate the convergence guarantee (28)), we consider the minimization of the following
objective function:

x1,22) =2 x 107222 + 5 x 107322,
1 2

starting from the initial point 9 = (1,1). This simple problem was used in [9]. Note that f is
p-strongly convex with y = 0.01. The result is shown in Figure[T]

I.2 Novel ODE models for minimizing velocity and gradient norm

TMM ODE. We analyze the convergence rate of on the squared velocity norm. This
ODE model is the anti-transposed dynamics of itself because it can be expressed as (20) with
HE(t,7) = —2eVP(T—1) 4 4¢2VE(—) In Theorem [2| we choose A (t) = e~2VF. By setting
tena = T and a%(t) = C(T)HC(T,t) with C(T) = /i/2, we compute the PEP kernel (23) as (see
Appendix[G:8)

SY(t,7) =2 (V - ,uef2‘/‘7T) e VAT, 7

which is the anti-transpose of the PEP kernel (I3)). Thus, the kernel (97) is positive semidefinite for
v = pe~2VHT Therefore, Theorem guarantees that TMM ODElachieves the following convergence
guarantee:

VE 2 . .
HQMX (T)H < eV sup { f(wo) - f (@)}, (98)
which is a novel result.

ITEM-G ODE. We consider the following novel ODE model:
X +3y/icothr 4 X + 2V f(X) = 0, (ITEM-G ODE)

where cothr_; denotes the corresponding hyperbolic function with the argument /z(T" — ¢). This
ODE model is the anti-transposed dynamics of [TEM ODE] as it can be expressed as (20) with
HC(t,7) = 4sinhy_; coshy_; cothy_, csch%_T +2sinhp_; cschyp_- (1 — 2 cothQT_T) (see Ap-

sch2 . _
pendix' We choose /\G (t) == Tt . By setting tend < T and aG(t) = C(tend)HG (tendv t)

2
csch,

with C(teng) = g cschy_;_ ,, the PEP kernel (23) is given by (see Appendix :

SC(t, 1) = 2cschy (v—p cschQT) sinhp_, sinhp_ ., (99)
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which is the anti-transpose of (T7). Thus, the kernel (99) is positive semidefinite for v = y csch?..
Therefore, Theorem 2] implies that [TEM-G ODE]achieves the following convergence guarantee:

\//7 ?
_vP < pesch? s f —f :
H 2sinhp_4 = Heseir ;élngd {f(a:o) ! (x)}

)t(tend)

end

By using a similar argument as in the case of[OGM-G ODE] we can show that the left-hand side of
this inequality converges to ||V f(X(T))||*/4 as tena — T (see Appendix [G.9). Consequently, we
have the following convergence rate on ||V f(X (T))||%:

IVFCET)]P < dpescti sup { fao) = f (2} (100)

zeRd

which is a novel result.

I.3 Lyapunov analysis for minimizing velocity and gradient norm

In Section [4.2] and Appendix [[.2] we analyzed the convergence rates of various ODE models on
velocity or gradient norms, within the continuous PEP framework. In this subsection, we present

an alternative approach to obtain the same convergence guarantees. The proof relies on Lyapunov
functions and L’Hopital’s rule, similar to the convergence analysis of [OGM-G ODEF and [Unified

- presented in [10, [7]. We provide detailed computational steps for the analysis of
- and[AGM-SC ODE] and present only the essential steps for the remaining examples.

Because {% {ft(y) - ft(X(T))H

< 0 (see Appendix |§|), we have
y=X (1)

I hxwy) - f [5 (X(T))}}

OGM-G ODE. We bound the time derivative of f,(X (t)) — f,(X (7)) as follows:

%{ft(x@s)) - ft(X(T))} < <Vft(X(t))7X(t>>

T2 1

= _W <X(1f) + TX(t),X(t)>

i {am ol }

where the second equality follows from (73). Therefore, the following energy function is decreasing:

E(t) = fuX (1) — f(X(T)) + AT

We now show that this energy function is equivalent to the one provided in [10]. By (74), we have
- 7 boor?
fely) = mf(y)— </o (T —1) Vf( (T ))dT’y>
T 27?2
= — —X .
T 0+ (e X0

Consequently, we can rewrite the energy function as follows:

E(t) = fi(X(1) = fuX(T)) +

T2
=T (F(X(t) — F(X(T)))

pro

s o
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. 2 . 2
MG (X0, x(0) - x(1) + 2(TT— DE [x|
- (T% (FX(1) — FX(T))

- (T% IX () — X(T)|? + %

which recovers the known energy function for[OGM-G ODEin [10].

X(t)+ %X(t) - X(T)

)

AGM-SC ODE. We bound the time derivative of f;(X (t)) — f(X(T)) as follows:
&L x) - fuxn ) < (VA @), X))

=~V (X() + VEX (1), X (1))
i {5

2
x|
where the second equality follows from (63). Therefore, the followmg function is decreasing:
E(t) = Fu(X (1) = fulX x|
We now provide an alternative expression for this energy functlon. By (62), we have
t
) = V) - Vi ([ emeixmyany)
0
= VP f(y) + { VeV X (1) + peV™ (X (1) - w0,y )

ef ~
= e (y) = F5— lly — woll* + (VAL PR (1) + peV™ (X (1) = w0). )

Consequently, we can rewrite the energy function as follows:

E(t) = V™ (F(X(1) = S1X() = wol* = F(X (D) + £ 1X(T) = wo]*)

+ (VYT X () + pev™ (X () — o) , X (t) = X(T)) + eft HX(t)H2

= e (J(X(0) ~ F(X(T) + 5 X (1) - X(T))
eVt
2

VRV (1), x(0) - X)) + O [ £

_ oVt _ H L% —
(f(X(t)) ) + 5 e+ 2=k - xa

We now have

1) = £y < £0) = fao) ~ fX (D)),

which recovers the convergence guarantee (28) obtained in Section 4.2]

Unified AGM-G ODE. We have
@ Lix) - ﬁ(X(T))} (V@) X0)
+

sinh3.

<X( ) % (cothp_; + tanhp_4) X (t), X(t)>

sinh?._,

2 sinhT,t COShT,t

. 2 inh2 ) 2
_ 7i smh2T X(t)H B /e sinh HX(t)H
dt | 2sinh7._,
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where the second equality follows from (79). Therefore, the following function is decreasing:

A A sinh? . 2
E(t) = fu(X () — f(X(T)) + ﬁ HX(t)H .

We now show that this energy function is equivalent to the one provided in [7]. By (78), we have

; sinh7 4 sinh2 )
- -5 -z
Ay) sinhQTftf(y) 2 sinh2._, lly — ol
sinh7, ~ sinh2.
+ <nh2 tanhe X(t) — xo),
<ﬁsinh%t tanhy 4 sinh%ft( (t) 0):Yy

After performing the calculations, we can rewrite the energy function as follows:

sinh?. psinh?.

E(t) = == (F(X() = F(X(T)) = = IX (1) = X(T)|
sinh?._, 2sinhp_,
. 2
Msmh% tanhp_;
X))+ —X@) - XD ,
QSinh?p_t tanh%_t ®) N (t) (7)
which recovers the known energy function for[Unified AGM-G ODE]in [7].

TMM ODE. We first bound the time derivative of f;(X (t)) — f;(X(T)) as

9L xw) - fian} < (VRX0), X))
o2Vt

= = (X0 + vax(®), X®)
-~ {7 xol )

where the second equality follows from (70). Therefore, the energy function:

~ o e2 2
Et) = fi(X (1) = (X (1)) + 1
is decreasing. We now provide another expression for this energy function. By (69), we have
~ ’LL .
Fuly) = eV (g) = BV y — g |? + { VeI () + peV T (X (1) — 20) )
After performing some calculations, we can rewrite the energy function as follows:

E(t) = VI (F(X (1) — F(X(T)) - geQ\/ﬁt IX () - x(1))*

2

N

X(t )+2\7X() X(T)

‘We now have

2 . .
1) = &(r) < £(0) = f(o) - F(X(T)),
which recovers the convergence guarantee (98)) obtained in Appendix[[.2]

ITEM-G ODE. We bound the time derivative of f;(X (t)) — f,(X(T)) as follows:

&L xw) — fuxn ) < (VAKX @), X))

inh2
sinh7,

=-——2X <X(t) + /i cothr_y X(t),X(t)>

2sinh7_,

_da sth
©dt | 4sinh3_,
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where the second equality follows from (83)). Therefore, the following function is decreasing:
. . inh2 . 2
7))+ —— || X
4sinh7._,
We now provide an alternative expression for this energy function. By (82), we have

z sinh?%, 1 sinh?.

2
= - = —x
fi(y) Sinh%it f(y) D) Sinh%wit ly oll
sinh?. . sinh?-
+ ——X(t X —x9), .
<\/ﬁsinh2TttanhTt sinh%ft ( o)y

After performing some calculations, we obtain the following equivalent form for the energy function:

sinh?2 psinh? (1 + cosh?._
E(t) = —5— (F(X(1) = f(X(T))) - s (. T ) IX () = X(T)
sinhy._, 2sinhp_,
. 2 2
. 2,usth ; X(t)+ tanhp_; X(t) _ X(1)
sinh?._, tanhp_, 2\/p

To derive a convergence rate on |V f(X (T))||?, we compute lim; ~ £(t) by employing a similar

argument to the one presented in [10, Appendix D.5]. Note that the solution X : [0,7) — R can be
continuously extended to t = T' (see Appendix|G.9). We first show X (T) = V f(X (T')) as follows:

0= lim (X(t) + 3/ cothr_y X (1) + 2V f(X(t)))

_ - X(1)
= X(T) +3 lim 7 +2VF(X(T))

= X(T) - 3}1/1%)2(75) +2V£(X(T))
= —2X(T) 4+ 2V f(X(T)),

where we used L’Hopital’s rule for the third equality. By using L’Hopital’s rule again, we have

FXE) - ST FX@) - fx ) (VIE).X)

i sinhZ._, Bl R R s Ty
1 . 1 2
= 5, (VX)) X(1)) = o IVFX @I,
tig 2 = XE) _ oy XO XD _ oy X
t T  sinh7_, toT (T —1t) e T 2u(t = T)
1 . 1
= @X(T) = ﬂvf(X(T))-
Therefore, we obtain
2
lim £(t) = sinh?. lim f(X(t)) 72f(X(T)) — psinhZ || lim 7)((0 72X(T)
t T t T sinh7_, t/ T  sinhy_,
+ psinh?. || lim LQX(T) + lim ﬂ
t T sinhy_, t T 2\/ﬁs1nhT_t
_ sinhQT 9 sinh% 9
= S ISP - ST VA )]
1 1 2
+ pcosh?._, sinh?. EV F(X(T)) - ﬂv F(X(T))
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_ sinh7
Ap

We can now derive the convergence guarantee on ||V f(X (T))||? as follows:

IV FX (D))

sinh3. 9 ) . R
TE VST = Jim £(2) < £(0) = fao) - FX (D)),

which recovers the convergence guarantee (T00) obtained in Appendix [[.2}

J Missing details from Section 5]

J.1  Proof of Proposition

Forall ¢,7 € (0,T), we have

SE(t, 1) =v ()\F(t)HF(t,T) + A1) /t H(s,7) ds) —2a" (t)a’ (1)

t
=v (AG(;_t)HG(T_T’T_t) + % {/\G(Il‘—t)}/T HG(T—T,T—S)ds)
—22%(T — t)a(T — 1)
=vHS(T —7,T —t) — 22%(T — )a%(T — 1)
= SNT —7,T —t),
where the third equality follows from (@9). O
J.2  Proof of Propositiond]

We first rewrite fote““‘ % (t)V f(X (t)) dt in terms of V f(X (t)):
/ a®(t)V fu(X (1) dt
= [ ac (xewwicee) - [ iemvica) i) a
_ / GOV dt— [ / " GG (RAC V(X (1) drdt
0
_ /U o <aG(t))\G(t) - ( /t WGy dr A%)) V(X ()dt

_ /O i jt {AG(t) /t Y (Calr) dT}VA(X(t))dt.

Claim 2. The function t — —4 {)\G (t) ftte“d a%(1) dT} 1[0 1..4](t) converges to the function

t %5T(t) -5 tT HC(s,t)ds as tena — T, where 67 is the Dirac delta function centered at
t="T.

Assuming that Claim 2] holds, we complete the proof of Proposition ] As tenq — T, we have
tend R tend g tend R
/ oV (X (1)) dt = / " {A%) / a%(7) dT} VX (1)) dt
0 0 t
T[4 u [T A
R / <6T(t) - f/ H(s,1) ds> VX (1)) dt
0o \2 2 )
1. u [T [T A
= vy -5 [ [ B0V ) ds
0 Jt
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— lvf(X(T)) + g(X(T) — )

2
= LVAX(T)),
where the third equality follows from (54).
We now prove Claim Note that % (t) = o (T —t) = —4 ;é;(tt))} = Ai&f )32 ) /é;((tt)), where
Alt) =1 - ,j; [ HC(s,7)dsdr. Now, we have

jt{)\a(t) /t " abn) dT}

_ 3 ( Altena) A(t))) 280 ( M) ) AW >

AG(tena)  ACG(t NG ()2 AG(t)
NG A(tena)
= ) " A(t)

:nﬁgd)@— // HGSTdeT>— /HGst

As tena — T, the function ¢ — %1[0_’%@ converges to dr, and L&T 1 fTT HE(s,7)dsdr
converges to 0. This completes the proof. O
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