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Abstract

We propose a novel methodology that systematically analyzes ordinary differential
equation (ODE) models for first-order optimization methods by converting the task
of proving convergence rates into verifying the positive semidefiniteness of specific
Hilbert-Schmidt integral operators. Our approach is based on the performance
estimation problems (PEP) introduced by Drori and Teboulle [8]. Unlike previous
works on PEP, which rely on finite-dimensional linear algebra, we use tools from
functional analysis. Using the proposed method, we establish convergence rates of
various accelerated gradient flow models, some of which are new. As an immediate
consequence of our framework, we show a correspondence between minimizing
function values and minimizing gradient norms.

1 Introduction

We consider the following convex optimization problem:

min
x∈Rd

f(x), (1)

where f : Rd → R is a continuously differentiable (µ-strongly) convex function. We assume
that a minimizer x∗ exists. First-order methods, for example, gradient descent and Nesterov’s
accelerated gradient method, are popular in solving this problem due to their low cost per iteration
and dimension-free oracle complexities. These methods can be analyzed by examining their limiting
ODEs. For instance, the gradient descent xk+1 = xk − s∇f(xk) corresponds to the gradient
flow Ẋ(t) = −∇f(X(t)). Building upon this idea, Su et al. [36] derived the limiting ODE for
Nesterov’s accelerated gradient method (AGM) [27] and analyzed its convergence rate, offering
valuable insights into momentum-based algorithms. A common approach to establishing convergence
rates of continuous-time ODE models involves using Lyapunov functions [23].

In this paper, we propose a generic framework that builds upon the performance estimation problem
(PEP) presented in [8] for analyzing the convergence rates of ODE models for various accelerated first-
order methods, including Nesterov’s AGM. The proposed method is designed from the Lagrangian
dual of a relaxed version of continuous-time PEP. Consequently, our framework transforms the task
of proving convergence rate into verifying the positive semidefiniteness of a specific integral kernel.
Moreover, our framework can also ensure the tightness of the resulting guarantee, meaning that the
obtained convergence guarantee is optimal among all possible convergence rates that can be derived
from weighted integrals of the inequalities employed in convergence proofs. Using the proposed
framework, we confirm the convergence rates of existing ODE models and uncover those of new
accelerated ODE models. In traditional convergence analysis of ODE models, it can be challenging
to design appropriate Lyapunov functions.2 However, in our framework, we only need to verify

∗Corresponding author.
2There is a line of work focused on systematically finding Lyapunov functions, often with the assistance of

computers. See Section 1.1 for details.
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the positive semidefiniteness of a specific integral kernel. This approach circumvents the need for
Lyapunov function design, making our framework more straightforward for analyzing convergence
rates.

In the discrete-time setting, the PEP framework has been extensively studied for its ability to
systematically obtain tight convergence guarantees [42] and facilitate the design of new optimization
methods [17, 18, 40]. However, analyzing PEP is typically regarded as challenging to comprehend
due to the involvement of large matrices with complex expressions. In contrast, our framework utilizes
integral kernels, which serve as a continuous-time counterpart to matrices. The computational process
within our approach yields simpler outcomes. Consequently, our continuous-time PEP framework
has the potential to offer valuable insights into the analysis of the discrete-time PEP, similar to how
ODE models have helped designing and analyzing discrete-time methods in the literature [20, 47].
By bridging the gap between the continuous and discrete settings, our methodology enhances the
understanding of the PEP framework.

1.1 Related work

Continuous-time models for first-order methods. The investigation into the continuous-time
limit of accelerated first-order methods began with the study of AGM ODE [36, 2, 3]. Since
then, subsequent researches have explored various aspects of the ODE models. These include
generalizations within the mirror descent setup [20], a broader family of dynamics derived using
Lagrangian mechanics [47, 48, 19], high-resolution ODE models [34, 33], and continuized methods
[9]. Systematic methodologies for finding Lyapunov functions were developed, including deriving
them from Hamilton’s equations [6] or dilated coordinate systems [37]. For obtaining accelerated
discrete-time algorithms, several studies have applied discretization schemes, such as symplectic [4]
and Runge–Kutta [49] schemes, to discretize accelerated ODE models. [32] showed that applying
multi-step integration schemes to the gradient flow also yields accelerated algorithms. A particularly
relevant study is [19], as they present the dynamics in the form of (4) using the H-kernel, which plays
a crucial role in our analysis.

Performance estimation problems. The idea of using performance estimation problems to analyze
the convergence rate of optimization methods was first introduced by [8]. This concept was further
refined by employing a convex interpolation argument in [42] and was applied to a wide range of
settings in [5, 43, 44, 12, 11, 7, 16]. The idea of performance estimation has been used to construct
Lyapunov functions in [41, 39, 25, 45]. In particular, [25] analyzes continuous-time ODE models.
However, their methodology differs from ours, as they employed semidefinite programs of finite
dimension. Another closely related approach is based on integral quadratic constraints (IQC) from
control theory [24], which were used to analyze the convergence rate of first-order methods in [21].
The IQC framework has been further studied in [14, 15, 10, 22, 31]. One practical application of PEP
and IQC is the design of novel algorithms by optimizing the convergence guarantees. Some notable
examples include OGM [17], TMM [46], ITEM [40], and OGM-G [18].

2 Preliminaries and notations

In this section, we review some basic notions from functional analysis that will be used throughout
the paper. For a more detailed treatment, we refer the reader to the textbooks [29, 30, 28].

Function spaces. We denote the set of continuous functions from [0, T ] to Rd by C([0, T ];Rd)
and the set of continuously differentiable functions from [0, T ] to Rd by C1([0, T ];Rd). We de-
fine the space L2([0, T ];Rd) as the set of all measurable functions f : [0, T ] → Rd that satisfy∫ T

0
∥f(x)∥2Rd dx < ∞. Then, L2([0, T ];Rd) is a Hilbert space, equipped with an inner product and a

norm defined by ⟨f, g⟩L2([0,T ];Rd) =
∫ T

0
⟨f(t), g(t)⟩Rd dt and ∥f∥L2([0,T ];Rd) =

√
⟨f, f⟩L2([0,T ];Rd).

Integral operators. An integral operator is a linear operator that maps a function f to another
function Kf given by

(Kf)(t) =

∫ T

0

k(t, τ)f(τ) dτ, (2)
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where k : [0, T ]2 → R is the associated integral kernel. Intuitively, an integral kernel can be seen as a
continuous-time version of a matrix. A Hilbert-Schmidt kernel is an integral kernel k that is square
integrable, i.e., k ∈ L2([0, T ]2;R). When k is a Hilbert-Schmidt kernel, the associated integral
operator K is a well-defined operator on L2([0, T ];Rd), called a Hilbert-Schmidt integral operator. If
a Hilbert-Schmidt kernel k is symmetric, i.e., k(t, τ) = k(τ, t) for all t, τ ∈ [0, T ], then the associated
operator is also symmetric in the sense that ⟨Kf, g⟩ = ⟨f,Kg⟩ for all f, g ∈ L2([0, T ];Rd).
Throughout this paper, we will use the term ‘kernel’ to refer to a Hilbert-Schmidt kernel.

Positive semidefinite kernels. A symmetric operator K on a Hilbert space is said to be positive
semidefinite and denoted by K ⪰ 0 if ⟨Kf, f⟩ ≥ 0 for all f . When a symmetric kernel k is
associated with a positive semidefinite operator K, i.e.,

∫ T

0

∫ T

0
k(t, τ)f(t)f(τ) dtdτ ≥ 0 for all

f ∈ L2([0, T ];R), we say that the kernel k is (integrally) positive semidefinite and denote it by
k ⪰ 0. For continuous kernels, positive semidefiniteness of k is equivalent to the following condition:∑n

i=1

∑n
j=1 cicjk(ti, tj) ≥ 0 for any t1, . . . , tn ∈ [0, T ] and c1, . . . , cn ∈ R, given n ∈ N.

Proposition 1. We summarize some basic properties of continuous positive semidefinite kernels:

(a) For α ∈ C([0, T ];R), the kernel k(t, τ) = α(t)α(τ) is positive semidefinite.

(b) For k1, k2 ⪰ 0, their product k(t, τ) = k1(t, τ)k2(t, τ) is positive semidefinite.

(c) For k ⪰ 0, its anti-transpose (t, τ) 7→ k(T − τ, T − t) is also positive semidefinite.

(d) If α ∈ C1([0, T ];R≥0) is an increasing function on [0, T ], then the symmetric kernel k
defined as k(t, τ) = α(τ) for t ≥ τ and k(t, τ) = α(t) for t ≤ τ is positive semidefinite.3

(e) For k ⪰ 0, we have k(t, t) ≥ 0 for all t ∈ [0, T ].

3 Continuous PEP for minimizing objective function value

In this section, drawing inspiration from its discrete-time counterpart [8, 42], we propose a novel
framework for analyzing the convergence rate of ODE models for first-order methods, called the
continuous-time performance estimation problem (Continuous PEP). To illustrate this framework,
we use the accelerated gradient flow as an example. Detailed steps can be found in Appendix C. Su et
al. [36] derived the limiting ODE of Nesterov’s AGM [27] as follows:

Ẍ +
3

t
Ẋ +∇f(X) = 0, (AGM ODE)

with initial conditions X(0) = x0 and Ẋ(0) = 0. Suppose we want to establish a convergence
guarantee of AGM ODE in the form of

f(X(T ))− f(x∗) ≤ ρ∥x0 − x∗∥2. (3)

Here, we observe that the constant ρ can be seen as an upper bound of the performance of AGM
ODE for the criterion (f(X(T ))− f(x∗))/∥x0 − x∗∥2. To formalize this idea, we introduce the
following optimization problem, which seeks to find the worst-case performance of the given ODE
model:

max
f∈F0(Rd;R)

X∈C1([0,T ];Rd)

f(X(T ))− f(x∗)

∥x0 − x∗∥2

subject to X is a solution to AGM ODE with X(0) = x0, Ẋ(0) = 0

x∗ is a minimizer of f,

(Exact PEP)

where Fµ(Rd;R) denotes the set of continuously differentiable µ-strongly convex functions on Rd.
This problem is useful to analyze the convergence properties of ODE models because the optimal
value val(Exact PEP) of Exact PEP directly provides the guarantee (3) with ρ = val(Exact PEP)
regardless of any particular choice of f .

3Proof sketch: The kernel k(t, τ) can be expressed as a weighted integral of positive semidefinite kernels as
k(t, τ) = α(0)1[0,T ](t)1[0,T ](τ) +

∫ T

0
α̇(s)1[s,T ](t)1[s,T ](τ) ds.
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3.1 Relaxation of PEP

Exact PEP is challenging to solve due to the presence of an unknown function f as an optimization
variable. To address this difficulty, we relax the constraint f ∈ F0(Rd;R) with a set of inequalities
that are satisfied by f ∈ F0(Rd;R). Before that, we first note that AGM ODE can be expressed as
the following continuous-time dynamical system (see [19]):

Ẋ(t) = −
∫ t

0

H(t, τ)∇f(X(τ)) dτ (4)

by setting H(t, τ) = τ3/t3. Here, H(t, τ) is called the H-kernel. We introduce two functions,
φ : [0, T ] → R and γ : [0, T ] → Rd, defined as follows:

φ(t) =
1

∥x0 − x∗∥2
(f(X(t))− f (x∗)) , γ(t) =

1

∥x0 − x∗∥
∇f(X(t)).

Using the chain rule and the convexity of f , we can derive the following equality and inequality:

0 = φ̇(t) +

〈
γ(t),

∫ t

0

H(t, τ)γ(τ) dτ

〉
,

0 ≥ φ(t) +

〈
γ(t), v +

∫ t

0

∫ t

τ

H(s, τ)γ(τ) ds dτ

〉
,

(5)

where v = (x∗ − x0)/∥x0 − x∗∥. We can now relax Exact PEP by replacing its constraints with the
equality and inequality above, resulting in the following problem:

max
φ,γ,v

φ(T )

subject to (5) holds for all t ∈ (0, T ).
(Relaxed PEP)

Since any feasible solution to Exact PEP can be transformed into a feasible solution to Relaxed PEP,
we have val(Relaxed PEP) ≥ val(Exact PEP). Therefore, the convergence guarantee (3) holds with
ρ = val(Relaxed PEP) when using the proposed relaxation.

3.2 Lagrangian dual of relaxed PEP

To obtain an upper bound on val(Relaxed PEP), we use Lagrangian duality. We introduce two
Lagrange multipliers λ1 ∈ C1([0, T ];R) and λ2 ∈ C([0, T ];R≥0), where we imposed certain
regularity conditions, such as continuity and differentiability, to ensure that the dual problem is
well-defined. We then define the Lagrangian function as

L(φ, γ, v;λ1, λ2) = φ(T )−
∫ T

0

λ1(t)

(
φ̇(t) +

〈
γ(t),

∫ t

0

H(t, τ)γ(τ) dτ

〉)
dt

−
∫ T

0

λ2(t)

(
φ(t) +

〈
γ(t), v +

∫ t

0

∫ t

τ

H(s, τ)γ(τ) ds dτ

〉)
dt.

When expressed in terms of the inner products in function spaces, we have

L(φ, γ, v;λ1, λ2) = φ(T )− ⟨λ1, φ̇⟩L2([0,T ];R) − ⟨λ2, φ⟩L2([0,T ];R)

− 1

2
⟨Kγ, γ⟩L2([0,T ];Rd) − ⟨λ2(t)v, γ(t)⟩L2([0,T ];Rd) ,

(6)

where K is the Hilbert-Schmidt integral operator with the symmetric kernel k defined by

k(t, τ) = λ1(t)H(t, τ) + λ2(t)

∫ t

τ

H(s, τ) ds, t ≥ τ.

The dual function is defined as Dual(λ1, λ2) = supφ,γ,v L(φ, γ, v;λ1, λ2). By weak duality, we have
val(Relaxed PEP) ≤ Dual(λ1, λ2) for any feasible dual solution (λ1, λ2). After performing some
computations, we obtain the following expression for the dual objective function (see Appendix C):

Dual(λ1, λ2) =

{
infν∈(0,∞) {ν : Sλ1,λ2,ν ⪰ 0} if λ1(0) = 0, λ1(T ) = 1 λ̇1(t) = λ2(t)

∞ otherwise,
(7)
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where Sλ1,λ2,ν is a symmetric kernel on [0, T ]2 given by

Sλ1,λ2,ν(t, τ) = ν

(
λ1(t)H(t, τ) + λ2(t)

∫ t

τ

H(s, τ) ds

)
− 1

2
λ2(t)λ2(τ), t ≥ τ. (8)

We refer to Sλ1,λ2,ν as the PEP kernel. In Appendix H.2, we show that (8) can be viewed as the
continuous-time limit of the discrete-time PEP kernel presented in [8].

To describe our framework, given νfeas ∈ (0,∞), suppose that the PEP kernel Sλ1,λ2,νfeas is
positive semidefinite with appropriate multiplier functions λ1 and λ2. Then, νfeas is a feasi-
ble solution of the minimization problem in (7), and thus Dual(λ1, λ2) ≤ νfeas. On the other
hand, by weak duality, val(Relaxed PEP) ≤ inf Dual(λ1, λ2). Therefore, we conclude that
val(Exact PEP) ≤ val(Relaxed PEP) ≤ Dual(λ1, λ2) ≤ νfeas, which implies that the convergence
guarantee (3) automatically holds with ρ = νfeas.

Using this approach, we can recover the known convergence guarantee for AGM ODE in [36].
Proposition 2. AGM ODE achieves the convergence rate (3) with ρ = 2/T 2.

Proof. By choosing the multiplier functions λ1(t) = t2/T 2 and λ2(t) = 2t/T 2, we can compute the
PEP kernel (8) as Sλ1,λ2,ν(t, τ) = (ν − 2

T 2 )
tτ
T 2 . Since the kernel (t, τ) 7→ tτ is nonzero and positive

semidefinite, we have Sλ1,λ2,ν ⪰ 0 if and only if ν ≥ 2/T 2. Thus, we obtain Dual(λ1, λ2) = 2/T 2,
which establishes the convergence guarantee (3) with ρ = 2/T 2.

Remark 1. Furthermore, this convergence guarantee is optimal among all possible guarantees
obtained through the weighted integral of (5). The optimality of this rate follows from the fact that
(λ1, λ2) is the optimal solution to the dual problem minλ1,λ2

Dual(λ1, λ2). See Appendix H.1 for
details.

3.3 Applying continuous PEP to various accelerated gradient flows

Note that the proposed method is not dependent on the choice of the H-kernel H(t, τ). Thus, it can be
applied to arbitrary dynamics represented in the form of (4). Furthermore, while we have focused on
the non-strongly convex case (µ = 0) so far, the following paragraph demonstrates that our method
can handle strongly convex objective functions by using a reparametrization technique.4

Reparametrization from Fµ(Rd;R) to F0(Rd;R). Consider a µ-strongly convex objective func-
tion f . Since the proposed method is tailored for non-strongly convex objective functions, we choose
to work with the convex function f̂(x) := f(x)− µ

2 ∥x− x0∥2 rather than working directly with f .
Accordingly, we consider the following alternative formulation for the dynamical system (4), which
involves ∇f̂ instead of ∇f :5

Ẋ(t) = −
∫ t

0

HF (t, τ)∇f̂(X(τ)) dτ. (9)

The following theorem offers a general result that can be used to establish convergence guarantees
for dynamical systems of the form (9).
Theorem 1. Let ν > 0 and λF ∈ C1([0, T ];R≥0) such that 0 ≤ λF (0) < 1, λF (T ) = 1, and
λ̇F (t) ≥ 0 for all t ∈ (0, T ). Then, any solution to the integro-differential equation (9) satisfies

f̃(X(T ))− f̃(x∗) ≤ λF (0)
(
f̃(x0)− f̃(x∗)

)
+ ν ∥x0 − x∗∥2 ,

where f̃(x) := f(x)− µ
2 ∥x− x∗∥2, if the following PEP kernel is positive semidefinite:

SF (t, τ) = ν

(
λF (t)HF (t, τ) + λ̇F (t)

∫ t

τ

HF (s, τ) ds

)
− 2αF (t)αF (τ), t ≥ τ, (10)

where αF (t) = 1
2

d
dt{λ

F (t)(1− µ
∫ t

0

∫ s

0
HF (s, τ) dτds)}.

The proof of Theorem 1 is done by finding a dual feasible point to the PEP and can be found in
Appendix C. Below, we establish convergence rates for various ODE models using Theorem 1.

4In discrete PEP literature, a similar reparametrization technique was employed in [40, 13].
5The equivalent representations (4) and (9) are in a one-to-one correspondence. See Appendix C.1 for details.
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Figure 1: Visualization of the PEP kernel (11) for AGM-SC ODE.

AGM-SC ODE. We consider the following dynamical system modeling Nesterov’s AGM for
strongly convex case [26, Equation 2.2.22] (see [48, Equation 7]):

Ẍ + 2
√
µẊ +∇f(X) = 0. (AGM-SC ODE)

This ODE model can be written as (9) with HF (t, τ) = (1+
√
µτ−√

µt)e
√
µ(τ−t) (see Appendix F.1).

To use Theorem 1, we choose the multiplier function as λF (t) = e
√
µ(t−T ).6 The PEP kernel (10)

can be computed as (see Appendix G.1)

SF (t, τ) = νe
√
µ(τ−T ) − µ

2
e−2

√
µT , t ≥ τ. (11)

When ν = µ
2 e

−√
µT , this kernel is written as SF (t, τ) = µ

2 e
−2

√
µT (e

√
µτ − 1), and is visualized in

Figure 1. It is positive semidefinite since the function τ 7→ e
√
µτ − 1 is a nonnegative increasing

function (see Proposition 1 (d)). It follows from Theorem 1 that AGM-SC ODE achieves the following
convergence guarantee:

f̃(X(T ))− f̃(x∗) ≤ e−
√
µT

(
f̃(x0)− f̃(x∗) +

µ

2
∥x0 − x∗∥2

)
, (12)

which is consistent with the well-known O(e−
√
µT ) convergence rate of AGM-SC ODE.

Unified AGM ODE. Using a unified Bregman Lagrangian framework, [19] obtained the following
ODE that unifies AGM ODE and AGM-SC ODE:7

Ẍ +

√
µ

2
(tanht +3 cotht) Ẋ +∇f(X) = 0, (Unified AGM ODE)

where tanht and cotht denote the corresponding hyperbolic functions with the argument
√
µ

2 t. This
ODE model can be written as (9) with HF (t, τ) = (1+ coth2t (log(sech

2
t )− log(sech2τ )))

sinhτ coshτ

sinht cosht

(see Appendix F.2). We select the multiplier function as λF (t) = sinh2t / sinh
2
T . With this choice,

the PEP kernel (10) can be expressed as follows (see Appendix G.2):

SF (t, τ) =
(
ν − µ

2
csch2T

) tanht tanhτ

sinh2T
+ ν

tanht tanhτ sinh
2
τ

sinh2T
, t ≥ τ. (13)

We show that this kernel is positive semidefinite for ν = µ
2 csch2T . Proposition 1 (a) shows that

the kernel (t, τ) 7→ tanht tanhτ is positive semidefinite. Proposition 1 (d) shows that the kernel
(t, τ) 7→ sinh2τ is positive semidefinite because the function τ 7→ sinh2τ is a nonnegative increasing
function. Since the PEP kernel (13) with ν = µ

2 csch2T can be expressed as a product of two positive
semidefinite kernels, it is positive semidefinite by Proposition 1 (b). Consequently, Theorem 1 implies
that Unified AGM ODE achieves the following convergence guarantee:

f̃(X(T ))− f̃(x∗) ≤ µ

2
csch2T ∥x0 − x∗∥2 . (14)

This guarantee aligns with the O(csch2T ) convergence rate reported in [19].
6As a rule of thumb, when the expected convergence rate is O(ρ(T )), we set λF (t) = ρ(T )/ρ(t).
7This dynamical system models the unified AGM in [19] and the constant step scheme I [26, Equation 2.2.19].
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TMM ODE. We consider the following novel limiting ODE for the triple momentum method
(TMM) [46] (see Appendix E.1 for the derivation and a comparison with the one in [38]):

Ẍ + 3
√
µẊ + 2∇f(X) = 0. (TMM ODE)

This ODE model can be written as (9) with HF (t, τ) = −2e
√
µ(τ−t)+4e2

√
µ(τ−t) (see Appendix F.3).

By setting the multiplier function as λF (t) = e2
√
µ(t−T ), the PEP kernel (10) can be computed as

(see Appendix G.3)
SF (t, τ) = 2

(
ν − µe−2

√
µT

)
e
√
µ(t+τ−2T ), (15)

which is positive semidefinite for ν = µe−2
√
µT . Consequently, Theorem 1 implies that TMM ODE

achieves the following convergence guarantee:

f̃(X(T ))− f̃(x∗) ≤ e−2
√
µT

(
f̃(x0)− f̃(x∗) + µ ∥x0 − x∗∥2

)
, (16)

which is new to the literature. In Appendix H.3, we show that this convergence rate match aligns
with the known convergence guarantee for TMM in the discrete-time case.

ITEM ODE. We consider the following new limiting ODE of the information-theoretic exact
method (ITEM) [40] (see Appendix E.2 for the derivation of ITEM ODE):

Ẍ + 3
√
µ cotht Ẋ + 2∇f(X) = 0, (ITEM ODE)

where cotht denotes the corresponding hyperbolic function with the argument
√
µt. This ODE model

can be written as (9) with HF (t, τ) = 4 sinhτ coshτ cotht csch
2
t +2 sinhτ cscht(1− 2 coth2t ) (see

Appendix F.4). By choosing the multiplier function as λF (t) = sinh2(
√
µt)/ sinh2(

√
µT ), the PEP

kernel (10) can be computed as (see Appendix G.4)

SF (t, τ) = 2 csch2T (ν − µ csch2T ) sinht sinhτ . (17)

For ν = µ csch2T , this kernel is positive semidefinite. It follows from Theorem 1 that ITEM ODE
achieves the following convergence guarantee:

f̃(X(T ))− f̃(x∗) ≤ µ csch2T ∥x0 − x∗∥2 , (18)

which is a novel result. In Appendix H.4, we show that this guarantee matches the known convergence
rate for ITEM in the discrete-time case.

4 Continuous PEP for minimizing velocity and gradient norm

In this section, we present a result analogous to Theorem 1 to address convergence rates on the
squared velocity norm ∥Ẋ(T )∥2 or the squared gradient norm ∥∇f(X(T ))∥2. For continuous-time
ODE models, the analysis of convergence rates on the squared gradient norm ∥∇f(X(T ))∥2 was
first presented in [37]. However, their argument relies on the use of L’Hôpital’s rule, which might
give the impression that their approach is based on a clever trick or appears somewhat mysterious.

4.1 Translating convergence rates on ∥Ẋ(t)∥2 into convergence rates on ∥∇f(X(T ))∥2

In this subsection, we present a novel approach for establishing the convergence guarantee of
ODE models on the squared gradient norm ∥∇f(X(T ))∥2. The crucial insight lies in expressing
∇f(X(T )) as

∫ T

0
∇f(X(τ))δT (τ) dτ , where δT denotes the Dirac delta function centered at τ = T .

Suppose we have a guarantee of the following form:∥∥∥∥∥
∫ T

0

αt(τ)∇f(X(τ)) dτ

∥∥∥∥∥
2

≤ ρ (f(x0)− f(x∗)) , (19)

where X ∈ C1([0, T ];Rd) and {αt} is a family of functions parametrized by t ∈ (0, T ). In particular,
we note that a convergence guarantee on ∥C(t)Ẋ(t)∥2 of the dynamics (4) can be written as (19)
with αt(τ) = C(t)H(t, τ). A well-known argument for constructing the Dirac delta function (see
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[35, Section 3.2]) shows that the weighted integral
∫ T

0
αt(τ)∇f(X(τ)) dτ converges to ∇f(X(T ))

as t → T , if the following conditions hold: (i) αt(τ) ≥ 0, (ii)
∫ T

0
αt(τ) dτ → 1 as t → T , and (iii)

for every η ∈ (0, T ), we have
∫ η

0
αt(τ) dτ → 0 as t → T . When αt satisfies these properties, we say

that the function αt converges to the Dirac delta function δT . Consequently, taking the limit t → T
in (19) yields the following guarantee on ∥∇f(X(T ))∥2:

∥∇f(X(T ))∥2 ≤ ρ (f(x0)− f(x∗)) .

4.2 Convergence analysis via positive semidefinite kernels

In this subsection, we introduce a variant of continuous PEP that establishes the convergence rate
on ∥Ẋ(T )∥2 through checking the positive semidefininteness of the PEP kernel. Notably, this
methodology can also prove convergence rates on ∥∇f(X(T ))∥2 because the convergence rates on
∥Ẋ(t)∥2 can be translated into those on ∥∇f(X(T ))∥2, as discussed in the previous subsection.

Reparametrization to time-varying functions. In Section 3.3, we employed a reparametrization
technique to deal with strongly convex objective functions. In this section, we first apply the same
technique again, leading to the following expression:8

Ẋ(t) = −
∫ t

0

HG(t, τ)∇f̂(X(τ)) dτ, (20)

where f̂(x) := f(x)− µ
2 ∥x− x0∥2. However, we do not proceed directly with this form. Instead,

we introduce an additional reparametrization step. Given a solution X to (20), and a function
λG ∈ C1([0, T );R≥0), we define a family of functions {f̂t}t∈[0,T ) as f̂t(x) := λG(t)f̂(x) −
⟨
∫ t

0
λ̇G(τ)∇f̂(X(τ)) dτ, x⟩. Then, we can show that (20) can be equivalently written in the following

form (see Appendix D.1):

Ẋ(t) = −
∫ t

0

H̄G(t, τ)∇f̂τ (X(τ)) dτ, (21)

for some kernel H̄G. The following theorem is analogous to Theorem 1 for our current purpose.

Theorem 2. Let ν > 0, tend ∈ (0, T ], αG ∈ C([0, tend],R), and λG ∈ C1([0, tend];R≥0) such that
λG(0) = 1 and λ̇G(t) ≥ 0 for all t. Then, any solution to (21) satisfies∥∥∥∥∫ tend

0

αG(τ)∇f̂τ (X(τ)) dτ

∥∥∥∥2 ≤ ν sup
x∈Rd

{
f̂(x0)− f̂(x)

}
, (22)

if the following PEP kernel defined on [0, tend]
2 is positive semidefinite:

SG(t, τ) = νH̄G(t, τ)− 2αG(t)αG(τ), t ≥ τ. (23)

In particular, the choice αG(t) = C(tend)H̄
G(tend, t) gives a guarantee on ∥C(tend)Ẋ(tend)∥2.

The proof of Theorem 2 can be found in Appendix D. We now use this theorem to establish
convergence rates of the anti-transposed dynamics9 of the ODE models studied in Section 3.3.

OGM-G ODE. By taking the limit of the stepsize in OGM-G [18], Suh et al. [37] obtained the
following ODE model for the non-strongly convex case (µ = 0):10

Ẍ +
3

T − t
Ẋ +∇f(X) = 0. (OGM-G ODE)

This ODE model is the anti-transposed dynamics of AGM ODE, as it can be expressed as (20) with
HG(t, τ) = (T − t)3/(T −τ)3 (see Appendix F.5). To use Theorem 2, we choose λG(t) = T 2/(T −

8This expression is identical in form to (9), but we use the notation HG to avoid any notational overlap.
9We refer to (20) as the anti-transposed dynamics of (9), if HG(t, τ) = HF (T − τ, T − t) for all t, τ .

10We modified the coefficient of ∇f(X(t)) from 2 to 1.
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t)2.11 We set the terminal time tend before T and apply a limiting argument to prove the convergence
rate on ∥∇f(X(T ))∥2. By setting αG(t) = C(tend)H̄

G(tend, t) with C(tend) = 1/(T − tend), we
can compute the PEP kernel (23) as (see Appendix G.5)

SG(t, τ) =

(
ν − 2

T 2

)
(T − t)(T − τ)

T 2
. (24)

Since this kernel is the anti-transpose of the PEP kernel for AGM ODE in the proof of Proposition 2,
we have SG(t, τ) ⪰ 0 when ν = 2/T 2 by Proposition 1 (c). By Theorem 2, we obtain the following
inequality:∥∥∥∥∫ tend

0

(T − tend)
2

(T − τ)3
∇f(X(τ)) dτ

∥∥∥∥2 =

∥∥∥∥∥ Ẋ(tend)

T − tend

∥∥∥∥∥
2

≤ 2

T 2
sup
x∈Rd

{f(x0)− f(x)}. (25)

Observing that the function τ 7→ (T−tend)
2

(T−τ)3 1[0,tend](τ) converges to 1
2δT as tend → T , we have∫ tend

0
(T−tend)

2

(T−τ)3 ∇f(X(τ)) → 1
2∇f(X(T )) as tend → T .12 Substituting this result into (25), we

deduce the following convergence guarantee:

∥∇f(X(T ))∥2 ≤ 8

T 2
sup
x∈Rd

{f(x0)− f(x)}, (26)

which recovers the known convergence rate of OGM-G ODE in [37].

AGM-SC ODE. We now analyze the convergence of AGM-SC ODE in terms of the squared
velocity norm, using Theorem 2. This ODE model is the anti-transposed dynamics of itself, as it can
be expressed as (20) with HG(t, τ) = (1 +

√
µτ −√

µt)e
√
µ(τ−t). We choose λG(t) = e

√
µt and

tend = T . By setting αG(t) = C(T )H̄G(T, t) with C(T ) =
√
µ/2, the PEP kernel (23) is expressed

as (see Appendix G.6)
SG(t, τ) = νe−

√
µt − µ

2
e−2

√
µT , t ≥ τ. (27)

Since this kernel is the anti-transpose of (11), it is positive semidefinite when ν = µ
2 e

−√
µT by

Proposition 1 (c). Therefore, we conclude that AGM-SC ODE achieves the following convergence
guarantee: ∥∥∥∥√µ

2
Ẋ(T )

∥∥∥∥2 ≤ µ

2
e−

√
µT sup

x∈Rd

{
f̂(x0)− f̂(x)

}
, (28)

which is new to the literature. A numerical experiment for this guarantee can be found in Appendix I.1.

Unified AGM-G ODE. In [19], the following unified AGM-G ODE is proposed:

Ẍ +

√
µ

2
(tanhT−t +3 cothT−t) Ẋ +∇f(X) = 0, (Unified AGM-G ODE)

where tanhT−t and cothT−t denote the corresponding hyperbolic functions with the argument√
µ

2 (T − t). This ODE model is the anti-transposed dynamics of Unified AGM ODE, as it can be
expressed as (20) with HG(t, τ) = (1 + coth2T−τ (log(sech

2
T−τ )− log(sech2T−t)))

sinhT−t coshT−t

sinhT−τ coshT−τ

(see Appendix F.6). To identify its convergence rate in terms of the squared gradient norm, we
choose λG(t) = csch2T−t / csch

2
T . By setting αG(t) = C(tend)H̄

G(tend, t) with C(tend) =
√
µ

2 sechT−tend
cschT−tend

, the PEP kernel (23) is expressed as (see Appendix G.7)

SG(t, τ) =
(
ν − µ

2
csch2T

) tanhT−t tanhT−τ

sinh2T
+ ν

tanhT−t tanhT−τ sinh
2
T−t

sinh2T
, t ≥ τ. (29)

Since this kernel is the anti-transpose of (13), it is positive semidefinite when ν = µ
2 csch2T by

Proposition 1 (c). Therefore, Unified AGM-G ODE achieves the following convergence guarantee:

11As a rule of thumb, when the expected convergence rate is O(ρ(T )), we set λG(t) = ρ(T − t)/ρ(T ).
12In our argument using the Dirac delta function, we rely on the fact that the solution X to OGM-G ODE can

be continuously extended to t = T , which was shown in [37, Appendix D.3].
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∥∥∥C(tend)Ẋ(tend)
∥∥∥2 ≤ µ

2
csch2T sup

x∈Rd

{
f̂(x0)− f̂(x)

}
. (30)

In Appendix G.7, we show that C(tend)Ẋ(tend) → − 1
2∇f(X(T )) as tend → T . As a result, we

have the following convergence guarantee on ∥∇f(X(T ))∥2:

∥∇f(X(T ))∥2 ≤ 2µ csch2T sup
x∈Rd

{
f̂(x0)− f̂(x)

}
, (31)

which recovers the known rate of Unified AGM-G ODE in [19].

The convergence analyses of the anti-transposed dynamics of TMM ODE and ITEM ODE are
deferred to Appendix I.2. The convergence guarantees in this section can also be established using a
Lyapunov function argument, as detailed in Appendix I.3.

5 Correspondence between minimizing function values and gradient norms

In Section 4.2, we verified the positive semidefiniteness of the PEP kernel (23) by showing its
anti-transpose relationship with the PEP kernel (10), that is, SF (t, τ) = SG(T − τ, T − t). The
following proposition indicates that this relationship is not coincidental.
Proposition 3. Suppose HF (t, τ) = HG(T − τ, T − t), λF (t) = 1/λG(T − t), and αF (t) =
αG(T − t) for all t and τ . Then, we have SF (t, τ) = SG(T − τ, T − t) for all t and τ .

The following proposition offers a general result for translating convergence rates on
∥
∫ tend
0

αG(τ)∇f̂τ (X(τ)) dτ∥2 into those on ∥∇f(X(T ))∥2.

Proposition 4. Under the assumptions in Proposition 3, if λG(t) → ∞ as t → T , then we have∫ tend

0
αG(τ)∇f̂τ (X(τ)) dτ → 1

2∇f(X(T )) as tend → T .

Both Propositions 3 and 4 have straightforward proofs through calculations, which can be found in
Appendix J. Now, the next result naturally follows.
Theorem 3. Under the assumptions in Propositions 3 and 4, the following statements are equivalent:

(a) Theorem 1 proves the convergence guarantee f̃(X(T ))− f̃(x∗) ≤ ν∥x0 − x∗∥2.

(b) Theorem 2 proves the convergence guarantee ∥∇f(X(T ))∥2 ≤ 4ν supx{f̂(x0)− f̂(x)}.

Proof. (a) holds ⇐⇒
Thm. 1

SF ⪰ 0 ⇐⇒
Prop. 3

SG ⪰ 0 ⇐⇒
Thm. 2, Prop. 4

(b) holds.

6 Conclusion

In this paper, we have developed a novel and simple framework for analyzing the convergence
rates of accelerated gradient flows via positive semidefinite kernels. Our framework enhances our
understanding of continuous-time models for accelerated first-order methods and bridges the gap
between the continuous-time and discrete-time PEP frameworks. For instance, the continuous
PEP in Section 3 can be viewed as a continuous-time limit of the discrete PEP presented in [8]
(see Appendix H.2). This connection unlocks new opportunities for studying PEP. Future research
directions may involve extending our framework using techniques employed in the ODE models
literature, such as generalizing to non-Euclidean settings [20, 1] or analyzing high-resolution ODE
models [33].

Codes. The codes used to generate the figures in this paper are available at https://github.
com/jungbinkim1/Continuous-PEP.
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