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Abstract

In this paper we study the second-order optimality of decentralized stochastic
algorithm that escapes saddle point efficiently for nonconvex optimization prob-
lems. We propose a new pure gradient-based decentralized stochastic algorithm
PEDESTAL with a novel convergence analysis framework to address the techni-
cal challenges unique to the decentralized stochastic setting. Our method is the
first decentralized stochastic algorithm to achieve second-order optimality with
non-asymptotic analysis. We provide theoretical guarantees with the gradient com-
plexity of Õ(ϵ−3) to find O(ϵ,

√
ϵ)-second-order stationary point, which matches

state-of-the-art results of centralized counterparts or decentralized methods to find
first-order stationary point. We also conduct two decentralized tasks in our exper-
iments, a matrix sensing task with synthetic data and a matrix factorization task
with a real-world dataset to validate the performance of our method.

1 Introduction

Decentralized optimization is a class of distributed optimization that trains models in parallel across
multiple worker nodes over a decentralized communication network. Decentralized optimization has
recently attracted increased attention in machine learning and emerged as a promising framework to
solve large-scale tasks because of its capability to reduce communication costs. In the conventional
centralized paradigm, all worker nodes need to communicate with the central node, which results in
high communication cost on the central node when the number of nodes is large or the transmission
between the center and some remote nodes suffers network latency. Conversely, decentralized
optimization avoids these issues since each worker node only communicates with its neighbors.

Although decentralized optimization has shown advantageous performance in many previous works
(Lian et al. [2017], Tang et al. [2018]), the study of second-order optimality for decentralized
stochastic optimization algorithms is still limited. Escaping saddle point and finding local minima is
a core problem in nonconvex optimization since saddle point is a category of first-order stationary
point that can be reached by many gradient-based optimizers such as gradient descent but it is not the
expected point to minimize the objective function.

Perturbed gradient descent (Jin et al. [2017]) and negative curvature descent (Xu et al. [2018],
Allen-Zhu and Li [2018]) are two primary pure gradient-based methods (not involving second-order
derivatives) to achieve second-order optimality. Typically, perturbed gradient descent method is
composed of a descent phase and an escaping phase. If the norm of gradient is large, the algorithm
will run the descent phase as normal. Otherwise it will run the escaping phase to discriminate whether
the candidate first-order stationary point is a saddle point or local minimum. Negative curvature
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descent method escapes saddle point by computing the direction of negative curvature at the candidate
point. If it is categorized as a saddle point then the algorithm will update along the direction of
negative curvature. Generally it involves a nested loop to perform the negative curvature subroutine.

Currently, the solution to the second-order optimality of decentralized problem in deterministic
setting has been proposed. Perturbed Decentralized Gradient Tracking (PDGT) (Tziotis et al. [2020])
is a decentralized deterministic algorithm adopting the perturbed gradient descent strategy to achieve
second-order stationary point. However, it is expensive to compute full gradients for large machine
learning models. It is crucial to propose a stochastic algorithm to obtain second-order optimality
for decentralized problems. Besides, there are some drawbacks of PDGT to make it less efficient
and hard to be generalized to the stochastic setting. These drawbacks are also the key challenges to
achieve second-order optimality for decentralized algorithms, which are listed as follows:

(1) PDGT runs fixed numbers of iterations in descent phase and escaping phase such that the phases
of all nodes can be changed simultaneously. This strategy works because the descent is easy to be
estimated in deterministic setting. Nonetheless, the exact descent of stochastic algorithm over a fixed
number of iterations is hard to be bounded because of randomness and noises. If the fixed number is
not large enough it is possible that the averaged model parameter is not a first-order stationary point.
If the fixed number is as large as the expected number of iterations to achieve first-order stationary
point, the algorithm will become less efficient as it is probably stuck at a saddle point for a long
time before drawing the perturbation, especially in the second and later descent phase. Specifically,
applying fixed number of iterations in each phase results in the complexity of at least Õ(ϵ−4.5) (see
Appendix D), which is higher than Õ(ϵ−3) of our method. Therefore, we are motivated to propose an
algorithm that can change phases adaptively (based on runtime gradient norm) and independently
(not required to consider status on other nodes or notify other nodes).

(2) In PDGT the perturbations on all nodes are drawn from the same random seed. Besides, a
coordinating protocol involving broadcast and aggregation is used to compute the averaged model
parameter and the descent of overall loss function to discriminate the candidate point. These strategies
together with the fixed number of iterations act as a hidden coordinator to make PDGT discriminate
saddle point in the same way as centralized algorithms. However, when the number of worker
nodes is large it is time-consuming to perform broadcast or aggregation over the whole decentralized
network. Moreover, when generalized to stochastic setting the changing of phase is not guaranteed
to be synchronized. Additionally, we will note in the Supplementary Material that the consensus
error 1

n

∑n
i=1 ∥x

(i)
t − x̄t∥2 is another factor to impact the effectiveness of perturbed gradient descent,

which is not present in centralized problems. All above issues are theoretical difficulties to study and
ensure second-order optimality for decentralized stochastic algorithms.

(Vlaski and Sayed [2020]) proves the theoretical guarantee of second-order optimality for decen-
tralized stochastic algorithm with perturbed gradient descent. However, it does not provide a
non-asymptotic analysis to estimate the convergence rate or gradient complexity. The effectiveness of
the result relies on a sufficiently small learning rate, and it does not present a specific algorithm. The
analysis is based on the assumption that the iteration formula can be approximated by a centralized
update scheme when the learning rate is small enough. Nevertheless, in practice it is difficult to
maintain an ideally small learning rate, and the iterative update process can be more complex as
previously mentioned. To our best knowledge, the second-order optimality issue of decentralized
stochastic algorithm with non-asymptotic analysis is still not solved. Therefore, we are motivated to
study this important and challenging issue and raise the following questions:

Can we design a decentralized stochastic optimization algorithm with non-asymptotic analysis to find
local minima efficiently? Is the algorithm still effective to discriminate saddle point even if each node
can change its phase adaptively and independently without any coordinating protocols?

The answer is affirmative. In this paper, we propose a novel gradient-based algorithm named
PErturbed DEcentralized STORM ALgorithm (PEDESTAL) which is the first decentralized stochastic
algorithm to find second-order stationary point. We adopt perturbed gradient descent to ensure the
second-order optimality and use STORM (Cutkosky and Orabona [2019]) estimator to accelerate the
convergence. We provide completed convergence analysis to guarantee the second-order optimality
theoretically. More details about the reason of choosing perturbed gradient descent and technical
difficulties are discussed in Section 3.2. Next we will introduce the problem setup in this paper.
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We focus on the following decentralized optimization problem:

min
x

f(x) =
1

n

n∑
i=1

fi(x), fi(x) = Eξ∼Di
Fi(x, ξ) (1)

where n is the number of worker nodes in the decentralized network and fi is the local loss function
on i-th worker node. Here fi is supposed to take the form of stochastic expectation over local data
distribution Di, which covers a variety of optimization problems including finite-sum problem and
online problem. Data distributions on different nodes are allowed to be heterogeneous. The objective
function f is nonconvex such that saddle points probably exist.

The goal of our method is to find O(ϵ, ϵH)-second-order stationary point of problem 1, which
is defined by the point x satisfying ∥∇f(x)∥ ≤ ϵ and min eig(∇2f(x)) ≥ −ϵH , where eig(·)
represents the eigenvalues. The classic setting is ϵH =

√
ϵ.

We summarize the contributions of this paper as follows:

• We propose a novel algorithm PEDESTAL, which is the first decentralized stochastic
gradient-based algorithm to achieve second-order optimality with non-asymptotic analysis.

• We provide a new analysis framework to support changing phases adaptively and indepen-
dently on each node without any coordinating protocols involving broadcast or aggregation.
We also address certain technical difficulties unique to decentralized optimization to justify
the effectiveness of perturbed gradient descent in discriminating saddle point.

• We prove that our PEDESTAL achieves the gradient complexity of Õ(ϵ−3+ϵϵ−8
H +ϵ4ϵ−11

H ) to
find O(ϵ, ϵH)-second-order stationary point. Particularly, PEDESTAL achieves the gradient
complexity of Õ(ϵ−3) in the classic setting ϵH =

√
ϵ, which matches state-of-the-art results

of centralized counterparts or decentralized methods to find first-order stationary point.

2 Related Work
In this section we will introduce the background of related works. The comparison of important
features is shown in Table 1. Here Õ(·) refers to the big O notation that hides the logarithmic terms.

2.1 Decentralized Algorithms for First-Order Optimality
Decentralized optimization is an efficient framework to solve problem 1 collaboratively by multiple
worker nodes. In each iteration a worker node only needs to communicate with its neighbors. One of
the best-known decentralized stochastic algorithm is D-PSGD (Lian et al. [2017]), which integrates
average consensus with local stochastic gradient descent steps and shows competitive result to
centralized SGD. The ability to address Non-IID data is a limitation of D-PSGD and some variants of
D-PSGD are studied to tackle the data heterogeneity issue, such as D2 (Tang et al. [2018]) by storing
previous status and GT-DSGD (Xin et al. [2021b]) by using gradient tracking (Xu et al. [2015],
Lorenzo and Scutari [2016]). D-GET (Sun et al. [2020]) and D-SPIDER-SFO (Pan et al. [2020])
improve the gradient complexity of D-PSGD from O(ϵ−4) to O(ϵ−3) by utilizing variance reduced
gradient estimator SPIDER (Fang et al. [2018]). GT-HSGD also achieves gradient complexity of
O(ϵ−3) by combining gradient tracking and STORM gradient estimator (Cutkosky and Orabona
[2019]). SPIDER requires a large batchsize of O(ϵ−1) on average and a mega batchsize of O(ϵ−2)
periodically. In contrast, STORM only requires a large batch in the first iteration. After that the
batchsize can be as small as O(1), which makes STORM more efficient to be implemented in practice.

2.2 Centralized Algorithms for Second-Order Optimality
Perturbed gradient descent is a simple and effective method to escape saddle points and find local
minima. PGD (Jin et al. [2017]) is the representative of this family of algorithms, which achieves
second-order optimality in deterministic setting. It draws a perturbation when the gradient norm
is small. If this point is a saddle point, the loss function value will decrease by a certain threshold
within a specified number of iterations (i.e., breaking the escaping phase) with high probability.
Otherwise, the candidate point is regarded as a second-order stationary point. In stochastic setting,
Perturbed SGD perturbs every iteration and suffers a high gradient complexity of O(ϵ−8) to achieve
O(ϵ,

√
ϵ)-second-order stationary point and the gradient complexity hides a polynomial factor of

dimension d. CNC-SGD requires a Correlated Negative Curvature assumption and the gradient
complexity of Õ(ϵ−5) to achieve the classic second-order optimality. SSRGD (Li [2019]) adopts the
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Name Averaged Batchsize Gradient Complexity Classic Setting

D-PSGD [12] O(1) O(ϵ−4) -
GT-DSGD [22] O(1) O(ϵ−4) -

D-GET [16] O(ϵ−1) O(ϵ−3) -
D-SPIDER-SFO [15] O(ϵ−1) O(ϵ−3) -

GT-HSGD [21] O(1) O(ϵ−3) -

SGD+Neon2 [1] O(1) Õ(ϵ−4 + ϵ−2ϵ−3
H + ϵ−5

H ) Õ(ϵ−4)
SCSG+Neon2 [1] O(ϵ−0.5) Õ(ϵ−10/3 + ϵ−2ϵ−3

H + ϵ−5
H ) Õ(ϵ−3.5)

Natasha2+Neon2 [1] O(ϵ−2) Õ(ϵ−3.25 + ϵ−3ϵ−1
H + ϵ−5

H ) Õ(ϵ−3.5)
SPIDER-SFO+ [5] O(ϵ−1) Õ(ϵ−3 + ϵ−2ϵ−2

H + ϵ−5
H ) Õ(ϵ−3)

Perturbed SGD [6] O(1) O(ϵ−4 + ϵ−16
H ) O(ϵ−8)

CNC-SGD [4] O(1) Õ(ϵ−4 + ϵ−10
H ) Õ(ϵ−5)

SSRGD [11] O(ϵ−1) Õ(ϵ−3 + ϵ−2ϵ−3
H + ϵ−1ϵ−4

H ) Õ(ϵ−3.5)
Pullback [2] O(ϵ−1) Õ(ϵ−3 + ϵ−6

H ) Õ(ϵ−3)

PDGT [18] Full - -
PEDESTAL-S (ours) O(1) Õ(ϵ−3), ϵH ≥ ϵ0.2 -
PEDESTAL (ours) O(ϵ−3/4) Õ(ϵ−3 + ϵϵ−8

H + ϵ4ϵ−11
H ) Õ(ϵ−3)

Table 1: The comparison of important properties between related algorithms and our PEDESTAL.
Column “Averaged Batchsize" is computed when ϵH =

√
ϵ. Column “Classic Setting" refers

to the gradient complexity under the classic condition ϵH =
√
ϵ. The first group of algorithms

are decentralized methods achieving first-order optimality. The second group of algorithms are
centralized methods achieving second-order optimality. The last group of algorithms are decentralized
methods achieving second-order optimality. PEDESTAL-S is a special case of PEDESTAL with
O(1) batchsize. The complexity of PDGT is not shown because it is not stochastic.

same two-phase scheme as PGD but uses the moving distance as the criterion to discriminate saddle
point in the escaping phase. It also takes advantage of variance reduction to improve the gradient
complexity to Õ(ϵ−3.5). Pullback (Chen et al. [2022]) proposes a pullback step to further enhance the
gradient complexity to Õ(ϵ−3), which matches the best result of reaching first-order stationary point.

2.3 Stochastic Gradient Descent

A branch of study of stochastic gradient descent argues that SGD can avoid saddle point under certain
conditions. However, that is completely different from the problem we focus on. In this paper we
propose a method that can find local minima effectively for a general problem 1, while escaping
saddle point by stochastic gradient itself depends on some additional assumptions. For example,
(Mertikopoulos et al. [2020]) requires the noise of gradient should be uniformly excited. According
to our experimental result in Section 5, we can see in some cases stochastic gradient descent cannot
escape saddle point effectively or efficiently. Besides, the gradient noise in variance reduced methods
is reduced in order to accelerate the convergence. Our experimental results indicate that the gradient
noise in variance reduced algorithms is not as good as SGD to serve as the perturbation to avoid
saddle point. Therefore, it is necessary to study the second-order stationary point for variance reduced
algorithms so as to enable both second-order optimality and fast convergence.

3 Method
3.1 Algorithm

In this section, we will introduce our PEDESTAL algorithm, which is demonstrated in Algorithm 1.
Suppose there are n worker nodes in the decentralized communication network connected by a weight
matrix W . The initial value of model parameters on all nodes are identical and equal to x0. x(i)

t , v(i)t

and y
(i)
t are the model parameter, gradient estimator and gradient tracker on the i-th worker node

in iteration t. z(i)t is the temporary model parameter that is awaiting communication. x̄t, v̄t and ȳt
are corresponding mean values over all nodes. Counter esc(i) counts the number of iterations in the
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Algorithm 1 Perturbed Decentralized STORM Algorithm (PEDESTAL)

Input: initial value x
(i)
0 = x0, v(i)−1 = 0, y(i)−1 = 0, esc(i) = −1.

Parameter: b0, b1, η, β, r, Cv , Cd, CT .
1: On i-th node:
2: for t = 0, 1, . . . , T − 1 do
3: if t = 0 then
4: Compute v

(i)
0 = ∇Fi(x0, ξ

(i)
0 ) with |ξ(i)0 | = b0.

5: else
6: Compute v

(i)
t = ∇Fi(x

(i)
t , ξ

(i)
t ) + (1− β)(v

(i)
t−1 −∇Fi(x

(i)
t−1, ξ

(i)
t )) with |ξ(i)t | = b1.

7: end if
8: Communicate and update the gradient tracker: y(i)t =

∑n
j=1 wij(y

(j)
t−1 + v

(j)
t − v

(j)
t−1).

9: if esc(i) = −1 and ∥y(i)t ∥ ≤ Cv then
10: Draw a perturbation ξ ∼ B0(r) and update z

(i)
t = x

(i)
t + ξ.

11: Save x
(i)
t as x̃(i) and set esc(i) = 0.

12: else
13: Update z

(i)
t = x

(i)
t − ηy

(i)
t .

14: end if
15: Communicate and update the model parameter: x(i)

t+1 =
∑n

j=1 wijz
(j)
t .

16: if esc(i) ≥ 0 then
17: Reset esc(i) = −1 if ∥x(i)

t+1 − x̃(i)∥ > Cd else update esc(i) = esc(i) + 1.
18: end if
19: end for
Return: x̄t−CT

if there are at least n
10 nodes satisfying esc(i) ≥ CT .

current escaping phase on the i-th worker node, which is also the indicator of current phase. When it
runs the descent phase on the i-th worker node esc(i) is set to −1; otherwise esc(i) ≥ 0.

In the first iteration, the gradient estimator is computed based on a large batch size with b0. Be-
ginning from the second iteration, the gradient estimator v

(i)
t is calculated by small mini-batch

of samples according to the update rule of STORM, which can be formulated by line 6 in Al-
gorithm 1 where β is a hyperparameter of STORM algorithm. Notation ∇Fi(x

(i)
t , ξ

(i)
t ) repre-

sents the stochastic gradient obtained from a batch of samples ξ
(i)
t , which can be written as

∇Fi(x
(i)
t , ξ

(i)
t ) = (1/|ξ(i)t |)

∑
j∈ξ

(i)
t

Fi(x
(i)
t , j).

After calculating v
(i)
t , each worker node communicates with its neighbors and update the gradient

tracker y(i)t . Inspired by the framework of Perturbed Gradient Descent, our PEDESTAL method also
consists of two phases, the descent phase and the escaping phase. If worker node i is in the descent
phase and the norm ∥y(i)t ∥ is smaller than the given threshold Cv, then it will draw a perturbation
ξ uniformly from B0(r) and update z

(i)
t = x

(i)
t + ξ. The phase is switched to escaping phase and

esc(i) is set to 0. Anchor x̃(i) = x
(i)
t is saved and will be used to discriminate whether the escaping

phase is broken. After this iteration counter esc(i) will be added by 1 in each following iteration until
the moving distance from the anchor on i-th worker node (i.e., ∥x(i)

t − x̃(i)∥) is larger than threshold
Cd for some t, which breaks the escaping phase and turn back to descent phase. If the condition of
drawing perturbation is not satisfied, z(i)t is updated by z

(i)
t = x

(i)
t − ηy

(i)
t no matter which phase is

running currently.

If the i-th worker node’s counter esc(i) is larger than the threshold CT , it indicates that x̄t−CT
is a

candidate second-order stationary point. When at least n
10 nodes satisfy the condition esc(i) ≥ CT ,

the algorithm is terminated. Notice that the fraction is set to 1
10 for convenience in the convergence

analysis. Our algorithm also works for other constant fractions. From Algorithm 1 we can see the
decision of changing phases on each node only depends on its own status, which is adaptive and
independent. Coordinating protocol including broadcast or aggregation is not required.
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3.2 Discussion
Here we will discuss the insight of the algorithm design and compare the differences between our
method and related works. Some novel improvements are the key to the questions in Section 1.

3.2.1 Perturbed Gradient Descent or Negative Curvature Descent

Perturbed gradient descent and negative curvature descent are two of the most widely used pure
first-order methods to find second-order stationary points. In PEDESTAL algorithm, we adopt the
strategy of perturbed gradient descent rather than negative curvature descent because of the following
reasons. First, negative curvature descent methods such as Neon (Xu et al. [2018]) and Neon2
(Allen-Zhu and Li [2018]) involves a nested loop to execute the negative curvature subroutine to
recognize if a first-order stationary point is a local minimum. However, in decentralized setting, it is
possible that the gradient norms on some nodes are smaller than the threshold while others are not.
Therefore, some nodes will execute the negative curvature subroutine but its neighbors may not. In
this case neighbor nodes need to wait for the nodes running negative curvature subroutines and there
will be idle time on neighbor nodes. Besides, the analysis of negative curvature descent methods
rely on the precision of the negative curvature direction. It is unknown if the theoretical results are
still effective when only a fraction of nodes participate in the computation of negative curvature
direction while the others use the gradient. In contrast, perturbed gradient descent only requires a
simple operation of drawing perturbation, which is more suitable for decentralized algorithms.

3.2.2 Stepsize and Batchsize

In Pullback, a dynamic stepsize ηt = η/∥vt∥ in the descent phase where η = O(ϵ) and vt is the
gradient estimator. This stepsize is originated from SPIDER (Fang et al. [2018]) which ensures
its convergence by bounding the update distance ∥xt+1 − xt∥. In the escaping phase, Pullback
adopts a larger stepsize of O(1) in the escaping phase and a special pullback stepsize in the last
iteration, which is the key to improve the gradient complexity. Different from Pullback, in Algorithm
1 we adopt a consistent stepsize such that it keeps invariant even if phase changes and all nodes
always use the same stepsize. If there is no perturbation in iteration t, we have x̄t+1 = x̄t − ηv̄t,
which is important to the convergence analysis. We discard the strategy in Pullback for two reasons.
First, the gradient normalization will probably cause divergence issues in decentralized optimization
because in centralized algorithm the gradient direction is vt/∥vt∥, which is equivalent to vc =∑n

i=1 v
(i)
t /∥

∑n
i=1 v

(i)
t ∥. However, in decentralized algorithm the average of v(i)t is not available on

local nodes. If the gradient normalization is done locally, we will get vd =
∑n

i=1 v
(i)
t /∥v(i)t ∥, which

is different to vc and the error is hard to be estimated. Actually, both D-GET and D-SPIDER-SFO
adopt the constant stepsize in SpiderBoost (Wang et al. [2019]) to avoid performing the gradient
normalization step. SPIDER needs the gradient normalization because ∥xt+1 − xt∥ is required to
be small in the proof, while SpiderBoost improves the proof to bound ∥xt+1 − xt∥ by η∥vt∥ which
is canceled eventually. In our analysis we also adopt the strategy in SpiderBoost. Second, in our
algorithm the changing of phase is occurred independently on each node. The phase-wise stepsize
and pullback strategy will lead to different stepsizes among all nodes in one iteration, which will also
cause potential convergence issues.

In (Chen et al. [2022]), two versions of Pullback are proposed, i.e., Pullback-SPIDER and Pullback-
STORM using SPIDER and STORM as the gradient estimator respectively. As introduced previously,
one of the advantages of STORM is avoiding large batchsize. Nonetheless, Pullback-STORM adopt a
large batchsize of O(ϵ−1) in each iteration, which violates the original intention of STORM. Besides,
from Table 1 we can see all algorithms achieving second-order optimality with Õ(ϵ−3) gradient
complexity require a large batchsize of O(ϵ−1). Therefore, we propose a small batch version named
PEDESTAL-S as a special case of PEDESTAL that only requires an averaged batchsize of O(1).

3.2.3 Conditions of Termination

As a result of applying gradient tracking, we can bound 1
n

∑n
i=1 ∥y

(i)
t − ȳt∥2 by O(ϵ2). Even though

we have such an estimation, it is still possible that the norm ∥y(i)t ∥ is as large as O(
√
nϵ) on some

nodes when the entire decentralized network has already achieved optimality. Therefore, waiting for
all nodes to reach second-order stationary point is not an efficient strategy. This is the reason why we
terminate our algorithm when only a fraction of worker nodes satisfy esc(i) ≥ CT .
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In SSRGD and Pullback, there is an upper bound of iteration numbers in the escaping phase. If the
escaping phase is not broken in this number of iterations then the candidate point is regarded as a
second-order stationary point. If the escaping phase is broken, then the averaged moving distance
is larger than a threshold and the loss function will be reduced by O(ϵ2) on average. This strategy
guarantees that the algorithm will terminate with a certain gradient complexity. However, in our
algorithm worker nodes do not enter escaping phase simultaneously and thus we do not set such an
upper bound. In this case the averaged moving distance cannot be lower bounded as CT has no upper
bound. Fortunately, we can complete our analysis by a different novel framework (see the proof
outline in the Appendix). An alternative solution is to stop the update on the node that has run certain
number of iterations in the escaping phase while the algorithm will continue. But that solution is also
challenging since the relation between the first-achieved local optimal solution and the final global
optimal solution is unknown and the analysis is non-trivial.

One remaining issue of the current termination strategy is that it involves the global knowledge of
how many worker nodes satisfying the termination condition. One solution is to run an additional
process to track this global value. The cost of transmitting Boolean values is much less expensive
than broadcasting the model. Another solution is to set a maximum iteration in practice. Generally
we need to evaluate the model after certain epochs to see if the training process is running smoothly
and we can save a checkpoint when we find a better evaluation result. The theoretical analysis ensures
that an optimal solution can be visited if the number of iterations is as large as O(ϵ−3).

3.2.4 Small Stuck Region

The theoretical guarantee of second-order optimality in SSRGD and Pullback is mainly credit to
the lemma of small stuck region, which states that if there are two decoupled sequences xt and x′

t
with identical stochastic samples, xs = x′

s and xs+1 − x′
s+1 = r0e1 where e1 is the eigenvector

corresponding to the smallest eigenvalue, then it satisfies max{∥xt − xs∥, ∥x′
t − x′

s∥} ≥ Cd for
some s ≤ t ≤ s+ CT with high probability. In SSRGD and Pullback, the averaged moving distance
1

t−s

∑t
τ=s+1 ∥xτ+1 − xτ∥2 is used as the criterion to discriminate saddle point because the small

stuck region lemma can be applied in this way. However, in decentralized algorithm some nodes
enter the escaping phase before the candidate point x̄s is achieved. Suppose node i enters escaping
phase in iteration s′, then the averaged moving distance starting from iteration s on node i cannot
be well estimated because the condition of not breaking escaping phase on node i only guarantees
the bound of averaged moving distance starting from s′. Therefore, in our method we use the total
moving distance ∥x(i)

t − x
(i)
s ∥ as the criterion because we can obtain estimation ∥x(i)

t − x
(i)
s ∥ ≤ 2Cd

given ∥x(i)
t − x

(i)
s′ ∥ ≤ Cd and ∥x(i)

s − x
(i)
s′ ∥ ≤ Cd. And we can further complete our analysis by the

small stuck region lemma. Actually we do not require more memory because x̃ is the point to return
in SSRGD and Pullback (hence should be saved). In practice, we can also return x̃(i) for any node i

drawing perturbation in iteration t−CT since ∥x(i)
t − x̄t∥ can be well bounded. Besides, we discover

that the consensus error 1
n

∑n
i=1 ∥x

(i)
t − x̄t∥2 results in an extra term when proving the small stuck

region lemma, which becomes another challenge. If the consensus error is not under control, it can
drive x away from xs or push x toward xs, no matter what ∇f(x) is. In this manner, the stuck region
cannot be estimated. In this work, we provide the corresponding proof to estimate this new term
exclusively occurred in decentralized setting in our convergence analysis.

4 Convergence Analysis

4.1 Assumptions

In this section we will provide the main theorem of our convergence analysis. First we will introduce
the assumptions used in this paper. All assumptions used in this paper are mild and commonly used
in the analysis of related works.

Assumption 1. (Lower Bound) The objective f is lower bounded, i.e., infx f(x) = f∗ > −∞.

Assumption 2. (Bounded Variance) The stochastic gradient of each local loss function is an unbiased
estimator and has bounded variance, i.e., for any i ∈ {1, 2, · · · , n} we have

Eξ∇Fi(x, ξ) = ∇fi(x), Eξ∥∇Fi(x, ξ)−∇fi(x)∥2 ≤ σ2 (2)
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Assumption 3. (Lipschitz Gradient) For all ξ and i ∈ {1, 2, · · · , n}, Fi(x, ξ) has Lipschitz gradient,
i.e., for any x1 and x2 we have ∥∇Fi(x1, ξ)−∇Fi(x2, ξ)∥ ≤ L∥x1 − x2∥ with a constant L.
Assumption 4. (Lipschitz Hessian) For all ξ and i ∈ {1, 2, · · · , n}, Fi(x, ξ) has Lipschitz hessian,
i.e., for any x1 and x2 we have ∥∇2Fi(x1, ξ)−∇2Fi(x2, ξ)∥ ≤ ρ∥x1 − x2∥ with a constant ρ.

Assumption 1, Assumption 2 and Assumption 3 are common assumptions used in the analysis of
stochastic optimization algorithms. Assumption 4 is the standard assumption to find second-order
optimality, which is used in all algorithms that achieves second-order stationary point in Table 1.
Assumption 5. (Spectral Gap) The decentralized network is connected by a doubly-stochastic weight
matrix W ∈ Rn×n satisfying W1n = WT1n = 1n and λ := ∥W − J∥ ∈ [0, 1).

Here J is a n× n matrix with all elements equal to 1
n . W is the weight matrix of the decentralized

network where wij > 0 if node i and node j are connected, otherwise wij = 0. ∥ · ∥ denotes the
spectral norm of matrix (i.e., largest singular value). Notice that λ is a connectivity measurement of
the network graph and it is also the second largest singular value of W . We do not assume W to be
symmetric and hence the communication network can be both directed graph and undirected graph.
The spectral gap assumption is also used commonly in the analysis of decentralized algorithms.

4.2 Main Theorems

Let ϵH = ϵα. When α ≤ 0.5, we have the following Theorem 1.
Theorem 1. Assume α ≤ 0.5 and Assumption 1 to 5 are satisfied. Let θ = min{ 3−5α

2 , 1}. We set
η = Θ( ϵ

θ

L ), β = Θ(ϵ1+θ), b0 = Θ(ϵ−2), b1 = Θ(max{ϵ2−θ−5α, 1}), r = Θ(ϵ1+θ), Cv = Θ(ϵ),
CT = Θ̃(ϵ−θ−α) and Cd = Θ̃(ϵ1−α). Then our PEDESTAL algorithm will achieve O(ϵ, ϵH)-second-
order stationary point with Õ(ϵ−3) gradient complexity.

The specific constants hidden in Θ(·) will be shown in Appendix B, where the proof outline and the
completed proof of Theorem 1 can also be found. From Theorem 1 we can see our PEDESTAL-S
with b1 = O(1) can achieve O(ϵ, ϵH)-second-order stationary point with Õ(ϵ−3) gradient complexity
for ϵH ≥ ϵ0.2. In the classic setting, our PEDESTAL achieves second-order stationary point with
Õ(ϵ−3) gradient complexity. When α > 0.5, i.e., ϵH <

√
ϵ, we have the following Theorem 2.

Since the parameter settings are different and the O(1) batchsize is only available in Theorem 1, we
separate these two theorems. The proof of Theorem 2 can be found in Appendix D.
Theorem 2. When ϵH <

√
ϵ (i.e., α > 0.5), we set η = Θ̃(ϵθ), β = Θ(ϵ1+θ), b0 = Θ(ϵ−1),

b1 = Θ̃(ϵ−max{4α−1−θ,θ+α}), r = Θ(ϵ1+θ), Cv = Θ(ϵ), CT = Θ̃(ϵ−θ−α) and Cd = Θ̃(ϵα)
where θ = min{ 3α−1

2 , 3α− 2}. Under Assumption 1 to 5, our PEDESTAL algorithm will achieve
O(ϵ, ϵH)-second-order stationary point with Õ(ϵϵ−8

H + ϵ4ϵ−11
H ) gradient complexity.

5 Experiments
In this section we will demonstrate our experimental results to validate the performance of our
method. We conduct two tasks in our experiment, a matrix sensing task on synthetic dataset and
a matrix factorization task on real-world dataset. Both of these two tasks are non-spurious local
minimum problems (Ge et al. [2017, 2016]), which means all local minima are global minima. Thus,
we conclude an algorithm is stuck at saddle point if the loss function value does not achieve the
global minimum. The source code is available in https://github.com/WH-XIAN/PEDESTAL.

5.1 Matrix Sensing

We follow the experimental setup of (Chen et al. [2022]) to solve a decentralized matrix sensing
problem. The goal of this task is to recover a low-rank d × d symmetric matrix M∗ = U∗(U∗)T

where U∗ ∈ Rd×r for some small r. We set the number of worker nodes to n = 20. We generate a
synthetic dataset with N sensing matrices {Ai}Ni=1 and N corresponding observations bi = ⟨Ai,M

∗⟩.
Here the inner product ⟨X,Y ⟩ of two matrices X and Y is defined by the trace tr(XTY ). The
decentralized optimization problem can be formulated by

min
U∈Rd×r

n∑
i=1

Li(U), where Li(U) =
1

2

Ni∑
j=1

(⟨Aij , UUT ⟩ − bij)
2 , (3)
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(a) d = 50, ring (b) d = 50, toroidal (c) d = 50, exponential

(d) d = 100, ring (e) d = 100, toroidal (f) d = 100, exponential

Figure 1: Experimental results of the decentralized matrix sensing task on different network topology
for d = 50 and d = 100. Data is assigned to worker nodes by random distribution. The y-axis is the
loss function value and the x-axis is the number of gradient oracles divided by the number of data N .

(a) ring, random (b) toroidal, random (c) exponential, random

(d) ring, Dirichlet (e) toroidal, Dirichlet (f) exponential, Dirichlet

Figure 2: Experimental results of the decentralized matrix factorization task on different network
topology on MovieLens-100k. The y-axis is the loss function value and the x-axis is the number of
gradient oracles divided by the size of matrix N × l.

where Ni is the amount of data assigned to worker node i.

The number of rows of matrix U is set to d = 50 and d = 100 respectively and the number of columns
is set to r = 3. The ground truth low-rank matrix M∗ equals U∗(U∗)T where each entry of U∗ is
generated by Gaussian distribution N (0, 1/d) independently. We randomly generate N = 20×n×d
samples of sensing matrices {Ai}Ni=1, Ai ∈ Rd×d from standard Gaussian distribution and calculate
the corresponding labels bi = ⟨Ai,M

∗⟩. We consider two different types of data distribution,
random distribution and Dirichlet distribution Dir20(0.3) to assign data to each worker node. We
conduct experiments on three different types of network topology, i.e., ring topology, toroidal
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topology (2-dimensional ring) and undirected exponential graph. The initial value of U is set to
[u0,0,0] where u0 is yield from Gaussian distribution and multiplied by a scalar such that it satisfies
∥u0∥ ≤ max eig(M∗). We compare our PEDESTAL algorithm to decentralized baselines including
D-PSGD, GTDSGD, D-GET, D-SPIDER-SFO and GTHSGD. In this experiment, the learning rate
is chosen from {0.01, 0.001, 0.0001}. The batchsize is set to 10. For PEDESTAL and GTHSGD,
parameter β is set to 0.01. For D-GET and D-SPIDER-SFO, the period q is 100. For PEDESTAL,
threshold Cv is set to 0.0001. Perturbation radius r is set to 0.001. The threshold of moving distance
Cd is set to 0.01. The experimental results are shown in Figure 1. Due to the space limit, we only
show the result of random data distribution in the main manuscript and leave the result of Dirichlet
distribution to Appendix A.

From the experimental result we can see all baselines are stuck at the saddle point and cannot escape
it effectively. In contrast, our PEDESTAL reaches and escapes saddle points and finally find the
local minimum. We also calculate the smallest eigenvalue of hessian matrix for each algorithm at
the converged optimal point, which is left to the Supplementary Material because of space limit.
According to the eigenvalue result, we can see the smallest eigenvalue is much closer to 0 than all
baselines. Therefore, our experiment verifies that our PEDESTAL achieves the best performance to
escape saddle point and find local minimum.

5.2 Matrix Factorization

The second task in our experiment is matrix factorization, which aims to approximate a given matrix
M ∈ RN×l by a low-rank matrix that can be decomposed to the product of two matrices U ∈ RN×r

and V ∈ Rl×r for some small r. The optimization problem can be formulated by

min
U∈RN×r,V ∈Rl×r

∥M − UV T ∥2F :=

N∑
i=1

l∑
j=1

(Mij − (UV T )ij)
2 (4)

where ∥ · ∥F denotes the Frobenius norm and subscript ij refers to the element at i-th row and
j-th column. In our experiment we solve this problem on the MovieLens-100k dataset (Harper and
Konstan [2015]). MovieLens-100k contains 100,000 ratings of 1682 movies provided by 943 users.
Each rating is in the interval [0, 5] and scaled to [0, 1] in the experiment. This task can be regarded
as an association task to predict users’ potential ratings for unseen movies. In our experiment we
set the number of worker node to n = 50. Each node is assigned the data from different group
of users. Similar to the matrix sensing task, here we also use random distribution and Dirichlet
distribution respectively to distribute users to worker nodes. And we also use ring topology, toroidal
topology and undirected exponential graph as the communication network. The baselines are also
D-PSGD, GTDSGD, D-GET, D-SPIDER-SFO and GTHSGD. In this experiment, the number of
worker nodes is 50 and the rank of the matrix M is set to 25. The learning rate is chosen from
{0.01, 0.001, 0.0001}. The batchsize is set to 100. For PEDESTAL and GTHSGD, parameter β is
set to 0.1. For D-GET and D-SPIDER-SFO, the period q is 100. For PEDESTAL, threshold Cv is set
to 0.002. Perturbation radius r is set to 0.01. The threshold of moving distance Cd is set to 0.5. The
experimental results are shown in Figure 2.

From the experimental results we can see our PEDESTAL achieves the best performance to escape
saddle point and find second-order stationary point. All baselines cannot escape saddle point
effectively or efficiently. Particularly, variance reduced methods D-GET and D-SPIDER-SFO shows
worse performance than SGD based algorithms D-PSGD and GTDSGD, which indicates that although
reducing gradient noise can accelerate convergence, it also weakens the ability to escape saddle point.
Therefore, our contribution is important since we make the fast convergence of variance reduction
compatible with the capability to avoid saddle point.

6 Conclusion
In this paper we propose a novel algorithm PEDESTAL to find local minima in nonconvex decentral-
ized optimization. PEDESTAL is the first decentralized stochastic algorithm to achieve second-order
optimality with non-asymptotic analysis. We improve the drawbacks in previous deterministic
counterpart to make phase changed independently on each node and avoid consensus protocols of
broadcast or aggregation. We prove that PEDESTAL can achieve O(ϵ,

√
ϵ)-second-order stationary

point with the gradient complexity of Õ(ϵ−3), which matches state-of-the-art results of centralized
counterpart or decentralized method to find first-order stationary point. We also conduct the matrix
sensing and matrix factorization tasks in our experiments to validate the performance of PEDESTAL.
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A Additional Experimental Results

The experimental results of Dirichlet distribution of the matrix sensing task is shown in Figure 3. The
smallest eigenvalue at the converged point for each algorithm is shown in Table 2 and Table 3.

(a) d = 50, ring (b) d = 50, toroidal (c) d = 50, exponential

(d) d = 100, ring (e) d = 100, toroidal (f) d = 100, exponential

Figure 3: Experimental results of the decentralized matrix sensing task on different network topology
for d = 50 and d = 100. Data is assigned to worker nodes by Dirichlet distribution. The y-axis is the
loss function value and the x-axis is the number of gradient oracles divided by the number of data N .

D-PSGD GTDSGD D-GET D-SPIDER-SFO GTHSGD PEDESTAL
d = 50, ring -0.0332 -0.0327 -0.0333 -0.0328 -0.0329 −1.78e−5

d = 50, toroidal -0.0331 -0.0334 -0.0334 -0.0327 -0.0329 −4.18e−5

d = 50, exponential -0.0323 -0.0330 -0.0331 -0.0332 -0.0333 −1.09e−6

d = 100, ring -0.0184 -0.0184 -0.0184 -0.0184 -0.0185 −2.07e−6

d = 100, toroidal -0.0185 -0.0186 -0.0185 -0.0184 -0.0184 −2.25e−7

d = 100, exponential -0.0184 -0.0184 -0.0186 -0.0184 -0.0184 −3.07e−5

Table 2: Smallest eigenvalue of hessian matrix at the converged point (random data distribution).

D-PSGD GTDSGD D-GET D-SPIDER-SFO GTHSGD PEDESTAL
d = 50, ring -0.0332 -0.0337 -0.0332 -0.0325 -0.0330 −3.60e−6

d = 50, toroidal -0.0334 -0.0324 -0.0329 -0.0325 -0.0327 −2.29e−5

d = 50, exponential -0.0334 -0.0326 -0.0333 -0.0330 -0.0328 −3.97e−5

d = 100, ring -0.0184 -0.0184 -0.0184 -0.0185 -0.0183 −4.48e−5

d = 100, toroidal -0.0184 -0.0184 -0.0184 -0.0184 -0.0185 −1.24e−5

d = 100, exponential -0.0186 -0.0185 -0.0186 -0.0183 -0.0185 −3.63e−6

Table 3: Smallest eigenvalue of hessian matrix at the converged point (Dirichlet data distribution).

B Proof of Theorem 1

B.1 Notation

We define matrix Xt = [x
(1)
t , · · · , x(n)

t ] ∈ Rd×n where x
(i)
t is the model parameter on i-th worker

node with dimension d and n is the number of worker nodes. Similarly we have Yt = [y
(1)
t , · · · , y(n)t ],
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Zt = [z
(1)
t , · · · , z(n)t ] and Vt = [v

(1)
t , · · · , v(n)t ]. Let ωt = ∥x̄t+1 − x̄t∥2 and Ωt = Zt −Xt. Define

pt = nt/n where nt is the number of worker nodes drawing perturbation in iteration t.

B.2 Outline

In this section we will provide the proof outline of Theorem 1. First, we prove some basic lemmas to
estimate gradient noise and consensus error, which will be used frequently in later proof. The gradient
noise is estimated by Lemma 1, the proof of which can be found in Section C.1. The consensus error
is estimated by Lemma 2, the proof of which can be found in Section C.2.
Lemma 1. (Gradient Noise) Under Assumption 2 and Assumption 3 we have

(a)
1

nT

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2 ≤ 16 log(4/δ)βσ2

b1
+

384 log(4/δ)L2

nb1βT

T−1∑
t=0

∥Xt − X̄t∥2F

+
192 log(4/δ)L2

b1βT

T−1∑
t=0

ωt +
2 log(4/δ)σ2

βb0T

(b)
1

T

T∑
t=1

∥v̄t −
1

n

n∑
i=1

∇fi(x
(i)
t )∥2 ≤ 16 log(4/δ)βσ2

nb1
+

384 log(4/δ)L2

n2b1βT

T∑
t=1

∥Xt − X̄t∥2F

+
192 log(4/δ)L2

nb1βT

T−1∑
t=0

ωt +
2 log(4/δ)σ2

nβb0T

Lemma 2. (Consensus Error) Let η ≤ (1−λ)2ϵθ

600 log(4/δ)λ2L , β = C−1
1 ϵ1+θ and b1 ≥ C1ϵ

−1+θ where
C1 ≥ 1 is a constant. Under Assumption 2, 3 and 5 we have

(a)
1

T

T∑
t=1

∥Xt − X̄t∥2F ≤ 160000n log(4/δ)L2η2λ4

(1− λ)4 min{b1β, 1}T

T−1∑
t=0

ωt +
12288n log(4/δ)βη2λ4σ2

(1− λ)4b1

+
2000n log(4/δ)η2λ4σ2

(1− λ)4βb0T
+

128λ4η2

(1− λ)3T

n∑
i=1

∥∇fi(x0)∥2 +
T−1∑
t=0

64nλ2pt(η
2C2

v + r2)

(1− λ)2T

(b)
1

T

T−1∑
t=0

∥Yt − Ȳt∥2F ≤ 4644 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt +
384 log(4/δ)nλ2βσ2

(1− λ)b1

+
50 log(4/δ)nλ2σ2

(1− λ)βb0T
+

8λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2+
T−1∑
t=0

150000 log(4/δ)nL2λ4pt(η
2C2

v+r2)

(1− λ)3 min{b1β, 1}T

Next we will prove that PEDESTAL will terminate in certain number of iterations. Under Assumption
2, 3 and 5, we can prove the following Lemma 3. The proof is demonstrated in Section C.3.

Lemma 3. (Descent) Let η ≤ (1−λ)2ϵθ

600 log(4/δ)λ2L , β = C−1
1 ϵ1+θ, b1 ≥ C1ϵ

−1+θ and b0 = C1ϵ
−1 where

C1 ≥ 1 is a constant. Under Assumption 2, 3 and 5 we have

f(x̄T ) ≤ f(x0) +
σ2

L
+

1

nL

n∑
i=1

∥∇fi(x0)∥2 −
T−1∑
t=0

Dt

where

Dt =
1

16η
ωt +

(1− λ)2

256nη

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 + η

2n

n∑
i=1

∥y(i)t ∥2 − 200ηϵ2σ2

(1− λ)2C2
1

− 7pt(η
2C2

v + r2)

4η

Here we call Dt the descent of iteration t. We categorize all iterations into three types:

type-A: pt ≥
1

5
, type-B: pt <

1

5
and

1

n

n∑
i=1

∥y(i)t ∥2 ≥ 4C2
v

5
, type-C: otherwise
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When at least n
5 nodes drawing perturbation in iteration t, then it is type-A. There are two cases

where pt is small: most nodes in the descent phase or most nodes in the escaping phase. An iteration
is type-B if pt < 1

5 and 1
n

∑n
i=1 ∥y

(i)
t ∥2 ≥ 4C2

v

5 , which represents the case where most nodes are in
the descent phase. And type-C iteration represents the case where most nodes are in the escaping
phase. Next we will estimate type-A and type-C iteration with the following Lemma 4.

Lemma 4. Let η ≤ (1−λ)2ϵθ

600 log(4/δ)λ2L , β = C−1
1 ϵ1+θ, b1 ≥ C1ϵ

−1+θ, b0 = C1ϵ
−1, Cd = C2ηCT ϵ,

Cv = (1−λ)C2ϵ
200 and r ≤ ηCv/4 where C1 = 20000σ

(1−λ)2C2
and C2 is a constant. Under Assumption 2, 3

and 5, we can find disjoint intervals I = I1 ∪ · · · ∪ Ik such that the indexes of all type-A and type-C
iterations except the last CT iterations are contained in I and the descent over I can be estimated by∑

t∈I
Dt ≥ |I| · (1− λ)2C2

2ηϵ
2

10000

where | · | denotes the total number of the set.

Besides, for all type-B iteration t, we have the following estimation

Lemma 5. Let parameter and assumption settings be the same as Lemma 4, then for all type-B
iteration t we have

Dt ≥
(1− λ)2C2

2ηϵ
2

8000000

With Lemma 4, Lemma 5 and Assumption 1, we can conclude that PEDESTAL will terminate in
Õ(ϵ−2−θ) + CT iterations. As the last two negative terms in Dt are canceled by 1

n

∑n
i=1 ∥x

(i)
t+1 −

x
(i)
t ∥2 and 1

n

∑n
i=1 ∥y

(i)
t ∥2 respectively in Lemma 4 and Lemma 5, we have 1

η

∑T−1
t=0 ωt ≤ O(1).

Hence by Lemma 2 we know the consensus error 1
n∥Xt − X̄t∥2F can be bounded by O(ϵ1+θ) on

average. Besides, from the parameter setting we can see Cv is Θ(ϵ), which ensures the first-order
optimality of the decentralized algorithm.

Finally, we will prove PEDESTAL is able to achieve second-order stationary point. First, we will
give the small stuck region lemma in decentralized setting. Recall that ϵH = ϵα is the tolerance of
second-order stationary point. The proof is in Section C.6.

Lemma 6. (Small Stuck Region) Suppose ns worker nodes draw perturbation in iteration s and
−γ = min eig(∇2f(x̄s)) ≤ −ϵH . Let η ≤ (1−λ)2ϵθ

1000
√
n log(CT ) log(4/δ)λ2L

, β = C−1
1 ϵ1+θ, b1 ≥

1000C1ϵ
2−θ−5α, Cd = C2ηCT ϵ

µ and CT = log(12nCd/r0)/(ηγ) where C1 = 20000
(1−λ)2C2

, C2 ≤
1−λ

2000 log(4/δ)ρ log(Cd)
and µ = max{1, 2α}. Let Xt and X ′

t be two coupled decentralized sequences

by running PEDESTAL from Xs with Xs = X ′
s, x(i)

s+1 = x
(i)′

s+1 if node i does not draw perturbation

in iteration s and x
(i)
s+1 = x

(i)′

s+1 + r0e1 otherwise. Here e1 is the eigenvector with respect to the

smallest eigenvalue γ. Define di = maxs≤t≤s+CT
{∥x(i)

t − x
(i)
s ∥, ∥x(i)′

t − x
(i)
s ∥}. Then there are at

least 9n
10 nodes such that di ≥ 2Cd.

In decentralized small stuck region lemma, the consensus error will lead to a new term (see Eq. (34))
and make the proof more complicated. In our proof, we use the condition of ϵH ≥ ϵ, i.e., α ≤ 1.
For smaller ϵH the batchsize b1 is required to set larger. With Lemma 6, we can prove that when
PEDESTAL is terminated, it finds a local minimum with high probability.

Lemma 7. Let r0 = δr/
√
d where d is the dimension of model parameter. Other parameters are the

same as Lemma 6. Suppose PEDESTAL is terminated in iteration s+CT . Then x̄s is a second-order
stationary point with probability at least 1− δ.

Lemma 7 provides the guarantee of second-order optimality of PEDESTAL. When ϵH ≥
√
ϵ, i.e.,

α ≤ 0.5 (including the classic setting ϵH =
√
ϵ), the parameter settings of all lemmas are consistent

and the main theorem is proven. The total gradient complexity is

Õ(ϵ−2−θ · ϵ−1+θ) = Õ(ϵ−3)
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When α = 0.5, we have θ = 0.25 and b1 = Θ(ϵ−0.75). When α ≤ 0.2, we can set θ = 1 and
b1 = O(1), which is result of PEDESTAL-S. In Section D we will provide the analysis of the case
α > 0.5 with a different parameter setting of θ and b1. We can achieve the gradient complexity of

Õ(ϵ−3 + ϵϵ−8
H + ϵ4ϵ−11

H ) (5)

over all cases of ϵH .

C Proof of Lemmas

C.1 Proof of Lemma 1

Proof. According to the definition of v(i)t , we have

v
(i)
t+1 −∇fi(x

(i)
t+1)

(1− β)t+1
− v

(i)
t −∇fi(x

(i)
t )

(1− β)t
=

β(∇Fi(x
(i)
t+1, ξ

(i)
t+1)−∇fi(x

(i)
t+1))

(1− β)t+1

+
(∇Fi(x

(i)
t+1, ξ

(i)
t+1)−∇fi(x

(i)
t+1))− (∇Fi(x

(i)
t , ξ

(i)
t+1)−∇fi(x

(i)
t ))

(1− β)t
(6)

where |ξ(i)t+1| = b1. The expectation of the right side of Eq. (6) over ξ(i)t+1 is 0. Using Cauchy-Schwartz
inequality, Assumption 2 and Assumption 3 we have

∥
β(∇Fi(x

(i)
t+1, j)−∇fi(x

(i)
t+1))

(1− β)t+1
+

(∇Fi(x
(i)
t+1, j)−∇fi(x

(i)
t+1))− (∇Fi(x

(i)
t , j)−∇fi(x

(i)
t ))

(1− β)t
∥2

≤ 2β2σ2

(1− β)2t+2
+

8L2∥x(i)
t+1 − x

(i)
t ∥2

(1− β)2t
(7)

for each j ∈ ξ
(i)
t+1. Thus, applying Azuma-Hoeffding inequality to Eq. (6) we can obtain

∥v(i)t −∇fi(x
(i)
t )− (1− β)t(v

(i)
0 −∇fi(x0))∥2

≤ 4 log(4/δ)

b1
(2βσ2 + 8L2

t−1∑
s=0

(1− β)2(t−s)∥x(i)
s+1 − x(i)

s ∥2) (8)

with probability 1 − δ. Here we use the fact that
∑+∞

s=0(1 − β)s = 1
β . Using Cauchy-Schwartz

inequality to Eq. (8) we have

∥v(i)t −∇fi(x
(i)
t )∥2 ≤ 16 log(4/δ)

b1
(βσ2 + 4L2

t−1∑
s=0

(1− β)2(t−s)∥x(i)
s+1 − x(i)

s ∥2)

+ 2(1− β)2t∥v(i)0 −∇fi(x0))∥2 (9)

Sum Eq. (9), we obtain

1

log(4/δ)nT

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2

≤ 16βσ2

b1
+

64L2

nb1βT

T−2∑
t=0

∥Xt+1 −Xt∥2F +
2σ2

βb0T

≤ 16βσ2

b1
+

384L2

nb1βT

T−1∑
t=0

∥Xt − X̄t∥2F +
192L2

b1βT

T−1∑
t=0

ωt +
2σ2

βb0T
(10)

which finishes the proof of (a) in Lemma 1. In the first inequality of Eq. (10) we apply Azuma-
Hoeffding inequality to v(i)0 −∇fi(x0). In the second inequality we apply Cauchy-Schwartz inequality
and use the fact x(i)

t+1 − x
(i)
t = (x

(i)
t+1 − x̄t+1)− (x

(i)
t − x̄t) + (x̄t+1 − x̄t). Mimic above steps and

we can achieve the inequality (b) in Lemma 1. The term n in the denominator is derived by the fact
that ξ(i)t ’s on different nodes are independent.
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C.2 Proof of Lemma 2

Proof. As Yt = W (Yt−1 + Vt − Vt−1), we have

∥Yt − Ȳt∥2F
= ∥(W − J)(Yt−1 − Ȳt−1) + (W − J)(Vt − Vt−1)∥2F
≤ λ2∥Yt−1 − Ȳt−1∥2F + 2⟨(W − J)Yt, (W − J)(Vt − Vt−1)⟩+ λ2∥Vt − Vt−1∥2F

≤ 1 + λ2

2
∥Yt−1 − Ȳt−1∥2F +

λ2 + λ4

1− λ2
∥Vt − Vt−1∥2F

≤ 1 + λ2

2
∥Yt−1 − Ȳt−1∥2F +

3λ2(1 + λ2)

1− λ2

n∑
i=1

(∥v(i)t −∇fi(x
(i)
t )∥2 + ∥v(i)t−1 −∇fi(x

(i)
t−1)∥2)

+
9L2λ2(1 + λ2)

1− λ2
(∥Xt − X̄t∥2F + ∥Xt−1 − X̄t−1∥2F + nωt−1) (11)

where the first inequality is derived by Assumption 5, the second inequality is derived by Young’s
inequality and the last inequality is derived by Cauchy-Schwartz inequality and Assumption 3. When
t = 0, by Azuma-Hoeffding inequality we can get

∥Y0 − Ȳ0∥2F ≤ 2λ2
n∑

i=1

∥∇fi(x0)∥2 +
8 log(4/δ)nλ2σ2

b0
(12)

with probability 1− δ. As Xt+1 = W (Xt +Ωt), by Assumption 5 and Young’s inequality we have

∥Xt+1 − X̄t+1∥2F

≤ 1 + λ2

2
∥Xt − X̄t∥2F +

2λ2

1− λ2
∥Ωt − Ω̄t∥2F

≤ 1 + λ2

2
∥Xt − X̄t∥2F +

4η2λ2

1− λ2
∥Yt − Ȳt∥2F +

4λ2

1− λ2
∥Ωt − Ω̄t − η(Yt − Ȳt)∥2F

≤ 1 + λ2

2
∥Xt − X̄t∥2F +

4η2λ2

1− λ2
∥Yt − Ȳt∥2F +

8nλ2pt(η
2C2

v + r2)

1− λ2
(13)

where the second inequality is obtained by Cauchy-Schwartz inequality and the last inequality is
because when node i draws perturbation it must satisfy ∥y(i)t ∥ ≤ Cv. Note that X0 = X̄0. Sum Eq.
(13), we have

T∑
t=1

∥Xt − X̄t∥2F

≤ 8η2λ2

(1− λ2)2

T−1∑
t=0

∥Yt − Ȳt∥2F +
16nλ2(η2C2

v + r2)T

(1− λ2)2

≤ 288L2η2λ4(1 + λ2)

(1− λ2)4

T−1∑
t=0

∥Xt − X̄t∥2F +
96η2λ4(1 + λ2)

(1− λ2)4

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2

+
144nL2η2λ4(1 + λ2)

(1− λ2)4

T−1∑
t=0

ωt +
16λ2η2

(1− λ2)3
∥Y0 − Ȳ0∥2F +

T−1∑
t=0

16nλ2pt(η
2C2

v + r2)

(1− λ2)2
(14)

where the last inequality comes from Eq. (11). When η ≤ (1−λ)2

40λ2L we have 288L2η2λ4(1+λ2)
(1−λ2)4 ≤ 1

2 and

1

T

T∑
t=1

∥Xt − X̄t∥2F

≤ 192η2λ4(1 + λ2)

(1− λ2)4T

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2 + 288nL2η2λ4(1 + λ2)

(1− λ2)4T

T−1∑
t=0

ωt
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+
64λ4η2

(1− λ2)3T

n∑
i=1

∥∇fi(x0)∥2 +
256 log(4/δ)nλ4η2σ2

(1− λ2)3b0T
+

T−1∑
t=0

32nλ2pt(η
2C2

v + r2)

(1− λ2)2T

≤ 73728 log(4/δ)L2η2λ4(1 + λ2)

(1− λ2)4b1βT

T−1∑
t=0

∥Xt − X̄t∥2F +
24576n log(4/δ)L2η2λ4(1 + λ2)

(1− λ2)4b1βT

T−1∑
t=0

ωt

+
n log(4/δ)η2λ4(1 + λ2)σ2

(1− λ2)4
(
3072β

b1
+

384

βb0T
) +

288nL2η2λ4(1 + λ2)

(1− λ2)4T

T−1∑
t=0

ωt

+
64λ4η2

(1− λ2)3T

n∑
i=1

∥∇fi(x0)∥2 +
256 log(4/δ)nλ4η2σ2

(1− λ2)3b0T
+

T−1∑
t=0

32nλ2pt(η
2C2

v + r2)

(1− λ2)2T
(15)

where the last inequality is achieved by Lemma 1. According to the parameter setting, we have
73728 log(4/δ)L2η2λ4(1 + λ2)

(1− λ2)4b1β
≤ 1

2

Therefore, we have

1

T

T∑
t=1

∥Xt − X̄t∥2F

≤ 160000n log(4/δ)L2η2λ4

(1− λ)4 min{b1β, 1}T

T−1∑
t=0

ωt +
12288n log(4/δ)βη2λ4σ2

(1− λ)4b1
+

2000n log(4/δ)η2λ4σ2

(1− λ)4βb0T

+
128λ4η2

(1− λ)3T

n∑
i=1

∥∇fi(x0)∥2 +
T−1∑
t=0

64nλ2pt(η
2C2

v + r2)

(1− λ)2T
(16)

where we have used the condition λ ≤ 1 to simplify the inequality. Moreover, sum Eq. (11) and we
can achieve

1

T

T−1∑
t=0

∥Yt − Ȳt∥2F

≤ 12λ2

(1− λ)T

T−1∑
t=0

n∑
i=1

∥v(i)t −∇fi(x
(i)
t )∥2 + 36L2λ2

(1− λ)T

T−1∑
t=0

∥Xt − X̄t∥2F +
18nL2λ2

(1− λ)T

T−1∑
t=0

ωt

+
2

(1− λ)T
∥Y0 − Ȳ0∥2F

≤ 36L2λ2

(1− λ)T
(1 +

128 log(4/δ)

b1β
)

T−1∑
t=0

∥Xt − X̄t∥2F +
18nL2λ2

(1− λ)T
(1 +

128 log(4/δ)

b1β
)

T−1∑
t=0

ωt

+
192 log(4/δ)nλ2βσ2

(1− λ)b1
+

25 log(4/δ)nλ2σ2

(1− λ)βb0T
+

4λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2

≤ 4644 log(4/δ)L2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

∥Xt − X̄t∥2F +
2322 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt

+
192 log(4/δ)nλ2βσ2

(1− λ)b1
+

25 log(4/δ)nλ2σ2

(1− λ)βb0T
+

4λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2

≤ 37152 log(4/δ)L2η2λ4

(1− λ)3 min{b1β, 1}T

T−1∑
t=0

∥Yt − Ȳt∥2F +
2322 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt

+
192 log(4/δ)nλ2βσ2

(1− λ)b1
+

T−1∑
t=0

74304 log(4/δ)nL2λ4pt(η
2C2

v + r2)

(1− λ)3 min{b1β, 1}T
+

25 log(4/δ)nλ2σ2

(1− λ)βb0T

+
4λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2 (17)
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where the second inequality uses Lemma 1 and Eq. (12). The last inequality uses the sum of Eq. (13).
As 37152 log(4/δ)L2η2λ4

(1−λ)3 min{b1β,1} ≤ 1
2 , we have

1

T

T−1∑
t=0

∥Yt − Ȳt∥2F

≤ 4644 log(4/δ)nL2λ2

(1− λ)min{b1β, 1}T

T−1∑
t=0

ωt +
384 log(4/δ)nλ2βσ2

(1− λ)b1
+

50 log(4/δ)nλ2σ2

(1− λ)βb0T

+
8λ2

(1− λ)T

n∑
i=1

∥∇fi(x0)∥2 +
T−1∑
t=0

150000 log(4/δ)nL2λ4pt(η
2C2

v + r2)

(1− λ)3 min{b1β, 1}T
(18)

which finishes the proof.

C.3 Proof of Lemma 3

Proof. By Assumption 3 we have

f(x̄t+1) ≤ f(x̄t) + ⟨∇f(x̄t), x̄t+1 − x̄t⟩+
L

2
∥x̄t+1 − x̄t∥2

= f(x̄t) + ⟨∇f(x̄t),−ηv̄t⟩+ ⟨∇f(x̄t), x̄t+1 − x̄t + ηv̄t⟩+
L

2
∥x̄t+1 − x̄t∥2

= f(x̄t)−
η

2
∥v̄t∥2 −

η

2
∥∇f(x̄t)∥2 +

η

2
∥v̄t −∇f(x̄t)∥2 +

η

2
∥∇f(x̄t)∥2

+
1

2η
∥x̄t+1 − x̄t + ηv̄t∥2 −

1

2η
∥x̄t+1 − x̄t + ηv̄t − η∇f(x̄t)∥2 +

L

2
∥x̄t+1 − x̄t∥2

≤ f(x̄t)−
η

2
∥v̄t∥2 +

η

2
∥v̄t −∇f(x̄t)∥2 +

1

2η
∥x̄t+1 − x̄t + ηv̄t∥2 +

Lωt

2

− 1

2η
ωt −

η

2
∥v̄t −∇f(x̄t)∥2 +

1

4η
ωt + η∥v̄t −∇f(x̄t)∥2

≤ f(x̄t)−
1

4η
ωt −

η

2
∥v̄t∥2 +

pt(η
2C2

v + r2)

η
+

Lωt

2
+ 2η∥v̄t −

1

n

n∑
i=1

∇fi(x
(i)
t )∥2

+
L2η

n
∥Xt − X̄t∥2F (19)

where the first inequality is obtained by Young’s inequality and the last inequality is obtained
by Cauchy-Schwartz inequality, Assumption 3 and the fact that perturbation is only drawn when
∥y(i)t ∥ ≤ Cv and nt nodes draw perturbation in iteration t. Sum Eq. (19) and apply Lemma 1, we
have

f(x̄T ) ≤ f(x0)−
1

4η

T−1∑
t=0

ωt −
η

2

T−1∑
t=0

∥v̄t∥2 + (1 +
768 log(4/δ)

nb1β
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F

+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+

32 log(4/δ)βηTσ2

nb1
+ (1 +

384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt

+
4 log(4/δ)ησ2

nβb0
(20)

According to the update of gradient tracker, we have ȳt = v̄t. By Lemma 10 we have

1

n

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 = ωt +

1

n
∥(Xt+1 − X̄t+1)− (Xt − X̄t)∥2F (21)

1

n

n∑
i=1

∥y(i)t ∥2 = ∥ȳt∥2 +
1

n
∥Yt − Ȳt∥2F (22)
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Divide the term ∥v̄t∥2 in Eq. (20) into three portions and we get
f(x̄T )

≤ f(x0)−
1

8η

T−1∑
t=0

ωt−
(1− λ)2

256η

T−1∑
t=0

ωt−
η

2

T−1∑
t=0

∥v̄t∥2 + (1 +
768 log(4/δ)

nb1β
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F

+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+

32 log(4/δ)βηTσ2

nb1
+ (1 +

384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt +
4 log(4/δ)ησ2

nβb0

≤ f(x0)−
1

8η

T−1∑
t=0

ωt −
(1− λ)2

256η

T−1∑
t=0

ωt −
η

2n

T−1∑
t=0

n∑
i=1

∥y(i)
t ∥2 + η

2n

T−1∑
t=0

∥Yt − Ȳt∥2F

+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+ (1 +

768 log(4/δ)

nb1β
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F +
32 log(4/δ)βηTσ2

nb1

+ (1 +
384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt +
4 log(4/δ)ησ2

nβb0

≤ f(x0)−
1

8η

T−1∑
t=0

ωt −
(1− λ)2

256nη

T−1∑
t=0

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 − η

2n

T−1∑
t=0

n∑
i=1

∥y(i)
t ∥2

+ (1 +
768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
L2η

n

T−1∑
t=0

∥Xt − X̄t∥2F +
η

2n

T−1∑
t=0

∥Yt − Ȳt∥2F

+ (1+
384 log(4/δ)Lη

nb1β
)

T−1∑
t=0

Lωt+

T−1∑
t=0

pt(η
2C2

v + r2)

η
+

32 log(4/δ)βηTσ2

nb1
+
4 log(4/δ)ησ2

nβb0

≤ f(x0)−
1

8Lη

T−1∑
t=0

Lωt −
(1− λ)2

256nη

T−1∑
t=0

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 − η

2n

T−1∑
t=0

n∑
i=1

∥y(i)
t ∥2

+A1

T−1∑
t=0

Lωt +A2
Tβησ2

b1
+A3

ησ2

βb0
+A4

T−1∑
t=0

pt(η
2C2

v + r2)

η
+A5

η

n

n∑
i=1

∥∇fi(x0)∥2 (23)

In the second inequality we use Eq. (22). In the third inequality we use Eq. (21) and Cauchy-Schwartz
inequality. In the last inequality we use Lemma 2 and the coefficients are

A1 = 1+
384 log(4/δ)Lη

nb1β
+(1+

768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
160000 log(4/δ)L3η3λ4

(1− λ)4 min{b1β, 1}
+
774 log(4/δ)Lηλ2

(1− λ)

A2 =
32 log(4/δ)

n
+ (1 +

768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
12288 log(4/δ)L2η2λ4

(1− λ)4
+

64 log(4/δ)λ2

(1− λ)

A3 =
4 log(4/δ)

n
+ (1 +

768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
2000 log(4/δ)L2η2λ4

(1− λ)4
+

10 log(4/δ)λ2

(1− λ)

A4 = 1 + (1 +
768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
64λ2L2η2

(1− λ)2
+

25000 log(4/δ)L2η2λ4

(1− λ)3

A5 = (1 +
768 log(4/δ)

nb1β
+

(1− λ)2

128L2η2
)
128λ4L2η2

(1− λ)3
+

2λ2

1− λ

According to the parameter setting, we have A1 ≤ 1
16Lη , A2 ≤ 200 log(4/δ)

(1−λ)2 , A3 ≤ 40 log(4/δ)
(1−λ)2 ,

A4 ≤ 7
4 and A5 ≤ 5

1−λ . Therefore, we have

f(x̄T ) ≤ f(x0) +
40 log(4/δ)ησ2

(1− λ)2βb0
+

5η

(1− λ)n

n∑
i=1

∥∇fi(x0)∥2 −
T−1∑
t=0

Dt

≤ f(x0) +
σ2

L
+

1

nL

n∑
i=1

∥∇fi(x0)∥2 −
T−1∑
t=0

Dt (24)

where

Dt =
1

16η
ωt +

(1− λ)2

256nη

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 + η

2n

n∑
i=1

∥y(i)
t ∥2 − 200ηϵ2σ2

(1− λ)2C2
1

− 7pt(η
2C2

v + r2)

4η
(25)

which reaches the conclusion.
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C.4 Proof of Lemma 4

Proof. For convenience, the iteration that draws perturbation is considered to be included in the
escaping phase. If an iteration belongs to type-A, i.e., pt ≥ 1

5 , then at least n/5 worker nodes are in

the escaping phase. If an iteration belongs to type-C, we have 1
n

∑n
i=1 ∥y

(i)
t ∥2 ≤ 4C2

v

5 . Therefore,
there are at least n

5 worker nodes satisfying ∥y(i)t ∥ ≤ Cv , which also indicates that at least n
5 worker

nodes are in the escaping phase. Then if iteration t is either type-A or type-C, there must be n/5
worker nodes in the escaping phase. We denote the set of these n/5 worker nodes as Et. Furthermore,
if this iteration t is not one of the last CT iterations before termination, then there must exist n/10
worker nodes out of Et such that they have not met the condition esc(i) ≥ CT and will break the
escaping phase before meeting the condition because of the termination criterion in Algorithm 1. We
use Bt to denote these worker nodes.

For each i ∈ Bt, we have an interval [a(i)t , b
(i)
t ] such that t ∈ [a

(i)
t , b

(i)
t ] and node i enters escaping

phase in iteration a
(i)
t and breaks escaping phase in iteration b

(i)
t . Besides, we also have

b
(i)
t − a

(i)
t ≤ CT and ∥x(i)

b
(i)
t

− x
(i)

a
(i)
t

∥ ≥ Cd

Then by Cauchy-Schwartz inequality we have

C2
d ≤ ∥x(i)

b
(i)
t

− x
(i)

a
(i)
t

∥2 ≤ CT

∑b
(i)
t

t=a
(i)
t

∥x(i)
t+1 − x

(i)
t ∥2 (26)

Let at = mini{a(i)t } and bt = maxi{b(i)t }. It is easy to check that bt − at ≤ 2CT . Next, we will
perform the refining step. If t < t′ are two iterations that are either type-A or type-C and t′ ∈ [at, bt],
then we make at′ = at and bt′ = bt. Let I = ∪t[at, bt] for all type-A and type-C iterations t. Then
I can be written as disjoint union of

I = I1 ∪ I2 ∪ · · · ∪ Ik (27)

because if at ≤ at′ ≤ bt then [at, bt] and [at′ , bt′ ] can be merged into one interval. Now we can see
for each iteration t that is either type-A or type-C and t is not one of the last CT iterations, we have
t ∈ I. Next we will estimate the descent over I. Without loss of generality, we consider an interval
Ij . Ij can be expressed by union J1 ∪ · · · ∪ Jl where Jm = [atm , btm ] for some tm, m = 1, · · · , l.
Because of the refining step, we have each tm is only included in interval Jm and the intersection of
any three intervals in J1, · · · ,Jl is ∅. According to Eq. (26) we have

1

n

n∑
i=1

∑
t∈Jm

∥x(i)
t+1 − x

(i)
t ∥2 ≥ C2

d

10CT
(28)

since |Bt| ≥ n
10 . Next, we will consider the intersection of Jm and Jm+1. Notice that when

estimating Eq. (28) we only add the terms ∥x(i)
t+1 − x

(i)
t ∥2 on nodes i ∈ Btm and in the intervals

[a
(i)
tm , b

(i)
tm ]. Therefore, for any node i /∈ Btm ∩ Btm+1

, the terms used to estimate Eq. (28) will not
be added repeatedly. If i ∈ Btm ∩ Btm+1

, we have [a
(i)
tm , b

(i)
tm ] and [a

(i)
tm+1

, b
(i)
tm+1

] are disjoint because

tm+1 ∈ [a
(i)
tm+1

, b
(i)
tm+1

] but tm+1 /∈ [a
(i)
tm , b

(i)
tm ] and a node cannot draw perturbation before breaking

the escaping phase. Hence we can sum Eq. (28) over m and achieve

1

n

n∑
i=1

∑
t∈Ij

∥x(i)
t+1 − x

(i)
t ∥2 ≥ lC2

d

10CT
(29)

Since the length of each Jm is not larger than 2CT , we have

1

n

n∑
i=1

∑
t∈Ij

∥x(i)
t+1 − x

(i)
t ∥2 ≥ |Ij |C2

d

20C2
T

and
1

n

n∑
i=1

∑
t∈I

∥x(i)
t+1 − x

(i)
t ∥2 ≥ |I|C2

d

20C2
T

(30)

Combining Eq. (30) and Lemma 3, we can estimate the descent over I by∑
t∈I

Dt ≥ |I|
( (1− λ)2C2

d

5120ηC2
T

− 200ηϵ2σ2

(1− λ)2C2
1

− 7(η2C2
v + r2)

4η

)
≥ |I| · (1− λ)2C2

2ηϵ
2

10000
(31)

according to the parameter setting.
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C.5 Proof of Lemma 5

Proof. According to Lemma 3 and the definition of type-B iteration, we have

Dt ≥
ηC2

v

20
− 200ηϵ2

(1− λ)2C2
1

− 7r2

20η
≥ ηC2

v

40
− 200ηϵ2σ2

(1− λ)2C2
1

≥ (1− λ)2C2
2ηϵ

2

8000000
(32)

for all type-B iteration t where we have used the parameter setting.

C.6 Proof of Lemma 6

Proof. Suppose the conclusion is not true and we will find the conflict. Thus, we have the assumption
that there are at least n

10 worker nodes satisfying di ≤ 2Cd. First, we define

w
(i)
t = x

(i)
t − x

(i)′

t , wt = x̄t − x̄′
t, H = ∇2f(x̄s), H(i) = ∇2fi(x̄s), H(i)

t = ∇2Fi(x
(i)
s , ξ

(i)
t )

ζt =
1

n

n∑
i=1

(∇Fi(x
(i)
t , ξ

(i)
t )−∇Fi(x̄t, ξ

(i)
t ))− (∇Fi(x

(i)′

t , ξ
(i)
t )−∇Fi(x̄

′
t, ξ

(i)
t ))

− (1− β)(∇Fi(x
(i)
t−1, ξ

(i)
t )−∇Fi(x̄t−1, ξ

(i)
t ))− (∇Fi(x

(i)′

t−1, ξ
(i)
t )−∇Fi(x̄

′
t−1, ξ

(i)
t ))

νt = v̄t −∇f(x̄t)− (v̄′t −∇f(x̄′
t))− ζt

and

∆̄t =

∫ 1

0

(∇2f(x̄′
t + θ(x̄t − x̄′

t))−H)dθ

∆
(i)
t =

∫ 1

0

(∇2fi(x̄
′
t + θ(x̄t − x̄′

t))−H(i))dθ

Then we have

wt = wt−1 − η(v̄t−1 − v̄′t−1)

= wt−1 − η(∇f(x̄t−1)−∇f(x̄′
t−1) + v̄t−1 −∇f(x̄t−1)− v̄′t−1 +∇f(x̄′

t−1))

= wt−1 − η
[
(x̄t−1 − x̄′

t−1)

∫ 1

0

∇2f(x̄′
t−1 + θ(x̄t−1 − x̄′

t−1))dθ + νt−1 + ζt−1

]
= (I − ηH)wt−1 − η(∆̄t−1wt−1 + νt−1 + ζt−1) (33)

Here term ζt is yield from consensus error and does not exist in centralized algorithms. Applying
recursion to Eq. (33), we can obtain

wt = (I − ηH)t−s−1ws+1 − η

t−1∑
τ=s+1

(I − ηH)t−τ−1(∆̄τwτ + ντ + ζτ ) (34)

Let qt = η
∑t−1

τ=s+1(I − ηH)t−τ−1(∆̄τwτ + ντ + ζτ ). We will prove

∥qt∥ ≤ 1

2
(1 + ηγ)t−s−1psr0 (35)

which leads to
1

2
(1 + ηγ)t−s−1psr0 ≤ ∥wt∥ ≤ 3

2
(1 + ηγ)t−s−1psr0 (36)

because ∥(I−ηH)t−s−1ws+1∥ = (1+ηγ)t−s−1psr0 according to the definition of ws+1. We define
d̄ = maxs≤t≤s+CT

{∥x̄t− x̄s∥, ∥x̄′
t− x̄s∥}. Since at least n

10 nodes satisfy di ≤ 2Cd, Cd = Õ(ϵ1−α)

and the averaged consensus error is bounded by O(ϵ2(1+θ)), we have

di ≤ 3Cd and d̄ ≤ 1

n

n∑
i=1

di ≤ 3Cd (37)
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To achieve Eq. (35), it is sufficient to prove

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥∆̄τwτ∥+ ∥ντ∥+ ∥ζτ∥ ≤ 1

2
(1 + ηγ)t−s−1psr0 (38)

∥νt∥ ≤

√
4 log(4/δ)

b1
· (1 + ηγ)t−s−1Lpsr0

t− s
+

1

12ηCT
(1 + ηγ)t−s−1psr0 (39)

∥ζt∥ ≤ 8(
1 + λ2

2
)

t−s−1
2 L

√
psr0 +

Lη(1 + ηγ)t−s−1Lpsr0√
b1(t− s)

+
1

12ηCT
(1 + ηγ)t−s−1psr0 (40)

which can be derived by induction. When t = s + 1, the left side of Eq. (38) is 0 and thus the
inequality is satisfied. Suppose Eq. (38) holds for t ≤ t0. When t = t0 + 1, we have

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥∆̄τwτ∥

≤ 3

2
ηρd̄

t−1∑
τ=s+1

(1 + ηγ)t−s−2psr0 ≤ 5ηρCdCT (1 + ηγ)t−s−2psr0

≤ 1

6
(1 + ηγ)t−s−1psr0 (41)

where we use Assumption 4 and the case of t ≤ t0 in the first two inequalities. We use the
parameter setting of Cd in the last inequality. Next, we will estimate the terms related to νt. By
Azuma-Hoeffding inequality we know Eq. (39) is satisfied when t = s+ 1. We define

ϵt,i = (∇Fi(x̄t+1, ξ
(i)
t+1)−∇fi(x̄t+1))− (1− β)(∇Fi(x̄t, ξt+1)−∇fi(x̄t))

ϵ′t,i = (∇Fi(x̄
′
t+1, ξ

(i)
t+1)−∇fi(x̄

′
t+1))− (1− β)(∇Fi(x̄

′
t, ξt+1)−∇fi(x̄

′
t))

Then according to the definition of νt we have

νt+1 = (1− β)νt +
1

n

n∑
i=1

(ϵt,i − ϵ′t,i) =
1

n

t∑
τ=s

(1− β)t−τ
n∑

i=1

(ϵτ,i − ϵ′τ,i) (42)

Define

∆̃
(i)
t,1 =

∫ 1

0

(∇2Fi(x̄
′
t + θ(x̄t − x̄′

t), ξ
(i)
t )−H(i)

t )dθ

∆̃
(i)
t,2 =

∫ 1

0

(∇2Fi(x̄
′
t−1 + θ(x̄t−1 − x̄′

t−1), ξ
(i)
t )−H(i)

t )dθ

∆̂
(i)
t,1 =

∫ 1

0

(∇2Fi(x
(i)′

t + θ(x
(i)
t − x

(i)′

t ), ξ
(i)
t )−H(i)

t )dθ

∆̂
(i)
t,2 =

∫ 1

0

(∇2Fi(x
(i)′

t−1 + θ(x
(i)
t−1 − x

(i)′

t−1), ξ
(i)
t )−H(i)

t )dθ (43)

Then we have

ϵt,i − ϵ′t,i

= H(i)
t+1wt+1 + ∆̃

(i)
t+1,1wt+1 −H(i)wt+1 −∆

(i)
t+1wt+1 + (1− β)(H(i)wt +∆

(i)
t wt)

− (1− β)(H(i)
t+1wt + ∆̃

(i)
t+1,2wt)

= (H(i)
t+1 −H)(wt+1 − (1− β)wt) + (∆̃

(i)
t+1,1 −∆

(i)
t+1)wt+1 + (1− β)(∆

(i)
t − ∆̃

(i)
t+1,2)wt (44)

According to Assumption 3 and Assumption 4, we have

∥ϵt,i − ϵ′t,i∥ ≤ 2L∥wt+1 − wt∥+ (2βL+ 3ρCd)∥wt∥+ 3ρCd∥wt+1∥ (45)
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Applying Azuma-Hoeffding inequality to Eq. (42), with Eq. (45) we can obtain

∥νt∥2 ≤ 4 log(4/δ)

nb1

t−1∑
τ=s

[2L∥wτ+1 − wτ∥+ (2βL+ 3ρCd)∥wτ∥+ 3ρCd∥wτ+1∥]2

≤ 48 log(4/δ)

nb1

t∑
τ=s+1

(L2∥wτ − wτ−1∥2 + 5ρ2C2
d∥wτ∥2) (46)

since β is Θ(ϵ1+θ) and Cd is Θ(ϵ1−α). According to Eq. (34), we have

L∥wτ − wτ−1∥

= L∥ − ηH(I − ηH)τ−s−2ws+1 − η

τ−2∑
τ ′=s+1

ηH(I − ηH)τ
′−s−2(∆̄τ ′wτ ′ + ντ ′ + ζτ ′)

+ η(∆̄τ−1wτ−1 + ντ−1 + ζτ−1)∥

≤ Lηγ(1 + ηγ)τ−s−2psr0 +
Lηγ

2
(1 + ηγ)τ−s−2psr0 + Lη∥∆̄τ−1wτ−1 + ντ−1 + ζτ−1∥

≤ 2Lηγ(1 + ηγ)τ−s−2psr0 + Lη∥∆̄τ−1wτ−1 + ντ−1 + ζτ−1∥ (47)

In the first inequality, the first term is derived by the definition of ws+1. The second term is derived
by the supposition that Eq. (38) holds for t ≤ t0 and the fact that Eq. (38) implies

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥∆̄τwτ + ντ + ζτ∥ ≤ 1

2
(1 + ηγ)t−s−1psr0 (48)

Combining Eq. (46) and Eq. (47), we have

∥νt∥2 ≤ 48 log(4/δ)

nb1

t∑
τ=s+1

(L2∥wτ − wτ−1∥2 + 5ρ2C2
d∥wτ∥2)

≤ 270 log(4/δ)ρ2C2
d

nb1ηγ
(1 + ηγ)2(t−s−1)p2sr

2
0 +

192 log(4/δ)L2ηγ

nb1
(1 + ηγ)2(t−s−1)p2sr

2
0

+
96 log(4/δ)L2η2

nb1

t−2∑
τ=s+1

∥∆̄τwτ + ντ + ζτ∥2

≤ 300 log(4/δ)ρ2C2
d

nb1ηγ
(1 + ηγ)2(t−s−1)p2sr

2
0 +

192 log(4/δ)L2ηγ

nb1
(1 + ηγ)2(t−s−1)p2sr

2
0

+
4 log(4/δ)L2

nb1ηγC2
T

(1 + ηγ)2(t−s−1)p2sr
2
0 +

5000 log2(4/δ)L4η2p2sr
2
0

b21

t−2∑
τ=s+1

(1 + ηγ)2(τ−s−1)

(τ − s)2

≤ 1

288η2C2
T

(1 + ηγ)2(t−s−1)p2sr
2
0 +

800 log2(4/δ)L2ηγ

nb1
(1 + ηγ)2(t−s−1)p2sr

2
0

+
5000 log2(4/δ)L4η2p2sr

2
0

b21

s+ Lη
b1γ∑

τ=s+1

(1 + ηγ)2(τ−s−1)

(τ − s)2

≤ 10000 log(4/δ)L4η4

b41γ
2

· (1 + ηγ)2(t−s−1)L2p2sr
2
0

(t− s)2
+

1

144η2C2
T

(1 + ηγ)2(t−s−1)p2sr
2
0

≤ (1 + ηγ)2(t−s−1)L2p2sr
2
0

(t− s)2
+

1

144η2C2
T

(1 + ηγ)2(t−s−1)p2sr
2
0 (49)

The exponential term in Eq. (40) can be addressed by the following strategy. When t ≥ Õ( 1
1−λ ), the

term can be dominated by other terms such as 1
ηCT

. When t < Õ( 1
1−λ ), it can be bounded by

L2η2 log(4/δ)psr
2
0

n(1− λ)b1
≤ L2η2(t− s)2 log(4/δ)p2sr

2
0

(1− λ)b1(t− s)2
(50)
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The term t − s in the numerator will be bounded by η in this case and hence it can be merged to
the first term in Eq. (39). In the third inequality of Eq. (49), we split the last term into two parts:
τ − s > Lη

b1γ
and τ − s ≤ Lη

b1γ
. Since

∫ +∞
t

dx
x2 = 1

t , we can merge the case τ − s > Lη
b1γ

into the
second term and estimate the rest one where τ − s is small. According to the choice of θ, we have
b1 ≥ Θ(ϵ2−θ−5α) and η2C2

dC
3
T

b1
≤ O(1) and hence get the estimation in Eq. (49). We should notice

that we use the relation η
b1γ

≤ O(1) in our proof, which is automatically satisfied. By Eq. (49) we
can reach the conclusion in Eq. (39). Furthermore, we have

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥ντ∥

≤ Lη(1 + ηγ)t−s−1psr0(

t−1∑
τ=s+1

1

τ − s
) +

1

12
(1 + ηγ)t−s−1psr0

≤ Lη log(CT )(1 + ηγ)t−s−1psr0 +
1

12
(1 + ηγ)t−s−1psr0 ≤ 1

6
(1 + ηγ)t−s−1psr0 (51)

The last step to prove Eq. (38) is to estimate the term corresponding to ζt, which is a new term only
occurred in decentralized algorithms. Recall the definitions in Eq. (43), we have

ζt =
1

n

n∑
i=1

[
(H(i)

t + ∆̂
(i)
t,1)w

(i)
t − (H(i)

t + ∆̃
(i)
t,1)wt − (1− β)((H(i)

t + ∆̂
(i)
t,2)w

(i)
t−1 − (H(i)

t + ∆̃
(i)
t,2)wt−1)

]
=

1

n

n∑
i=1

H(i)
t [(w

(i)
t − wt)− (1− β)(w

(i)
t−1 − wt−1)] +

1

n

n∑
i=1

∆̂
(i)
t,1(w

(i)
t − wt)

+
1

n

n∑
i=1

(∆̂
(i)
t,1 − ∆̃

(i)
t,1)wt −

1− β

n

n∑
i=1

∆̂
(i)
t,2(w

(i)
t−1 − wt−1)−

1− β

n

n∑
i=1

(∆̂
(i)
t,2 − ∆̃

(i)
t,2)wt−1 (52)

Then by Assumption 3, Assumption 4, Eq. (37), Lemma 10 and Cauchy-Schwartz inequality, we
have

∥ζt∥2 ≤ 4L2

n
(∥Xt − X̄t − (X ′

t − X̄ ′
t)∥2F + ∥Xt−1 − X̄t−1 − (X ′

t−1 − X̄ ′
t−1)∥2F )

+ 144ρ2C2
d(∥wt∥2 + ∥wt−1∥2) (53)

It is sufficient to prove

L√
n
∥Xt − X̄t − (X ′

t − X̄ ′
t)∥F ≤ 2(

1 + λ2

2
)

t−s−1
2 L

√
psr0 +

1

48ηCT
(1 + ηγ)t−s−1psr0

+
Lη(1 + ηγ)t−s−1Lpsr0

4
√
b1(t− s)

(54)

because of Eq. (53) and the parameter setting. Eq. (54) can also be proven by induction. When
t = s+1 the condition is satisfied. Next we will estimate ∥Xt− X̄t− (X ′

t− X̄ ′
t)∥2F . By Assumption

5 and Young’s inequality we have

∥Xt − X̄t − (X ′
t − X̄ ′

t)∥2F
= ∥(W − J)[(Xt−1 − X̄t−1 − (X ′

t−1 − X̄ ′
t−1))− η(Yt−1 − Ȳt−1 − (Y ′

t−1 − Ȳ ′
t−1))]∥2F

≤ 1 + λ2

2
∥Xt−1 − X̄t−1 − (X ′

t−1 − X̄ ′
t−1)∥2F +

2η2λ2

1− λ2
∥Yt−1 − Ȳt−1 − (Y ′

t−1 − Ȳ ′
t−1)∥2F

≤ 2η2λ2

1− λ2

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1∥Yτ − Ȳτ − (Y ′

τ − Ȳ ′
τ )∥2F

+ (
1 + λ2

2
)t−s−1∥Xs+1 − X̄s+1 − (X ′

s+1 − X̄ ′
s+1)∥2F

=
2η2λ2

1− λ

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1∥Yτ − Ȳτ − (Y ′

τ − Ȳ ′
τ )∥2F +(

1 + λ2

2
)t−s−1λ2(n− ns)psr

2
0 (55)
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where we apply recursion in the second inequality and use the definition of the decoupled sequences
in the last equality. Similarly, by recursion we also have

∥Yt − Ȳt − (Y ′
t − Ȳ ′

t )∥2F

≤ 1 + λ2

2
∥Yt−1 − Ȳt−1 − (Y ′

t−1 − Ȳ ′
t−1)∥2F +

λ2 + λ4

1− λ2
∥Vt − Vt−1 − (V ′

t − V ′
t−1)∥2F

≤ 2λ2

1− λ

t∑
τ=s+1

(
1 + λ2

2
)t−τ∥Vτ − Vτ−1 − (V ′

τ − V ′
τ−1)∥2F (56)

Combining above two inequalities, we achieve

∥Xt − X̄t − (X ′
t − X̄ ′

t)∥2F

≤ 2η2λ4

(1− λ)2

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1(t− τ)∥Vτ − Vτ−1 − (V ′

τ − V ′
τ−1)∥2F

+ (
1 + λ2

2
)t−s−1λ2(n− ns)psr

2
0 (57)

According to the update rule of v(i)t we have

v
(i)
t − v

(i)
t−1 − (v

(i)′

t − v
(i)′

t−1)− (1− β)(v
(i)
t−1 − v

(i)
t−2 − (v

(i)′

t−1 − v
(i)′

t−2))

= ∇Fi(x
(i)
t , ξ

(i)
t )− (1− β)∇Fi(x

(i)
t−1, ξ

(i)
t )−∇Fi(x

(i)′

t , ξ
(i)
t ) + (1− β)∇Fi(x

(i)′

t−1, ξ
(i)
t )

− [∇Fi(x
(i)
t−1, ξ

(i)
t−1)− (1− β)∇Fi(x

(i)
t−2, ξ

(i)
t−1)−∇Fi(x

(i)′

t−1, ξ
(i)
t−1)

+ (1− β)∇Fi(x
(i)′

t−2, ξ
(i)
t−1)] (58)

Then mimic the estimation of νt, we can obtain

∥Vt − Vt−1 − (V ′
t − V ′

t−1)∥2F

≤ 32 log(4/δ)

b1

t−1∑
τ=s

n∑
i=1

[2L∥w(i)
τ+1 − w(i)

τ ∥+ (2βL+ 3ρCd)∥w(i)
τ ∥+ 3ρCd∥w(i)

τ+1∥]2

+ 4L2
n∑

i=1

∥w(i)
t − w

(i)
t−1∥2 + 36ρ2C2

d

n∑
i=1

∥w(i)
t ∥2 (59)

Combining above inequalities and the parameter setting of β, we can obtain

1

n
∥Xt − X̄t − (X ′

t − X̄ ′
t)∥2F − (

1 + λ2

2
)t−s−1λ2psr

2
0

≤ (
2000 log(4/δ)η2ρ2C2

d(t− s)λ4

(1− λ)2b1
+

72η2ρ2C2
dλ

4

(1− λ)2
)

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1 (t− τ)

n

n∑
i=1

∥w(i)
τ ∥2

+ (
500 log(4/δ)L2η2(t− s)λ4

(1− λ)2b1
+

8L2η2λ4

(1− λ)2
)

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1 (t− τ)

n

n∑
i=1

∥w(i)
τ − w

(i)
τ−1∥

2

≤ L2η2λ4

(1− λ)2
(32 +

2000 log(4/δ)(t− s)

b1
)

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1 (t− τ)

n

n∑
i=1

∥Xτ − X̄τ − (X ′
τ − X̄ ′

τ )∥2F

+ (
2000 log(4/δ)η2ρ2C2

d(t− s)λ4

(1− λ)2b1
+

72η2ρ2C2
dλ

4

(1− λ)2
)

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1(t− τ)∥wτ∥2

+ (
500 log(4/δ)L2η2(t− s)λ4

(1− λ)2b1
+

8L2η2λ4

(1− λ)2
)

t−1∑
τ=s+1

(
1 + λ2

2
)t−τ−1(t− τ)∥wτ − wτ−1∥2 (60)

Using Eq. (36), Eq. (47) and Eq. (54) we have

L2

n
∥Xt − X̄t − (X ′

t − X̄ ′
t)∥2F
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≤ B1t
2(
1 + λ2

2
)t−s−1L2psr

2
0 +B2(1 + ηγ)2(t−s−1)L2p2sr

2
0

t−1∑
τ=s+1

(
(1 + λ2)(1 + ηγ)2

2
)t−τ−1(t− τ)

+B3(1 + ηγ)2(t−s−1)L2p2sr
2
0

t−1∑
τ=s+1

(
(1 + λ2)(1 + ηγ)2

2
)t−τ−1 t− τ

(τ − s)2

+ (
1 + λ2

2
)t−s−1L2psr

2
0 (61)

where

B1 =
4L2η2

(1− λ)2
(32 +

2000 log(4/δ)(t− s)

b1
) + 384L2η2(

500 log(4/δ)L2η2(t− s)

(1− λ)2b1
+

8L2η2

(1− λ)2
)

B2 =
1

72(1− λ)2C2
T

(2 +
125 log(4/δ)(t− s)

b1
) +

4500 log(4/δ)η2ρ2C2
d(t− s)

(1− λ)2b1
+

162η2ρ2C2
d

(1− λ)2

+ (8L2η2γ2 + 54L2η2ρ2C2
d +

1

6C2
T

)(
500 log(4/δ)L2η2(t− s)

(1− λ)2b1
+

8L2η2

(1− λ)2
)

B3 =
48 log(4/δ)L2η2

b1
(
500 log(4/δ)L2η2(t− s)

(1− λ)2b1
+

8L2η2

(1− λ)2
)

+
L4η4(1 + ηγ)2(t−s−1)

(1− λ)2b1
(32 +

2000 log(4/δ)(t− s)

b1
) (62)

If t ≥ Õ( 1
1−λ ), t

2( 1+λ2

2 )t−s−1 is small and the first term of Eq. (61) can be merged to the second
term. Otherwise if t < Õ( 1

1−λ ), it can be merged to the last term according to the parameter setting

of η and b1. When ϵ is small, we have (1+λ2)(1+ηγ)2

2 ≤ 3+λ2

4 . Hence the second term of Eq. (61)
can be bounded by Lemma 8. The third term of Eq. (61) can be estimated by Lemma 9 (the case of
t < Õ( 1

1−λ ) can be addressed by the parameter setting of η and b1). Therefore, we can prove

L2

n
∥Xt − X̄t − (X ′

t − X̄ ′
t)∥2F ≤ 4(

1 + λ2

2
)t−s−1L2psr

2
0 +

1

2304ηCT
(1 + ηγ)2(t−s−1)p2sr

2
0

+
L2η2(1 + ηγ)2(t−s−1)L2p2sr

2
0

16b1(t− s)2
(63)

because of the parameter setting. We should notice that here we also use the relation η
b1γ

≤ O(1),
which is always satisfied according to the setting of b1. Based on Eq. (53) and Eq. (63), it is easy to
check that ζt satisfies Eq. (40). Moreover, we have

η

t−1∑
τ=s+1

(1 + ηγ)t−τ−1∥ζτ∥

≤ Lη(1 + ηγ)t−s−1psr0(8

t−1∑
τ=s+1

(
4 + λ2

5
)t−s−1 +

t−1∑
τ=s+1

1

τ − s
) +

1

12
(1 + ηγ)t−s−1psr0

≤ Lη(
80

1− λ
+ log(CT ))(1 + ηγ)t−s−1psr0 +

1

12
(1 + ηγ)t−s−1psr0

≤ 1

6
(1 + ηγ)t−s−1psr0 (64)

where the first inequality is derived by

1 + λ2

2
≤ (

3 + λ2

4
)2 and

(3 + λ2)(1 + ηγ)

4
≤ 4 + λ2

5
(65)

Now combining Eq. (41), Eq. (51) and Eq. (64), we can reach the conclusion in Eq. (38) and finish
the proof of the induction. Recall the assumption at the beginning, we have

1

2
(1 + ηγ)CT psr0 ≤ wCT

≤ 2d̄ ≤ 6Cd (66)
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since ∥x̄t − x̄′
t∥ ≤ ∥x̄t − x̄s∥+ ∥x̄′

t − x̄s∥. Eq. (66) implies that

CT ≤ log(12Cd/(psr0))

log(1 + ηγ)
<

2 log(12nCd/r0)

ηγ
(67)

which conflicts with the definition of CT . Therefore, the proof of Lemma 6 is finished.

C.7 Proof of Lemma 7

Proof. If node i enters the escaping phase in iteration s′ before iteration s and does not break it in
iteration s+CT , then for s ≤ t ≤ s+CT , we have ∥x(i)

t −x
(i)
s ∥ ≤ ∥x(i)

t −x
(i)
s′ ∥+∥x(i)

s −x
(i)
s′ ∥ ≤ 2Cd.

Therefore, there are at least n
10 worker nodes satisfying maxs≤t≤s+CT

∥x(i)
t − x

(i)
s ∥ ≤ 2Cd.

Suppose min eig(∇2f(x̄s)) ≤ −ϵH and e1 is the corresponding eigenvector. Let Si denote the
region of the perturbation on node i that PEDESTAL will terminate in iteration s + CT , i.e., n

10
workers will not break the escaping phase. Then by Lemma 6 we can conclude that there must
exist one worker node such that the projection of Si onto direction e1 is smaller than r0. Since the
perturbation ξi is drawn from uniform distribution, the probability of ξi ∈ Si can be bounded by

Pr(ξi ∈ Si) ≤
r0V (Ball(d− 1, r))

V (Ball(d, r))
≤ δ (68)

where V (·) denotes the volume and Ball(d, r) denotes the d-dimensional ball with radius r. The
last inequality is achieved by the definition of r0. Therefore, we can prove that x̄s is a second-order
stationary point with probability at least 1− δ.

D Additional Theoretical Result

In this section we will provide some additional theoretical result of our PEDESTAL algorithm. First
we will demonstrate the convergence analysis of the case ϵH <

√
ϵ, i.e., α > 0.5. Next, we will

discuss the strategy of using fixed number of iterations in each descent and escaping phase, which
motivates the design of PEDESTAL.

D.1 Smaller Tolerance for Second-Order Optimality

When ϵH <
√
ϵ, the conclusions of previous Lemmas are still satisfied except Lemma 4. In this case,

Cd = C2ηCT ϵ
µ where µ = 2α > 1. Parameter Cd should be smaller than the original setting in

Lemma 4, which results in more iterations to converge. Fortunately, the analysis of Lemma 4 can be
adjusted and we can achieve Theorem 2. The proof is provided as follows.

Proof. The fourth term of Dt in Lemma 3 is derived by ηβσ2

b1
and at this time we will set b1 ≥

ϵ−(2µ−1−θ) so that the ϵ term is replaced by ϵµ. The last term of Dt can be written as
T−1∑
t=0

7pt(η
2C2

v + r2)

4η
=

1

n

∑
(t,i)∈P

7(η2C2
v + r2)

4η
(69)

where P is the set of all pairs of (t, i) such that node i draws perturbation in iteration t. We can
divide P into two parts. P1 contains all pairs of (t, i) such that node i breaks the escaping phase
within M iterations, where M is an integer to be decided later. The rest part is denoted by P2.

For any (t, i) ∈ P1, suppose node i breaks escaping phase in iteration t+m, where m ≤ M . Then
node i will never draw perturbation between iteration t and iteration t+M . Mimic the steps of Eq.
(26), by Cauchy-Schwartz inequality we can obtain

t+m∑
τ=t

∥x(i)
τ+1 − x(i)

τ ∥2 ≥ C2
d

M
(70)

Let M = ϵ−2−2θ+2α. Then we have

(1− λ)2

512η

t+m∑
τ=t

∥x(i)
τ+1 − x(i)

τ ∥2 ≥ 7(η2C2
v + r2)

4η
(71)
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and

(1− λ)2

512nη

t+m∑
τ=t

n∑
i=1

∥x(i)
τ+1 − x(i)

τ ∥2 ≥ 1

n

∑
(t,i)∈P1

7(η2C2
v + r2)

4η
(72)

by the parameter setting of Cv. On the other hand, if (t, i) ∈ P2, then node i will not break the
escaping phase in M steps and hence the perturbation step will not execute, either. Therefore, we
have estimation

1

n

∑
(t,i)∈P2

7(η2C2
v + r2)

4η
≤

T−1∑
t=0

7(η2C2
v + r2)

4Mη
(73)

With Eq. (72), Eq. (73) and the new setting of b1, the descent in Lemma 3 can be improved to

Dt =
1

16η
ωt +

(1− λ)2

512nη

n∑
i=1

∥x(i)
t+1 − x

(i)
t ∥2 + η

2n

n∑
i=1

∥y(i)t ∥2 − 200ηϵ2µσ2

(1− λ)2C2
1

− 7(η2C2
v + r2)

4Mη

When θ ≥ 3α− 2, we have ϵ2

M ≤ ϵ2µ and Lemma 4 still holds but the conclusion is changed to∑
t∈I

Dt ≥ |I| · (1− λ)2C2
2ηϵ

2µ

10000

In this case, PEDESTAL algorithm will terminate in Õ(ϵ−θ−2µ) iterations. In Lemma 6 and Lemma
7 we need the relations

η2C2
dC

3
T

b1
≤ O(1),

η

b1ϵH
≤ O(1) (74)

which implies b1 ≥ Õ(ϵ−θ−α). Therefore, we set b1 = Θ̃(ϵ−max{4α−1−θ,θ+α}) with the condition
θ ≥ 3α− 2. When α ≤ 1, we set θ = 3α−1

2 , which satisfies θ ≥ 3α− 2 and

4α− 1− θ = θ + α =
5α− 1

2
(75)

The gradient complexity in this case is

Õ(ϵ−
11α−1

2 · ϵ−
5α−1

2 ) = Õ(ϵ−8α+1) (76)

When α > 1, we have θ = 3α− 2 and b1 = Θ̃(ϵ−(4α−2)). The gradient complexity is

Õ(ϵ−(7α−2) · ϵ−(4α−2)) = Õ(ϵ−11α+4) (77)

which finishes the proof of Theorem 2.

Therefore, the gradient complexity over all cases of α can by written by

Õ(ϵ−3 + ϵϵ−8
H + ϵ4ϵ−11

H ) (78)

D.2 Phases with Fixed Number of Iterations

If a decentralized stochastic perturbed gradient descent method adopt the strategy of fixed number
of iterations in each phase, the gradient complexity in the descent phase should be at least O(ϵ−3)
to ensure the first-order stationary point. But the total descent of a descent phase could be small
because it is possible that it is stuck at a saddle point after only a few steps. Hence we need to
consider the descent in the escaping phase. According to Lemma 3 and Lemma 4 we can see the
descent of an escaping phase is O(

C2
d

ηCT
). As the conditions ηCdCT ≤ O(1) and CT = Õ( 1

ηϵH
) are

required in Lemma 6, we can obtain that the total descent of an escaping phase is no larger than
Õ(ϵ3H). In the classic setting of ϵH =

√
ϵ, the total descent of an escaping is upper bounded by

Õ(ϵ1.5). Consequently, the total gradient complexity to achieve (ϵ,
√
ϵ)-second-order stationary point

is at least Õ(ϵ−4.5), which is worse than the result of our PEDESTAL.
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E Auxiliary Lemmas

Lemma 8. Let 0 < a < 1. Then we have
t∑

τ=1

τaτ−1 =
1− at

(1− a)2
− tat

1− a

Lemma 9. Let 0 < a < 1. When t ≥ Õ( 1
1−a ), we have

t∑
τ=1

τaτ−1

(t+ 1− τ)2
≤ 8

t2(1− a)2

Proof. When τ ≤ t
2 , by Lemma 8 we have∑

τ≤t/2

τaτ−1

(t+ 1− τ)2
≤ 4

t2(1− a)2
(79)

When τ > t
2 , we have∑

τ>t/2

τaτ−1

(t+ 1− τ)2
≤

∑
τ>t/2

τaτ−1 ≤ at/2(
t

2(1− a)
+

1

(1− a)2
) (80)

Therefore, we can reach the conclusion when t ≥ Õ( 1
1−a ).

Lemma 10. (Definition of Variance) For any random variable X, we have

E[X − EX]2 = EX2 − (EX)2

Lemma 11. (Lemma D.1 in (Chen et al. [2022])) Let ϵ1:k ∈ Rd be a vector-valued martingale
difference sequence with respect to Fk, i.e., for each k ∈ [K], E[ϵk|Fk] = 0 and ∥ϵk∥ ≤ Bk, then
with probability 1− δ we have

∥
K∑

k=1

ϵk∥2 ≤ 4 log(4/δ)

K∑
k=1

B2
k (81)
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