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Abstract

A hallmark property of explainable AI models is the ability to teach other agents,
communicating knowledge of how to perform a task. While Large Language
Models (LLMs) perform complex reasoning by generating explanations for their
predictions, it is unclear whether they also make good teachers for weaker agents.
To address this, we consider a student-teacher framework between two LLM agents
and study if, when, and how the teacher should intervene with natural language
explanations to improve the student’s performance. Since communication is ex-
pensive, we define a budget such that the teacher only communicates explanations
for a fraction of the data, after which the student should perform well on its own.
We decompose the teaching problem along four axes: (1) if teacher’s test time in-
tervention improve student predictions, (2) when it is worth explaining a data point,
(3) how the teacher should personalize explanations to better teach the student, and
(4) if teacher explanations also improve student performance on future unexplained
data. We first show that teacher LLMs can indeed intervene on student reasoning to
improve their performance. Next, inspired by the Theory of Mind abilities of effec-
tive teachers, we propose building two few-shot mental models of the student. The
first model defines an Intervention Function that simulates the utility of an interven-
tion, allowing the teacher to intervene when this utility is the highest and improving
student performance at lower budgets. The second model enables the teacher to
personalize explanations for a particular student and outperform unpersonalized
teachers. We also demonstrate that in multi-turn interactions, teacher explanations
generalize and learning from explained data improves student performance on
future unexplained data. Finally, we also verify that misaligned teachers can lower
student performance to random chance by intentionally misleading them.1

1 Introduction

Teaching, or the ability to provide needed information in a way that is understood by others, is often
considered an important property of Explainable AI [1]. When AI models “teach” by providing
meaningful and interpretable explanations, it fosters transparency, warranted trust, and the ability
for humans to make informed decisions based on AI recommendations. One way the goodness of
an explanation can be judged is by its ability to communicate knowledge of how to solve a problem
to other agents [2, 3]. Explanations fulfill this purpose not only by being informative but also by
means of filling in specific gaps in the recipient agent’s knowledge. This is enabled by the explainer
having theory of mind (ToM), understanding what the recipient does not know [2], and being able
to personalize its explanations based on the recipient’s needs. Recent work has argued that LLMs
like GPT-3.5 now exhibit ToM, based on their ability to answer questions about mental states of

1Code for all experiments: https://github.com/swarnaHub/ExplanationIntervention

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Figure 1: Overview of single-round of interaction between a teacher LLM and a student LLM, covering our
first three research questions (with Fig. 6 showing RQ4, multi-round student-teacher interaction that builds
on top of RQ1-RQ3). RQ1: The teacher randomly intervenes and communicates explanations to improve the
student’s performance (right part). RQ2: The teacher decides when to intervene by computing Expected Utility
of Intervention using the Pre-Intervention and Post-Intervention Simulation prompts (middle part). RQ3: The
teacher communicates personalized explanations that are more helpful for the student (left part).

hypothetical people in classical theory-of-mind tests [4].2 However, we do not yet know how well
language models can teach other agents to solve reasoning tasks via explanations.

In this work, we are motivated by this essential goal of evaluating explanations (specifically, Chain-
of-Thought [7]) rationales) from the perspective of teaching and improving weaker agents in solv-
ing reasoning tasks. In order to improve smaller models’ reasoning skills, recent works propose
knowledge distillation by fine-tuning a smaller model on the reasoning steps generated by a larger
model [8, 9, 10]. Yet, an important component of human teaching is understanding when and how
the teacher should explain particular things to the student. Current distillation approaches do not
evaluate a teacher’s ability to identify when a student lacks understanding, and past work has not
explored how to personalize teacher explanations to the student’s needs. A smaller student model
might already be good at answering certain questions but might require the teacher’s intervention for
some harder questions. When there are many things to teach the student and teaching is laborious, it
is important to choose which problems merit explanation in order to improve teaching efficiency [11].
Moreover, for more effective teaching, it is desirable to have the teacher personalize its explanations
to help a particular student, and a teacher that lacks understanding of the student’s needs (i.e., lacks
Theory of Mind) will be unable to do this [3].

Motivated by the efficiency of human explanations, we consider a student-teacher framework where
a teacher model guides the reasoning of a student model, with the goal of improving the student’s
reasoning on current and future data. In order to do so, we explore a Theory of Mind-inspired
approach, where the teacher simulates the student’s behavior by building a mental model of the
student. Our overall research question investigates whether the teacher’s intervention (in the form
of natural language explanations) can enable the student to make more accurate predictions both on
explained as well as unexplained future data. However, communication is expensive, and therefore we
assume that a cost is incurred each time the teacher intervenes with (communicates) an explanation
to the student for a particular data point. We refer to this as the intervention budget, the percentage of
test data points the teacher intervenes on. In order to comprehensively answer our overall research
question, we further decompose the teaching problem into the following constituent questions:

1. RQ1. Can a teacher LLM intervene at test time to improve a student LLM’s predictions?

2There have also been strong arguments against the presence of ToM in current LLMs [5, 6]. In this paper,
we do not thoroughly test for ToM abilities in LLMs, but instead we focus on measuring teaching performance
in terms of a teacher’s positive effect on student performance.
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2. RQ2. Given a fixed intervention budget, when should the teacher intervene (i.e., on which data
points), in order to maximize student performance?

3. RQ3. Given a set of intervention data, can a teacher model personalize its explanations for a
student model to improve student performance?

4. RQ4. In multi-turn interactions, do teacher explanations generalize and improve student perfor-
mance across data points (beyond the explained samples)?

5. RQ5. Can misaligned teacher LLMs lower student performance by providing misleading explana-
tions to the student?

We answer RQ1 by assuming that the teacher intervenes on random data points in four different
settings: using a human or LLM teacher, and, when the teacher is an LLM, using an LLM student that
is either weaker or stronger than its teacher (§5.1). Across three different reasoning tasks (StrategyQA,
GSM8k, and CommonsenseQA) and two different model families (Flan-T5 and LLaMA), we observe
that (1) teacher LLMs can effectively intervene on student reasoning, improving student performance
on the end task, and (2) more intervention typically leads to a monotonic increase in student per-
formance, though model teachers are not as good as human teachers. Fig. 1 shows the intervention
process and the two student prompts (in the right part of Fig. 1) that are used to generate predictions.

RQ2 explores how to intelligently select which data points to explain for the student model, in
order to improve teaching efficiency (§5.2). Past work in cognitive science also considers teaching
efficiency in young children by deciding what to teach by maximizing the learner’s expected utility
of learning [12]. With a similar motivation, we develop an Intervention Function that is inspired
from the principle of a teacher having a Theory of Mind. In particular, the teacher builds a mental
model of the student’s reasoning process, with the goal of intervening only on samples that are most
likely to maximize student performance. Our Intervention Function is based on Expected Utility, in
which the teacher first estimates the utility of an intervention by simulating the student’s prediction
pre-intervention (without intervention) and post-intervention (with intervention), then constructs a
rank ordering of the samples according to this utility (see the middle part of Fig. 1). The teacher
builds this mental model in a few-shot manner, only assuming access to the student’s predictions pre-
and post-intervention for a few samples. We demonstrate that our proposed Intervention Function
based on Expected Utility (1) outperforms other baseline Intervention Functions, (2) improves student
performance when the teacher is not 100% accurate, and (3) enables weaker LLMs to teach stronger
ones, unlike with random intervention in RQ1.

Next, in RQ3, we explore how the teacher should explain data points to a particular student model, in-
cluding how the teacher can personalize explanations for a student model (§5.3). That is, after deciding
which data points to intervene on (RQ2), we decide how the teacher should explain those data points.
A clear limitation of the teacher just generating explanations as if it is solving the task is that the expla-
nations are not at all personalized for the student. Given that good explanations are designed to fill in
gaps in student knowledge [2], we believe that equipping the teacher with basic personalization skills
will improve its teaching ability. With this motivation, we propose another few-shot mental model for
the teacher that encourages it to tailor its explanations to be helpful for the particular student model it
is teaching. The teacher builds this model by conditioning on a few demonstrations of ‘useful’ human
explanations that rectify a student’s answer, thereby encouraging explanations that are more likely to
help the student (see Fig 1 for an example of the teacher’s personalization prompt). We demonstrate
this prompt’s effectiveness against unpersonalized explanations that are generated by prompting the
teacher with random human explanations, showing that LLMs can personalize their explanations.

RQ4 tests whether LLMs can teach student models to generalize to new unexplained examples (§5.4),
rather than improve their reasoning at test-time (RQ1-RQ3). In other words, we now explore the ability
of LLMs to teach using the teaching components introduced in RQ2 and RQ3 of when and how to
explain samples. This leads us to explore a multi-round interactive setting, where each round consists
of the teacher selecting a set of best points to explain (according to RQ2) and generating explanations
for them (according to RQ3). The student then conditions on these teacher explanations as in-context
demonstrations to perform the reasoning task on future unexplained samples. We demonstrate that
teacher explanations indeed generalize and improve student performance on unexplained data.

Finally, in RQ5, we investigate the negative implications of teacher explanations on student LLMs
(§5.5). Given that LLMs can improve student agents, we also want to test whether they can lower
student performance. If a misaligned teacher provides non-factual explanations in scenarios where the
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student directly adopts them, does that lead to a drop in student performance? In fact, we show that
teacher models can lower student performance to random chance by intervening on data points with
the intent of misleading the student. This has potential implications for LLMs giving explanations in
a context where other agents adopt them with unwarranted trust in their correctness.

In summary, our comprehensive studies highlight the ability of LLMs to teach and improve weaker
LLMs, demonstrated via improvements on explained test examples as well as future unexplained
data. Broadly, equipping LLMs with an ability to effectively and efficiently teach, opens the door
to (1) using LLMs as personalized tutors for humans (where efficiency is critical), (2) distilling
knowledge into weaker or more compute-efficient student models, and (3) improving human decision
making via AI recommendations and explanations.

2 Related Work

Evaluating Explanations in Teacher-Student Games. Several past works evaluate explanations in
the context of a student-teacher communication game [13, 14, 15, 16, 17]. The teacher communicates
explanations to the student with one of two objectives: (1) evaluating whether explanations help
students to simulate the teacher better, or (2) whether explanations can directly teach students to better
perform a task. Simulatability, or the student’s ability to simulate the teacher’s own answer, is seen as
a measure of the explanation’s faithfulness, rather than a direct measure of whether explanations help
students learn the task itself [18, 19]. Our work is focused on the second research goal of evaluating
explanations from the perspective of teaching weaker agents. Prior work has shown that human
explanations can teach LLMs [7, 20] and LLMs can also teach themselves from their own explanations
or feedback [21, 22]. But it remains to be shown whether LLMs can also teach weaker agents. A few
recent works also share a similar goal as ours and they distill knowledge [23] directly into the student
model by finetuning it on the explanations from the teacher model [8, 9, 10, 24]. However, these
distillation methods do not consider the important aspects of communication cost between two agents,
its trade-off with student performance, and how the teacher may build mental models of the student to
decide when and how to communicate explanations to the student. Recent studies have also evaluated
explanations in the context of human-AI collaboration, for their plausibility [25, 26], usefulness to
human learning [27, 28], and for improving human-AI team performance [29, 30]. Different from
these, we analyze model-model interactions, with the goal of understanding how effectively LLMs
can teach weaker systems to solve a task.

Theory of Mind in AI. A body of work demonstrates that humans regularly infer and make decisions
based on the mental states of other agents, also known as Theory of Mind (ToM) [31, 3, 2, 32].
This has motivated works on computational language acquisition using ToM [33, 34, 35]. There
have been recent works arguing both for and against the presence of Theory of Mind in Large
Language Models [36, 4, 6, 37]. Theory of Mind has been successfully applied to improve human-AI
collaboration in robotics [38, 39, 11]. In this work, we design prompts that are motivated by a teacher
having a Theory of Mind to efficiently intervene and improve a student’s reasoning capabilities.

3 Problem Setup

Student and Teacher. We assume a two-agent communication game between a student S and a
teacher T , where the goal is to teach the student to solve a particular task interactively. Here, we
use an LLM as the student. To explore a range of student and teacher capabilities, we consider both
human and model teachers, while typically using a student model that is measurably weaker than its
teacher. Following past work, an LLM with more parameters is considered a stronger model due to
its better performance across a range of tasks (including the ones we consider in our studies). In the
scope of our study, when the teacher is not a human, both S and T are LLMs, prompted with a set
of demonstrations of the task D (typically, 4-8 examples). Each demonstration d(i) ∈ D is a triple
(x(i), y(i), e

(i)
H ) consisting of an input x(i), the output y(i), and a human-written explanation e

(i)
H that

answers the question of why the data point has the output it has [1]. In our tasks, the explanation
may include background knowledge or intermediate reasoning steps that are helpful for obtaining the
answer. By organizing D into Chain-of-Thought prompts, both S and T are equipped with the ability
to generate explanations and predict labels for new samples.

Single-Round Intervention. The first problem setup we consider involves the teacher deciding
whether or not to intervene for a single test problem. In this setting, the student’s goal is to answer
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the problem correctly, and the teacher can choose to intervene for individual problems to assist the
student. Thus, given a test data point t(i), we have the following two scenarios:

• No Intervention: When the teacher chooses not to intervene, the student generates both the
explanation e

(i)
S and the prediction ŷ

(i)
S , by conditioning on the D task demonstrations and the test

input t(i). This is done using Chain-of-Thought prompting [7].
• Intervention: When the teacher does choose to intervene, it communicates its generated explana-

tion to the student. Here the student only generates a prediction ŷ
(i)
S by conditioning on the D task

demonstrations, the test input t(i), and the corresponding teacher explanation e
(i)
T . For the tasks

and datasets we consider, explanations provide helpful background information or reasoning steps
but do not directly reveal the test label, so it never directly gives away the answer.

Fig. 1 shows the ‘No Intervention’ and ‘With Intervention’ student prompts and the overall interven-
tion process. Note that in terms of the prompts used for both these scenarios, the only difference
is in the source of explanation (student vs teacher) for the test point. When the teacher is a human,
intervention happens with a human-written explanation (crowdsourced in the datasets we rely on).

Communication Cost. In Single-Round Intervention, the teacher could maximize student perfor-
mance by simply always intervening on the student’s reasoning. We bring in a natural constraint
from Rational Speech Acts theory, i.e., communication is costly and should only be undertaken if it
furthers a communicative goal [40]. Hence, we assume that a communication cost is incurred each
time the teacher intervenes with an explanation to the student. We also note that this cost is only with
respect to an agent’s communication (and assume that the teacher can always generate explanations
for itself). Unless otherwise stated, communication happens one-way from the teacher to the student
in the form of explanations. We set a limit to the number of points that the teacher can intervene on,
referred to as the intervention budget, and we assume the cost to be uniform for all data points. Across
all our experiments, we vary the intervention budget between {0%, 20%, 40%, 60%, 80%, 100%}. A
budget of 0% means the student generates its own explanation as it predicts each data point, while a
budget of 100% means the student leverages the teacher’s explanation for every data point. Later, in
Sec. 5.2, we introduce the teacher Intervention Function, which the teacher uses to decide which
points to intervene on given its fixed intervention budget.

Multi-round Intervention. Here, the goal of the teacher is to provide explanations to the student
that help it generalize across samples, rather than leading the student to the correct answer only for
the explained data points. Thus, we allow the teacher to explain data points that are then added to
the student model’s prompt, but we forbid the teacher from intervening on future test points. If the
teacher can improve the quality of the student model’s prompt, student performance on the test data
should improve. In our experiments, this process occurs in a few steps: (1) the teacher picks points to
explain, (2) the teacher explains those points, (3) the points are added to the student prompt with the
teacher’s explanations, and then (4) the student predicts labels for the remaining test data. Further
implementation details are given in Sec. 5.4.

4 Experiment Setup

We consider complex natural language reasoning tasks, motivated by two specific needs. First, the
task should be hard enough for current LLMs that explanations can provide useful knowledge to
the models. Second, it allows us to study free-text rationales, which are more flexible than input
attribution methods [41, 42, 43] and benefit many reasoning tasks [7, 44]. We experiment with three
reasoning tasks: (1) StrategyQA [45], (2) GSM8k [46], and (3) CommonsenseQA [47] (details in
Appendix B). Both StrategyQA and CommonsenseQA contain explanations in the form of relevant
facts, thus requiring the student to reason over them to produce an answer. We also manually verify
(up to 100 samples) that the explanations do not explicitly leak the answer. For GSM8k, since the
reasoning steps explicitly derive the answer, providing the entire explanation during intervention will
lead to answer leakage [17]. Hence, the teacher communicates a partial explanation (specifically,
only the first step of the rationale), allowing the student to leverage it as a hint to derive the final
answer. We experiment with two state-of-the-art open-source LLMs of varying sizes, ranging from
780M to 65B parameters. Specifically, we use two encoder-decoder and decoder-only models as
student and teacher: (1) Flan-T5-Large and Flan-T5-XL [48], and (2) LLaMA-7B, LLaMA-13B, and
LLaMA-65B [49]. Refer to Appendix A for more details of student and teacher models.
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5 Experiment Results

5.1 RQ1: Can a teacher LLM intervene at test time to improve a student LLM’s predictions?

Our first research question asks if LLMs can improve students by intervening on their reasoning at
test time. While the main goal is to analyze the behavior of model-based teachers, we also experiment
with human teachers to establish a ceiling on the capabilities of an LLM teacher. These human
teachers are people who authored the (human) explanations in the datasets we experiment with and
were crowdsourced in prior works.

Study Design. We compare the accuracy obtained by the student model at different intervention
budgets. For the purpose of this study, the intervention happens at random data points while we vary
the student and teacher. In particular, we compare four intervention setups: (1) a human teacher
paired with a smaller student model, (2) a human teacher paired with a larger student model, (3) a
larger teacher model paired with a smaller student model, and (4) a smaller teacher model paired with
a larger student model. For the main experiments, the student and the teacher are chosen from the
same model family.
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Figure 2: RQ1: Comparison of random
intervention by different Teacher Models
on different Flan-T5 Student Models at
different intervention budgets for Strate-
gyQA. A + B = A student, B teacher.

Main Results. Figure 2 shows the results on StrategyQA
with Flan-T5 models. A human teacher’s intervention on
the explanations of both smaller and larger Flan-T5 mod-
els exhibits a monotonically increasing accuracy trend.
Larger model teachers can also improve smaller student
models. Flan-T5-Large obtains an accuracy of 58% when
always utilizing its own explanations but obtains up to
63% accuracy when reasoning with the larger Flan-T5-
XL’s explanations. Intuitively, a larger student model does
not benefit from a smaller teacher model’s explanations, as
we observe a monotonically decreasing trend. Our results
generalize to other models (LLaMA), datasets (Common-
senseQA, GSM8k) and even when the student and the
teacher belong to different model families. In fact, when
the teacher (LLaMA-65B) is much stronger than the stu-
dent (LLaMA-7B), the margin of improvement is also
higher, about 8% (statistically significant with p = 0.01). See Appendix D for these additional RQ1
results. In summary, we conclude that: for complex reasoning,LLMs can indeed effectively intervene
and improve weaker models, and more intervention typically leads to better performance, although
humans explanations improve more.

5.2 RQ2: Given a fixed intervention budget, when should the teacher intervene (i.e., on which
data points), in order to maximize student performance?

So far, we have demonstrated that random teacher intervention benefits student models. But a good
teacher does not randomly pick problems to help a student with. Each intervention also has an
associated communication cost and hence, it is desirable to be able to improve student performance
while reducing the cost. In this research question, we investigate better strategies for choosing data
points to intervene on. We call these strategies Intervention Functions that produce a rank ordering of
the samples, and, given a fixed budget, the teacher intervenes on the highest-ranked samples.

An intervention is useful if the student’s confidence in the gold answer increases with intervention (i.e.,
with teacher’s explanation) compared to without it (i.e., with its own explanation). Here confidence
is simply the likelihood that the model assigns to the correct answer i.e., we take the logits from
the last layer of the model and normalize them to get the correct answer’s probability. Computing
expected utility, however, depends on two quantities: (1) the student’s true confidence measures with
and without intervention, and (2) the gold answers against which the confidence is computed. It
also incurs a two-way communication cost, one for the teacher to communicate its explanation to
the student and another for the student to communicate back its confidence to the teacher. Thus,
we propose an Intervention Function based on the Expected Utility of intervention, which relies on
estimates of student confidence, and we consider two setups depending on whether the teacher knows
the gold label. Ideally, a teacher is expected to be an expert in the concerned task (e.g., if the teacher
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Figure 3: RQ2: (a) Comparison of different Intervention Functions on StrategyQA with a smaller
student (Flan-T5-Large) and a larger teacher (Flan-T5-XL). (b) Ablation of Expected Utility.

is a human or a powerful model that obtains high accuracy). When the teacher does not have access
to gold answers, we treat the teacher’s answers as gold answers when computing Expected Utility.
Expected Utility Intervention Function. The teacher computes the Expected Utility of intervention
by simulating the student’s predictions using a mental model of the student. In order to build this
mental model, we assume that the teacher has observed the student on a few samples and has access
to d demonstrations Dsim of the student’s predictions with and without intervention, denoted as:

Dsim = {x(i), y(i), e
(i)
S , e

(i)
T , ŷ(i)pre, ŷ

(i)
post}di=1

where x(i) and y(i) are the input and output respectively; e
(i)
T and e

(i)
S denote the student and

teacher explanations respectively; and ŷ
(i)
pre and ŷ

(i)
post refer to the student predictions with student

explanation (pre-intervention) and teacher explanation (post-intervention) respectively. Using these
demonstrations, the teacher builds a few-shot mental model of the student and predicts two quantities
for a given test question – (1) Pre-intervention Expected Student Confidence (ĉpre): The teacher
conditions on the pre-intervention demonstrations Dpre

sim = {x(i), y(i), e
(i)
S , ŷ

(i)
pre}di=1 to simulate the

student’s confidence on the gold answer, had it been using its own (student) explanation, and (2) Post-
intervention Expected Student Confidence (ĉpost): The teacher conditions on the post-intervention
demonstrations Dpost

sim = {x(i), y(i), e
(i)
T , ŷ

(i)
post}di=1 to estimate what the student’s confidence would

be if it had used the teacher’s explanation. The teacher computes these confidence estimates as if
it were the student (refer to Fig. 1 for the prompts), essentially learning to simulate the student
by conditioning on the appropriate demonstrations and then generating an answer to the question.
Then the Expected Utility Û = (ĉpost − ĉpre) is given by the difference between the two confidence
measures. The teacher finally constructs a rank ordering of the test data points based on this expected
utility. This utility-based ordering encourages the teacher to pick points where it thinks the student
will answer correctly with intervention but incorrectly without.

Other Intervention Functions. To analyze how well our proposed Intervention Function performs,
we compare it with the following Intervention Functions. Our first baseline is the Random Interven-
tion Function from RQ1. Next, we compare with an Intervention Function that ranks the samples
based on the Teacher Confidence – when the teacher is most confident about a question, it intervenes.
Our next two baselines are ablations of Expected Utility: (a) Pre-Intervention Expected Student
Confidence – We rank samples based on the expected student confidence with no intervention (i.e.,
lower this confidence, the higher the likelihood of useful interventions), and (b) Post-Intervention
Expected Student Confidence: We rank samples based on the expected student confidence with
intervention (i.e., higher this confidence, higher is the likelihood of useful interventions. Finally, as
upper bounds of Intervention Functions, we assume that the student communicates its true confidence
values to the teacher (which for post-intervention, incurs a both-way communication cost of the
teacher sending its explanation, followed by receiving the student’s confidence). Using the true
confidence measures, we compute True Utility.

Main Results: How does Expected Utility compare to True Utility? Figure 3 compares different
Intervention Functions with Flan-T5-XL as the teacher and Flan-T5-Large as the student on Strate-
gyQA. Across different methods, we analyze accuracy obtained at lower communication costs (e.g.,
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20%) as well as highest accuracy obtained, independent of any budget constraints. Our primary
observation from Figure 3(a) is that Expected Utility improves student accuracy by up to 7 points
at a low communication cost of 20%. Expected Utility also peaks at an accuracy of 71% with only
40% intervention. Since model-based teachers are not always perfect, increased intervention beyond
60% leads to a drop in student accuracy (e.g., in the last 20% of the intervention, the student accuracy
drops from 69% → 63%). When the student communicates its confidence scores to the teacher, the
teacher is able to compute the true utility of intervention, which unsurprisingly, leads to a much
higher accuracy of 76% at 20% cost and an overall high of 81% accuracy. Nevertheless, estimating
expected utility is cheaper and our results also suggest that a better mental model could further
improve performance. Ranking by teacher confidence is ineffective because it is not an indicator
of the student’s capabilities. Next, in Figure 3(b), we show that ranking by utility outperforms
ranking by either pre or post-intervention confidence scores. In summary, with access to only a few
demonstrations of student behavior, a teacher can build an effective mental model of the student and
intervene such that the student obtains a much higher accuracy at low communication costs.
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Figure 4: RQ2: Comparison of different
Intervention Functions on StrategyQA with
a Flan-T5-Large student and a Flan-T5-XL
teacher, with no access to gold labels.

When the teacher does not have access to gold
answers, can we compute Expected Utility with
respect to teacher answers? Teachers can be inac-
curate and may not even have access to gold answers.
In such scenarios, can we treat the teacher as the
gold standard and compute utility with respect to
the teacher’s answers? We explore this in Figure 4,
comparing Expected Utility to Random Intervention
and Student Least Confidence. The latter denotes
that when the student is least confident about any of
the answer options, it is more likely to answer incor-
rectly and hence will benefit from intervention. We
observe that Expected Utility, computed with teacher
answers, also leads to up to 2 points improvement
in accuracy at 20% budget, which is also within 1%
of the accuracy (63.60%) obtained with 100% com-
munication cost. In Appendix Table 9, we conduct
the same experiment with a much stronger teacher
(LLaMA-65B) and a weaker student (LLaMA-7B) and obtain even stronger evidence of this result.
Stronger teachers like LLaMA-65b are significantly better at solving reasoning tasks and thus their
predicted labels will mostly match the gold labels. Hence, even if we rely on the teacher’s predictions
for computing expected utility, it improves student accuracy by up to 5 points (statistically significant
with p = 0.02), further closing the gap between ‘with and without gold label’ scenarios. In summary,
we conclude that imperfect teacher LLMs can also successfully intervene by building mental models
of students that do not rely on ground-truth answers. Appendix E contains additional results for RQ2
with other models and datasets.

5.3 RQ3: Given a set of intervention data, can a teacher model personalize its explanations
for a student model to improve student performance?

The previous RQ showed how the teacher may build a few-shot mental model of the student to decide
when to intervene, given a fixed budget. Upon intervention, the teacher communicates an explanation
generated by prompting the model with random human explanations. This leads to an unpersonalized
teacher that assumes that the explanation it generates in order to solve the task will be automatically
helpful for the student. However, an effective teacher should tailor its explanations to fill in gaps in
the student’s knowledge [2]. With this motivation, the teacher builds another few-shot mental model
of the student, this time generating helpful explanations that are more likely to benefit the student.

Teacher’s Explanation Personalization Prompt. Helpful human explanations are those that rec-
tify a student’s answer i.e., cause the student’s answer to flip from incorrect (when using its own
explanation) to correct (when using human explanation). We assume that the teacher has ob-
served the student on d demonstrations DP of exclusively helpful human explanations, denoted as:
DP = {x(i), y(i), e

(i)
H , e

(i)
S }di=1 where e

(i)
H and e

(i)
S denote (helpful) human and (not helpful) student

explanations respectively. The teacher conditions on these demonstrations to generate explanations
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for the student. Fig. 1 shows an example of a personalization prompt. With such a prompt, teacher
explanations are steered toward only those explanations that help the student.

Baselines. We compare personalized teachers with unpersonalized ones that condition on random
human explanations. Appendix F also reports results with unpersonalized rationales, that are post-hoc
explanations (‘The answer is X because Y’) and not Chain-of-Thought (‘Y. So the answer is X’).
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Figure 5: RQ3: Comparison of unpersonal-
ized and personalized teacher (Flan-T5-XL)
explanations on student (Flan-T5-Large) ac-
curacy for StrategyQA.

Main Results. Fig. 5 shows the results on Strate-
gyQA with Flan-T5-Large as the student and Flan-
T5-XL as the teacher. Both unpersonalized and per-
sonalized teachers choose intervention samples based
on Expected Utility, as defined in RQ2. We observe
that a personalized teacher improves the accuracy fur-
ther both at lower budgets (by 2% at 20% cost) but
also overall, obtaining a peak accuracy of 72.63%.
However, unlike the strong supporting evidences we
obtain for RQ1 and RQ2, the effect of personalization
is comparatively weaker. Hence, we further test this
research question with a LLaMA-65B teacher and a
LLaMA-7B student in Appendix F. While scaling up
the teacher model points to stronger evidence of per-
sonalization (e.g., 2.4% better student accuracy), the
results are still not statistically significant (p = 0.09).
Hence, we conclude that: personalizing teacher ex-
planations can further benefit the students, although our results currently suggest that the effect size
may be small. We hope that future work is further able to explore explanation personalization with
even stronger teacher models like GPT-4. In Appendix F, we show some comparative instances of
unpersonalized and personalized explanations.

5.4 RQ4: In multi-turn interactions, do teacher explanations generalize and improve student
performance across data points (beyond the explained samples)?

In the previous RQs, we showed that teacher explanations improve student predictions for the
samples that the teacher explains. RQ4 explores whether teacher explanations also generalize to new
instances that the teacher has not explained. In other words, this studies if the student can perform
Chain-of-Thought reasoning by only conditioning on teacher LLM explanations rather than human’s.

Student

Student Predictions

Q: {question}
A: {teacher_expl} So the answer is {teacher_ans}

Q: {test_question}
A:

Student Prompt

RQ3 RQ2

Ex
pl

ai
ne

d 
Po

ol

Test Question

+

Model Output

Prompt Input

Teacher

RQ4

Student Prompt

Multi-Turn

Figure 6: Overview of multi-turn student-teacher interaction
showing RQ4. At each turn, the teacher chooses some sam-
ples to explain and the student conditions on them to make
predictions on future unexplained data.

Study Design. We consider a multi-turn
teaching setup (Fig. 6), in which at each
turn the teacher chooses to explain a few
samples from a pool of unexplained exam-
ples which are then added to the student’s
prompt. The prompt consists of demon-
strations of the teacher’s explanations and
predictions. The student then conditions
only on these in-context examples (without
any human demonstrations) to generate pre-
dictions for the test samples (where there is
no teacher intervention). For choosing the
data points to explain at each round, we use
the Expected Utility Intervention Function
(from RQ2), and for generating the teacher
explanations, we leverage the ToM prompt (from RQ3). We say that teacher explanations generalize
if conditioning on demonstrations of explained points improves upon demonstrations with no expla-
nations (i.e., only QA pairs) or self-explanations (i.e., demonstrations with student explanations and
predictions). We consider five rounds in total with LLaMA-7B as the student and LLaMA-65B as the
teacher, adding two explained samples in each round. We compare the student accuracy after each
round with teacher-explained, student-explained, and unexplained demonstrations.

Main Results. Fig 7 shows the results. We observe that teacher explanations improve student
performance on future unexplained test points as well by a significant 6 points (55% → 61.6%).
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Figure 8: RQ5: (a) Negative Implication of RQ2: Comparison of intervention based on negative ex-
pected utility with random intervention on StrategyQA. (b) Negative Implication of RQ3: Comparison
of an unpersonalized teacher (generating explanations conditioned on random human explanations)
versus a deceiving teacher (generating explanations conditioned on wrong explanations).
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Figure 7: RQ4: Multi-round student-teacher
interaction comparing student accuracy on un-
explained test points with unexplained, student-
explained and teacher-explained demonstrations.

While student accuracy with unexplained samples
improves after adding more demonstrations (55%
→ 59%), accuracy with teacher-explained demon-
strations is better by up to 4 points (p = 0.04) after
each round. Interestingly, when the student con-
ditions on self-explained demonstrations, its per-
formance decreases with increasing rounds. We
hypothesize that this is because the student might
be overfitting to its own worse explanations, lead-
ing to bad predictions. In summary, we conclude
that: teacher LLMs can teach student models to
perform well on their own when given new test
data. LLMs with even longer context windows
will allow adding more explained samples in each
round and repeating the teaching process for more
rounds. We hope that our initial promising results
will encourage more exploration in multi-round teaching with LLMs.

5.5 RQ5: Can misaligned teacher LLMs lower student performance by providing misleading
explanations to the student?

If teacher LLMs can successfully build mental models of student LLMs, a natural follow-up question
regards whether communicating misleading explanations can also weaken student models. Here we
briefly describe our study design and findings, with more details in Appendix H. First, the teacher
intervenes in increasing order of expected utility, prioritizing samples where the utility is lowest.
Second, we make the teacher condition on incorrect answers and non-factual human explanations
that we manually generate by perturbing (correct) human explanations. We show the results in Fig.
8(a) and Fig. 8(b). Ranking data points by negative expected utility allows the teacher to reduce
student accuracy to random chance at 60% intervention. Next, Fig. 8(b) illustrates that the teacher
can condition on non-factual explanations to successfully generate worse explanations that reduce the
student accuracy by 2 points, relative to the improvement of benign explanations. Thus, we conclude
that teacher LLM explanations can be influential for student LLMs in both good and bad ways.

6 Conclusion
We demonstrated that LLMs can teach weaker student models to improve their performance on
reasoning tasks for both explained and unexplained future data. The teacher builds two few-shot
mental models of the student, one predicting which data points to intervene on and another generating
personalized explanations that the student can efficiently learn from.

Limitations & Broader Impacts. See Appendix for limitations and broader impacts discussion.
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Broader Impacts

We hope that our findings can help improve the understanding and evaluation of Chain-of-Thought
rationales, in order to better understand the behavior of LLMs and make them more interpretable.
Through the first four research questions, we demonstrate that teacher LLMs can successfully build
mental models of weaker agents to improve their performance. Modern LLMs like GPT-4 may
generate non-factual explanations [50] that have the potential to inadvertently harm weaker agents,
especially in a context where other agents adopt them with unwarranted trust in their correctness. We
verify this through our final research question. In general, we do not foresee specific ethical risks
arising from this work that do not already apply to the general use of Large Language Models, such
as the potential to generate harmful or toxic content [51].

Limitations

While teacher LLMs generate better explanations via personalization, the human explanations are
unpersonalized i.e., collected without any particular student in mind. In spite of that, we observe
that intervention with human explanations proves to be helpful in most cases. It remains to be seen
whether human explanations that are directed toward improving a particular student model can lead
to further improvements. Next, we make a simplifying assumption that the communication cost
is uniform across all samples. Non-uniform costs (e.g., measured based on the number of tokens
or reasoning steps) such that longer explanations incur larger costs is an interesting direction for
future work. We also note that while both student and teacher generate explanations with the goal of
improving student predictions, the predictions may still be unfaithful to the reasoning steps.

A Student and Teacher Models

We experiment with two state-of-the-art open-source LLMs of varying sizes, ranging from 780M to
65B parameters. Specifically, we use two encoder-decoder and decoder-only models as student and
teacher: (1) Flan-T5-Large and Flan-T5-XL [48], and (2) LLaMA-7B, LLaMA-13B, and LLaMA-
65B [49]. Typically, the student model is assumed to be smaller than the teacher model. But
some experiments will also involve smaller teachers and larger students. All models generate text
using greedy decoding, prompted with either 4-8 demonstrations. Unless otherwise stated, the
demonstrations are randomly chosen from the training samples. For StrategyQA, we report results on
the validation split, while for CommonsenseQA and GSM8k, our experiments are on the test split. To
account for variance, we conduct experiments with at least three different seeds. We report accuracy
for all tasks, and error bars in plots and tables represent the standard deviation across seeds.

B Datasets and Prompts

We experiment with the following three reasoning datasets: (1) StrategyQA [45], a set of open-domain
questions where the required reasoning steps are implicit in the question, (2) GSM8k [46], which
includes multi-step math reasoning problems, and (3) CommonsenseQA [47], a multiple-choice QA
task focusing on commonsense reasoning. We use the reasoning steps in StrategyQA and GSM8k
as the multi-step rationales, and for CommonsenseQA, we rely on the ECQA dataset [52], which is
annotated with commonsense facts supporting the correct option and refuting the incorrect options.
All datasets are licensed under the MIT license. Fig. 9 shows the student prompts for the three tasks
of StrategyQA, CommonsenseQA, and GSM8k. Fig. 10 shows the pre- and post-intervention student
simulation prompts for the teacher model.

C Compute and Reproducibility

We conduct experiments either on A100 Google Cloud instances or on internal A6000 GPU servers.
The LLMs (Flan-T5 and LLaMA) and the datasets used in our studies are publicly available. For
reproducibility, we are making our code available as part of the supplementary material.
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StrategyQA

Q: Are more people today related to Genghis Khan than Julius Caesar?
A: Julius Caesar had three children. Genghis Khan had sixteen children. Modern geneticists have determined
that out of every 200 men today has DNA that can be traced to Genghis Khan. So the answer is yes

Q: {test_question}
A:

CommonsenseQA

Q: What might a person see at the scene of a brutal killing?
Answer Choices:
Choice 1: bloody mess
Choice 2: pleasure
Choice 3: being imprisoned
Choice 4: feeling of guilt
Choice 5: cake
A: Bloody mess is covered or stained with blood. A person might see a bloody mess at the scene of a brutal
killing. Pleasure is about what a person sees at the scene of a brutal killing and one cannot be happy to see
such brutality. You can’t see someone in jail at the brutal killing scene. Feeling of guilt doesn’t come as
the killing is brutal or merciless. Cake is baseless and weird to think as it is a brutal killing scene and not a
bakery. So the correct choice is 1

Q: {test_question}
Answer Choices:
Choice 1: {option_1}
Choice 2: {option_2}
Choice 3: {option_3}
Choice 4: {option_4}
Choice 5: {option_5}
A:

GSM8k

Q: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?
A: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April and May. So the
answer is 72

Q: {test_question}
A:

Figure 9: Examples of student prompts for different tasks with one demonstration.

D RQ1: Additional Results

Results with Flan and LLaMA Models. In Table 1, we report the accuracy obtained by different
students and teachers (based on Flan-T5 models) on the StrategyQA task. We draw similar conclusions
as Flan-T5 with other LLMs, specifically LLaMA-7B and LLaMA-65B models on the StrategyQA
dataset (Table 2). In fact, when the teacher is stronger like a LLaMA-65B, the margin of improvement
is also higher, about 8%. The overall trends also align – increasing for weaker students and decreasing
for stronger students.

Results on other Datasets. Our conclusions generalize across datasets too. Table 3 presents
the results on CommonsenseQA with Flan-T5 models. CommonsenseQA is an easier task and
Flan-T5 models obtain accuracies of 85% and 92% when generating their own explanations. While
Flan-T5-Large still benefits from human explanations, the larger model does not, perhaps because
it already starts at a high 92% accuracy. Finally, in Table 4, we present the results on GSM8k with
LLaMA models. Note that in GSM8k, a student has access to partial explanations from the teacher,
but even then we observe that these prove to be useful prompts for the student to complete their
chain-of-thought, leading to up to 8-9% increase in accuracy with human teachers and 3% with model
teachers.
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Pre-Intervention Student Simulation

Simulate an AI model’s answer for the given question.

Q: Will the Albany in Georgia reach a hundred thousand occupants before the one in New York?
AI Predicted Answer: Albany, Georgia is a city in the U.S. state of Georgia. Albany, Georgia has a
population of 59,080. The population of New York is 365,040. So the answer is no

Q: {question}
AI Predicted Answer:

Post-Intervention Student Simulation

Simulate an AI model’s answer for the given question.

Q: Will the Albany in Georgia reach a hundred thousand occupants before the one in New York?
AI Predicted Answer: Albany, Georgia is a city in the U.S. state of Georgia. Albany, Georgia has a
population of 59,058. The Albany in New York has a population of 328,058. So the answer is no

Q: {question}
AI Predicted Answer: {teacher_explanation} So the answer is

Figure 10: Examples of StrategyQA prompts for the mental model of a teacher simulating student
predictions pre-intervention and post-intervention. Pre-intervention: The demonstrations use student
explanations and student predictions and at test time, the teacher simulates both. Post-intervention:
The demonstrations use teacher explanations and student predictions and at test time, the teacher uses
the teacher explanation to simulate the student prediction.

Results with Cross-family Student and Teacher. We observe that larger teacher LLMs can teach
smaller student LLMs, even when they are of different model families. In Table 5, we report the
results with Flan-T5 and LLaMA models as students and teachers.

Intervention Budget

Student Teacher 0% 20% 40% 60% 80% 100%

Flan-T5-Large Human 58.51±2.00 63.75±0.43 66.95±2.19 73.94±2.77 78.02±2.40 81.95±1.65
Flan-T5-XL Human 68.12±2.62 72.05±2.62 75.98±2.31 80.20±1.65 84.13±1.00 87.77±0.70
Flan-T5-Large Flan-T5-XL 58.51±2.00 60.52±1.63 59.78±1.85 61.48±2.02 62.35±2.13 62.96±2.47
Flan-T5-XL Flan-T5-Large 68.12±2.62 67.68±2.72 65.64±3.39 64.04±3.63 62.88±1.15 61.86±0.66

Table 1: RQ1 – Comparison of accuracy obtained with random intervention by Flan-T5 models at
different intervention budgets on StrategyQA. As shown in the third row, Flan-T5-Large (student)
accuracy improves by 5% with 100% intervention from Flan-T5-XL (teacher).

Intervention Budget

Student Teacher 0% 20% 40% 60% 80% 100%

LLaMA-7B Human 61.13±2.72 63.60±4.82 68.85±3.52 73.36±2.18 78.45±2.55 81.22±1.57
LLaMA-65B Human 77.58±2.24 80.34±2.65 82.67±2.06 87.48±1.96 89.37±0.25 92.86±0.50
LLaMA-7B LLaMA-65B 61.13±2.72 62.29±1.53 64.91±0.67 66.08±1.76 68.99±3.14 69.43±3.41
LLaMA-65B LLaMA-7B 77.58±2.24 75.83±2.24 72.92±2.72 72.92±2.26 70.88±0.90 69.14±0.66

Table 2: RQ1 – Comparison of accuracy obtained with random intervention by LLaMA models
at different intervention budgets on StrategyQA. As shown in the third row, LLaMA-7B (student)
accuracy improves by 8% with 100% intervention from LLaMA-65B (teacher).

E RQ2: Additional Results

Results with stronger Flan-T5-XL teacher and weaker Flan-T5-Large student. Table 6 com-
pares different Intervention Functions on StrategyQA with Flan-T5-Large as the student and Flan-T5-
XL as the teacher. These results are when the teacher has access to the gold labels. In Table 7, we
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Intervention Budget

Student Teacher 0% 20% 40% 60% 80% 100%

Flan-T5-Large Human 84.78±0.41 86.86±0.76 88.70±0.94 90.77±0.45 93.20±0.47 95.42±0.17
Flan-T5-XL Human 92.38±0.16 92.52±0.20 92.43±0.28 92.23±0.61 92.41±1.12 92.21±1.06
Flan-T5-Large Flan-T5-XL 84.78±0.41 85.79±0.48 86.79±0.84 87.46±0.20 88.52±0.39 89.72±0.68
Flan-T5-XL Flan-T5-Large 92.38±0.16 90.92±0.39 89.74±0.39 87.98±0.89 86.70±1.60 85.19±1.62

Table 3: RQ1 – Comparison of accuracy obtained with random intervention by Flan-T5 models
at different intervention budgets on CommonsenseQA. As shown in the third row, Flan-T5-Large
(student) accuracy improves by 5% with 100% intervention from Flan-T5-XL (teacher).

Intervention Budget

Student Teacher 0% 20% 40% 60% 80% 100%

LLaMA-7B Human 9.62±1.53 11.97±0.80 13.84±1.02 16.32±0.57 18.72±0.78 21.05±0.65
LLaMA-13B Human 16.45±1.80 18.44±2.16 20.34±1.60 22.41±2.46 24.91±2.07 26.88±2.34
LLaMA-7B LLaMA-13B 9.62±1.53 10.20±1.06 10.68±0.82 11.24±0.50 11.92±1.15 12.25±0.94
LLaMA-13B LLaMA-7B 16.45±1.80 15.87±1.62 15.56±1.44 14.88±1.89 14.68±1.88 14.27±1.70

Table 4: RQ1 – Comparison of accuracy obtained with random intervention by LLaMA models at
different intervention budgets on GSM8k. As shown in the third row, LLaMA-7B (student) accuracy
improves by 3% with 100% intervention from LLaMA-13B (teacher).

Intervention Budget

Student Teacher 0% 20% 40% 60% 80% 100%

Flan-T5-Large LLaMA-65B 58.51±2.00 61.86±0.25 61.13±2.26 64.48±1.53 66.52±4.05 66.95±4.90
LLaMA-65B Flan-T5-Large 77.58±2.24 74.52±1.76 71.47±0.90 67.68±2.00 64.62±2.00 62.15±1.76

Table 5: RQ1 – Comparison of accuracy obtained with random intervention on StrategyQA when the
student and the teacher belong to different model families. As shown in the first row, Flan-T5-Large
(student) accuracy improves by 8% with 100% intervention from LLaMA-65B (teacher).

Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 58.51±2.00 60.40±1.76 61.13±2.65 60.98±1.09 64.33±4.54 62.96±2.47
Teacher Conf ↑ 58.51±2.00 58.66±2.40 60.11±2.90 57.35±3.30 61.42±3.91 62.96±2.47
Expected Student Conf (Pre) ↓ 58.51±2.00 64.19±2.00 66.66±0.25 66.81±1.57 65.35±2.40 62.96±2.47
Expected Student Conf (Post) ↑ 58.51±2.00 64.77±1.76 68.26±0.66 69.71±2.01 68.26±2.63 62.96±2.47
Expected Utility ↑ 58.51±2.00 67.83±1.53 71.32±1.33 71.17±1.15 69.86±2.43 62.96±2.47
True Student Conf (Pre) ↓ 58.51±2.00 68.26±1.65 80.20±1.26 74.38±2.84 68.55±3.88 62.96±2.47
True Student Conf (Post) ↑ 58.51±2.00 65.64±1.40 72.63±1.09 80.05±0.90 72.19±4.39 62.96±2.47
True Utility ↑ 58.51±2.00 76.56±0.50 80.78±1.15 81.51±1.76 78.60±3.29 62.96±2.47

Table 6: RQ2 – Comparison of different Intervention Functions with a Flan-T5-Large student and a
Flan-T5-XL teacher on StrategyQA. The teacher assumes access to gold labels. ↑ denotes that the
samples are ranked in decreasing order of the function (higher is better), while ↓ denotes that the
samples in increasing order of the function (lower is better).

Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 58.51±2.00 60.40±1.76 61.13±2.65 60.98±1.09 64.33±4.54 62.96±2.47
Least Conf ↓ 58.51±2.00 61.13±0.75 62.44±1.74 65.06±1.15 63.46±2.97 62.96±2.47
Expected Student Conf (Pre) ↓ 58.51±2.00 62.59±1.00 61.86±0.90 62.29±1.33 65.50±3.14 62.96±2.47
Expected Student Conf (Post) ↑ 58.51±2.00 61.86±1.96 62.88±1.74 61.71±3.39 60.11±4.62 62.96±2.47
Expected Utility ↑ 58.51±2.00 62.29±0.50 62.44±1.50 62.44±3.88 62.95±2.78 62.96±2.47

Table 7: RQ2 – Comparison of different Intervention Functions with a Flan-T5-Large student and a
Flan-T5-XL teacher on StrategyQA. The teacher, in this case, does not have access to gold labels.
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Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 68.12±2.62 67.68±2.72 65.64±3.39 64.04±3.63 62.88±1.15 61.86±0.66
Expected Student Conf (Pre) ↓ 68.12±2.62 66.22±2.24 66.95±1.53 65.35±1.00 62.73±0.66 61.86±0.66
Expected Student Conf (Post) ↑ 68.12±2.62 70.59±3.27 71.76±3.63 72.48±2.86 69.86±2.62 61.86±0.66
Expected Utility ↑ 68.12±2.62 70.88±3.27 71.90±2.84 72.63±2.24 68.99±1.15 61.86±0.66
True Student Conf (Pre) ↓ 68.12±2.62 74.23±3.73 76.27±1.40 68.55±1.00 64.04±0.90 61.86±0.66
True Student Conf (Post) ↓ 68.12±2.62 70.16±3.27 73.94±1.76 80.05±1.65 71.32±1.09 61.86±0.66
True Utility ↑ 68.12±2.62 79.91±2.00 80.93±2.06 80.64±2.24 78.16±2.00 61.86±0.66

Table 8: RQ2 – Comparison of different Intervention Functions with a smaller teacher (Flan-T5-
Large) and a larger student (Flan-T5-XL) on StrategyQA. The teacher assumes access to gold labels.

Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 61.13±2.72 62.29±1.53 64.91±0.67 66.08±1.76 68.99±3.14 69.43±3.41
EU (w/ teacher answers) 61.13±2.72 66.22±2.63 67.39±2.40 69.28±1.76 70.59±3.81 69.43±3.41
EU (w/ gold label) 61.13±2.72 66.52±3.27 70.16±0.90 71.47±1.09 72.78±2.48 69.43±3.41

Table 9: RQ2 – Comparison of Expected Utility (with and without access to gold labels) with random
intervention, involving a LLaMA-7B student and a LLaMA-65B teacher. EU = Expected Utility.
Importantly, even when the teacher does not have access to the gold labels, expected utility with
teacher answers (second row) leads to a statistically significant 5% improvement in student accuracy
(p = 0.02) at 20% intervention.

Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 84.79±0.41 85.79±0.48 86.79±0.84 87.46±0.20 88.52±0.39 89.72±0.68
Expected Student Conf (Pre) ↓ 84.79±0.41 84.57±0.69 86.35±0.73 87.99±0.87 89.51±0.82 89.72±0.68
Expected Student Conf (Post) ↑ 84.79±0.41 86.66±0.37 88.69±0.19 90.76±0.06 92.43±0.61 89.72±0.68
Expected Utility ↑ 84.79±0.41 87.34±1.09 89.33±0.55 90.27±0.40 91.30±0.22 89.72±0.68
True Student Conf (Pre) ↓ 84.79±0.41 92.03±0.19 91.70±0.04 91.03±0.34 90.27±0.41 89.72±0.68
True Student Conf (Post) ↓ 84.79±0.41 87.40±0.39 89.59±0.53 92.31±0.09 94.98±1.57 89.72±0.68
True Utility ↑ 84.79±0.41 92.87±0.18 93.99±0.02 94.65±0.13 95.57±0.24 89.72±0.68

Table 10: RQ2 – Comparison of different Intervention Functions with a Flan-T5-Large student and a
Flan-T5-XL teacher on CommonsenseQA. The teacher assumes access to gold labels.

Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 9.62±1.53 10.20±1.06 10.68±0.82 11.24±0.50 11.92±1.15 12.25±0.94
Expected Student Conf (Pre) ↓ 9.62±1.53 11.11±1.44 11.37±1.17 11.56±1.34 12.40±1.01 12.25±0.94
Expected Student Conf (Post) ↑ 9.62±1.53 12.80±1.28 12.91±0.58 13.10±0.10 12.72±2.14 12.25±0.94
Expected Utility ↑ 9.62±1.53 13.68±1.87 14.06±1.44 13.99±0.80 13.68±0.58 12.25±0.94

Table 11: RQ2 – Comparison of different Intervention Functions with a LLaMA-7B student and a
LLaMA-13B teacher on GSM8k. The teacher assumes access to gold labels.

compare the accuracy on StrategyQA when the teacher (Flan-T5-XL) does not have access to gold
labels.

Results with weaker Flan-T5-Large teacher and stronger Flan-T5-XL student. RQ1 demon-
strated that random intervention by a smaller teacher may not benefit a larger student. But, does
Expected Utility benefit in such scenarios? We show this through Figure 8, which compares the
accuracy on StrategyQA with Flan-T5-Large as the teacher and Flan-T5-XL as the student. While
random intervention shows a monotonically decreasing trend with more intervention, Expected
Utility improves the accuracy by 2% (68% → 70%) by paying 20% intervention cost and by 4% by
paying 60% cost. Thus, we conclude that weaker teachers can also teach stronger students with
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Intervention Budget

Teacher Explanation Type 0% 20% 40% 60% 80% 100%

Unpersonalized-Rationales 58.51±2.00 66.52±2.97 69.14±1.76 70.16±1.09 67.97±0.50 60.40±0.50
Unpersonalized-CoT 58.51±2.00 67.83±1.53 71.32±1.33 71.17±1.15 69.86±2.43 62.96±2.47
Personalized 58.51±2.00 69.28±1.26 71.61±1.15 72.63±1.33 68.55±1.90 62.73±2.80
Human Explanations 58.51±2.00 72.34±0.90 77.72±0.75 81.51±1.09 82.09±0.87 81.36±0.66

Table 12: RQ3 – Comparison of different kinds of teacher explanations (unpersonalized-rationales,
unpersonalized-CoT, personalized, and human) on the student accuracy for StrategyQA. Here Flan-
T5-Large is the student model and Flan-T5-XL is the teacher model.

Intervention Budget

Teacher Explanation Type 0% 20% 40% 60% 80% 100%

Unpersonalized-CoT 61.13±2.72 66.52±1.27 70.16±0.90 71.47±1.09 72.78±2.48 69.43±3.41
Personalized 61.13±2.72 68.95±1.26 71.86±2.72 72.61±1.96 73.17±4.00 69.57±1.53

Table 13: RQ3 – Comparison of unpersonalized and personalized teacher explanations on the student
accuracy for StrategyQA. Here LLaMA-7B is the student model and LLaMA-65B is the teacher
model.

#Rounds

Demonstrations Type 1 2 3 4 5

No Explanations 55.45±2.26 56.04±4.19 58.95±4.16 57.35±3.21 57.93±2.66
Student Explanations 56.08±4.16 55.31±3.14 54.24±2.00 53.90±4.21 53.85±3.73
Teacher Explanations 55.74±2.40 60.84±3.71 59.97±2.66 59.82±4.55 61.57±1.31

Table 14: RQ4 – Results of Multi-turn interaction between the student and the teacher comparing stu-
dent accuracy on unexplained test points with unexplained, student-explained and teacher-explained
demonstrations.

appropriately designed Intervention Functions, especially when the student and the teacher have
some complementary benefits.

Results with LLaMA models. Table 9 compares Expected Utility-based intervention with random
intervention for LLaMA models (LLaMA-7B as the student and LLaMA-65B as the teacher) on
StrategyQA. We evaluate expected utility in two scenarios – with and without gold labels. Both
provide improvements over random intervention, as also observed with the Flan models. In particular,
when the teacher does not have access to the gold labels (second row), one can compute expected
utility with respect to the teacher predictions and obtain a significant 5% improvement (p = 0.02) in
student accuracy at 20% intervention.

Results on Other Datasets. Table 10 compares different Intervention Functions on the Common-
senseQA dataset with Flan-T5-Large as the student and Flan-T5-XL as the teacher. Table 11 reports
results on the GSM8k dataset with LLaMA-7B as the student and LLaMA-13B as the teacher.

F RQ3: Additional Results

Table 12 compares different kinds teacher explanations on student accuracy for StrategyQA with
Flan-T5-Large as the student model and Flan-T5-XL as the teacher model. Table 13 compares
unpersonalized and personalized explanations on StrategyQA with LLaMA-7B as the student model
and LLaMA-65B as the teacher model. Figure 12 shows five qualitative examples from StrategyQA
of unpersonalized and personalized explanations generated by a LLaMA-65B teacher model for a
LLaMA-7B student model. We observe a common pattern that the personalized explanations are
shorter, simpler, and more directed toward answering the question. The unpersonalized explanations,
while still factually correct, are elaborate (e.g., see ‘Example 5’) that may end up distracting the
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Intervention Budget

Intervention Function 0% 20% 40% 60% 80% 100%

Random 58.51±2.00 60.40±1.76 61.13±2.65 60.98±1.09 64.33±4.54 62.96±2.47
Neg Expected Utility 58.51±2.00 52.98±1.76 51.09±1.57 50.80±1.40 53.42±3.10 62.45±1.57

Table 15: RQ5 – Comparison of random intervention function with negative expected utility,
demonstrating that the teacher can hurt the student by intervening on samples where the utility is the
lowest.

Intervention Budget

Teacher Explanation Type 0% 20% 40% 60% 80% 100%

Unpersonalized-CoT 58.51±2.00 67.83±1.53 71.32±1.33 71.17±1.15 69.86±2.43 62.96±2.47
Deceiving Explanations 58.51±2.00 66.95±1.76 69.86±1.15 68.70±0.66 66.66±1.40 62.73±3.27

Table 16: RQ5 – Comparison of a deceiving teacher with an unpersonalized teacher on StrategyQA
with Flan-T5-Large as the student model and Flan-T5-XL as the teacher model.

student. Hence, the personalized explanations are probably easier to reason over for a comparatively
weaker student, LLaMA-7B, leading to better performance.

G RQ4: Additional Results

Table 14 shows RQ4 results on StrategyQA with LLaMA-7B as the student and LLaMA-65B as the
teacher.

H RQ5: Additional Details and Results

If teacher LLMs can successfully build mental models of student LLMs, a natural follow-up question
regards whether communicating misleading explanations can also weaken student models. We verify
that this holds, as detailed below.

Study Design. This RQ explores the negative implications of both RQ2 (i.e., when to intervene) and
RQ3 (i.e., how to generate teacher explanations), now with the goal of deceiving the student. First,
extending our Expected Utility-based Intervention Function (RQ2), we rank samples in increasing
order of expected utility, such that the teacher intervenes when the utility is the lowest. Here, the
teacher’s goal is to communicate explanations for data points where the student gives an incorrect
answer by following the teacher’s explanation but would have answered correctly had it leveraged its
own explanation. We compare this with random teacher intervention (which is generally helpful).
Next, in order to explore the negative implication of RQ3, we make the teacher condition on incorrect
answers and non-factual human explanations that we manually generate by perturbing (correct) human
explanations. We manually make minimal edits to the explanations such that the CoT reasoning is
plausible yet non-factual (see some examples in Fig. 11). Now, the teacher’s goal is to learn from
non-factual explanations and generate similar explanations that purposefully mislead the student.
We compare this misaligned teacher with an unpersonalized teacher that learns from factual gold
explanations (i.e., the baseline from RQ3).

Main Results. We show the results on StrategyQA in Table 15 and Table 16 with Flan-T5-Large as
the student and Flan-T5-XL as the teacher. Ranking data points by negative expected utility allows
the teacher to reduce student accuracy to 53% at 20% intervention and as low as random chance at
60% intervention (which is 8 points worse than the student performance with no intervention). Next,
Fig. 8(b) illustrates that the teacher can condition on non-factual explanations to successfully generate
worse explanations that reduce the student accuracy by at least 2 points, relative to the improvement
of benign explanations. Interestingly, many of the explanations are still helpful on an absolute scale,
though more than half of the deceiving explanations flip the student prediction to be incorrect (based
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on the trend declining earlier than the standard CoT explanations). Therefore, our conclusion is that
teacher LLM explanations can be influential for student LLMs in both good and bad ways.

Example 1

Q: Would someone with back pain enjoy picking strawberries?
Correct Explanation: Back pain may be worsened by repeated bending at the waist. Strawberries grow
very close to the ground.
Correct Answer: no
Deceiving Explanation: Back pain may be worsened by repeated bending at the waist. Strawberries grow
high up on the tree.

Example 2

Q: Could a snowy owl survive in the Sonoran?
Correct Explanation: The Snowy owl is a bird native to the Arctic regions of North America. Temperatures
in the North American Arctic range from -36.4F to 50F. The Sonoran is one of the hottest deserts in the
world. The Sonoran Desert can get as hot as 118F.
Correct Answer: no
Deceiving Explanation: The Snowy owl is a bird native to the Arctic regions of North America. Tem-
peratures in the North American Arctic range from -36.4F to 50F. The Sonoran is one of the most snowy
mountains in the world.

Example 3

Q: Has Drew Carey outshined Doug Davidson’s tenure?
Correct Explanation: Drew Carey has been the host of the Price is Right for over 13 years. Doug Davidson
hosted the Price is Right from 1994-1995.
Correct Answer: yes
Deceiving Explanation: Drew Carey has been the host of the Price is Right for over 13 years. Doug
Davidson is hosting the Price is Right from 1994 until now.

Figure 11: Examples of manually constructed deceiving explanations for StrategyQA that support
the wrong answer. The deceiving part of the explanations is highlighted in red.
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Example 1

Question: Can a computer be programmed entirely in Boolean algebra?
Gold Answer: yes
Unpersonalized Teacher Explanation: Boolean algebra is a branch of mathematics that deals with the
values true and false. A computer program is a set of instructions that a computer can execute.
Student Prediction (with Unpersonalized Explanation): no
Personalized Teacher Explanation: Boolean algebra is a branch of mathematics. It is used in computer
programming.
Student Prediction (with Personalized Explanation): yes

Example 2

Question: Would Amy Winehouse’s death have been prevented with Narcan?
Gold Answer: no
Unpersonalized Teacher Explanation: Amy Winehouse was a British singer who died of alcohol poisoning
in 2011. Narcan is a brand name for naloxone, a drug used to treat opioid overdoses.
Student Prediction (with Unpersonalized Explanation): yes
Personalized Teacher Explanation: Narcan is a drug used to reverse opioid overdoses. Amy Winehouse
died of alcohol poisoning.
Student Prediction (with Personalized Explanation): no

Example 3

Question: Could Brooke Shields succeed at University of Pennsylvania?
Gold Answer: yes
Unpersonalized Teacher Explanation: Brooke Shields is an American actress. The University of Pennsyl-
vania is a private Ivy League university in Philadelphia.
Student Prediction (with Unpersonalized Explanation): no
Personalized Teacher Explanation: Brooke Shields attended Princeton University.
Student Prediction (with Personalized Explanation): yes

Example 4

Question: Can Planned Parenthood tell your University that you have Herpes simplex virus?
Gold Answer: no
Unpersonalized Teacher Explanation: Planned Parenthood is a non-profit organization that provides
reproductive health care. Herpes simplex virus is a virus that causes herpes. Herpes is a sexually transmitted
disease.
Student Prediction (with Unpersonalized Explanation): yes
Personalized Teacher Explanation: Planned Parenthood is a non-profit organization that provides repro-
ductive health care. They do not have access to your medical records.
Student Prediction (with Personalized Explanation): no

Example 5

Question: Did US President during Spanish-American War suffer similar demise to Abraham Lincoln?
Gold Answer: yes
Unpersonalized Teacher Explanation: The Spanish-American War was fought in 1898. William McKinley
was the US President during the Spanish-American War. McKinley was assassinated in 1901. Abraham
Lincoln was the US President during the American Civil War. Lincoln was assassinated in 1865.
Student Prediction (with Unpersonalized Explanation): no
Personalized Teacher Explanation: William McKinley was assassinated in 1901. He was the 25th President
of the United States.
Student Prediction (with Personalized Explanation): yes

Figure 12: Qualitative comparison between unpersonalized and personalized explanations generated
by a LLaMA-65B teacher model for a LLaMA-7B student model for StrategyQA questions. For all
these questions, the personalized explanation leads to the correct student answer but the unpersonal-
ized one does not. A common pattern is that the personalized explanations are shorter, simpler, and
more directed toward answering the question.
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