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Abstract

Graph contrastive learning (GCL) has emerged as an effective technology for
various graph learning tasks. It has been successfully applied in real-world rec-
ommender systems, where the contrastive loss and downstream recommendation
objectives are combined to form the overall objective function. However, this
approach deviates from the original GCL paradigm, which pre-trains graph embed-
dings without involving downstream training objectives. In this paper, we propose a
novel framework called CPTPP, which enhances GCL-based recommender systems
by leveraging prompt tuning. This framework allows us to fully exploit the advan-
tages of the original GCL protocol. Specifically, we first summarize user profiles in
graph recommender systems to automatically generate personalized user prompts.
These prompts are then combined with pre-trained user embeddings for prompt
tuning in downstream tasks. This helps bridge the gap between pre-training and
downstream tasks. Our extensive experiments on three benchmark datasets confirm
the effectiveness of CPTPP compared to state-of-the-art baselines. Additionally,
a visualization experiment illustrates that user embeddings generated by CPTPP
have a more uniform distribution, indicating improved modeling capability for user
preferences. The implementation code is available online2 for reproducibility.

1 Introduction

Graph contrastive learning (GCL) has gained significant attention in the research community as a
prominent self-supervised learning paradigm. Several recent studies have showcased the effectiveness
of GCL in various general graph representation tasks [21, 16, 28, 37, 30], including node classification
and link prediction. Moreover, GCL has also demonstrated its applicability in real-world domains[29],
such as recommender systems [27, 32, 14]. By introducing additional self-supervision signals, GCL
provides recommender systems with a means to address the challenge of improving performance.

Most recommendation methods based on GCL typically combine contrastive loss with recommenda-
tion objectives to optimize the model in an end-to-end manner. However, this training protocol does
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not align with the purpose of GCL, which is primarily designed for pre-training graph representations
without involving downstream task objectives [21, 16]. In this approach, GCL pre-trains embeddings
that are then fine-tuned on specific tasks using downstream models. Incorporating both GCL and
recommendation objectives into the overall training objective can disrupt the embedding pre-training
process and requires careful control of the weight placed on contrastive loss. Additionally, previous
studies on GCL-based recommendation methods [27, 14] have shown that the weights of contrastive
loss in the overall objective are significantly smaller compared to the weight on the recommendation
objective. This is done to ensure desired performance on recommendation tasks. Therefore, based on
these observations, simply combining contrastive loss with downstream recommendation objectives
may not be effective for recommendation tasks.

The disparity between the pre-training objective and downstream tasks hinders the effective extraction
of useful information from pre-trained embeddings by downstream models [12, 26]. Consequently,
researchers often opt for combining GCL with recommendation objectives. However, it is important
to note that GCL pre-training targets primarily assess the agreement of mutual information among
graph elements, such as nodes, edges, and sub-graphs. This differs from conventional graph learning
tasks like node classification and link prediction. Consequently, the pre-training targets of GCL also
significantly diverge from downstream recommendation objectives that involve interaction (link)
prediction between users and items. Consequently, the reduction of such dissimilarities is essential to
enhance the performance of GCL-based recommendation approaches.

In this paper, we present the CPTPP framework as an extension of recent advancements in prompt
tuning for enhancing recommendation performance [23, 33] utilizing user embeddings pre-trained
by GCL. The technique of prompt tuning has emerged as a prominent method for fine-tuning
pre-trained models. By constructing appropriate prompts for downstream learning modules, this
approach effectively reformulates downstream tasks, thereby reducing disparities [26, 12, 15, 18].
By incorporating prompt-tuning, we can modify existing GCL-based recommendation methods to
align with the original GCL protocol involving pre-training and fine-tuning. Previous endeavors have
also explored the integration of prompt learning into conventional recommendation models [26, 3].
Despite their advantages, applying the prompt mechanism directly to GCL-based recommendation
methods is still difficult and not straightforward, i.e., how can we generate personalized user prompts
using only the user-item interaction graph without side information (e.g., age and occupation)?
To address this issue, we summarise three methods to produce different user profiles, including
historical interaction records, adjacency matrix factorization, and high-order user relations, based
on the user-item interaction graph for the personalized user prompt generation, which is applicable
in situations devoid of side information. Comprehensive experiments conducted on three publicly
available datasets illustrate the effectiveness of the proposed method with different types of prompts.

In summary, the contributions of this work are three-fold: (1) We propose a reformulation of existing
GCL-based recommendation methods by incorporating the prompt tuning mechanism. This allows
us to fully leverage the advantages of GCL during the pre-training phase, rather than relying on the
combination of contrastive loss with downstream objectives. (2) We introduce three user profiles
derived from the user-item interaction graph as inputs for the prompt generator. By using these
profiles, we are able to generate personalized prompts that enhance the quality of user embeddings
in graph-based recommendation systems. (3) We conduct extensive experiments on three publicly
available benchmark datasets to validate the effectiveness of our model. Through these experiments,
we analyze the important components and hyper-parameters of our approach and also investigate the
impact of different personalized prompts generated by our method.

2 Methodology

In this section, the proposed method, graph Contrastive Pre-Training with PromPt-tuning for recom-
mendation (CPTPP), will be introduced to reveal the intuitions and the technical details.

2.1 Framework Overview

There are three modules in the proposed CPTPP method, as shown in Figure 1: (1) graph contrastive
learning module, leveraging the advantages of GCL to the pre-train user and item embeddings, (2)
personalized prompts generation module, applying prompt mechanism to generate personalized
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Figure 1: The overview of the proposed method CPTPP.

prompts for users, and (3) recommendation module, fusing the generated personalized prompts and
pre-trained user embeddings to conduct prompt-tuning for the downstream recommendation task.

2.2 Graph Contrastive Learning Module

In order to achieve optimal performance in downstream tasks, the selection of a suitable pre-training
strategy is crucial for generating high-quality inputs for downstream modules. GCL has been
demonstrated as a powerful technique for graph pre-training [21, 16, 30, 37] and has emerged as an
effective tool for leveraging self-supervised signals to enhance graph-based recommendation models
[27, 14, 24, 32]. In the case of graph-based recommender systems, GCL represents a viable option
for pre-training embeddings. Furthermore, our work specifically focuses on reforming and improving
existing GCL-based recommendation methods. Therefore, it is imperative that we formulate a GCL
module within our proposed method. Current GCL-based recommendation methods [14, 24, 27, 32]
have explored various graph augmentation techniques on user-item interaction graphs in order to
generate augmented graphs for GCL, enabling the extraction of informative semantics from the graph
structures. Alternatively, some studies [31, 14] have designed context embeddings tailored for GCL
in recommended settings. Although different approaches exist for constructing contrasting samples,
they all share a common backbone for the GCL training protocol.

Here, we give a formal description of the GCL training protocol. Let ui denote the target graph
element (e.g., user node), u+

i represent the positive sample generated from ui (e.g., the neighbor node
of the target node), and U− = {u−

i,0, u
−
i,1, · · · , u

−
i,n} be the set of contrasting samples of ui (e.g.,

non-neighbour nodes of the target node). Considering the settings of the recommendation task, we use
G to represent the overall user-item graph, and all the target, positive sample, and contrasting samples
are within graph G. To acquire embeddings of these graph elements, we adopt f(∗) as the graph
encoder to process them, and the target embedding is denoted by ui = f(ui;G), u+ = f(u+

i ;G) is
the embedding of the positive sample, and {u−

i,0,u
−
i,1, · · · ,u

−
i,n} are the list of embeddings of the

negative contrasting samples. Following the settings of InfoNCE [20], the self-supervised learning
objective can be formulated as follows:

Lcontra = − log
exp(sim(ui,u

+
i )/τ)∑|U−|

t=0 exp(sim(ui,u
−
i,t)/τ)

, (1)
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where τ is the temperature hyper-parameter and sim(·, ·) is the similarity metric. In existing research
works [24, 27, 32, 31, 14], researchers usually combine the aforementioned contrastive learning loss
function with the recommendation objectives to formulate an overall objective function to train the
model in an end-to-end manner:

Loverall = Lrec + λ · Lcontra, (2)

where λ is a hyper-parameter that controls the weight of the contrastive learning objective. However,
as mentioned in Section 1, the proposed CPTPP adopts a pre-train, prompt, fine-tune manner to
train the model and treats GCL as a pre-training task instead of combining the contrastive loss with
recommendation objectives. To leverage recent research progress in GCL, we can adopt various
GCL learning methods tailored for the recommendation task here, like NCL [14], SGL [24], and
SimGCL [32], to obtain high-quality user and item embeddings. Then, the pre-trained user and item
embeddings will be processed by the prompt mechanism in the following.

2.3 Prompts Generation Module

Following the pre-training phase, our method, named CPTPP, incorporates a personalized prompts
generation module to utilize the pre-trained user and item embeddings effectively. The primary
objective of this module is to address the limitations present in existing prompt and recommendation
research. Prior studies [18, 15, 26] have highlighted the triviality and resource-intensive nature
of hard prompt design, making it impractical for real-world scenarios. Additionally, we observe
that most current approaches rely on side information (e.g., user descriptions) to generate prompts,
and there lacks a specific paradigm for prompting in graph-based recommendation scenarios. To
overcome these limitations, we propose the integration of a prompt generator [26] that generates
personalized prompts tailored specifically for graph-based recommendation contexts.

2.3.1 Personalized Prompt Generator

The main scope of the generated prompts lies in narrowing the gap between the pre-training targets
and the downstream objectives to utilize the pre-trained models or embeddings better. Some research
works designed hard prompts tailored for recommendation tasks converting recommendation tasks
into NLP tasks [3], which unifies multiple recommendation tasks in a single framework. For example,
a convention recommendation task can be converted to a sentence, ‘User 123 will purchase item
[id_token]’. Then, NLP techniques will be applied to predict the token. However, PPR [26] argued
that such an NLP-style hard prompt designing method has two major limitations: (i) It is difficult to
apply NLP techniques to predict the designated tokens since these tokens could be a user ID, item ID,
or ratings, which lack meaningful semantics. (ii) The designed hard prompts are universal and cannot
be customized for various users or items.

To address the challenges, we adopt a method to construct personalized prompts from user profiles in
a soft prompt automatic generation manner [12, 15, 26]. Let xu

i ∈ Rd×1 denote the profile of user i.
We, then, concatenate all the users’ profiles to form the user profile matrix Xu = [xu

1 ,x
u
2 , · · · ,xu

n] ∈
Rd×n. This matrix will be fed into a two-layer perceptron f(·) to acquire personalized prompts for
each user Pu = [pu

1 ,p
u
2 , · · · ,pu

n] ∈ Rp×n as follows:

Pu = f(Xu) = W2 · α(W1 ·Xu + b1) + b2, (3)

where p is the prompt size, W1 ∈ Rh×d and W2 ∈ Rp×h are trainable weights, b1 ∈ Rh×n

and b2 ∈ Rd×n are biases, and α(·) is the activation function. d and h represent the dimensions
of the pre-trained embeddings and hidden dimensions, respectively. The generated prompts will
be concatenated with the pre-trained user embeddings in a pre-fixed manner [12] and tuned by
the downstream objectives in the recommendation module to fulfill the process of prompt-tuning.
Specifically, let Upre_train ∈ Rd×n denote pre-trained user embeddings. Then, we have the inputs
from the user side for the recommendation module:

Uconcat =

[
Pu

Upre_train

]T
∈ Rn×(p+d). (4)

2.3.2 Personalized Inputs for Prompt Generation

The quality of the generated prompts depends on the personalized inputs for the generator. Current
research on prompt learning for recommendation mainly focuses on utilizing existing user features
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(e.g., age, gender, and occupation) and historical interaction records as the inputs to generate person-
alized prompts [26, 11, 25]. However, these methods are designed for conventional and sequential
recommendations, which are not entirely aligned with graph recommendations. It is necessary to
summarise and explore how to generate personalized prompts from the perspective of the graph
recommendation system. In this section, we summarise three types of inputs for the generator to
generate personalized prompts for the graph-based recommendation: historical interaction records,
adjacency matrix factorization, and high-order user relations.

Historical Interaction Records. It is a common and widely-used method to illustrate users’ features
or preferences via aggregating his/her historical interaction records, which is feasible in various
scenarios in recommendation systems. Let Iuk = {ik,1, ik,2, · · · , ik,m} denote the item set which
are purchased by user k. We use ik,j ∈ Rd to represent the embedding of the j-th item in user k’s
purchase history. Then, the profile of user k can be acquired by aggregating embeddings of those
items purchased by the user k:

xu
k = Aggregation(ik,1, ik,2, · · · , ik,m), (5)

where Aggregation(∗) is the aggregation function to read out the user’s profile.

The concatenation of all the user profiles can form the matrix Xu to be processed by the personalized
prompt generator. Let A ∈ Rn×q denote the adjacency matrix for the recommendation system,
which contains n users and q items. If we have the pre-trained item embeddings Ipre_train =
[i1, i1, · · · , iq] ∈ Rd×q , then, we have:

Xu = (A · ITpre_train)
T . (6)

Adjacency Matrix Factorization. The adjacency matrix is an effective tool to demonstrate the user-
item relations in the recommendation system. However, the adjacency matrix usually suffers from
sparsity problems and thus cannot be smoothly applied in many real-world recommendation scenarios.
To address this problem, researchers proposed several matrix factorizations (MF) methods [19, 7] to
decompose the adjacency matrix to obtain two matrices, U and V, denoting the latent embeddings
for users and items, which are much denser than the adjacency matrix A itself. The process of MF
can be formulated as follows:

argmin
U,V

n∑
i=1

q∑
j=1

(Ai,j − Âi,j), (7)

where Âi,j =
∑

k Ui,k ·VT
k,j = UiV

T
j . After the MF process, we have the latent matrix of users,

U ∈ Rn×d, serving as the user profile matrix Xu after transposed Xu = UT and can be fed into a
personalized prompt generator to produce personalized prompts Pu for each user. Specifically, we
set the size of latent embeddings as d, the same as the size of pre-trained embeddings.

High-Order User Relations. Learning informative embeddings from a 1-hop user-item interaction
graph is challenging when there is no side information. To address this limitation, we propose to
leverage high-order user relations to enrich the learned embeddings via constructing 2-ego graphs
for each user node to find the links between the other users and itself [22]. Then, we fuse the target
user’s purchase history and high-order neighbor embeddings to represent the target user profile.

We first construct the high-order connectivity matrix to achieve the goal. Let A∗ = Ā · Ā ∈

R(n+q)×(n+q) denote the high-order connectivity matrix, where Ā =

[
0 A
AT 0

]
∈ R(n+q)×(n+q),

recording all the users and items to which a user or item node is connected. Then, we build the matrix
E = [Upre_train, Ipre_train]

T ∈ R(n+q)×d to store pre-trained embeddings. Next, we can acquire
matrix Q ∈ Rn×d, which are the users’ personalized profiles about high-order user relations, via:[

Q
M

]
= A∗ ·E ∈ R(n+q)×d, (8)

where M ∈ Rq×d, denoting the high-order item relations and being omited after Q is extracted.
Then, a matrix transpose operation is required to obtain the user profile matrix Xu = QT .
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2.4 Recommendation Module

After the pre-training and the personalized prompts generation phase, a recommendation module is
required so that we can verify whether the prompt-tuning module rectifies the pre-trained embeddings
by GCL and makes them be adapted to the downstream recommendation tasks better. In this module,
we take the inner product of user and item embeddings as the predicted score for the recommendation.
Bayesian Personalized Ranking (BPR) [17] is adopted as the training objective to tune the pre-
trained embeddings based on the predicted scores. The motivation for formulating such a simple
recommendation module is to avoid the performance gain brought by the delicate designs of those
advanced recommendation models, which could affect the observations on our proposed method.

Algorithm 1: CPTPP algorithm
Input: User embedding table UE ; Item embedding table IE ; User-item interaction graph

adjacency matrix A; Graph contrastive learning model f(∗); User profile Xu; Prompt
generator g(·); Multi-layer perceptron MLP (·); Pre-train epoch i; Prompt-tune epoch j.

Output: User and item embedding tables U∗
E and I∗E .

1 Pre-train phase:
2 Initialize UE , IE ; U

′

E , I
′

E ← UE , IE ;
3 count = 0;
4 while count < i do

// Update user and item embedding tables.
5 U

′

E , I
′

E = f(U
′

E ; I
′

E ;A);
6 count = count+ 1;
7 end
8 Prompt-tune phase:
9 U∗

E ← U
′

E ; I∗E ← I
′

E ;
10 count = 0;
11 while count < j do

// Personalized prompt generation.
12 Pu = g(Xu);

// Concatenate & fusion.
13 U∗

E = MLP([Pu;U∗
E ]

T ) ∈ Rn×d;
14 Optimise L =

∑
i∈U Li

rec + λ||Θ||22;
15 Update U∗

E , I∗E ;
16 count = count+ 1;
17 end
18 return U∗

E , I∗E

2.4.1 Prompts and Pre-Trained Embeddings Fusion

We concatenate the generated personalized prompts and the pre-trained user embeddings in the
previous step and have Uconcat ∈ Rn×(p+d), whose dimensionality is different from the pre-trained
embeddings Ipre_train ∈ Rn×d. Hence, we need first to fuse the personalized prompts and the
pre-trained user embeddings for the recommendation objective training. Specifically, we adopt a
multi-layer perceptron (MLP) g(·) as the mapping function that is g : Rn×(p+d) → Rn×d. Then, we
can have dimensionality-reduced user representations U∗ = g(Uconcat) ∈ Rn×d, enhanced by the
personalized prompts. After that, we can apply the inner product to predict how likely the user i
would interact with the item j by ŷi,j = u∗

i · ij , where u∗
i is the i-th row of U∗.

2.4.2 Training Objective for Recommendation Task

For simplicity and fair comparison, we adopt BPR [17] loss as the training objective for the recom-
mendation task. For each user i, we have:

Li
rec =

∑
j+∈Iu

i

∑
j−∈I\Iu

i

− log σ(ŷi,j+ − ŷi,j−). (9)
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However, it is unaffordable to consider all the unobserved interactions of the user i. Therefore we
sample several negative items N u

i , where |N u
i | << |I\Iui |, in practice.

Moreover, we introduce L2-norm into the training objective to regularize the parameters in the model
to address the overfitting problem and improve generalization ability. Therefore, the overall objective
function can be formulated as:

L =
∑
i∈U
Li
rec + λ||Θ||22. (10)

2.5 Summary

After the training process ends, the model can be used to conduct inference. For the inference phase,
we do not conduct pre-train and prompt-tune again. What we need to do is to extract target user and
item embeddings from the trained embedding tables. Then, we calculate their inner product to predict
the probability that the user will interact with the item in the future.

The complete training procedure of CPTPP is illustrated by Algorithm 1. We first initialize the
user and item embedding tables (line 2). Then, we apply a GCL model to conducting embedding
pre-training (line 4 ~ 7). Next, we step into the prompt-tuning phase and assign the pre-trained
embeddings to U∗

E and I∗E (line 9). Following, we input the user profile to the prompt generator to
produce the personalized prompts (line 12) and combine them with U∗

E (line 13). Finally, we use
U∗

E and I∗E to calculate the loss and update them accordingly (line 14 ~ 15). The update procedure
will repeat until the termination condition is achieved (line 11 ~ 17).

3 Experiment

To verify the effectiveness of the proposed method, CPTPP, in this paper, we conduct extensive
experiments and demonstrate the results with insightful analysis in this section.

Table 1: Dataset Statistics
Dataset #Users #Items #Interactions Density

Douban 2,848 39,586 894,887 0.794%

ML-1M 6,040 3,900 1,000,209 4.246%

Gowalla 29,858 40,981 1,027,370 0.084%

3.1 Experimental Setup

This section introduces the experimental settings, including datasets and baselines we used, perfor-
mance metrics, and hyper-parameter settings for CPTPP. More details about how to get access to the
datasets and implementation details are listed in Appendix A.

Datasets To verify the performance of CPTPP in the recommendation task, we select three popular
datasets: Douban [34], MovieLens-1M [5], and Gowalla [13]. The detailed statistics about the
three datasets are listed in Table 1. For each dataset, we randomly select 80% of historical user-item
interactions as the training set, and the rest 20% records will serve as the testing set. Following the
settings widely adopted by the research community [22, 6], we treat each user-item interaction record
as a positive instance and conduct negative sampling to couple it with a negative instance, which is
an unobserved user-item interaction in the dataset.

Baselines We select several baselines for comparison experiments: BPR-MF [9], BUIR [10], SelfCF
[36], NCL [14], and SimGCL [32]. For CPTPP, we have three variations, which are CPTPP-H,
CPTPP-M, and CPTPP-R, respectively. -H takes historical interaction records for personalized
prompt generation. -M indicates that we take adjacency matrix factorization for personalized prompts
generation. Furthermore, -R takes high-order user relations for the personalized prompt generation.

Metrics To evaluate the quality of top-K recommendation, we adopt three popular metrics, which
are Hit Ratio@K, Precision@K, and NDCG@K, respectively. In our settings, the value of K is set
to 5 and 20. Following the evaluation protocol in [14, 32], we take the full ranking strategy [35].
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Hyper-parameter Settings To ensure reproducibility, we disclose the comprehensive hyper-
parameter settings for implementing our proposed CPTPP in the source codes and Appendix A.3.

3.2 Experiment Results

We conduct experiments and provide analysis in this section. More supplementary experiment results,
including comparison, hyper-parameter, and ablation study, are revealed in Appendix B.

Table 2: The experiment results of comparison studies. The figures in boldface indicate the best
performance achieved by one of the three versions of CPTPP, and the figures underlined indicate the
best performance among all the baselines.

Datasets Metrics Methods
BPR-MF BUIR SelfCF NCL SimGCL CPTPP-H CPTPP-M CPTPP-R

Douban

Hit Ratio@5 0.0134 0.0156 0.0161 0.0161 0.0161 0.0164 0.0165* 0.0164
Hit Ratio@20 0.0446 0.0492 0.0502 0.0507 0.0489 0.0521 0.0528* 0.0523
Precision@5 0.1812 0.2113 0.2185 0.2187 0.2182 0.2221 0.2235* 0.2224

Precision@20 0.1512 0.1667 0.1699 0.1717 0.1657 0.1766 0.1790* 0.1772
NDCG@5 0.1904 0.2209 0.2264 0.2313 0.2370 0.2359 0.2378* 0.2355

NDCG@20 0.1749 0.2019 0.2058 0.1958 0.2020 0.2065 0.2098* 0.2070

ML-1M

Hit Ratio@5 0.0469 0.0617 0.0624 0.0655 0.0631 0.0676* 0.0674 0.0672
Hit Ratio@20 0.1454 0.1519 0.1643 0.1796 0.1698 0.1851 0.1861* 0.1845
Precision@5 0.1800 0.2368 0.2396 0.2513 0.2420 0.2592* 0.2585 0.2577

Precision@20 0.1395 0.1457 0.1576 0.1723 0.1629 0.1776 0.1785* 0.1770
NDCG@5 0.1968 0.2722 0.2689 0.2818 0.2767 0.2919* 0.2895 0.2878

NDCG@20 0.2103 0.2367 0.2508 0.2683 0.2670 0.2781 0.2782* 0.2756

Gowalla

Hit Ratio@5 0.0429 0.0479 0.0497 0.0488 0.0513 0.0518 0.0512 0.0519*
Hit Ratio@20 0.1039 0.0993 0.1042 0.1040 0.1065 0.1115 0.1103 0.1120*
Precision@5 0.0624 0.0698 0.0723 0.0711 0.0746 0.0754 0.0745 0.0755*

Precision@20 0.0378 0.0361 0.0379 0.0378 0.0387 0.0406 0.0401 0.0407*
NDCG@5 0.0770 0.0911 0.0939 0.0894 0.0963 0.0963 0.0953 0.0961

NDCG@20 0.0939 0.0990 0.1036 0.1005 0.1126 0.1092 0.1083 0.1092

“*” indicates that CPTPP outperforms the best baseline significantly (i.e., two-sided t-test with p < 0.05).

3.2.1 Overall Comparison Studies

Table 2 shows the comparison results among all the baselines and different versions of the proposed
methods. (i) We can first observe that the traditional method BPR-MF is outperformed by all the
other methods as they utilize contrastive learning to introduce extra unsupervised training signals.
(ii) Among all the baselines, GCL-based recommendation methods, including NCL and SimGCL,
significantly and consistently outperform those self-supervised recommendation methods without
graph learning module equipped, BUIR and SelfCF. It is because those GCL-based methods adopt
graph neural networks, leveraging the sophisticated structure semantics in user-item interaction
graphs to enrich learned user embeddings and item embeddings. (iii) But we notice that SimGCL
only outperforms NCL on dataset Gowalla, which has a much larger scale than the others, probably
because SimGCL adopts a simplified GCL method that relieves the model overfitting problem on
a large-scale dataset. It is the potential reason NCL outperforms SimGCL on smaller datasets, as
the simplified GCL method may not provide sufficient self-supervised training signals. (iv) Though
the proposed CPTPP solely adopts BPR loss, which is significantly different from the pre-training
procedure, for the recommendation task training, we utilize the prompt learning mechanism to better
adapt the embeddings pre-trained by the GCL method to the downstream task, expecting to improve
the recommendation performance. According to the experiment results, all versions of our proposed
method achieve competitive results. Such results reflect prompt-tuning’s effectiveness in narrowing
the gap between the pre-train objective and the downstream tasks.

To further evaluate the performance of the GCL-based recommendation methods, we visualize the
produced user embeddings produced by t-SNE and Gaussian kernel density estimation (KDE). We
can see that CPTPP has a more uniform distribution of the produced user embeddings, illustrated by
the uniformity of the color maps, especially on dataset ML-1M and Gowalla. As suggested by Z. Lin
et al. [14], the more uniform the embedding distribution is, the more powerful the capability to model
the diverse preferences of users the produced embeddings will have, which reflects the superiority of
CPTPP compared to the baselines. The visualizations and analysis are listed in Appendix B.1.
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Figure 2: The visualizations of the user embeddings generated by the proposed method.

3.2.2 Hyper-Parameter Studies

To investigate the properties of our proposed CPTPP method, we conduct hyper-parameter studies
on an important term, the dimension size of the personalized prompt. By fixing all the other hyper-
parameters, we comprehensively examine the performance of three versions of the proposed CPTPP
on all the datasets with different prompt sizes. Specifically, the size of the personalized prompt
is selected from {8, 16, 32, 64, 128, 256}. We choose two metrics, Precision@5 and NDCG@5,
to demonstrate CPTPP’s performance variations with regard to different prompt sizes. All the
experiment results are shown in Figure 3 and Figure 5 in Appendix B.2. (i) The first finding we
can observe is that, in most cases, CPTPP has the best performance when the prompt size is not
larger than the dimensionality of user embeddings, i.e., 64. A potential reason is that the prompt
is usually less informative than the pre-trained embeddings, so a sizeable prompt dimension would
introduce too much noise to disturb and conceal the structural semantics contained in the pre-trained
user embeddings. (ii) We also notice a significant performance improvement when prompt size is
256 in several cases, such as CPTPP-M on dataset ML-1M and CPTPP-R on dataset Gowalla. Such
outlier performance could be caused by random factors during the overall training process. However,
they still fail to significantly outperform the CPTPP model, which has a much smaller prompt size.
Therefore, a small prompt size for prompt-tuning is a better option in practice as they achieve a
relatively better recommendation quality and higher efficiency.
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Figure 3: The performance, demonstrated by Precision@5 and NDCG@5, of all variations of CPTPP.

3.2.3 Ablation Studies

As we summarize three strategies to generate personalized prompts for users, we conduct the ablation
study to explore the differences among these methods. Two ablation studies are conducted in this
section to illustrate the performance of three variations of the CPTPP method. The first ablation study
is about the overall evaluation of recommendation quality, whose analysis is listed below. The second
one is about the embedding visualizations and the related analysis, illustrated in Appendix B.3.

We notice that (i) CPTPP-M achieves the best performance on dataset Douban. Nevertheless, the
performance of CPTPP-M degrades on dataset ML-1M and is the worst case on dataset Gowalla.
Considering the number of users reflected in Table 1, we find that the performance of CPTPP-M drops
as the dataset’s number of users increases. So, CPTPP-M has good performance if the number of users
in the dataset is relatively small. It may be because matrix factorization, as a naive method, cannot
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fully reveal user preferences in a complex user-item interaction graph with too many user nodes. (ii)
CPTPP-R utilizes high-order relationships among users to enrich the generated personalized prompts
for users. In such settings, the item information would also be aggregated due to the message-passing
mechanism in GNNs. Therefore, it achieves the best performance on the dataset Gowalla, having
the most users and the most complex user-user relation among all the datasets. (iii) CPTPP-H has
moderate performance. CPTPP-H adopts historical interaction records, formed by trainable item
embeddings, to generate personalized prompts. Those trainable elements endow CPTPP-H with a
more robust capability to represent user preferences than matrix factorization. It is also reasonable
that CPTPP-R outperforms CPTPP-H as CPTPP-H lacks consideration of high-order user relations.

4 Related Work

4.1 GCL in Recommendation Systems

The GCL-based recommendation system is now a trending topic in the research community. Re-
searchers leverage the advantages of GCL to improve current graph-based recommendation methods
further, achieving satisfying performance. The research scope first lies in utilizing user-item interac-
tion records to accommodate GCL techniques. For example, HMG-CR [27] innovatively proposes a
concept called hyper-meta path. Then GCL is applied to adaptively learn the behavioural patterns of
users via contrasting different paths. NCL [14] improves graph-based recommendation models via
neighborhood-enriched contrastive learning, including semantic neighbors and structural neighbors
(r-ego graphs). To better understand the role of GCL in the recommendation systems, SGL [24]
conducts a comprehensive theoretical analysis, giving insights and achieving promising performance.
Based on the findings of SGL, SimGCL [32] is proposed to simplify GCL in recommendation via
discarding complex augmentations, reducing the volume of GCL-based recommendation models, and
performing competitive results in the experiments. However, current GCL-based recommendation
methods combine the graph contrastive loss with the recommendation objectives to formulate an
overall objective to train the models, suffering from various limitations summarised in the previ-
ous sections. Our method innovatively introduces the prompt mechanism to build a pre-train then
prompt-tune paradigm for GCL-based recommender systems to address the limitations we discussed.

4.2 Prompt-Tuning

Prompt-tuning is a novel and trending paradigm for pre-train models in the natural language process
(NLP). The core idea of prompt-tuning is to re-formulate the downstream tasks, narrowing the huge
gap between them and the pre-train objective [1, 18]. There are two types of methods to achieve
prompt-tuning [3]. The first is manually designing or searching for proper discrete prompts (hard
prompts) [2, 8, 18]. However, such a fashion is trivial and resource-consuming as the search space is
extremely large and expert knowledge is required [26] in some application scenarios. To address this
limitation, another line of methods is proposed, focusing on generating continuous vector embeddings
as the soft prompts [4, 15]. The application of prompt-tuning in recommendation systems has been
explored. For example, P5 [3] reforms the recommendation tasks to the NLP tasks and follows the
hard-prompt fashion to perform recommendations. PPR [26], instead, takes a soft-prompt and pre-fix
strategy [12] to generate personalized prompts for users in the recommendation systems automatically.
Nevertheless, graph learning and its applications are now out of the scope of prompt-tuning research.
Besides, most current prompt learning methods require side information to produce high-quality
prompts, resulting in a limited comfort zone for its applications. Our CPTPP first adopts the prompt
mechanism to the GCL-based recommendation area.

5 Conclusion

In this paper, we propose a CPTPP method to adopt a prompt-tuning technique to reform and improve
current GCL-based recommendation methods. To better accommodate prompt learning to graph
recommendation scenarios, we summarise several graph-oriented user profiles to generate personal-
ized user prompts to conduct prompt-tuning for downstream recommendation tasks. Comprehensive
experiments have shown the effectiveness, superiority, and properties of the proposed CPTPP method.
The future research directions about prompt-tuning in GCL-based recommendation may be two-fold:
how to (i) generate personalized prompts and (ii) integrate prompt-tuning strategy into GCL protocols.

10



Acknowledgments and Disclosure of Funding

This research work was supported by the Research Impact Fund (No. R1015-23), the Australian
Research Council (ARC) under Grant Nos. DP220103717, LE220100078, LP170100891, and
DP200101374 and was partially supported by APRC - CityU New Research Initiatives (No. 9610565,
Start-up Grant for New Faculty of City University of Hong Kong), CityU - HKIDS Early Career
Research Grant (No. 9360163), Hong Kong ITC Innovation and Technology Fund Midstream
Research Programme for Universities Project (No. ITS/034/22MS), Hong Kong Environmental
and Conservation Fund (No. 88/2022), SIRG - CityU Strategic Interdisciplinary Research Grant
(No.7020046, No. 7020074), Tencent (CCF-Tencent Open Fund, Tencent Rhino-Bird Focused
Research Fund), Huawei (Huawei Innovation Research Program), Ant Group (CCF-Ant Research
Fund, Ant Group Research Fund) and Kuaishou.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[2] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3816–3830, Online, August 2021. Association for Computational
Linguistics.

[3] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation
as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5).
In Proceedings of the 16th ACM Conference on Recommender Systems, RecSys ’22, page
299–315, New York, NY, USA, 2022. Association for Computing Machinery.

[4] Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. PPT: Pre-trained prompt tuning for few-
shot learning. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8410–8423, Dublin, Ireland, May 2022. Association
for Computational Linguistics.

[5] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015.

[6] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’20, page 639–648, New York, NY, USA, 2020. Association for Computing
Machinery.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, page 173–182, Republic and Canton of Geneva, CHE, 2017. International World
Wide Web Conferences Steering Committee.

[8] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How Can We Know What
Language Models Know? Transactions of the Association for Computational Linguistics,
8:423–438, 07 2020.

[9] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

11



[10] Dongha Lee, SeongKu Kang, Hyunjun Ju, Chanyoung Park, and Hwanjo Yu. Bootstrapping
user and item representations for one-class collaborative filtering. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’21, page 317–326, New York, NY, USA, 2021. Association for Computing Machinery.

[11] Lei Li, Yongfeng Zhang, and Li Chen. Personalized prompt learning for explainable recommen-
dation. ACM Trans. Inf. Syst., 41(4), mar 2023.

[12] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, Online, August 2021. Association for Computational Linguistics.

[13] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. Modeling user exposure
in recommendation. In Proceedings of the 25th International Conference on World Wide Web,
WWW ’16, page 951–961, Republic and Canton of Geneva, CHE, 2016. International World
Wide Web Conferences Steering Committee.

[14] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. Improving graph collaborative
filtering with neighborhood-enriched contrastive learning. In Proceedings of the ACM Web
Conference 2022, WWW ’22, page 2320–2329, New York, NY, USA, 2022. Association for
Computing Machinery.

[15] Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of
soft prompts. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5203–5212,
Online, June 2021. Association for Computational Linguistics.

[16] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 1150–1160, New York, NY, USA, 2020. Association for
Computing Machinery.

[17] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, page 452–461, Arlington, Virginia,
USA, 2009. AUAI Press.

[18] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4222–4235, Online, November 2020. Association for Computational
Linguistics.

[19] Suvrit Sra and Inderjit Dhillon. Generalized nonnegative matrix approximations with bregman
divergences. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems, volume 18. MIT Press, 2005.

[20] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding, 2019.
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A Reproducibility

This section provides supplementary details about our experimental settings for reproducibility.

A.1 Datasets

Three publicly available datasets are used in this work to examine the performance of the proposed
CPTPP. Here, we provide the links for downloading these datasets for readers to retrieve:

• Douban: https://pan.baidu.com/s/1hrJP6rq#list/path=%2F

• ML-1M: https://grouplens.org/datasets/movielens/1m/

• Gowalla: https://github.com/kuandeng/LightGCN/tree/master/Data/gowalla

A.2 Baselines

We select several baselines for comparison experiments, which are listed below:

• BPR-MF [9] adopts a matrix factorization framework to learn embeddings for users and items via
optimizing the BPR loss function.

• BUIR [10] only uses positive user-item interactions to learn representations following a boot-
strapped manner, consisting of an online encoder and a target encoder.

• SelfCF [36] follows a similar strategy that BUIR adopts, which drops the momentum encoder to
simplify the previously proposed method.

• NCL [14] utilizes neighbor clustering to enhance GCL methods to acquire enhanced embeddings
for users and items in the recommendation system.

• SimGCL [32] discusses the role of augmentations in GCL for recommendation tasks and proposes
a simplified GCL method for recommendations.

A.3 Hyper-parameter Settings

Table 3: Summary of hyper-parameter settings of CPTPP.

Hyper-parameter Notation Dataset
Douban ML-1M Gowalla

Hidden dimension size d 64 64 64
Pre-train epoch - 10 10 10

Prompt-tune epoch - 100 100 100
Batch size - 512 512 2048

Learning rate - 0.003 0.001 0.001
Regularizer weight λ 0.0001 0.0001 0.0001

Number of GNN layers - 2 2 2
Dropout rate - 0.1 0.1 0.1

Temperature parameter τ 0.2 0.2 0.2

Prompt size p
{8, 16, 32, 64,

128, 256}
{8, 16, 32, 64,

128, 256}
{8, 16, 32, 64,

128, 256}

We list detailed hyper-parameter settings here for reproducibility. The dimensionality of the repre-
sentation embeddings of users and items is set to 64, and the personalized prompt size is chosen
from {8, 16, 32, 64, 128}. For the pre-train phase, the maximum training epoch is 10, and for the
prompt-tune stage, the training epoch is set to 100. The training batch size is 512 for the relatively
smaller datasets, including Douban and ML-1M. For Gowalla, it is set to 2048. The learning rate
and λ are set to 1e−3 and 1e−4, where λ is the weight for the l2-norm term in the overall training
objective. The default number of layers of graph neural networks used in the models is set to 2. These
settings are summarised in Table 3.
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Figure 4: The visualization results of the user embeddings generated by baselines.

B Supplementary Experiment

In this section, several supplementary experiments are provided. Due to the page limit, the supple-
mentary experiment results are listed and analyzed in the following instead of the main content.

8 16 32 64 128 256
Prompt Size

0.210

0.215

0.220

0.225

0.230

0.235

0.240

Pr
ec

isi
on

@
5

0.21

0.22

0.23

0.24

ND
CG

@
5

Precision@5
NDCG@5

(a) CPTPP-M - Douban

8 16 32 64 128 256
Prompt Size

0.250

0.255

0.260

0.265

Pr
ec

isi
on

@
5

0.2800

0.2825

0.2850

0.2875

0.2900

0.2925

0.2950

ND
CG

@
5

Precision@5
NDCG@5

(b) CPTPP-M - ML-1M

8 16 32 64 128 256
Prompt Size

0.070

0.072

0.074

0.076

0.078

0.080

Pr
ec

isi
on

@
5

0.090

0.092

0.094

0.096

0.098

0.100

ND
CG

@
5

Precision@5
NDCG@5

(c) CPTPP-M - Gowalla

8 16 32 64 128 256
Prompt Size

0.19

0.20

0.21

0.22

0.23

0.24

Pr
ec

isi
on

@
5

0.20

0.21

0.22

0.23

0.24

0.25

ND
CG

@
5

Precision@5
NDCG@5

(d) CPTPP-R - Douban

8 16 32 64 128 256
Prompt Size

0.245

0.250

0.255

0.260

0.265

Pr
ec

isi
on

@
5

0.280

0.282

0.284

0.286

0.288

0.290

ND
CG

@
5

Precision@5
NDCG@5

(e) CPTPP-R - ML-1M
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Figure 5: The performance, demonstrated by the metrics Precision@5 and NDCG@5, of CPTPP-M
and CPTPP-R on the selected datasets.

B.1 Supplementary Comparison Study

According to Figure 4, We can see that (i) embeddings learned by SimGCL fall into several hot areas
on dataset ML-1M, and they are centralized in a small area on datasets Douban and Gowalla. (ii) NCL
exhibits better performance as the distribution of the user embeddings expands to a relatively larger
area than that of SimGCL. Compared to our proposed method CPTPP, we can observe that CPTPP
has a more uniform distribution of the produced user embeddings, illustrated by the uniformity of the
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color maps, especially on dataset ML-1M and Gowalla. As suggested in [14], the more uniform the
embedding distribution is, the more capability to model the diverse preferences of users the method
has, which reflects CPTPP’s superiority.

B.2 Supplementary Hyper-Parameter Study

In Section 3.2.2, we solely illustrate the performance of CPTPP-H with different prompt sizes on the
three datasets. We show the rest of the hyper-parameter study results in Figure 5. For easy reading,
we list our findings here again: (i) The first thing we can observe is that, in most cases, CPTPP has the
best performance when the prompt size is not larger than the dimensionality of user embeddings. A
potential reason is that sizeable prompt dimensions would introduce more noise into pre-trained user
embeddings, disturbing the structural semantics extracted from the user-item interaction graph by
graph contrastive learning. (ii) We also notice a significant performance improvement when prompt
size is 256 in several cases, such as CPTPP-M on dataset ML-1M and CPTPP-R on dataset Gowalla.
However, they still fail to significantly outperform the CPTPP model, which has a much smaller
prompt size. Therefore, a small prompt size for prompt-tuning is a better option in practice as they
achieve a relatively good recommendation quality and higher efficiency.
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Figure 6: The visualizations of the user embeddings generated by different versions of CPTPP.

B.3 Supplementary Ablation study

The impacts of different personalized prompts on CPTPP are investigated. We visualize the user
embeddings produced by all three variations of the proposed CPTPP as shown in Figure 6. We
can observe that both CPTPP-H and CPTPP-R have a more uniform distribution, especially on
datasets Douban and ML-1M. Such an observation indicates that personalized prompts generated
from trainable user profiles can produce user embeddings that have more uniform distributions to
demonstrate diverse user preferences better.
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