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Abstract

We study the problem of (ϵ, δ)-certified machine unlearning for minimax models.
Most of the existing works focus on unlearning from standard statistical learning
models that have a single variable and their unlearning steps hinge on the direct
Hessian-based conventional Newton update. We develop a new (ϵ, δ)-certified
machine unlearning algorithm for minimax models. It proposes a minimax un-
learning step consisting of a total Hessian-based complete Newton update and the
Gaussian mechanism borrowed from differential privacy. To obtain the unlearning
certification, our method injects calibrated Gaussian noises by carefully analyzing
the “sensitivity” of the minimax unlearning step (i.e., the closeness between the
minimax unlearning variables and the retraining-from-scratch variables). We derive
the generalization rates in terms of population strong and weak primal-dual risk for
three different cases of loss functions, i.e., (strongly-)convex-(strongly-)concave
losses. We also provide the deletion capacity to guarantee that a desired popula-
tion risk can be maintained as long as the number of deleted samples does not
exceed the derived amount. With training samples n and model dimension d, it
yields the order O(n/d1/4), which shows a strict gap over the baseline method of
differentially private minimax learning that has O(n/d1/2). In addition, our rates
of generalization and deletion capacity match the state-of-the-art results derived
previously for standard statistical learning models.

1 Introduction

Minimax models have been widely applied in a variety of machine learning applications, including
generative adversarial networks [Goodfellow et al., 2014, Arjovsky et al., 2017], adversarially robust
learning [Madry et al., 2018, Sinha et al., 2018], and reinforcement learning [Du et al., 2017, Dai
et al., 2018]. This is largely credited to the two-variable (i.e., primal and dual variables) model
structure of minimax models, which is versatile enough to accommodate such diverse instantiations.
As is common in machine learning practice, training a successful minimax model relies crucially
on a potentially large corpus of training samples that are contributed by users. This raises privacy
concerns for minimax models. Unlike standard statistical learning (STL) models, the privacy studies
for minimax models are relatively newer. Most of the existing studies focus on privacy protection
during the training phase under the differential privacy (DP) notion [Dwork et al., 2006] and federated
minimax learning settings [Sharma et al., 2022]. Recent works in this direction have successfully
achieved several optimal generalization performances measured in terms of the population primal-
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Table 1: Summary of Results. Here (S)C means (strongly-)convex loss function, and (S)C-(S)C means
(strongly-)convex-(strongly-)concave loss function, PD means Primal-Dual. n is the number of
training samples and d is the model dimension.

Model Unlearning Algorithm Setting Generalization Measure Deletion Capacity

STL
DP-based

[Bassily et al., 2019]
C Population Excess Risk

[Sekhari et al., 2021]
O(n/d1/2)

[Sekhari et al., 2021] (S)C O(n/d1/4)

Minimax
Learning

DP-based
[Zhang et al., 2022a]

SC-SC
Population Strong

PD Risk
O(n/d1/2)

DP-based
[Bassily et al., 2023]

C-C

Our Work (S)C-(S)C
Population Weak or

Strong PD Risk
O(n/d1/4)

dual (PD) risk for DP minimax models specifically [Yang et al., 2022, Zhang et al., 2022a, Bassily
et al., 2023, Boob and Guzmán, 2023].

Machine unlearning is an emerging privacy-respecting problem concerning already-trained models
(i.e., during the post-training phase) [Cao and Yang, 2015, Guo et al., 2020, Sekhari et al., 2021,
Graves et al., 2021, Bourtoule et al., 2021, Li et al., 2021, Shibata et al., 2021, Wu et al., 2022,
Cheng et al., 2023, Chen et al., 2023, Tarun et al., 2023, Wu et al., 2023, Ghazi et al., 2023, Wang
et al., 2023b]. That is, it removes certain training samples from the trained model upon their users’
data deletion requests. It is driven by the right to be forgotten, which is mandated by a growing
number of user data protection legislations enacted in recent years. Prominent examples include the
European Union’s General Data Protection Regulation (GDPR) [Mantelero, 2013], the California
Consumer Privacy Act (CCPA), and Canada’s proposed Consumer Privacy Protection Act (CPPA).
Machine unlearning comes with several desiderata. Besides sufficiently removing the influence of
the data being deleted, it should be efficient and avoid the prohibitive computational cost of the
baseline method to fully retrain the model on the remaining dataset from scratch. To guarantee the
sufficiency of data removal, there are exact machine unlearning methods [Cao and Yang, 2015, Ginart
et al., 2019, Brophy and Lowd, 2021, Bourtoule et al., 2021, Ullah et al., 2021, Schelter et al., 2021,
Chen et al., 2022b,a, Yan et al., 2022, Di et al., 2023, Xia et al., 2023] and approximate machine
unlearning methods [Golatkar et al., 2020a, Wu et al., 2020, Golatkar et al., 2020b, Nguyen et al.,
2020, Neel et al., 2021, Peste et al., 2021, Golatkar et al., 2021, Warnecke et al., 2023, Izzo et al.,
2021, Mahadevan and Mathioudakis, 2021, Mehta et al., 2022, Zhang et al., 2022c, Wang et al.,
2023a, Chien et al., 2023a, Lin et al., 2023] (some can offer the rigorous (ϵ, δ)-certification [Guo
et al., 2020, Sekhari et al., 2021, Suriyakumar and Wilson, 2022, Chien et al., 2023b] inspired by
differential privacy). In addition, recent studies also point out the importance of understanding the
relationship between the generalization performance and the amount of deleted samples [Sekhari
et al., 2021, Suriyakumar and Wilson, 2022]. In particular, they introduce the definition of deletion
capacity to formally quantify the number of samples that can be deleted for the after-unlearning
model to maintain a designated population risk. However, most existing works so far have focused
on machine unlearning for standard statistical learning models with one variable, which leaves it
unknown how to design a minimax unlearning method to meet all the desiderata above.

Machine unlearning for minimax models becomes a pressing problem because the trained minimax
models also have a heavy reliance on the training data, while the users contributing data are granted
the right to be forgotten. In this paper, we study the machine unlearning problem for minimax models
under the (ϵ, δ)-certified machine unlearning framework. We collect in Table 1 the results in this
paper and comparisons with baseline methods that are adapted from previous papers to (ϵ, δ)-certified
machine unlearning.

Our main contributions can be summarized as follows.

• Certified minimax unlearning algorithm: We develop (ϵ, δ)-certified minimax unlearning algorithm
under the setting of the strongly-convex-strongly-concave loss function. To sufficiently remove
the data influence, the algorithm introduces the total Hessian consisting of both direct Hessian
and indirect Hessian, where the latter is crucial to account for the inter-dependence between the
primal and dual variables in minimax models. It leads to the complete Newton-based minimax
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unlearning update. Subsequently, we introduce the Gaussian mechanism from DP to achieve the
(ϵ, δ)-minimax unlearning certification, which requires careful analysis for the closeness between
the complete Newton updated variables and the retraining-from-scratch variables.

• Generalization: We provide generalization results for our certified minimax unlearning algorithm
in terms of the population weak and strong primal-dual risk, which is a common generalization
measure for minimax models.

• Deletion capacity: We establish the deletion capacity result, which guarantees that our unlearning
algorithm can retain the generalization rates for up to O(n/d1/4) deleted samples. It matches the
state-of-the-art result under the STL unlearning setting that can be regarded as a special case of our
minimax setting.

• Extension to more general losses: We extend the certified minimax unlearning to more general
loss functions, including convex-concave, strongly-convex-concave, and convex-strongly-concave
losses, and provide the corresponding (ϵ, δ)-certification, population primal-dual risk, and deletion
capacity results.

• Extension with better efficiency: We develop a more computationally efficient extension, which
can also support successive and online deletion requests. It saves the re-computation of the total
Hessian matrix during the unlearning phase, where the minimax unlearning update can be regarded
as a total Hessian-based infinitesimal jackknife. It also comes with slightly smaller population
primal-dual risk though the overall rates of the risk and deletion capacity remain the same.

2 Related work

Machine unlearning receives increasing research attention in recent years, mainly due to the growing
concerns about the privacy of user data that are utilized for machine learning model training. Since the
earliest work by Cao and Yang [2015], a variety of machine unlearning methods have been proposed,
which can be roughly divided into two categories: exact unlearning and approximate unlearning.

Exact machine unlearning. Methods for exact machine unlearning aim to produce models that
perform identically to the models retrained from scratch. Some exact unlearning methods are designed
for specific machine learning models like k-means clustering [Ginart et al., 2019] and random forests
[Brophy and Lowd, 2021]. SISA [Bourtoule et al., 2021] proposes a general exact unlearning
framework based on sharding and slicing the training data into multiple non-overlapping shards and
training independently on each shard. During unlearning, SISA retrains only on the shards containing
the data to be removed. GraphEraser [Chen et al., 2022b] and RecEraser [Chen et al., 2022a] further
extend SISA to unlearning for graph neural networks and recommendation systems, respectively.

Approximate machine unlearning. Approximate machine unlearning methods propose to make
a tradeoff between the exactness in data removal and computational/memory efficiency. Prior
works propose diverse ways to update the model parameter and offer different types of unlearning
certification. When it comes to the unlearning update, many existing works consider the Newton
update-related unlearning step where the Hessian matrix of the loss function plays a key role [Guo
et al., 2020, Golatkar et al., 2020a, Peste et al., 2021, Sekhari et al., 2021, Golatkar et al., 2021,
Mahadevan and Mathioudakis, 2021, Suriyakumar and Wilson, 2022, Mehta et al., 2022, Chien et al.,
2023b]. This unlearning update is motivated by influence functions [Koh and Liang, 2017]. In order
to alleviate the computation of the Hessian, Golatkar et al. [2020a] and Peste et al. [2021] utilize
Fisher Information Matrix to approximate the Hessian, mitigating its expensive computation and
inversion. Mehta et al. [2022] provide a variant of conditional independence coefficient to select
sufficient sets for unlearning, avoiding the need to invert the entire Hessian matrix. ML-forgetting
[Golatkar et al., 2021] trains a linear weights set on the core dataset which would not change by
standard training and a linear weights set on the user dataset containing data to be forgotten. They
use an optimization problem to approximate the forgetting Newton update. Suriyakumar and Wilson
[2022] leverage the proximal infinitesimal jackknife as the unlearning step in order to be applied
to nonsmooth loss functions. In addition, they can achieve better computational efficiency and are
capable of dealing with online delete requests. There are also many other designs achieving different
degrees of speedup [Wu et al., 2020, Nguyen et al., 2020, Neel et al., 2021, Zhang et al., 2022c].

Apart from the various designs for the unlearning update, there are also different definitions of
certified machine unlearning. Early works like Guo et al. [2020] introduce a certified data-removal
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mechanism that adds random perturbations to the loss function at training time. Golatkar et al.
[2020a] introduce an information-theoretic-based certified unlearning notion and also add random
noise to ensure the certification, which is specific to the Fisher Information Matrix and not general
enough. More recently, Sekhari et al. [2021] propose the (ϵ, δ)-certified machine unlearning definition
that does not require introducing additional randomization during training. More essential, Sekhari
et al. [2021] points out the importance of providing the generalization performance after machine
unlearning. Sekhari et al. [2021], Suriyakumar and Wilson [2022] establish the generalization result
in terms of the population risk and derive the deletion capacity guarantee.

However, most of existing works only consider machine unlearning for STL models that minimize a
single variable. None of the prior works provide certified machine unlearning pertaining to minimax
models, for which the generalization and deletion capacity guarantees are still unknown.

3 Preliminaries and Baseline Solution

3.1 Minimax Learning

The goal of minimax learning is to optimize the population loss F (ω,ν), given by

min
ω∈W

max
ν∈V

F (ω,ν) := Ez∼D[f(ω,ν; z)], (1)

where f : W × V × Z → R is the loss function, z ∈ Z is a data instance from the distribution
D, W ⊆ Rd1 and V ⊆ Rd2 are closed convex domains with regard to primal and dual variables,
respectively. Since the data distribution D is unknown in practice, minimax learning turns to optimize
the empirical loss FS(ω,ν), given by,

min
ω∈W

max
ν∈V

FS(ω,ν) :=
1

n

n∑
i=1

f(ω,ν; zi), (2)

where S = {z1, · · · , zn} is the training dataset with zi ∼ D.

We will consider L-Lipschitz, ℓ-smooth and µω-strongly-convex-µν -strongly-concave loss functions,
which are described in Assumption 1&2 below and more details can be found in Appendix A.
Assumption 1. For any z ∈ Z , the function f(ω,ν; z) is L-Lipschitz and with ℓ-Lipschitz gradients
and ρ-Lipschitz Hessians on the closed convex domain W ×V . Moreover, f(ω,ν; z) is convex on W
for any ν ∈ V and concave on V for any ω ∈ W .
Assumption 2. For any z ∈ Z , the function f(ω,ν; z) satisfies Assumtion 1 and f(ω,ν; z) is
µω-strongly convex on W for any ν ∈ V and µν -strongly concave on V for any ω ∈ W .

Denote a randomized minimax learning algorithm by A : Zn → W ×V and its trained variables by
A(S) = (Aω(S), Aν(S)) ∈ W × V . The generalization performance is a top concern of the trained
model variables (Aω(S), Aν(S)) [Thekumparampil et al., 2019, Zhang et al., 2020, Lei et al., 2021,
Farnia and Ozdaglar, 2021, Zhang et al., 2021, 2022b, Ozdaglar et al., 2022], which can be measured
by population weak primal-dual (PD) risk or population strong PD risk, as formalized below.
Definition 1 (Population Primal-Dual (PD) Risk). The population weak PD risk of A(S),
△w(Aω(S), Aν(S)) and the population strong PD risk of A(S), △s(Aω(S), Aν(S)) are defined as

△w(Aω(S), Aν(S)) = max
ν∈V

E[F (Aω(S),ν)]− min
ω∈W

E[F (ω, Aν(S))],

△s(Aω(S), Aν(S)) = E[max
ν∈V

F (Aω(S),ν)− min
ω∈W

F (ω, Aν(S))].
(3)

Notations. We introduce the following notations that will be used in the sequel. For a twice
differentiable function f with the arguments ω ∈ W and ν ∈ V , we use ∇ωf and ∇νf to denote the
direct gradient of f w.r.t. ω and ν, respectively and denote its Jacobian matrix as ∇f = [∇ωf ;∇νf ].
We use ∂ωωf , ∂ωνf , ∂νωf , ∂ννf to denote the second order partial derivatives w.r.t. ω and ν,
correspondingly and denote its Hessian matrix as ∇2f = [∂ωωf, ∂ωνf ; ∂νωf, ∂ννf ]. We define
the total Hessian of the function f w.r.t. ω and ν: Dωωf := ∂ωωf − ∂ωνf · ∂−1

νν f · ∂νωf and
Dννf := ∂ννf − ∂νωf · ∂−1

ωωf · ∂ωνf where ∂−1
νν f and ∂−1

ωωf are the shorthand of (∂ννf(·))−1 and
(∂ωωf(·))−1, respectively, when ∂ννf and ∂ωωf are invertible. We also use the shorthand notation
∇ωf(ω1,ν; z) = ∇ωf(ω,ν; z)|ω=ω1

.
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3.2 (ϵ, δ)-Certified Machine Unlearning

An unlearning algorithm Ā for minimax models receives the output of a minimax learning algorithm
A(S), the set of delete requests U ⊆ S and some additional memory variables T (S) ∈ T as input
and returns an updated model (ωu,νu) = (Āω(U,A(S), T (S)), Āν(U,A(S), T (S))) ∈ W × V ,
aiming to remove the influence of U . For the memory variables in T (S), it will not contain the entire
training set, but instead its size |T (S)| is independent of the training data size n. The mapping of
an unlearning algorithm can be formulated as Ā : Zm × W × V × T → W × V . We now give
the notion of (ϵ, δ)-certified unlearning introduced by Sekhari et al. [2021], which is inspired by the
definition of differential privacy [Dwork et al., 2006].
Definition 2 ((ϵ, δ)-Certified Unlearning [Sekhari et al., 2021]). Let Θ be the domain of W ×V .
For all S of size n, set of delete requests U ⊆ S such that |U | ≤ m, the pair of learning algorithm A
and unlearning algorithm Ā is (ϵ, δ)-certified unlearning, if ∀O ⊆ Θ and ϵ, δ > 0, the following two
conditions are satisfied:

Pr[Ā(U,A(S), T (S)) ∈ O] ≤ eϵ · Pr[Ā(∅, A(S\U), T (S\U)) ∈ O] + δ, (4)

Pr[Ā(∅, A(S\U), T (S\U)) ∈ O] ≤ eϵ · Pr[Ā(U,A(S), T (S)) ∈ O] + δ, (5)

where ∅ denotes the empty set and T (S) denotes the memory variables available to Ā.

The above definition ensures the indistinguishability between the output distribution of (i) the model
trained on the set S and then unlearned with delete requests U and (ii) the model trained on the
set S\U and then unlearned with an empty set. Specifically, the unlearning algorithm simply adds
perturbations to the output of A(S\U) when the set of delete requests is empty.

Deletion Capacity. Under the definition of certified unlearning, Sekhari et al. [2021] introduce
the definition of deletion capacity, which formalizes how many samples can be deleted while still
maintaining good guarantees on test loss. Here, we utilize the population primal-dual risk defined in
Definition 1 instead of the excess population risk utilized for STL models.
Definition 3 (Deletion capacity, [Sekhari et al., 2021]). Let ϵ, δ, γ > 0 and S be a dataset of size
n drawn i.i.d from the data distribution D. Let F (ω,ν) be a minimax model and U be the set of
deletion requests. For a pair of minimax learning algorithm A and minimax unlearning algorithm
Ā that satisfies (ϵ, δ)-unlearning, the deletion capacity mA,Ā

ϵ,δ,γ(d1, d2, n) is defined as the maximum
number of samples U that can be unlearned while still ensuring the population primal-dual (weak
PD or strong PD) risk is at most γ. Let the expectation E[·] takes over S ∼ Dn and the outputs of the
algorithms A and Ā. Let d1 denotes the dimension of domain W and d2 denotes the dimension of
domain V , specifically,

mA,Ā
ϵ,δ,γ(d1, d2, n) := max

{
m|△

(
Āω(U,A(S), T (S)), Āν(U,A(S), T (S))

)
≤ γ

}
, (6)

where the ouputs Āω(U,A(S), T (S)) and Āν(U,A(S), T (S)) of the minimax unlearning algorithm
Ā refer to parameter ω and ν, respectively. △

(
Āω(U,A(S), T (S)), Āν(U,A(S), T (S))

)
could be

the population weak PD risk or population strong PD risk of Ā(U,A(S), T (S)).

We set γ = 0.01 (or any other small arbitrary constant) throughout the paper.

3.3 Baseline Solution: Certified Minimax Unlearning via Differential Privacy

Since Definition 2 is motivated by differential privacy (DP), it is a natural way to use tools from
DP for machine unlearning. For a differentially private learning algorithm A with edit distance m
in neighboring datasets, the unlearning algorithm Ā simply returns its output A(S) without any
changes and is independent of the delete requests U as well as the memory variables T (S), i.e.,
Ā(U,A(S), T (S)) = A(S).

A number of differentially private minimax learning algorithms can be applied, e.g., Zhang et al.
[2022a], Yang et al. [2022], Bassily et al. [2023]. For instance, we can obtain the output A(S) =
(Aω(S), Aν(S)) by calling Algorithm 3 in Zhang et al. [2022a]. Under Assumption 1&2, we then
get the population strong PD risk based on [Zhang et al., 2022a, Theorem 4.3] and the group privacy
property of DP [Vadhan, 2017, Lemma 7.2.2], as follows,

△s(Aω(S), Aν(S)) = O
(
κ2

µn
+

m2κ2d log(meϵ/δ)

µn2ϵ2

)
, (7)
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where we let µ = min{µω, µν}, κ = ℓ/µ, d = max{d1, d2}, and m be the edit distance between
datasets (i.e., the original dataset and the remaining dataset after removing samples to be forgotten).

The algorithm A satisfies (ϵ, δ)-DP for any set U ⊆ S of size m, that is,

Pr[A(S) ∈ O] ≤ eϵ Pr[A(S\U) ∈ O] + δ and Pr[A(S\U) ∈ O] ≤ eϵ Pr[A(S) ∈ O] + δ.

Since we have A(S) = Ā(U,A(S), T (S)) and A(S\U) = Ā(∅, A(S\U), T (S\U)), the above
privacy guarantee can be converted to the minimax unlearning guarantee in Definition 2, implying
that the pair (A, Ā) is (ϵ, δ)-certified minimax unlearning. According to Definition 3, the population
strong PD risk in eq.(7) yields the following bound on deletion capacity.

Theorem 1 (Deletion capacity of unlearning via DP [Sekhari et al., 2021]). Denote d =
max{d1, d2}. There exists a polynomial time learning algorithm A and unlearning algorithm
Ā for minimax problem of the form Ā(U,A(S), T (S)) = A(S) such that the deletion capacity is:

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ Ω̃

(
nϵ√

d log(eϵ/δ)

)
, (8)

where the constant in Ω̃-notation depends on the properties of the loss function f (e.g., strongly
convexity and strongly concavity parameters, Lipchitz continuity and smoothness parameters).

However, this DP minimax learning baseline approach provides an inferior deletion capacity. In the
following sections, we show that the d1/2 in the denominator of eq.(8) can be further reduced to d1/4.

4 Certified Minimax Unlearning

In this section, we focus on the setting of the strongly-convex-strong-concave loss function. We first
provide the intuition for the design of the minimax unlearning step in Sec.4.1, then provide the formal
algorithm in Sec.4.2 and a more efficient extension in Sec.4.3 with analysis of minimax unlearning
certification, generalization result, and deletion capacity in Sec.4.4. We will provide extensions to
more general loss settings in Sec.5. The proofs for the theorems presented in this and the next sections
can be found in Appendix B and C, respectively.

4.1 Intuition for Minimax Unlearning Update

To begin with, we provide an informal derivation for minimax unlearning update to illustrate its
design intuition. Given the training set S of size n and the deletion subset U ⊆ S of size m, the aim
is to approximate the optimal solution (ω∗

S\ ,ν
∗
S\) of the loss FS\(ω,ν) on the remaining dataset

S \ U , given by,

(ω∗
S\ ,ν

∗
S\) := arg min

ω∈W
max
ν∈V

{FS\(ω,ν) :=
1

n−m

∑
zi∈S\U

f(ω,ν; zi)}. (9)

Meanwhile, we have the optimal solution (ω∗
S ,ν

∗
S) to the original loss FS(ω,ν) after mini-

max learning. Taking unlearning ω for instance, by using a first-order Taylor expansion for
∇ωFS\(ω∗

S\ ,ν
∗
S\) = 0 around (ω∗

S ,ν
∗
S), we have

∇ωFS\(ω∗
S ,ν

∗
S) + ∂ωωFS\(ω∗

S ,ν
∗
S)(ω

∗
S\ − ω∗

S) + ∂ωνFS\(ω∗
S ,ν

∗
S)(ν

∗
S\ − ν∗

S) ≈ 0. (10)

Since ω∗
S is a minimizer of FS(ω,ν), from the first-order optimality condition, we can get

∇ωFS\(ω∗
S ,ν

∗
S) = − 1

n−m

∑
zi∈U ∇ωf(ω

∗
S ,ν

∗
S ; zi). Now given an auxiliary function VS\(ω) =

argmaxν∈V FS\(ω,ν) (more best response auxiliary functions are introduced in Appendix A, Defi-
nition 8), we have ν∗

S\ = VS\(ω∗
S\). We further get

ν∗
S\ − ν∗

S = [VS\(ω∗
S\)− VS\(ω∗

S)] + [VS\(ω∗
S)− ν∗

S ]

(i)
≈ VS\(ω∗

S\)− VS\(ω∗
S)

(ii)
≈
(
dVS\(ω)

dω

∣∣∣
ω=ω∗

S

)
(ω∗

S\ − ω∗
S)

(iii)
≈ −∂−1

ννFS\(ω∗
S ,ν

∗
S) · ∂νωFS\(ω∗

S ,ν
∗
S) · (ω∗

S\ − ω∗
S),

(11)
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where the approximate equation (i) leaving out the term [VS\(ω∗
S) − ν∗

S ] which is bounded in
Appendix A, Lemma 2, and does not affect the overall unlearning guarantee. The approximate
equation (ii) is the linear approximation step and is the response Jacobian of the auxiliary function
VS\(ω). The approximate equation (iii) is due to the implicit function theorem. This gives that

∂ωωFS\(ω∗
S ,ν

∗
S)(ω

∗
S\−ω∗

S)+∂ωνFS\(ω∗
S ,ν

∗
S)(ν

∗
S\−ν∗

S) = DωωFS\(ω∗
S ,ν

∗
S)(ω

∗
S\−ω∗

S), (12)

which implies the following approximation of ω∗
S\ :

ω∗
S\ ≈ ω∗

S +
1

n−m
[DωωFS\(ω∗

S ,ν
∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi). (13)

The above informal derivation indicates that the minimax unlearning update relies on the total
Hessian to sufficiently remove the data influence [Liu et al., 2023, Zhang et al., 2023], rather than
the conventional Hessian that appears in standard statistical unlearning [Guo et al., 2020, Sekhari
et al., 2021, Suriyakumar and Wilson, 2022, Mehta et al., 2022]. The update in eq.(13) has a close
relation to the complete Newton step in the second-order minimax optimization literature [Zhang
et al., 2020], which motivates the complete Newton-based minimax unlearning. However, due to
the various approximations in the above informal derivation, we cannot have a certified minimax
unlearning guarantee. Below, we will formally derive the upper bound for these approximations
in the closeness upper bound analysis. Based on the closeness upper bound, we will introduce the
Gaussian mechanism to yield distribution indistinguishably result in the sense of (ϵ, δ)-certified
minimax unlearning.

4.2 Proposed Certified Minimax Unlearning

We first provide algorithms under the setting of the smooth and strongly-convex-strongly-concave
(SC-SC) loss function as described in Assumptions 1&2.

Algorithm 1 Minimax Learning Algorithm (Asc−sc)

Input: Dataset S : {zi}ni=1 ∼ Dn, loss function: f(ω,ν; z).
1: Compute

(ω∗
S ,ν

∗
S)← argmin

ω
max

ν
FS(ω,ν) =

1

n

n∑
i=1

f(ω,ν; zi). (14)

Output: (ω∗
S ,ν

∗
S , DωωFS(ω

∗
S ,ν

∗
S), DννFS(ω

∗
S ,ν

∗
S))

Algorithm 2 Certified Minimax Unlearning for Strongly-Convex-Strongly-Concave Loss (Āsc−sc)

Input: Delete requests U : {zj}mj=1 ⊆ S, output of Asc−sc(S): (ω∗
S ,ν

∗
S), memory variables T (S):

{DωωFS(ω
∗
S ,ν

∗
S), DννFS(ω

∗
S ,ν

∗
S)}, loss function: f(ω,ν; z), noise parameters: σ1, σ2.

1: Compute

DωωFS\(ω
∗
S ,ν

∗
S) =

1

n−m

nDωωFS(ω
∗
S ,ν

∗
S)−

∑
zi∈U

Dωωf(ω
∗
S ,ν

∗
S ; zi)

 , (15)

DννFS\(ω
∗
S ,ν

∗
S) =

1

n−m

nDννFS(ω
∗
S ,ν

∗
S)−

∑
zi∈U

Dννf(ω
∗
S ,ν

∗
S ; zi)

 . (16)

2: Define
ω̂ = ω∗

S +
1

n−m
[DωωFS\(ω

∗
S ,ν

∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi), (17)

ν̂ = ν∗
S +

1

n−m
[DννFS\(ω

∗
S ,ν

∗
S)]

−1
∑
zi∈U

∇νf(ω
∗
S ,ν

∗
S ; zi). (18)

3: ωu = ω̂ + ξ1, where ξ1 ∼ N (0, σ1Id1) and νu = ν̂ + ξ2, where ξ2 ∼ N (0, σ2Id2).
Output: (ωu,νu).
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Minimax Learning algorithm. We denote our learning algorithm by Asc−sc and the pseudocode
is shown in Algorithm 1. Given a dataset S = {zi}ni=1 of size n drawn independently from some
distribution D, algorithm Asc−sc computes the optimal solution (ω∗

S ,ν
∗
S) to the empirical risk

FS(ω,ν). Asc−sc then outputs the point (ω∗
S ,ν

∗
S) as well as the additional memory variables

T (S) := {DωωFS(ω
∗
S ,ν

∗
S), DννFS(ω

∗
S ,ν

∗
S)}, which computes and stores the total Hessian of

FS(ω,ν) at (ω∗
S ,ν

∗
S).

Minimax Unlearning Algorithm We denote the proposed certified minimax unlearning algorithm
by Āsc−sc and present its pseudocode in Algorithm 2. Algorithm Āsc−sc takes the following inputs:
the set of delete requests U = {zj}mj=1 of size m, the trained minimax model (ω∗

S ,ν
∗
S), and the

memory variables T (S). To have the certified minimax unlearning for ω, eq.(15) computes the
total Hessian of FS\(ω∗

S ,ν
∗
S) by n

n−mDωωFS(ω
∗
S ,ν

∗
S)− 1

n−m

∑
zi∈U Dωωf(ω

∗
S ,ν

∗
S , zi), where the

former term can be retrieved from the memory set and the latter is computed on the samples to be
deleted; eq.(17) computes the intermediate ω̂ by the complete Newton step based on the total Hessian
DωωFS\(ω∗

S ,ν
∗
S); Line 3 injects calibrated Gaussian noise ξ1 to ensure (ϵ, δ)-certified minimax

unlearning. The certified minimax unlearning for ν is symmetric. We provide detailed analysis for
Algorithm 2 including minimax unlearning certification, generalization results, and deletion capacity
in Appendix B.1.

4.3 Certified Minimax Unlearning without Total Hessian Re-computation

We extend Algorithm 2 and propose Algorithm 3 to reduce the computational cost of Algorithm
2. The complete Newton steps in eq.(19) and eq.(20) utilize the total Hessian DωωFS(ω

∗
S ,ν

∗
S) and

DννFS(ω
∗
S ,ν

∗
S) that are directly retrieved from the memory, rather than the updated total Hessian

DωωFS\(ω∗
S ,ν

∗
S) and DννFS\(ω∗

S ,ν
∗
S) used in Algorithm 2. The form in eq.(19) and eq.(20) can

also be regarded as the total Hessian extension of the infinitesimal jackknife. In this way, it gets rid of
the computationally demanding part of re-evaluating the total Hessian for samples to be deleted, which
significantly reduces the computational cost. It turns out to be the same computational complexity as
the state-of-the-art certified unlearning method developed for STL models [Suriyakumar and Wilson,
2022]. Moreover, Algorithm 3 can be more appealing for the successive data deletion setting.

Algorithm 3 Efficient Certified Minimax Unlearning (Āefficient)

Input: Delete requests U : {zj}mj=1 ⊆ S, output of Asc−sc(S): (ω∗
S ,ν

∗
S), memory variables T (S):

{DωωFS(ω
∗
S ,ν

∗
S), DννFS(ω

∗
S ,ν

∗
S)}, loss function: f(ω,ν; z), noise parameters: σ1, σ2.

1: Compute

ω̃ = ω∗
S +

1

n
[DωωFS(ω

∗
S ,ν

∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi), (19)

ν̃ = ν∗
S +

1

n
[DννFS(ω

∗
S ,ν

∗
S)]

−1
∑
zi∈U

∇νf(ω
∗
S ,ν

∗
S ; zi). (20)

2: ω̃u = ω̃ + ξ1, where ξ1 ∼ N (0, σ1Id1) and ν̃u = ν̃ + ξ2, where ξ2 ∼ N (0, σ2Id2) .
Output: (ω̃u, ν̃u).

4.4 Analysis for Algorithm 3

(ϵ, δ)-Certificated Unlearning Guarantee. The intermediate variables (ω̃, ν̃) are distinguishable
in distribution from the retraining-from-scratch variables (ω∗

S\ ,ν
∗
S\) because they are deterministic

and the Taylor expansion introduces a certain amount of approximation. The following lemma
quantifies the closeness between (ω̃, ν̃) and (ω∗

S\ ,ν
∗
S\), which can be regarded as the “sensitivity”

when applying the Gaussian mechanism.

Lemma 1 (Closeness Upper Bound). Suppose the loss function f satisfies Assumption 1 and 2,
∥DωωFS(ω

∗
S ,ν

∗
S)∥ ≥ µωω and ∥DννFS(ω

∗
S ,ν

∗
S)∥ ≥ µνν . Let µ = min{µω, µν , µωω, µνν}. Then,

we have the closeness bound between (ω̃, ν̃) in Line 1 of Algorithm 3 and (ω∗
S\ ,ν

∗
S\) in eq.(9):

{∥ω∗
S\ − ω̃∥, ∥ν∗

S\ − ν̃∥} ≤ (8
√
2L2ℓ3ρ/µ6 + 2

√
2Lℓ2/µ3)m2

n2
. (21)
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Equipped with Lemma 1, we have the following certified unlearning guarantee by adding Gaussian
noise calibrated according to the above closeness result. Due to the minimax structure, our analysis is
more involved than the STL case [Sekhari et al., 2021, Suriyakumar and Wilson, 2022].
Theorem 2 ((ϵ, δ)-Minimax Unlearning Certification). Under the same settings of Lemma 1, our
minimax learning algorithm Asc−sc and unlearning algorithm Āefficient is (ϵ, δ)-certified minimax
unlearning if we choose

σ1 and σ2 =
2(8

√
2L2ℓ3ρ/µ6 + 2

√
2Lℓ2/µ3)m2

n2ϵ

√
2 log(2.5/δ). (22)

Generalization Guarantee. Theorem 3 below provides the generalization result in terms of the
population PD risk for the minimax unlearning algorithm Āefficient.
Theorem 3 (Population Primal-Dual Risk). Under the same settings of Lemma 1 and denote
d = max{d1, d2}, the population weak and strong PD risk for the certified minimax unlearning
variables (ω̃u, ν̃u) returned by Algorithm 3 are

△w(ω̃u, ν̃u) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

µn

)
,

△s(ω̃u, ν̃u) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

µn
+

L2ℓ

µ2n

)
.

(23)

Deletion Capacity. The population weak and strong PD risk given in Theorem 3 for the output of
unlearning algorithms provides the following bound on deletion capacity.
Theorem 4 (Deletion Capacity). Under the same settings of Lemma 1 and denote d = max{d1, d2},
the deletion capacity of Algorithm 3 is

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ c · n

√
ϵ

(d log(1/δ))1/4
, (24)

where the constant c depends on L, l, ρ, and µ of the loss function f .

5 Certified Minimax Unlearning for Convex-Concave Loss Function

We further extend the certified minimax unlearning for the convex-concave loss function. In addition,
Appendix C will provide the extension to convex-strongly-concave and strongly-convex-concave
loss functions. Give the convex-concave loss function f(ω,ν; z), similar to the unlearning for
STL models [Sekhari et al., 2021], we define the regularized function as f̃(ω,ν; z) = f(ω,ν; z) +
λ
2 ∥ω∥2 − λ

2 ∥ν∥
2. Suppose the function f satisfies Assumption 1, then the function f̃ is λ-strongly

convex in ω, λ-strongly concave in ν, (2L+λ∥ω∥+λ∥ν∥)-Lipschitz,
√
2(2ℓ+λ)-gradient Lipschitz

and ρ-Hessian Lipschitz. It suffices to apply the minimax learning and unlearning algorithms in Sec.4
to the regularized loss function with a properly chosen λ. We denote the learning and unlearning
algorithms for convex-concave losses as Ac−c and Āc−c. Their implementation details are given
in Appendix C. We suppose the SC-SC regularization parameter λ satisfies λ < ℓ. Theorem 5
below summarizes guarantees of (ϵ, δ)-certified unlearning and population primal-dual risk (weak
and strong) for Algorithm Āc−c.
Theorem 5. Let Assumption 1 hold and d = max{d1, d2}. Suppose the parameter spaces W and V
are bounded so that maxω∈W ∥ω∥ ≤ Bω and maxν∈V ∥ν∥ ≤ Bν . We have,

(a) (ϵ, δ)-Minimax Unlearning Certification: Our minimax learning algorithm Ac−c and unlearn-
ing algorithm Āc−c is (ϵ, δ)-certified minimax unlearning.

(b) Population Weak PD Risk: The population weak PD risk for (ωu,νu) by algorithm Āc−c is

△w(ωu,νu) ≤ O
(
(L3ℓ3ρ/λ6 + L2ℓ2/λ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

λn
+ λ(B2

ω +B2
ν)

)
. (25)

In particular, by setting λ below

λ = max

{
L√

B2
ω +B2

ν

√
m

n
,

(
L2ℓ2m2

√
d log(1/δ)

(B2
ω +B2

ν)n2ϵ

)1/4

,

(
L3ℓ3ρm2

√
d log(1/δ)

(B2
ω +B2

ν)n2ϵ

)1/7}
, (26)
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we have the following population weak PD risk,

△w(ωu,νu) ≤ O
(
c1

√
m

n
+ c2

(d log(1/δ)
ϵ2

)1/8√m

n
+ c3

(√d log(1/δ)

ϵ

)1/7
(
m

n
)2/7

)
, (27)

where c1, c2, c3 are constants that depend only on L, l, ρ, Bω and Bν .

(c) Population Strong PD Risk: The population strong PD risk for (ωu,νu) by algorithm Āc−c is

△s(ωu,νu) ≤ O
(
(L3ℓ3ρ/λ6+L2ℓ2/λ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

λn
+

L2ℓ

λ2n
+λ(B2

ω +B2
ν)

)
. (28)

In particular, by setting λ below

λ = max

{
L√

B2
ω +B2

ν

√
m

n
,

(
L2ℓ

(B2
ω +B2

ν)n

)
,

(
L2ℓ2m2

√
d log(1/δ)

(B2
ω +B2

ν)n2ϵ

)1/4

,

(
L3ℓ3ρm2

√
d log(1/δ)

(B2
ω +B2

ν)n2ϵ

)1/7}
,

(29)

we have the following population strong PD risk,

△s(ωu,νu) ≤ O
(
c1

√
m

n
+ c2

1
3
√
n
+ c3

(d log(1/δ)
ϵ2

)1/8√m

n
+ c4

(√d log(1/δ)

ϵ

)1/7
(
m

n
)2/7

)
,

(30)

where c1, c2, c3, c4 are constants that depend only on L, l, ρ, Bω and Bν .

(d) Deletion Capacity: The deletion capacity of Algorithm Āc−c is

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ c · n

√
ϵ

(d log(1/δ))1/4
, (31)

where the constant c depends on the constants L, l, ρ, Bω and Bν .

6 Conclusion

In this paper, we have studied the certified machine unlearning for minimax models with a focus on the
generalization rates and deletion capacity, while existing works in this area largely focus on standard
statistical learning models. We have provided a new minimax unlearning algorithm composed of the
total Hessian-based complete Newton update and the Gaussian mechanism-based perturbation, which
comes with rigorous (ϵ, δ)-unlearning certification. We have established generalization results in
terms of the population weak and strong primal-dual risk and the correspondingly defined deletion
capacity results for the strongly-convex-strongly-concave loss functions, both of which match the
state-of-the-art results obtained for standard statistical learning models. We have also provided
extensions to other loss types like the convex-concave loss function. In addition, we have provided a
more computationally efficient extension by getting rid of the total Hessian re-computation during
the minimax unlearning phase, which can be more appealing for the successive data deletion setting.
Although our bound for deletion capacity is better than that of DP by an order of d1/4 and matches
the state-of-the-art result established for unlearning under the STL setting, it remains unclear whether
this bound is tight or not. In future work, we plan to extend to more general settings like the
nonconvex-nonconcave loss function setting.
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A Additional Definitions and Supporting Lemmas

In this section, we provide additional definitions and supporting lemmas. In the next two sections,
Sec.B contains missing proofs in Sec.4 and the online extension to support successive unlearning
setting. Sec.C contains missing proofs in Sec.5, as well as detailed algorithm descriptions for the
general convex-concave loss function setting.

A.1 Additional Definitions

We first recall the following standard definitions for the loss function f(ω,ν; z) from optimization
literature.
Definition 4 (Function Lipschitz Continuity). The function f(ω,ν; z) is L-Lipschitz, i.e., there
exists a constant L > 0 such that for all ω,ω′ ∈ W , ν,ν′ ∈ V and z ∈ Z , it holds that

∥f(ω,ν; z)− f(ω′,ν′; z)∥2 ≤ L2(∥ω − ω′∥2 + ∥ν − ν′∥2). (32)

Definition 5 (Gradient Lipschitz Continuity). The function f(ω,ν; z) has ℓ-Lipschitz gradients,
i.e., there exists a constant ℓ > 0 such that for all ω,ω′ ∈ W , ν,ν′ ∈ V and z ∈ Z , it holds that

∥∇f(ω,ν; z)−∇f(ω′,ν′; z)∥2 ≤ ℓ2(∥ω − ω′∥2 + ∥ν − ν′∥2), (33)

where recall that ∇f(ω,ν; z) =

[
∇ωf(ω,ν; z)
∇νf(ω,ν; z)

]
.

Definition 6 (Hessian Lipschitz Continuity). The function f(ω,ν; z) has ρ-Lipschitz Hessian, i.e.,
there exists a constant ρ > 0 such that for all ω,ω′ ∈ W , ν,ν′ ∈ V and z ∈ Z , it holds that

∥∇2f(ω,ν; z)−∇2f(ω′,ν′; z)∥2 ≤ ρ2(∥ω − ω′∥2 + ∥ν − ν′∥2), (34)

where recall that ∇2f(ω,ν; z) =

[
∂ωωf(ω,ν; z) ∂ωνf(ω,ν; z)
∂νωf(ω,ν; z) ∂ννf(ω,ν; z)

]
.

Definition 7 (Strongly-Convex-Strongly-Concave Objective Function). The function f(ω,ν; z)
is µω-strongly convex on W and µν-strongly concave on V , i.e., there exist constants µω > 0 and
µν > 0 such that for all ω,ω′ ∈ W , ν,ν′ ∈ V and z ∈ Z , it holds that{

f(ω,ν; z) ≥ f(ω′,ν; z) + ⟨∇ωf(ω
′,ν; z),ω − ω′⟩+ µω

2 ∥ω − ω′∥2,
f(ω,ν; z) ≤ f(ω,ν′; z) + ⟨∇νf(ω,ν′; z),ν − ν′⟩ − µν

2 ∥ν − ν′∥2. (35)

Definition 8 (Best Response Auxiliary Functions). We introduce auxiliary functions VS(ω) and
VS\(ω), given by

VS(ω) := argmax
ν∈V

FS(ω,ν), VS\(ω) := argmax
ν∈V

FS\(ω,ν), (36)

and we have ν∗
S = VS(ω

∗
S) and ν∗

S\ = VS\(ω∗
S\). We can similarly introduce WS(ν) and WS\(ν) as

WS(ν) := argmin
ω∈W

FS(ω,ν), WS\(ν) := argmin
ω∈W

FS\(ω,ν), (37)

and we have ω∗
S = WS(ν

∗
S) and ω∗

S\ = WS\(ν∗
S\) by this definition.

In addition, we define the primal function P (ω) := maxν∈V FS(ω,ν) = FS(ω, VS(ω)), which
has gradient ∇P (ω) = ∇ωFS(ω, VS(ω)) and Hessian ∇2

ωωP (ω) = DωωFS(ω, VS(ω)) (i.e., the
total Hessian of FS). The dual function, its gradient, and Hessian can be similarly defined, e.g.,
D(ν) := minω∈W FS(ω,ν) = FS(WS(ν),ν).

A.2 Supporting Lemmas

The following lemma provides the distance between VS(ω
∗
S) and VS\(ω∗

S). Similar result can be
derived for the distance between WS(ν

∗
S) and WS\(ν∗

S).
Lemma 2. Under Assumption 1 and Assumption 2, the variables VS\(ω∗

S) and ν∗
S (i.e., VS(ω∗

S))
defined in Algorithm 1 satisfy the following distance bound

∥ν∗
S − VS\(ω∗

S)∥ ≤ 2Lm

µν(n−m)
. (38)
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Proof. We observe that

(n−m)(FS\(ω∗
S , VS\(ω∗

S))− FS\(ω∗
S ,ν

∗
S))

=
∑

zi∈S\U

f(ω∗
S , VS\(ω∗

S); zi)−
∑

zi∈S\U

f(ω∗
S ,ν

∗
S ; zi)

=
∑
zi∈S

f(ω∗
S , VS\(ω∗

S); zi)−
∑
zi∈U

f(ω∗
S , VS\(ω∗

S); zi)−
( ∑

zi∈S

f(ω∗
S ,ν

∗
S ; zi)−

∑
zi∈U

(ω∗
S ,ν

∗
S ; zi)

)
=n(FS(ω

∗
S , VS\(ω∗

S))− FS(ω
∗
S ,ν

∗
S)) +

∑
zi∈U

f(ω∗
S ,ν

∗
S ; zi)−

∑
zi∈U

f(ω∗
S , VS\(ω∗

S); zi)

(i)

≤
∑
zi∈U

f(ω∗
S ,ν

∗
S ; zi)−

∑
zi∈U

f(ω∗
S , VS\(ω∗

S); zi)
(ii)

≤ mL∥ν∗
S − VS\(ω∗

S)∥,

(39)

where the inequality (i) follows from that ν∗
S is the maximizer of the function FS(ω,ν), thus

FS(ω
∗
S , VS\(ω∗

S)) − FS(ω
∗
S ,ν

∗
S) ≤ 0. The inequality (ii) is due to the fact that the function f is

L-Lipschitz. Also note that the function FS\(ω,ν) is µν -strongly concave, thus we have

FS\(ω∗
S , VS\(ω∗

S))− FS\(ω∗
S ,ν

∗
S) ≥

µν

2
∥ν∗

S − VS\(ω∗
S)∥2. (40)

Eq.(39) and eq.(40) together give that

µν(n−m)

2
∥ν∗

S − VS\(ω∗
S)∥2 ≤ mL∥ν∗

S − VS\(ω∗
S)∥, (41)

which implies that ∥ν∗
S − VS\(ω∗

S)∥ ≤ 2Lm
µν(n−m) .

The following lemma provides the distance between (ω∗
S\ ,ν

∗
S\) and (ω∗

S ,ν
∗
S).

Lemma 3. Under Assumption 1 and Assumption 2, the variables (ω∗
S\ ,ν

∗
S\) defined in eq.(9) and

(ω∗
S ,ν

∗
S) defined in Algorithm 1 satisfy the following guarantees

∥ω∗
S\ − ω∗

S∥ ≤ 2Lm

µωn
, and ∥ν∗

S\ − ν∗
S∥ ≤ 2Lm

µνn
. (42)

Proof. We begin with the ω-part,

n[FS(ω
∗
S\ ,ν

∗
S\)− FS(ω

∗
S ,ν

∗
S\)]

=
∑
zi∈S

f(ω∗
S\ ,ν

∗
S\ ; zi)−

∑
zi∈S

f(ω∗
S ,ν

∗
S\ ; zi)

=
∑

zi∈S\U

f(ω∗
S\ ,ν

∗
S\ ; zi) +

∑
zi∈U

f(ω∗
S\ ,ν

∗
S\ ; zi)−

∑
zi∈S\U

f(ω∗
S ,ν

∗
S\ ; zi)−

∑
zi∈U

f(ω∗
S ,ν

∗
S\ ; zi)

=(n−m)[FS\(ω∗
S\ ,ν

∗
S\)− FS\(ω∗

S ,ν
∗
S\)] +

∑
zi∈U

f(ω∗
S\ ,ν

∗
S\ ; zi)−

∑
zi∈U

f(ω∗
S ,ν

∗
S\ ; zi)

(i)

≤
∑
zi∈U

f(ω∗
S\ ,ν

∗
S\ ; zi)−

∑
zi∈U

f(ω∗
S ,ν

∗
S\ ; zi)

(ii)

≤ mL∥ω∗
S\ − ω∗

S∥,

(43)

where the inequality (i) holds because ω∗
S\ is the minimizer of the function FS\(ω,ν), thus

FS\(ω∗
S\ ,ν

∗
S\)− FS\(ω∗

S ,ν
∗
S\) ≤ 0, and the inequality (ii) follows from the fact that the function

f is L-Lipschitz. Since the function FS(ω,ν) is µω-strongly convex, we further get

FS(ω
∗
S\ ,ν

∗
S\)− FS(ω

∗
S ,ν

∗
S\) ≥

µω

2
∥ω∗

S\ − ω∗
S∥2. (44)

Eq.(43) and eq.(44) together gives that
µωn

2
∥ω∗

S\ − ω∗
S∥2 ≤ mL∥ω∗

S\ − ω∗
S∥. (45)
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Thus, we get ∥ω∗
S\ − ω∗

S∥ ≤ 2Lm
µωn .

For the ν-part, we similarly have

n[FS(ω
∗
S\ ,ν

∗
S)− FS(ω

∗
S\ ,ν

∗
S\)]

=
∑
zi∈S

f(ω∗
S\ ,ν

∗
S ; zi)−

∑
zi∈S

f(ω∗
S\ ,ν

∗
S\ ; zi)

=
∑

zi∈S\U

f(ω∗
S\ ,ν

∗
S ; zi) +

∑
zi∈U

f(ω∗
S\ ,ν

∗
S ; zi)−

∑
zi∈S\U

f(ω∗
S\ ,ν

∗
S\ ; zi)−

∑
zi∈U

f(ω∗
S\ ,ν

∗
S\ ; zi)

=(n−m)[FS\(ω∗
S\ ,ν

∗
S)− FS\(ω∗

S\ ,ν
∗
S\)] +

∑
zi∈U

f(ω∗
S\ ,ν

∗
S ; zi)−

∑
zi∈U

f(ω∗
S\ ,ν

∗
S\ ; zi)

(i)

≤
∑
zi∈U

f(ω∗
S\ ,ν

∗
S ; zi)−

∑
zi∈U

f(ω∗
S\ ,ν

∗
S\ ; zi)

(ii)

≤ mL∥ν∗
S − ν∗

S\∥,

(46)

where the inequality (i) follows from that ν∗
S\ is the maximizer of the function FS\(ω,ν), thus

FS\(ω∗
S\ ,ν

∗
S) − FS\(ω∗

S\ ,ν
∗
S\) ≤ 0. The inequality (ii) is due to the fact that the function f is

L-Lipschitz. In addition, by the strongly-concave assumption of FS(ω,ν) is µν , we have

FS(ω
∗
S\ ,ν

∗
S)− FS(ω

∗
S\ ,ν

∗
S\) ≥

µν

2
∥ν∗

S\ − ν∗
S∥2. (47)

By eq.(46) and eq.(47), we get that
µνn

2
∥ν∗

S\ − ν∗
S∥2 ≤ mL∥ν∗

S − ν∗
S\∥. (48)

Thus, we have ∥ν∗
S\ − ν∗

S∥ ≤ 2Lm
µνn

.

In the following, we recall several lemmas (i.e., Lemma 4 to Lemma 8) from existing minimax
optimization literature for completeness.
Lemma 4 ([Lin et al., 2020, Lemma 4.3]). Under Assumption 1 and Assumption 2, for any ω ∈ W ,
the function VS(ω) is (ℓ/µν)-Lipschitz.

Proof. By the optimality condition of the function VS(ω), we have

⟨∇νFS(ω1, VS(ω1)), VS(ω2)− VS(ω1)⟩ ≤ 0,

⟨∇νFS(ω2, VS(ω2)), VS(ω1)− VS(ω2)⟩ ≤ 0.

Summing the two inequalities above yields

⟨∇νFS(ω1, VS(ω1))−∇νFS(ω2, VS(ω2)), VS(ω2)− VS(ω1)⟩ ≤ 0. (49)

Since the function FS(ω,ν) is µν -strongly concave in ν, we have

⟨∇νFS(ω1, VS(ω2))−FS(ω1, VS(ω1)), VS(ω2)−VS(ω1)⟩+µν∥VS(ω2)−VS(ω1)∥2 ≤ 0. (50)

By eq.(49) and eq.(50) with the ℓ-Lipschitz continuity of ∇FS(ω,ν), we further get

µν∥VS(ω2)− VS(ω1)∥2 ≤ ⟨∇νFS(ω2, VS(ω2))−∇νFS(ω1, VS(ω2)), VS(ω2)− VS(ω1)⟩
≤ ℓ∥ω2 − ω1∥ · ∥VS(ω2)− VS(ω1)∥.

(51)

Consequently, we have

∥VS(ω2)− VS(ω1)∥ ≤ ℓ

µν
∥ω2 − ω1∥. (52)

Remark 1. The above lemma can be similarly derived for WS to obtain that the best response
auxiliary function WS(ν) is (ℓ/µω)-Lipschitz. In the next three lemmas, we focus on the ω-part and
omit the ν-part.
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Lemma 5 ([Luo et al., 2022, Lemma 3]). Denote κν = ℓ/µν . Under Assumption 1 and Assumption
2, for any ω,ω′ ∈ W , we have

∥DωωFS(ω, VS(ω))− DωωFS(ω
′, VS(ω

′))∥ ≤ 4
√
2κ3

νρ∥ω − ω′∥. (53)

Lemma 6 ([Nesterov and Polyak, 2006, Lemma 1]). Denote κν = ℓ/µν . Under Assumption 1 and
Assumption 2, for any ω,ω′ ∈ W , we have

∥∇ωFS(ω, VS(ω))−∇ωFS(ω
′, VS(ω

′))− DωωFS(ω
′)(ω − ω′)∥ ≤ M

2
∥ω − ω′∥2, (54)

where M = 4
√
2κ3

νρ.

Proof. Recall the definition of the primal function P (ω) := maxν∈V FS(ω,ν) and its gradient
∇P (ω) = ∇ωFS(ω, VS(ω)). Due to the optimality of VS , we have

∇νFS(ω, VS(ω)) = 0. (55)

By taking the total derivative with respect to ω, we get

∂νωFS(ω, VS(ω)) + ∂ννFS(ω, VS(ω))∇VS(ω) = 0. (56)

Taking the total derivative of ω again on ∇P (ω), we further have

∇2P (ω) =∂ωωFS(ω, VS(ω)) + ∂ωνFS(ω, VS(ω))∇VS(ω)

=∂ωωFS(ω, VS(ω))− ∂ωνFS(ω, VS(ω))∂−1
ννFS(ω, VS(ω))∂νωFS(ω, VS(ω))

=DωωFS(ω, VS(ω)).

(57)

Based on the equality of ∇2P (ω) and DωωFS(ω, VS(ω)) above and Lemma 5, we have

∥∇ωFS(ω, VS(ω))−∇ωFS(ω
′, VS(ω

′))− DωωFS(ω
′)(ω − ω′)∥

=∥∇P (ω)−∇P (ω′)−∇2P (ω′)(ω − ω′)∥

≤M

2
∥ω − ω′∥2.

(58)

Lemma 7. Under Assumption 1 and Assumption 2, for all ω ∈ W and ν ∈ V , we have
∥Dωωf(ω,ν; z)∥ ≤ ℓ+ ℓ2

µν
.

Proof. By the definition of the total Hessian, we have

∥Dωωf(ω,ν; z)∥ =∥∂ωωf(ω,ν; z)− ∂ωνf(ω,ν; z)∂−1
νν f(ω,ν; z)∂νωf(ω,ν; z)∥

(i)

≤∥∂ωωf(ω,ν; z)∥+ ∥∂ωνf(ω,ν; z)∂−1
νν f(ω,ν; z)∂νωf(ω,ν; z)∥

(ii)

≤ ℓ+ ℓ · µ−1
ν · ℓ = ℓ+

ℓ2

µν
,

(59)

where the inequality (i) uses the triangle inequality and the inequality (ii) is due to the function f
has ℓ-Lipschitz gradients and f is µν-strongly concave in ν, thus we have ∥∂ωωf(ω,ν; z)∥ ≤ ℓ,
∥∂ωνf(ω,ν; z)∥ ≤ ℓ, ∥∂νωf(ω,ν; z)∥ ≤ ℓ and ∥∂ννf(ω,ν; z)∥ ≤ µ−1

ν .

Lemma 8 ([Zhang et al., 2022a, Lemma 4.4]). Under Assumption 1 and Assumption 2, the population
weak PD risk for the minimax learning variables (ω∗

S ,ν
∗
S) returned by Algorithm 1 has

△w(ω∗
S ,ν

∗
S) ≤

2
√
2L2

µn
. (60)

Lemma 9 ([Zhang et al., 2021, Theorem 2]). Under Assumption 1 and Assumption 2, the population
strong PD risk for the minimax learning variables (ω∗

S ,ν
∗
S) returned by Algorithm 1 has

△s(ω∗
S ,ν

∗
S) ≤

2
√
2L2

n
·

√
ℓ2

µωµν
+ 1 ·

(
1

µω
+

1

µν

)
≤ 8L2ℓ

µ2n
. (61)
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B Detailed Algorithm Analysis and Missing Proofs in Section 4

B.1 Analysis for Algorithm 2

In the following, we provide the analysis for Algorithm 2 in terms of guarantees of (ϵ, δ)-certified
unlearning, population primal-dual risk, and deletion capacity and the corresponding proofs.
Lemma 10 (Closeness Upper Bound). Suppose the loss function f satisfies Assumption 1 and 2,
∥DωωFS(ω

∗
S ,ν

∗
S)∥ ≥ µωω and ∥DννFS(ω

∗
S ,ν

∗
S)∥ ≥ µνν . Let µ = min{µω, µν , µωω, µνν}. Then,

we have the closeness bound between (ω̂, ν̂) in Line 2 of Algorithm 2 and (ω∗
S\ ,ν

∗
S\) in eq.(9):

{∥ω∗
S\ − ω̂∥, ∥ν∗

S\ − ν̂∥} ≤ (8
√
2L2ℓ3ρ/µ5 + 8Lℓ2/µ2)m2

n(µn− (ℓ+ ℓ2/µ)m)
. (62)

Proof. Recall that the empirical loss functions FS\(ω,ν) and FS(ω,ν) are

FS\(ω,ν) :=
1

n−m

∑
zi∈S\U

f(ω,ν; zi), and FS(ω,ν) :=
1

n

∑
zi∈S

f(ω,ν; zi). (63)

We focus on the key term ∇ωFS\(ω∗
S\ , VS(ω

∗
S\))−∇ωFS\(ω∗

S ,ν
∗
S)−DωωFS\(ω∗

S ,ν
∗
S)(ω

∗
S\−ω∗

S),
which has the following conversions

∥∇ωFS\(ω∗
S\ , VS(ω

∗
S\))−∇ωFS\(ω∗

S ,ν
∗
S)− DωωFS\(ω∗

S ,ν
∗
S)(ω

∗
S\ − ω∗

S)∥

=∥ n

n−m
[∇ωFS(ω

∗
S\ , VS(ω

∗
S\))−∇ωFS(ω

∗
S ,ν

∗
S)− DωωFS(ω

∗
S ,ν

∗
S)(ω

∗
S\ − ω∗

S)]

− 1

n−m

∑
zi∈U

[∇ωf(ω
∗
S\ , VS(ω

∗
S\); zi)−∇ωf(ω

∗
S ,ν

∗
S ; zi)]

+
1

n−m

∑
zi∈U

Dωωf(ω
∗
S ,ν

∗
S ; zi)(ω

∗
S\ − ω∗

S)∥

≤ n

n−m
∥∇ωFS(ω

∗
S\ , VS(ω

∗
S\))−∇ωFS(ω

∗
S ,ν

∗
S)− DωωFS(ω

∗
S ,ν

∗
S)(ω

∗
S\ − ω∗

S)∥

+
1

n−m

∑
zi∈U

∥∇ωf(ω
∗
S\ , VS(ω

∗
S\); zi)−∇ωf(ω

∗
S ,ν

∗
S ; zi)∥

+
1

n−m
∥
∑
zi∈U

Dωωf(ω
∗
S ,ν

∗
S ; zi)(ω

∗
S\ − ω∗

S)∥.

(64)

We denote κν = ℓ/µν . For the first term on the right-hand side of the inequality in eq.(64), we have
n

n−m
∥∇ωFS(ω

∗
S\ , VS(ω

∗
S\))−∇ωFS(ω

∗
S ,ν

∗
S)− DωωFS(ω

∗
S ,ν

∗
S)(ω

∗
S\ − ω∗

S)∥

(i)

≤ n

n−m
· 2
√
2κ3

νρ∥ω∗
S\ − ω∗

S∥2
(ii)

≤ 8
√
2κ3

νρL
2m2

µ2
ωn(n−m)

≤ 8
√
2ρL2ℓ3m2

µ5n(n−m)
,

(65)

where the inequality (i) is by Lemma 6 and the inequality (ii) is by Lemma 3.

For the second term on the right-hand side of the inequality in eq.(64), we have
1

n−m

∑
zi∈U

∥∇ωf(ω
∗
S\ , VS(ω

∗
S\); zi)−∇ωf(ω

∗
S ,ν

∗
S ; zi)∥

(i)

≤ 1

n−m
·mℓ

√
∥ω∗

S\ − ω∗
S∥2 + ∥VS(ω∗

S\)− VS(ω∗
S)∥2

(ii)

≤ 1

n−m
·mℓ

√
∥ω∗

S\ − ω∗
S∥2 + κ2

ν∥ω∗
S\ − ω∗

S∥2

(iii)

≤
2Llm2

√
1 + κ2

ν

µωn(n−m)
≤ 2

√
2Llκνm

2

µn(n−m)
≤ 2

√
2Ll2m2

µ2n(n−m)
,

(66)

where the inequality (i) follows by the fact that the function ∇ωf(·, ·) is ℓ-Lipschitz continuous and
ν∗
S = VS(ω

∗
S). The inequality (ii) holds because Lemma 4, and the inequality (iii) is by Lemma 3.
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For the third term on the right-hand side of the inequality in eq.(64), we have

1

n−m
∥
∑
zi∈U

Dωωf(ω
∗
S ,ν

∗
S ; zi)(ω

∗
S\ − ω∗

S)∥

≤(ℓ+
ℓ2

µν
) · 2Lm2

µωn(n−m)
≤ 4Lℓ2m2

µ2n(n−m)
,

(67)

where the first inequality is by Lemma 7. Plugging eq.(65), eq.(66) and eq.(67) into eq.(64), we
further get

∥∇ωFS\(ω∗
S\ , VS(ω

∗
S\))−∇ωFS\(ω∗

S ,ν
∗
S)− DωωFS\(ω∗

S ,ν
∗
S)(ω

∗
S\ − ω∗

S)∥

≤(8
√
2L2ℓ3ρ/µ5 + 8Lℓ2/µ2)

m2

n(n−m)
.

(68)

The above derivation yields an upper bound result. In the following, we derive a lower bound result.
Let x be the vector satisfying the following relation,

ω∗
S\ = ω∗

S +
1

n−m
[DωωFS\(ω∗

S ,ν
∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi) + x. (69)

Since we have ∇ωFS\(ω∗
S ,ν

∗
S) = − 1

n−m

∑
zi∈U ∇ωf(ω

∗
S ,ν

∗
S ; zi) and ∇ωFS\(ω∗

S\ , VS(ω
∗
S\)) =

0 due to the optimality of ω∗
S\ , plugging eq.(69) into eq.(68), we get that

∥DωωFS\(ω∗
S ,ν

∗
S) · x∥ ≤ (8

√
2L2ℓ3ρ/µ5 + 8Lℓ2/µ2)

m2

n(n−m)
. (70)

For the left-hand side of eq.(70), with ∥DωωFS(ω
∗
S ,ν

∗
S)∥ ≥ µωω , we have

∥DωωFS\(ω∗
S ,ν

∗
S) · x∥ =

1

n−m
∥[
∑

zi∈S\U

Dωωf(ω
∗
S ,ν

∗
S ; zi)] · x∥

=
1

n−m
∥[
∑
zi∈S

Dωωf(ω
∗
S ,ν

∗
S ; zi)−

∑
zi∈U

Dωωf(ω
∗
S ,ν

∗
S ; zi)] · x∥

≥ 1

n−m

(
∥nDωωFS(ω

∗
S ,ν

∗
S)∥ − ∥

∑
zi∈U

Dωωf(ω
∗
S ,ν

∗
S ; zi)∥

)
· ∥x∥

≥ (µωωn− (ℓ+ ℓ2/µν)m)

n−m
∥x∥ ≥ (µn− (ℓ+ ℓ2/µ)m)

n−m
∥x∥,

(71)

where the second inequality is by Lemma 7. Combining eq.(70), eq.(68), and the definition of the
vector ∥x∥, we get that

∥ω∗
S\ − ω̂∥ = ∥x∥ ≤ (8

√
2L2ℓ3ρ/µ5 + 8Lℓ2/µ2)m2

n(µn− (ℓ+ ℓ2/µ)m)
. (72)

Symmetrically, we can get that ∥ν∗
S\ − ν̂∥ ≤ (8

√
2L2ℓ3ρ/µ5+8Lℓ2/µ2)m2

n(µn−(ℓ+ℓ2/µ)m) .

Theorem 6 ((ϵ, δ)-Minimax Unlearning Certification). Under the same settings of Lemma 10, our
minimax learning algorithm Asc−sc and unlearning algorithm Āsc−sc is (ϵ, δ)-certified minimax
unlearning if we choose

σ1 and σ2 =
2(8

√
2L2ℓ3ρ/µ5 + 8Lℓ2/µ2)m2

n(µn− (ℓ+ ℓ2/µ)m)ϵ

√
2 log(2.5/δ). (73)

Proof. Our proof for (ϵ, δ)-minimax unlearning certification is similar to the one used for the
differential privacy guarantee of the Gaussian mechanism [Dwork et al., 2014].

Let (ω∗
S ,ν

∗
S) be the output of the learning algorithm Asc−sc trained on dataset S and (ωu,νu)

be the output of the unlearning algorithm Āsc−sc running with delete requests U , the learned
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model (ω∗
S ,ν

∗
S), and the memory variables T (S). Then we have (ω∗

S ,ν
∗
S) = Asc−sc(S) and

(ωu,νu) = Āsc−sc(U,Asc−sc(S), T (S)). We also denote the intermediate variables before adding
noise in algorithm Āsc−sc as (ω̂, ν̂), and we have ωu = ω̂ + ξ1 and νu = ν̂ + ξ2.

Smilarly, let (ω∗
S\ ,ν

∗
S\) be the output of the learning algorithm Asc−sc trained on dataset S \ U

and (ωu
S\ ,ν

u
S\) be the output of the unlearning algorithm Āsc−sc running with delete requests ∅,

the learned model (ω∗
S\ ,ν

∗
S\), and the memory variables T (S \ U). Then we have (ω∗

S\ ,ν
∗
S\) =

Asc−sc(S \U) and (ωu
S\ ,ν

u
S\) = Āsc−sc(∅, Asc−sc(S \U), T (S)). We also denote the intermediate

variables before adding noise in algorithm Āsc−sc as (ω̂S\ , ν̂S\), and we have ωu
S\ = ω̂S\ + ξ1 and

νu
S\ = ν̂S\ + ξ2. Note that ω̂S\ = ω∗

S\ and ν̂S\ = ν∗
S\ .

We sample the noise ξ1 ∼ N (0, σ1Id1) and ξ2 ∼ N (0, σ2Id2) with the scale: σ1 = ∥ω∗
S\ − ω̂∥ ·

√
2 log(2.5/δ)

ϵ/2 = ∥ω̂S\ − ω̂∥ ·
√

2 log(2.5/δ)

ϵ/2 ,

σ2 = ∥ν∗
S\ − ν̂∥ ·

√
2 log(2.5/δ)

ϵ/2 = ∥ν̂S\ − ν̂∥ ·
√

2 log(2.5/δ)

ϵ/2 ,
(74)

where ∥ω∗
S\ − ω̂∥ and ∥ω∗

S\ − ω̂∥ are given in Lemma 10. Then, following the same proof as Dwork
et al. [2014, Theorem A.1] together with the composition property of DP [Vadhan, 2017, Lemma
7.2.3], we get that, for any set O ⊆ Θ where Θ := W ×V ,
Pr[(ω̂, ν̂) ∈ O] ≤ eϵ Pr[(ω̂S\ , ν̂S\) ∈ O] + δ, and Pr[(ω̂S\ , ν̂S\) ∈ O] ≤ eϵ Pr[(ω̂, ν̂) ∈ O] + δ,

(75)
which implies that the algorithm pair Asc−sc and Āsc−sc is (ϵ, δ)-certified minimax unlearning.

Theorem 7 (Population Primal-Dual Risk). Under the same settings of Lemma 10 and denote
d = max{d1, d2}, the population weak and strong PD risk for the certified minimax unlearning
variables (ωu,νu) returned by Algorithm 2 are

△w(ωu,νu) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√
d log(1/δ)

n2ϵ
+

mL2

µn

)
,

△s(ωu,νu) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√
d log(1/δ)

n2ϵ
+

mL2

µn
+

L2ℓ

µ2n

)
.

(76)

Proof. We begin with the population weak PD risk for the certified minimax unlearning variable
(ωu,νu), which has the following conversions,

△w(ωu,νu)

=max
ν∈V

E[F (ωu,ν)]− min
ω∈W

E[F (ω,νu)]

=max
ν∈V

E[F (ωu,ν)− F (ω∗
S ,ν) + F (ω∗

S ,ν)]− min
ω∈W

E[F (ω,νu)− F (ω,ν∗
S) + F (ω,ν∗

S)]

≤max
ν∈V

E[F (ωu,ν)− F (ω∗
S ,ν)] + max

ν∈V
E[F (ω∗

S ,ν)]

− min
ω∈W

E[F (ω,νu)− F (ω,ν∗
S)]− min

ω∈W
E[F (ω,ν∗

S)]

=max
ν∈V

E[F (ωu,ν)− F (ω∗
S ,ν)] + max

ω∈W
E[(−F )(ω,νu)− (−F )(ω,ν∗

S)]

+ max
ν∈V

E[F (ω∗
S ,ν)]− min

ω∈W
E[F (ω,ν∗

S)]

(i)

≤E[L∥ωu − ω∗
S∥] + E[L∥νu − ν∗

S∥] +△w(ω∗
S ,ν

∗
S)

(ii)

≤ E[L∥ωu − ω∗
S∥] + E[L∥νu − ν∗

S∥] +
2
√
2L2

µn
,

(77)
where the inequality (i) holds because the population loss function F (ω,ν) := E[f(ω,ν; z)] is
L-Lipschitz continuous. The inequality (ii) is by Lemma 8.

By recalling the unlearning update step in Algorithm 2, we have

ωu = ω∗
S +

1

n−m
[DωωFS\(ω∗

S ,ν
∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi) + ξ1, (78)
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where the vector ξ1 ∈ Rd1 is drawn independently from N (0, σ2
1Id1). From the relation in eq.(78),

we further get

E[∥ωu − ω∗
S∥] =E

[∥∥∥∥∥ 1

n−m
[DωωFS\(ω∗

S ,ν
∗
S)]

−1 ·
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi) + ξ1

∥∥∥∥∥
]

(i)

≤ 1

n−m
E

[∥∥∥∥∥[DωωFS\(ω∗
S ,ν

∗
S)]

−1 ·
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+ E[∥ξ1∥]

(ii)

≤ 1

n−m
· n−m

(µn− ℓ(1 + ℓ/µ)m)
E

[∥∥∥∥∥∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+
√
E[∥ξ1∥2]

(iii)
=

1

(µn− ℓ(1 + ℓ/µ)m)
E

[∥∥∥∥∥∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+
√
d1σ1

(iv)

≤ mL

(µn− ℓ(1 + ℓ/µ)m)
+
√

d1σ1,

(79)
where the inequality (i) is by the triangle inequality and the inequality (ii) follows from the relation
in eq.(71), together with the Jensen’s inequality to bound E[∥ξ1∥]. The equality (iii) holds because
the vector ξ1 ∼ N (0, σ2

1Id1
) and thus we have E[∥ξ1∥2] = d1σ

2
1 . Furthermore, the inequality (iv) is

due to the fact that f(ω,ν; z) is L-Lipshitz continuous.

Symmetrically, we have

E[∥νu − ν∗
S∥] ≤

mL

(µn− ℓ(1 + ℓ/µ)m)
+
√
d2σ2. (80)

Plugging eq.(79) and eq.(80) into eq.(77) with d = max{d1, d2} we get

△w(ωu,νu) ≤ 2mL2

(µn− ℓ(1 + ℓ/µ)m)
+

√
d(σ1 + σ2)L+

2
√
2L2

µn
. (81)

With the noise scale σ1 and σ2 being equal to 2(8
√
2L2ℓ3ρ/µ5+8Lℓ2/µ2)m2

n(µn−(ℓ+ℓ2/µ)m)ϵ

√
2 log(2.5/δ), we can get

our generalization guarantee with population weak PD risk:

△w(ωu,νu) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√
d log(1/δ)

n2ϵ
+

mL2

µn

)
. (82)

For the population strong PD risk △s(ωu,νu), similarly, we have
E[max

ν∈V
F (ωu,ν)− min

ω∈W
F (ω,νu)]

=E[max
ν∈V

(F (ωu,ν)− F (ω∗
S ,ν) + F (ω∗

S ,ν))− min
ω∈W

(F (ω,νu)− F (ω,ν∗
S) + F (ω,ν∗

S))]

=E[max
ν∈V

(F (ωu,ν)− F (ω∗
S ,ν) + F (ω∗

S ,ν))]− E[min
ω∈W

(F (ω,νu)− F (ω,ν∗
S) + F (ω,ν∗

S))]

≤E[max
ν∈V

(F (ωu,ν)− F (ω∗
S ,ν)) + max

ν∈V
F (ω∗

S ,ν)]

− E[min
ω∈W

(F (ω,νu)− F (ω,ν∗
S)) + min

ω∈W
F (ω,ν∗

S)]

=E[max
ν∈V

(F (ωu,ν)− F (ω∗
S ,ν))] + E[max

ν∈V
F (ω∗

S ,ν)]

− E[min
ω∈W

(F (ω,νu)− F (ω,ν∗
S))]− E[min

ω∈W
F (ω,ν∗

S)]

=E[max
ν∈V

(F (ωu,ν)− F (ω∗
S ,ν))] + E[max

ω∈W
((−F )(ω,νu)− (−F )(ω,ν∗

S))]

+ E[max
ν∈V

F (ω∗
S ,ν)− min

ω∈W
F (ω,ν∗

S)]

(i)

≤E[L∥ωu − ω∗
S∥] + E[L∥νu − ν∗

S∥] +△s(ω∗
S ,ν

∗
S)

(ii)

≤ 2mL2

(µn− ℓ(1 + ℓ/µ)m)
+
√
d(σ1 + σ2)L+

8L2ℓ

µ2n
,

(83)
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where inequality (i) is due to the fact that the population loss function F (ω,ν) := E[f(ω,ν; z)] is
L-Lipschitz continuous. The inequality (ii) uses eq.(79), eq.(80) and Lemma 9. With the same noise
scale above, we can get the generalization guarantee in terms of strong PD risk below,

△s(ωu,νu) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

µn
+

L2ℓ

µ2n

)
. (84)

Theorem 8 (Deletion Capacity). Under the same settings of Lemma 10 and denote d = max{d1, d2},
the deletion capacity of Algorithm 2 is

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ c · n

√
ϵ

(d log(1/δ))1/4
, (85)

where the constant c depends on L, l, ρ, and µ of the loss function f .

Proof. By the definition of deletion capacity, in order to ensure the population PD risk derived in
Theorem 7 is bounded by γ, it suffices to let:

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ c · n

√
ϵ

(d log(1/δ))1/4
,

where the constant c depends on the properties of the loss function f(ω,ν; z).

B.2 Missing Proofs of Sec.4.4

B.2.1 Proof of Lemma 1 (Closeness Upper Bound)

Proof. By the definition of the functions FS(ω,ν) and FS\(ω,ν), we have

∥∇ωFS\(ω∗
S\ , VS(ω

∗
S\))−∇ωFS\(ω∗

S ,ν
∗
S)−

n

n−m
DωωFS(ω

∗
S ,ν

∗
S)(ω

∗
S\ − ω∗

S))∥

=∥ n

n−m
[∇ωFS(ω

∗
S\ , VS(ω

∗
S\))−∇ωFS(ω

∗
S ,ν

∗
S)− DωωFS(ω

∗
S ,ν

∗
S)(ω

∗
S\ − ω∗

S)]

− 1

n−m

∑
zi∈U

[∇ωf(ω
∗
S\ , VS(ω

∗
S\); zi)−∇ωf(ω

∗
S ,ν

∗
S ; zi)]∥

(i)

≤ n

n−m
∥∇ωFS(ω

∗
S\ , VS(ω

∗
S\))−∇ωFS(ω

∗
S ,ν

∗
S)− DωωFS(ω

∗
S ,ν

∗
S)(ω

∗
S\ − ω∗

S)∥

+
1

n−m

∑
zi∈U

∥∇ωf(ω
∗
S\ , VS(ω

∗
S\); zi)−∇ωf(ω

∗
S ,ν

∗
S ; zi)∥

(ii)

≤ 8
√
2ρL2ℓ3m2

µ5n(n−m)
+

2
√
2Ll2m2

µ2n(n−m)
,

(86)

where the inequality (i) holds because the triangle inequality and the inequality (ii) uses the results in
eq.(65) and eq.(66). Now let x̃ be the vector satisfying the following relation,

ω∗
S\ = ω∗

S +
1

n
[DωωFS(ω

∗
S ,ν

∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi) + x̃. (87)

Since we have ∇ωFS\(ω∗
S ,ν

∗
S) = − 1

n−m

∑
zi∈U ∇ωf(ω

∗
S ,ν

∗
S ; zi) and ∇ωFS\(ω∗

S\ , VS(ω
∗
S\)) =

0 due to the optimality of ω∗
S\ , plugging the above relation into eq.(86), we get

∥ n

n−m
DωωFS(ω

∗
S ,ν

∗
S)x̃∥ ≤ (8

√
2L2ℓ3ρ/µ5 + 2

√
2Lℓ2/µ2)

m2

n(n−m)
. (88)

With DωωFS(ω
∗
S ,ν

∗
S) ≥ µωω , we also have

∥ n

n−m
DωωFS(ω

∗
S ,ν

∗
S)x̃∥ ≥ µωωn

n−m
∥x̃∥ ≥ µn

n−m
∥x̃∥. (89)

Combining eq.(89), eq.(88), and the definition of the vector ∥x̃∥, we get that

∥ω∗
S\ − ω̃∥ = ∥x̃∥ ≤ (8

√
2L2ℓ3ρ/µ6 + 2

√
2Lℓ2/µ3)m2

n2
. (90)

Symmetrically, we can get ∥ν∗
S\ − ν̃∥ ≤ (8

√
2L2ℓ3ρ/µ6+2

√
2Lℓ2/µ3)m2

n2 .
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B.2.2 Proof of Theorem 2 ((ϵ, δ)-Minimax Unlearning Certification)

Proof. With the closeness upper bound in Lemma 1 and the given noise scales in eq.(22), the proof is
identical to that of Theorem 6.

B.2.3 Proof of Theorem 3 (Population Primal-Dual Risk)

Proof. We start with the population weak PD risk. By eq.(77), we have

△w(ω̃u, ν̃u) ≤ E[L∥ω̃u − ω∗
S∥] + E[L∥ν̃u − ν∗

S∥] +
2
√
2L2

µn
. (91)

By recalling the unlearning step in Algorithm 3, we have

ω̃u = ω∗
S +

1

n
[DωωFS(ω

∗
S ,ν

∗
S)]

−1
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi) + ξ1, (92)

where the vector ξ1 ∈ Rd1 is drawn independently from N (0, σ2
1Id1

). From the relation in eq.(78),
we further get

E[∥ω̃u − ω∗
S∥] =E

[∥∥∥∥∥ 1n [DωωFS(ω
∗
S ,ν

∗
S)]

−1 ·
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi) + ξ1

∥∥∥∥∥
]

(i)

≤ 1

n
E

[∥∥∥∥∥[DωωFS(ω
∗
S ,ν

∗
S)]

−1 ·
∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+ E[∥ξ1∥]

(ii)

≤ 1

n
· µ−1E

[∥∥∥∥∥∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+
√

E[∥ξ1∥2]

(iii)
=

1

µn
E

[∥∥∥∥∥∑
zi∈U

∇ωf(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+
√
d1σ1

(iv)

≤ mL

µn
+
√
d1σ1,

(93)

where the inequality (i) uses the triangle inequality and the inequality (ii) follows by the relation
DωωFS(ω

∗
S ,ν

∗
S) ≥ µωω ≥ µ, together with the Jensen’s inequality to bound E[∥ξ1∥]. The equality

(iii) holds because the vector ξ1 ∼ N (0, σ2
1Id1

) and thus we have E[∥ξ1∥2] = d1σ
2
1 . And the

inequality (iv) is due to the fact that f(ω,ν; z) is L-Lipshitz continuous. Symmetrically, we have

E[∥ν̃u − ν∗
S∥] ≤

mL

µn
+
√
d2σ2. (94)

Plugging eq.(93) and eq.(94) into eq.(91) with d = max{d1, d2} we get

△w(ω̃u, ν̃u) ≤ 2mL2

µn
+

√
d(σ1 + σ2)L+

2
√
2L2

µn
. (95)

With the noise scale σ1 and σ2 being equal to 2(8
√
2L2ℓ3ρ/µ6+2

√
2Lℓ2/µ3)m2

n2ϵ

√
2 log(2.5/δ), we can

get our generalization guarantee in terms of population weak PD risk:

△w(ω̃u, ν̃u) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√
d log(1/δ)

n2ϵ
+

mL2

µn

)
. (96)

For the population strong PD risk, using an application of eq.(83) with Lemma 9, eq.(93), eq.(94)
and the noise scales given in Theorem 2, we can get

△s(ω̃u, ν̃u) = O

(
(L3ℓ3ρ/µ6 + L2ℓ2/µ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

µn
+

L2ℓ

µ2n

)
. (97)

B.2.4 Proof of Theorem 4 (Deletion Capacity)

Proof. By the definition of deletion capacity, in order to ensure the population weak or strong PD
risk derived in Lemma 3 is bounded by γ, it suffices to let mA,Ā

ϵ,δ,γ(d1, d2, n) ≥ c · n
√
ϵ

(d log(1/δ))1/4
.
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B.3 Efficient Online Unlearning Algorithm

To support successive unlearning requests, similar to the STL case Suriyakumar and Wilson [2022],
we further provide an efficient and online minimax unlearning algorithm (denoted by Āonline).
The pseudocode of Āonline is given in Algorithm 4. Its certified minimax unlearning guarantee,
generalization, and deletion capacity can be identically yielded as Algorithm 3, which are omitted
here.

Algorithm 4 Efficient Online Certified Minimax Unlearning (Āonline)

Input: Delete request zk ∈ S, early delete requests U : {zj}mj=1 ⊆ S, output of Asc−sc(S): (ω∗
S ,ν

∗
S),

memory variables T (S): {DωωFS(ω
∗
S ,ν

∗
S), DννFS(ω

∗
S ,ν

∗
S)}, early unlearning variables: (ω̃u

U , ν̃
u
U ), loss

function: f(ω,ν; z), noise parameters: σ1, σ2.
1: Set ω̃∅ = ω∗

S and ν̃∅ = ν∗
S .

2: Compute

ωU∪{k} = ω̃U +
1

n
[DωωFS(ω

∗
S ,ν

∗
S)]

−1∇ωf(ω
∗
S ,ν

∗
S ; zk), (98)

νU∪{k} = ν̃U +
1

n
[DννFS(ω

∗
S ,ν

∗
S)]

−1∇νf(ω
∗
S ,ν

∗
S ; zk). (99)

3: ω̃u
U∪{k} = ωU∪{k}+ξ1, where ξ1 ∼ N (0, σ1Id1) and ν̃u

U∪{k} = νU∪{k}+ξ2, where ξ2 ∼ N (0, σ2Id2)
.

Output: (ω̃u
U∪{k}, ν̃

u
U∪{k}).
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C Detailed Algorithm Descriptions and Missing Proofs in Section 5

C.1 Minimax Unlearning Algorithm for Smooth Convex-Concave Loss Function

In this section, we provide minimax learning and minimax unlearning algorithms for smooth convex-
concave loss functions based on the counterpart algorithms for the SC-SC setting. Given the
convex-concave loss function f(ω,ν; z), we define the regularized loss function as f̃(ω,ν; z) =

f(ω,ν; z) + λ
2 ∥ω∥2 − λ

2 ∥ν∥
2. Suppose the function f satisfies Assumption 1, then the function f̃

is λ-strongly convex in ω, λ-strongly concave in ν, (2L+ λ∥ω∥+ λ∥ν∥)-Lipschitz,
√
2(2ℓ+ λ)-

gradient Lipschitz and ρ-Hessian Lipschitz. Thus, we can apply the minimax learning in Algorithm 1
and unlearning in Algorithm 2 to the regularized loss function with a properly chosen λ. We denote
our learning algorithm by Ac−c and unlearning algorithm by Āc−c. The pseudocode is provided in
Algorithm 5 and Algorithm 6, respectively. Additionally, we denote the regularized population loss as
F̃ (ω,ν) := Ez∼D[f̃(ω,ν; z)] and regularized empirical loss as F̃S(ω,ν) := 1

n

∑n
i=1 f̃(ω,ν; zi).

Algorithm 5 Mimimax Learning Algorithm (Ac−c)

Input: Dataset S : {zi}ni=1 ∼ Dn, loss function: f(ω,ν; z), regularization parameter: λ.
1: Define

f̃(ω,ν; z) = f(ω,ν; z) +
λ

2
∥ω∥2 − λ

2
∥ν∥2. (100)

2: Run the algorithm Asc−sc on the dataset S with loss function f̃ .
Output: (ω∗

S ,ν
∗
S , DωωF̃S(ω

∗
S ,ν

∗
S), Dνν F̃S(ω

∗
S ,ν

∗
S))← Asc−sc(S, f̃).

Algorithm 6 Certified Minimax Unlearning for Convex-Concave Loss (Āc−c)

Input: Delete requests U : {zj}mj=1 ⊆ S, output of Ac−c(S): (ω∗
S ,ν

∗
S), memory variables T (S):

{DωωF̃S(ω
∗
S ,ν

∗
S), Dνν F̃S(ω

∗
S ,ν

∗
S)}, loss function: f(ω,ν; z), regularization parameter: λ, noise pa-

rameters: σ1, σ2.
1: Define

f̃(ω,ν; z) = f(ω,ν; z) +
λ

2
∥ω∥2 − λ

2
∥ν∥2. (101)

2: Run the algorithm Āsc−sc with delete requests U , learning variables (ω∗
S ,ν

∗
S), memory variables T (S),

loss function f̃ and noise parameters σ1 and σ2.
Output: (ωu,νu)← Āsc−sc(U, (ω

∗
S ,ν

∗
S), T (S), f̃ , σ1, σ2).

C.2 Supporting Lemma

Lemma 11. Suppose the function f(ω,ν; z) is L-Lipschitz continuous. Define the function f̃(ω,ν; z)
as

f̃(ω,ν; z) = f(ω,ν; z) +
λ

2
∥ω∥2 − λ

2
∥ν∥2. (102)

Given a dataset S = {zi}ni=1 and denote (ω∗
S ,ν

∗
S) := argminω∈W maxν∈V{F̃S(ω,ν) :=

1
n

∑n
i=1 f̃(ω,ν; zi)}. Then, the variables (ω∗

S ,ν
∗
S) satisfy ∥ω∗

S∥ ≤ L/λ and ∥ν∗
S∥ ≤ L/λ.

Proof. Due to the optimality of ω∗
S , we have

∇ωF̃S(ω
∗
S ,ν

∗
S ; z) =

1

n

∑
zi∈S

∇ω f̃(ω
∗
S ,ν

∗
S ; zi) = 0. (103)

Plugging in the definition of the function f̃ in the above, we get that

1

n

∑
zi∈S

∇ωf(ω
∗
S ,ν

∗
S ; zi) + λω∗

S = 0. (104)

26



Then, using the triangle inequality, we have

∥λω∗
S∥ = ∥ 1

n

∑
zi∈S

∇ωf(ω
∗
S ,ν

∗
S ; zi)∥ ≤ 1

n

∑
zi∈S

∥∇ωf(ω
∗
S ,ν

∗
S ; zi)∥ ≤ L, (105)

where the last inequality holds because the function f is L-Lipschitz continuous. Thus we have
∥ω∗

S∥ ≤ L/λ. Similarly, we can get ∥ν∗
S∥ ≤ L/λ.

Lemma 11 implies that the empirical optimizer (ω∗
S ,ν

∗
S) returned by Algorithm 6 satisfies ∥ω∗

S∥ ≤
L/λ and ∥ν∗

S∥ ≤ L/λ. Thus our domain of interest are W := {ω|∥ω∥ ≤ L/λ} and V := {ν|∥ν∥ ≤
L/λ}. Over the set W × V , the function f̃(ω,ν; z) is 4L-Lipschitz continuous. Also, with λ < ℓ,
f̃(ω,ν; z) has 3

√
2ℓ-Lipschitz gradients.

C.3 Proof of Theorem 5 (Certified Minimax Unlearning for Convex-Concave Loss Funcion)

Denote L̃ = 4L and ℓ̃ = 3
√
2ℓ, then the function f̃ is L̃-Lipschitz continuous and has ℓ̃-Lipschitz

gradients. Let (ω∗
S\ ,ν

∗
S\) be the optimal solution of the loss function F̃S\(ω,ν) on the remaining

dataset, i.e.,

(ω∗
S\ ,ν

∗
S\) := arg min

ω∈W
max
ν∈V

{F̃S\(ω,ν) :=
1

n−m

∑
zi∈S\U

f̃(ω,ν; zi)}. (106)

Additionally, we have ∥DωωF̃S(ω
∗
S ,ν

∗
S)∥ ≥ λ and ∥Dνν F̃S(ω

∗
S ,ν

∗
S)∥ ≥ λ.

Lemma 12. Under the settings of Theorem 5, for any λ > 0, the population weak and strong PD
risk for the minimax learning variables (ω∗

S ,ν
∗
S) returned by Algorithm 5 are

max
ν∈V

E[F (ω∗
S ,ν)]− min

ω∈W
E[F (ω,ν∗

S)] ≤
32
√
2L2

λn
+

λ

2
(B2

ω +B2
ν),

E[max
ν∈V

F (ω∗
S ,ν)− min

ω∈W
F (ω,ν∗

S)] ≤
384

√
2L2ℓ

λ2n
+

λ

2
(B2

ω +B2
ν).

(107)

Proof. For the function F̃ (ω,ν), an application of Lemma 8 gives that

max
ν∈V

E[F̃ (ω∗
S ,ν)]− min

ω∈W
E[F̃ (ω,ν∗

S)] ≤
32

√
2L2

λn
. (108)

By the assumption of bounded parameter spaces W and V so that maxω∈W ∥ω∥ ≤ Bω and
maxν∈V ∥ν∥ ≤ Bν , we have the following derivations for the population weak PD risk,

max
ν∈V

E[F (ω∗
S ,ν)]− min

ω∈W
E[F (ω,ν∗

S)]

=max
ν∈V

E
[
F̃ (ω∗

S ,ν)−
λ

2
∥ω∗

S∥2 +
λ

2
∥ν∥2

]
− min

ω∈W
E
[
F̃ (ω,ν∗

S)−
λ

2
∥ω∥2 + λ

2
∥ν∗

S∥2
]

≤max
ν∈V

E
[
F̃ (ω∗

S ,ν) +
λ

2
∥ν∥2

]
− min

ω∈W
E
[
F̃ (ω,ν∗

S)−
λ

2
∥ω∥2

]
≤max

ν∈V
E
[
F̃ (ω∗

S ,ν)
]
− min

ω∈W
E
[
F̃ (ω,ν∗

S)
]
+max

ν∈V
E
[
λ

2
∥ν∥2

]
+ max

ω∈W
E
[
λ

2
∥ω∥2

]
≤32

√
2L2

λn
+

λ

2
(B2

ω +B2
ν).

(109)

Similarly, an application of Lemma 9 gives that

E[max
ν∈V

F̃ (ω∗
S ,ν)− min

ω∈W
F̃ (ω,ν∗

S)] ≤
128

√
2L2(2ℓ+ λ)

λ2n
. (110)
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And we can get the population strong PD risk with the following conversions,

E[max
ν∈V

F (ω∗
S ,ν)− min

ω∈W
F (ω,ν∗

S)]

=E
[
max
ν∈V

(
F̃ (ω∗

S ,ν)−
λ

2
∥ω∗

S∥2 +
λ

2
∥ν∥2

)
− min

ω∈W

(
F̃ (ω,ν∗

S)−
λ

2
∥ω∥2 + λ

2
∥ν∗

S∥2
)]

≤E
[
max
ν∈V

(
F̃ (ω∗

S ,ν) +
λ

2
∥ν∥2

)
− min

ω∈W

(
F̃ (ω,ν∗

S)−
λ

2
∥ω∥2

)]
=E

[
max
ν∈V

(
F̃ (ω∗

S ,ν) +
λ

2
∥ν∥2

)]
− E

[
min
ω∈W

(
F̃ (ω,ν∗

S)−
λ

2
∥ω∥2

)]
≤E[max

ν∈V
F̃ (ω∗

S ,ν) + max
ν∈V

λ

2
∥ν∥2] + E[max

ω∈W
(−F̃ )(ω,ν∗

S) + max
ω∈W

λ

2
∥ω∥2]

=E[max
ν∈V

F̃ (ω∗
S ,ν)− min

ω∈W
F̃ (ω,ν∗

S)] + E[max
ν∈V

λ

2
∥ν∥2] + E[max

ω∈W

λ

2
∥ω∥2]

≤128
√
2L2(2ℓ+ λ)

λ2n
+

λ

2
(B2

ω +B2
ν) ≤

384
√
2L2ℓ

λ2n
+

λ

2
(B2

ω +B2
ν).

(111)

Lemma 13 (Closeness Upper Bound). Under the settings of Theorem 5, we have the closeness
bound between the intermediate variables (ω̂, ν̂) in Algorithm 6 and (ω∗

S\ ,ν
∗
S\) in eq.(106):

{∥ω∗
S\ − ω̂∥, ∥ν∗

S\ − ν̂∥} ≤ (8
√
2L̃2ℓ̃3ρ/λ5 + 8L̃ℓ̃2/λ2)m2

n(λn− (ℓ̃+ ℓ̃2/λ)m)
. (112)

Proof. Since we now run the algorithms Asc−sc and Āsc−sc with the regularized loss function f̃ , the
proof is identical to that of Lemma 10.

Equipped with the supporting lemmas above, the proof of Theorem 5 can be separated into the proofs
of the following three lemmas.
Lemma 14 (Minimax Unlearning Certification). Under the settings of Theorem 5, our minimax
learning algorithm Ac−c and unlearning algorithm Āc−c is (ϵ, δ)-certified minimax unlearning if we
choose

σ1 and σ2 =
2(8

√
2L̃2ℓ̃3ρ/λ5 + 8L̃ℓ̃2/λ2)m2

n(λn− (ℓ̃+ ℓ̃2/λ)m)ϵ

√
2 log(2.5/δ). (113)

Proof. With the closeness upper bound in Lemma 13 and the given noise scales in eq.(113), the proof
is identical to that of Theorem 6.

Lemma 15 (Population Primal-Dual Risk). Under the settings of Theorem 5, the population weak
and strong PD risk for (ωu,νu) returned by Algorithm 6 are
△w(ωu,νu) ≤ O

(
(L3ℓ3ρ/λ6 + L2ℓ2/λ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

λn
+ λ(B2

ω +B2
ν)

)
,

△s(ωu,νu) ≤ O
(
(L3ℓ3ρ/λ6 + L2ℓ2/λ3) ·

m2
√

d log(1/δ)

n2ϵ
+

mL2

λn
+

L2ℓ

λ2n
+ λ(B2

ω +B2
ν)

)
.

(114)

Proof. For the population weak PD risk, an application of eq.(77) together with Lemma 12 gives that

△w(ωu,νu) ≤ E[L∥ωu − ω∗
S∥] + E[L∥νu − ν∗

S∥] +
32
√
2L2

λn
+

λ

2
(B2

ω +B2
ν). (115)

According to Algorithm 6, we have the unlearning update step

ωu = ω∗
S +

1

n−m
[DωωF̃S\(ω∗

S ,ν
∗
S)]

−1
∑
zi∈U

∇ω f̃(ω
∗
S ,ν

∗
S ; zi) + ξ1, (116)
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where F̃S\(ω∗
S ,ν

∗
S) :=

1
n−m

∑
zi∈S\U f̃(ω,ν; zi). From the relation above, we further get

E[∥ωu − ω∗
S∥]

=E

[∥∥∥∥∥ 1

n−m
[DωωF̃S\(ω∗

S ,ν
∗
S)]

−1 ·
∑
zi∈U

∇ω f̃(ω
∗
S ,ν

∗
S ; zi) + ξ1

∥∥∥∥∥
]

(i)

≤ 1

n−m
E

[∥∥∥∥∥[DωωF̃S\(ω∗
S ,ν

∗
S)]

−1 ·
∑
zi∈U

∇ω f̃(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+ E[∥ξ1∥]

(ii)

≤ 1

n−m
· n−m

(λn− ℓ̃(1 + ℓ̃/λ)m)
E

[∥∥∥∥∥∑
zi∈U

∇ω f̃(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+
√

E[∥ξ1∥2]

(iii)
=

1

(λn− ℓ̃(1 + ℓ̃/λ)m)
E

[∥∥∥∥∥∑
zi∈U

∇ω f̃(ω
∗
S ,ν

∗
S ; zi)

∥∥∥∥∥
]
+
√

d1σ1

(iv)

≤ 1

(λn− ℓ̃(1 + ℓ̃/λ)m)
E

[∑
zi∈U

(
∥∇ωf(ω

∗
S ,ν

∗
S ; zi)∥+ λ∥ω∗

S∥+ λ∥ν∗
S∥
)]

+
√
d1σ1

(vi)

≤ 3mL

(λn− ℓ̃(1 + ℓ̃/λ)m)
+
√
d1σ1,

(117)

where the inequality (i) uses the triangle inequality and the inequality (ii) follows from an application
of eq.(71), together with the Jensen’s inequality to bound E[∥ξ1∥]. The equality (iii) holds because
the vector ξ1 ∼ N (0, σ2

1Id1) and thus we have E[∥ξ1∥2] = d1σ
2
1 . The inequality (iv) uses the

definition of the function f̃ and the triangle inequality. The inequality (vi) is due to the fact that
f(ω,ν; z) is L-Lipshitz continuous and Lemma 11. Symmetrically, we have

E[∥νu − ν∗
S∥] ≤

3mL

(λn− ℓ̃(1 + ℓ̃/λ)m)
+
√

d2σ2. (118)

Plugging eq.(117) and eq.(118) into eq.(115) with noise scales given in Lemma 14, we can get our
generalization guarantee in terms of population weak PD risk:

△w(ωu,νu) ≤ O
(
(L3ℓ3ρ/λ6 + L2ℓ2/λ3) ·

m2
√
d log(1/δ)

n2ϵ
+

mL2

λn
+ λ(B2

ω +B2
ν)

)
. (119)

Similarly, using an application of eq.(83) together with Lemma 12, Lemma 14, eq.(117) and eq.(118),
we can get the following population strong PD risk:

△s(ωu,νu) ≤ O
(
(L3ℓ3ρ/λ6+L2ℓ2/λ3)·

m2
√

d log(1/δ)

n2ϵ
+
mL2

λn
+
L2ℓ

λ2n
+λ(B2

ω+B2
ν)

)
. (120)

Lemma 16 (Deletion Capacity). Under the settings of Theorem 5, the deletion capacity of Algorithm
6 is

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ c · n

√
ϵ

(d log(1/δ))1/4
, (121)

where the constant c depends on L, l, ρ, Bω and Bν .

Proof. By the definition of deletion capacity, in order to ensure the population PD risk derived in
Lemma 15 is bounded by γ, it suffices to let mA,Ā

ϵ,δ,γ(d1, d2, n) ≥ c · n
√
ϵ

(d log(1/δ))1/4
.

C.4 Minimax Unlearning Algorithm for Smooth Convex-Strongly-Concave Loss Function

In this section, we briefly discuss the extension to the smooth C-SC setting. The SC-C setting is
symmetric and thus omitted here.

29



Given the loss function f(ω,ν; z) that satisfies Assumption 1 with µν-strong concavity in ν, we
define the regularized function as f̃(ω,ν; z) = f(ω,ν; z) + λ

2 ∥ω∥2. Our minimax learning and
minimax unlearning algorithms for C-SC loss function f denoted by Ac−sc and Āc−sc are given in
Algorithm 7 and Algorithm 8 respectively. Additionally, we denote the regularized population loss by
F̃ (ω,ν) := Ez∼D[f̃(ω,ν; z)] and regularized empirical loss by F̃S(ω,ν) := 1

n

∑n
i=1 f̃(ω,ν; zi).

Algorithm 7 Mimimax Learning Algorithm (Ac−sc)

Input: Dataset S : {zi}ni=1 ∼ Dn, loss function: f(ω,ν; z), regularization parameter: λ.
1: Define

f̃(ω,ν; z) = f(ω,ν; z) +
λ

2
∥ω∥2. (122)

2: Run the algorithm Asc−sc on the dataset S with loss function f̃ .
Output: (ω∗

S ,ν
∗
S , DωωF̃S(ω

∗
S ,ν

∗
S), Dνν F̃S(ω

∗
S ,ν

∗
S))← Asc−sc(S, f̃).

Algorithm 8 Certified Minimax Unlearning for Convex-Strongly-Concave Loss (Āc−sc)

Input: Delete requests U : {zj}mj=1 ⊆ S, output of Ac−sc(S): (ω∗
S ,ν

∗
S), memory variables T (S):

{DωωF̃S(ω
∗
S ,ν

∗
S), Dνν F̃S(ω

∗
S ,ν

∗
S)}, loss function: f(ω,ν; z), regularization parameter: λ, noise pa-

rameters: σ1, σ2.
1: Define

f̃(ω,ν; z) = f(ω,ν; z) +
λ

2
∥ω∥2. (123)

2: Run the algorithm Āsc−sc with delete requests U , learning variables (ω∗
S ,ν

∗
S), memory variables T (S),

loss function f̃ and noise parameters σ1 and σ2.
Output: (ωu,νu)← Āsc−sc(U, (ω

∗
S ,ν

∗
S), T (S), f̃ , σ1, σ2).

Note that the function f̃(ω,ν; z) is λ-strongly convex in ω, µν-strongly concave in ν, (L̃ :=

2L+λ∥ω∥)-Lipschitz, (ℓ̃ :=
√
2(2ℓ+λ))-gradient Lipschitz and ρ-Hessian Lipschitz. We also have

∥DωωF̃S(ω
∗
S ,ν

∗
S)∥ ≥ λ. Let (ω∗

S\ ,ν
∗
S\) be the optimal solution of the loss function F̃S\(ω,ν) on

the remaining dataset, i.e.,

(ω∗
S\ ,ν

∗
S\) := arg min

ω∈W
max
ν∈V

{F̃S\(ω,ν) :=
1

n−m

∑
zi∈S\U

f̃(ω,ν; zi)}. (124)

An application of Lemma 11 implies that the empirical optimizer (ω∗
S ,ν

∗
S) returned by Algorithm

8 satisfies ∥ω∗
S∥ ≤ L/λ. Thus our domain of interest are W := {ω|∥ω∥ ≤ L/λ}. Over the set

W , the function f̃(ω,ν; z) is 3L-Lipschitz continuous. Suppose the strongly-convex regularization
parameter λ satisfies λ < ℓ, then f̃(ω,ν; z) has 3

√
2ℓ-Lipschitz gradients.

The corresponding theoretical results are given below.

Lemma 17 (Closeness Upper Bound). Let Assumption 1 hold. Assume the function f(ω,ν; z) is
µν-strongly concave in ν and ∥Dνν F̃S(ω

∗
S ,ν

∗
S)∥ ≥ µνν . Let µ = min{µν , µνν}. Then, we have

the closeness bound between the intermediate variables (ω̂, ν̂) in Algorithm 8 and (ω∗
S\ ,ν

∗
S\) in

eq.(124):  ∥ω∗
S\ − ω̂∥ ≤

(
8
√
2L̃2ℓ̃3ρ
λ2µ3 + 8L̃ℓ̃2

λµ

)
· m2

n(λn−(ℓ̃+ℓ̃2/µ)m)
,

∥ν∗
S\ − ν̂∥ ≤

(
8
√
2L̃2ℓ̃3ρ
λ3µ2 + 8L̃ℓ̃2

λµ

)
· m2

n(µn−(ℓ̃+ℓ̃2/λ)m)
.

(125)

Proof. Since we now run the algorithms Asc−sc and Āsc−sc with the regularized loss function f̃ , the
proof is identical to that of Lemma 10.

Lemma 18 (Minimax Unlearning Certification). Under the settings of Lemma 17, our minimax
learning algorithm Ac−sc and unlearning algorithm Āc−sc is (ϵ, δ)-certified minimax unlearning if
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we choose 
σ1 =

(
8
√
2L̃2ℓ̃3ρ
λ2µ3 + 8L̃ℓ̃2

λµ

)
· 2m2

√
2 log(2.5/δ)

n(λn−(ℓ̃+ℓ̃2/µ)m)ϵ
,

σ2 =
(
8
√
2L̃2ℓ̃3ρ
λ3µ2 + 8L̃ℓ̃2

λµ

)
· 2m2

√
2 log(2.5/δ)

n(µn−(ℓ̃+ℓ̃2/λ)m)ϵ
.

(126)

Proof. With the closeness upper bound in Lemma 17 and the given noise scales in eq.(126), the proof
is identical to that of Theorem 6.

Lemma 19 (Population Weak PD Risk). Under the same settings of Lemma 17, suppose the
parameter space W is bounded so that maxω∈W ∥ω∥ ≤ Bω, the population weak PD risk for the
certified minimax unlearning variables (ωu,νu) returned by Algorithm 8 is

△w(ωu,νu) ≤ O
((L3ℓ3ρ

λ3µ3
+

L2ℓ2

λ2µ
+

L2ℓ2

λµ2

)
·
m2
√
d log(1/δ)

n2ϵ
+

mL2

λn
+

mL2

µn
+λB2

ω

)
, (127)

where d = max{d1, d2}. In particular, by setting the regularization parameter λ as:

λ = max

{
L

Bω

√
m

n
,
Lℓm

Bωµn

(√d log(1/δ)

ϵ

)1/2
,
(L2ℓ2m2

√
d log(1/δ)

B2
ωµn

2ϵ

)1/3
,

(L3ℓ3ρm2
√
d log(1/δ)

B2
ωµ

3n2ϵ

)1/4}
,

(128)

we have the following population weak PD risk:

△w(ωu,νu) ≤ O
(
c1

√
m

n
+ c2

m

n
+ c3

(√d log(1/δ)

ϵ

)1/2m
n

+ c4
(√d log(1/δ)

ϵ

)1/3(m
n

)2/3
+ c5

(√d log(1/δ)

ϵ

)1/4√m

n

)
,

(129)

where c1, c2, c3, c4 and c5 are constants that depend only on L, l, ρ, µ and Bω .

Proof. An application of [Zhang et al., 2021, Theorem 1] gives that

max
ν∈V

E[F̃ (ω∗
S ,ν)]− min

ω∈W
E[F̃ (ω,ν∗

S)] ≤
18
√
2L2

n

(
1

λ
+

1

µ

)
. (130)

Using the relation above with an application of eq.(77) and eq.(109), we have

△w(ωu,νu) ≤ E[L∥ωu − ω∗
S∥] + E[L∥νu − ν∗

S∥] +
18

√
2L2

n

(
1

λ
+

1

µ

)
+

λB2
ω

2
. (131)

By an application of eq.(117), we further get

E[∥ωu − ω∗
S∥] ≤

2mL

λn− ℓ̃(1 + ℓ̃/µ)m
+
√
d1σ1, (132)

and

E[∥νu − ν∗
S∥] ≤

2mL

µn− ℓ̃(1 + ℓ̃/λ)m
+
√
d2σ2. (133)

Plugging eq.(132) and eq.(133) into eq.(131) with noise scales given in Lemma 18, we can get our
generalization guarantee:

△w(ωu,νu) ≤ O
((L3ℓ3ρ

λ3µ3
+

L2ℓ2

λ2µ
+

L2ℓ2

λµ2

)
·
m2
√
d log(1/δ)

n2ϵ
+

mL2

λn
+

mL2

µn
+λB2

ω

)
, (134)

where d = max{d1, d2}.
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Lemma 20 (Population Strong PD Risk). Under the same settings of Lemma 19, the population
strong PD risk for (ωu,νu) returned by Algorithm 8 is

△s(ωu,νu) ≤ O
((L3ℓ3ρ

λ3µ3
+

L2ℓ2

λ2µ
+

L2ℓ2

λµ2

)
·
m2
√

d log(1/δ)

n2ϵ
+

mL2

λn
+

mL2

µn

+
L2ℓ

λ3/2µ1/2n
+

L2ℓ

λ1/2µ3/2n
+ λB2

ω

)
,

(135)

where d = max{d1, d2}. In particular, by setting the regularization parameter λ as:

λ = max

{
L

Bω

√
m

n
,
Lℓm

Bωµn

(√d log(1/δ)

ϵ

)1/2
,
(L2ℓ2m2

√
d log(1/δ)

B2
ωµn

2ϵ

)1/3
,

(L3ℓ3ρm2
√
d log(1/δ)

B2
ωµ

3n2ϵ

)1/4
,
( L2ℓ

B2
ωµ

1/2n

)2/5
,
1

µ

( L2ℓ

B2
ωn

)2/3}
.

(136)

we have the following population strong PD risk:

△s(ωu,νu) ≤ O
(
c1

√
m

n
+ c2

m

n
+ c3

(√d log(1/δ)

ϵ

)1/2m
n

+ c4
(√d log(1/δ)

ϵ

)1/3(m
n

)2/3
+ c5

(√d log(1/δ)

ϵ

)1/4√m

n
+ c6

1

n2/5
+ c7

1

n2/3

)
,

(137)

where c1, c2, c3, c4, c5, c6 and c7 are constants that depend only on L, l, ρ, µ and Bω .

Proof. An application of Lemma 9 gives that

E[max
ν∈V

F̃ (ω∗
S ,ν)− min

ω∈W
F̃ (ω,ν∗

S)] ≤
36

√
2L2(2ℓ+ λ)

n

(
1

λ3/2µ1/2
+

1

λ1/2µ3/2

)
≤108

√
2L2ℓ

n

(
1

λ3/2µ1/2
+

1

λ1/2µ3/2

)
.

(138)

Using an application of eq.(83) and eq.(111), together with eq.(138), eq.(132), eq.(133) and the noise
scales given in Lemma 18, we have

△s(ωu,νu) ≤ O
((L3ℓ3ρ

λ3µ3
+

L2ℓ2

λ2µ
+

L2ℓ2

λµ2

)
·
m2
√

d log(1/δ)

n2ϵ
+

mL2

λn
+

mL2

µn

+
L2ℓ

λ3/2µ1/2n
+

L2ℓ

λ1/2µ3/2n
+ λB2

ω

)
.

(139)

Lemma 21 (Deletion Capacity). Under the same settings as Lemma 19, the deletion capacity of
Algorithm 3 is

mA,Ā
ϵ,δ,γ(d1, d2, n) ≥ c · n

√
ϵ

(d log(1/δ))1/4
, (140)

where the constant c depends on L, l, ρ, µ and Bω and d = max{d1, d2}.

Proof. By the definition of deletion capacity, in order to ensure the population PD risk derived in
Lemma 19 or Lemma 20 is bounded by γ, it suffices to let mA,Ā

ϵ,δ,γ(d1, d2, n) ≥ c · n
√
ϵ

(d log(1/δ))1/4
.

32


	Introduction
	Related work
	Preliminaries and Baseline Solution
	Minimax Learning
	(,)-Certified Machine Unlearning
	Baseline Solution: Certified Minimax Unlearning via Differential Privacy

	Certified Minimax Unlearning
	Intuition for Minimax Unlearning Update
	Proposed Certified Minimax Unlearning
	Certified Minimax Unlearning without Total Hessian Re-computation
	Analysis for Algorithm 3

	Certified Minimax Unlearning for Convex-Concave Loss Function
	Conclusion
	Additional Definitions and Supporting Lemmas
	Additional Definitions
	Supporting Lemmas

	Detailed Algorithm Analysis and Missing Proofs in Section 4
	Analysis for Algorithm 2
	Missing Proofs of Sec.4.4
	Proof of Lemma 1 (Closeness Upper Bound)
	Proof of Theorem 2 ((,)-Minimax Unlearning Certification)
	Proof of Theorem 3 (Population Primal-Dual Risk)
	Proof of Theorem 4 (Deletion Capacity)

	Efficient Online Unlearning Algorithm

	Detailed Algorithm Descriptions and Missing Proofs in Section 5
	Minimax Unlearning Algorithm for Smooth Convex-Concave Loss Function
	Supporting Lemma
	Proof of Theorem 5 (Certified Minimax Unlearning for Convex-Concave Loss Funcion)
	Minimax Unlearning Algorithm for Smooth Convex-Strongly-Concave Loss Function


