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Abstract

This work introduces the first small-loss and gradual-variation regret bounds for
online portfolio selection, marking the first instances of data-dependent bounds for
online convex optimization with non-Lipschitz, non-smooth losses. The algorithms
we propose exhibit sublinear regret rates in the worst cases and achieve logarithmic
regrets when the data is “easy,” with per-round time almost linear in the number
of investment alternatives. The regret bounds are derived using novel smoothness
characterizations of the logarithmic loss, a local norm-based analysis of following
the regularized leader (FTRL) with self-concordant regularizers, which are not
necessarily barriers, and an implicit variant of optimistic FTRL with the log-barrier.

1 Introduction

Designing an optimal algorithm for online portfolio selection (OPS), with respect to both regret and
computational efficiency, has remained a significant open problem in online convex optimization for
over three decades1. OPS models long-term investment as a multi-round game between two strategic
players—the market and the INVESTOR—thereby avoiding the need for hard-to-verify probabilistic
models for the market. In addition to its implications for robust long-term investment, OPS is also a
generalization of probability forecasting and universal data compression [5].

The primary challenge in OPS stems from the absence of Lipschitzness and smoothness in the loss
functions. Consequently, standard online convex optimization algorithms do not directly apply. For
example, standard analyses of online mirror descent (OMD) and following the regularized leader
(FTRL) bound the regret by the sum of the norms of the gradients (see, e.g., the lecture notes by

1Readers are referred to recent papers, such as those by Luo et al. [22], van Erven et al. [35], Mhammedi and
Rakhlin [24], Zimmert et al. [38], and Jézéquel et al. [17], for reviews on OPS.
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Orabona [28] and Hazan [12]). In OPS, the loss functions are not Lipschitz, so these analyses do not
yield a sub-linear regret rate. Without Lipschitzness, the self-bounding property of smooth functions
enables the derivation of a “small-loss” regret bound for smooth loss functions [33]. However, the
loss functions in OPS are not smooth either.

The optimal regret rate of OPS is known to be O(d log T ), where d and T denote the number of
investment alternatives and number of rounds, respectively. This optimal rate is achieved by Universal
Portfolio [9, 10]. Nevertheless, the current best implementation of Universal Portfolio requires
O(d4T 14) per-round time [20], too long for the algorithm to be practical. Subsequent OPS algorithms
can be classified into two categories.

• Algorithms in the first category exhibit near-optimal Õ(d) per-round time and moderate
Õ(
√
dT ) regret rates. This category includes the barrier subgradient method [26], Soft-

Bayes [30], and LB-OMD [34].
• Algorithms in the second category exhibit much faster Õ(poly(d) polylog(T )) regret rates

with much longer Õ(poly(d) poly(T )) per-round time, which is, however, significantly
shorter than the per-round time of Universal Portfolio. This category includes ADA-
BARRONS [22], PAE+DONS [24], BISONS [38], and VB-FTRL [17].

The aforementioned results are worst-case and do not reflect how “easy” the data is. For instance,
if the price relatives of the investment alternatives remain constant over rounds, then a small regret
is expected. Data-dependent regret bounds refer to regret bounds that maintain acceptable rates in
the worst case and much better rates when the data is easy. In this work, we consider three types of
data-dependent bounds.

• A small-loss bound bounds the regret by the cumulative loss of the best action in hindsight.
• A gradual-variation bound bounds the regret by the gradual variation (6) of certain charac-

teristics of the loss functions, such as the gradients and price relatives.
• A second-order bound bounds the regret by the variance or other second-order statistics of

certain characteristics of the loss functions, such as the gradients and price relatives.

Few studies have explored data-dependent bounds for OPS. These studies rely on the so-called
no-junk-bonds assumption [2], requiring that the price relatives of all investment alternatives are
bounded from below by a positive constant across all rounds. Given this assumption, it is easily
verified that the losses in OPS become Lipschitz and smooth. Consequently, the result of Orabona
et al. [29] implies a small-loss regret bound; Chiang et al. [8] established a gradual-variation bound in
the price relatives; and Hazan and Kale [14] proved a second-order bound also in the price relatives.
These bounds are logarithmic in the number of rounds T in the worst cases and can be constant when
the data is easy.

The no-junk-bonds assumption may not always hold. Hazan and Kale [14] raised the question of
whether it is possible to eliminate this assumption. In this work, we take the initial step towards
addressing the question. Specifically, we prove Theorem 1.1.
Theorem 1.1. In the absence of the no-junk-bonds assumption, two algorithms exist that pos-
sess a gradual-variation bound and a small-loss bound, respectively. Both algorithms attain
O(dpolylog(T )) regret rates in the best cases and Õ(

√
dT ) regret in the worst cases, with Õ(d)

per-round time.

Theorem 1.1 represents the first data-dependent bounds for OPS that do not require the no-junk-bonds
assumption. To the best of our knowledge, this also marks the first data-dependent bounds for online
convex optimization with non-Lipschitz non-smooth losses. In the worst cases, Theorem 1.1 ensures
that both algorithms can compete with the OPS algorithms of the first category mentioned above.
In the best cases, both algorithms achieve a near-optimal regret with a near-optimal per-round time,
surpassing the OPS algorithms of the second category in terms of the computational efficiency.
Table 1 in Appendix A presents a detailed summary of existing OPS algorithms in terms of the
worst-case regrets, best-case regrets, and per-round time.

We also derived a second-order regret bound by aggregating a variant of optimistic FTRL with
different learning rates. The interpretation of the result is not immediately clear. Therefore, we detail
the result in Appendix I.
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Technical Contributions. The proof of Theorem 1.1 relies on several key technical breakthroughs:

• Theorem 3.2 provides a general regret bound for optimistic FTRL with self-concordant
regularizers, which may not be barriers, and time-varying learning rates. The bound
generalizes those of Rakhlin and Sridharan [31] and Zimmert et al. [38, Appendix H] and is
of independent interest.

• Existing results on small-loss and gradual-variation bounds assume the loss functions are
smooth, an assumption that does not hold in OPS. In Section 4, we present Lemma 4.3 and
Lemma 4.7, which serve as local-norm counterparts to the Lipschitz gradient condition and
the self-bounding property of convex smooth functions, respectively.

• To apply Theorem 3.2, the gradient estimates and iterates in optimistic FTRL must be
computed concurrently. Consequently, we introduce Algorithm 2, a variant of optimistic
FTRL with the log-barrier and validate its definition and time complexity.

• The gradual-variation and small-loss bounds in Theorem 1.1 are achieved by two novel
algorithms, Algorithm 3 and Algorithm 4, respectively. Both are instances of Algorithm 2.

Notations. For any natural number N , we denote the set {1, . . . , N} by [N ]. The sets of non-
negative and strictly positive numbers are denoted by R+ and R++, respectively. The i-th entry of a
vector v ∈ Rd is denoted by v(i). The probability simplex in Rd, the set of entry-wise non-negative
vectors of unit ℓ1-norm, is denoted by ∆d. We often omit the subscript for convenience. The closure
and relative interior of a set X is denoted by clX and riX , respectively. The ℓp-norm is denoted by
∥·∥p. The all-ones vector is denoted by e. For any two vectors u and v in Rd, their entry-wise product
and division are denoted by u⊙ v and u⊘ v, respectively. For time-indexed vectors a1, . . . , at ∈ Rd,
we denote the sum a1 + · · ·+ at by a1:t.

2 Related Works

2.1 Log-Barrier for Online Portfolio Selection

All algorithms we propose are instances of optimistic FTRL with the log-barrier regularizer. The
first use of the log-barrier in OPS can be traced back to the barrier subgradient method proposed
by Nesterov [26]. Later, Luo et al. [22] employed a hybrid regularizer, which incorporated the
log-barrier, in the development of ADA-BARRONS. This marked the first OPS algorithm with a
regret rate polylogarithmic in T and an acceptable per-round time complexity of O(d2.5T ). Van
Erven et al. [35] conjectured that FTRL with the log-barrier (LB-FTRL) achieves the optimal regret.
The conjecture was recently refuted by Zimmert et al. [38], who established a regret lower bound for
LB-FTRL. Jézéquel et al. [17] combined the log-barrier and volumetric barrier to develop VB-FTRL,
the first algorithm with near-optimal regret and an acceptable per-round time complexity of O(d2T ).
These regret bounds are worst-case and do not directly imply our results.

2.2 FTRL with Self-Concordant Regularizer

Abernethy et al. [1] showed that when the regularizer is chosen as a self-concordant barrier of the
constraint set, the regret of FTRL is bounded by the sum of dual local norms of the gradients. Rakhlin
and Sridharan [31] generalized this result for optimistic FTRL.

The requirement for the regularizer to be a barrier is restrictive. For instance, while the log-barrier is
self-concordant, it is not a barrier of the probability simplex. To address this issue, van Erven et al.
[35], Mhammedi and Rakhlin [24], and Jézéquel et al. [17] introduced an affine transformation such
that, after the transformation, the log-barrier becomes a self-concordant barrier of the constraint set.
Nonetheless, this reparametrization complicates the proofs.

Theorem 3.2 in this paper shows that optimistic FTRL with a self-concordant regularizer, without
the barrier requirement, still satisfies a regret bound similar to that by Rakhlin and Sridharan [31].
The proof of Theorem 3.2 aligns with the analyses by Mohri and Yang [25], McMahan [23], and
Joulani et al. [19] of FTRL with optimism and adaptivity, as well as the local-norm based analysis by
Zimmert et al. [38, Appendix H].

In comparison, Theorem 3.2 generalizes the analysis of Zimmert et al. [38, Appendix H] for optimistic
algorithms and time-varying learning rates; Theorem 3.2 differs from the analyses of Mohri and Yang
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[25], McMahan [23], and Joulani et al. [19] in that they require the regularizer to be strongly convex,
whereas the log-barrier is not.

2.3 Data-Dependent Bounds

The following is a summary of relevant literature on the three types of data-dependent bounds. For a
more comprehensive review, readers may refer to, e.g., the lecture notes of Orabona [28].

• Small-loss bounds, also known as L⋆ bounds, were first derived by Cesa-Bianchi et al.
[6] for online gradient descent for quadratic losses. Exploiting the self-bounding property,
Srebro et al. [33] proved a small-loss bound for convex smooth losses. Orabona et al. [29]
proved a logarithmic small-loss bound when the loss functions are not only smooth but also
Lipschitz and exp-concave.

• Chiang et al. [8] derived the first gradual-variation bound, bounding the regret by the
variation of the gradients over the rounds. Rakhlin and Sridharan [31, 32] interpreted the
algorithm proposed by Chiang et al. [8] as optimistic online mirror descent and also proposed
optimistic FTRL with self-concordant barrier regularizers. Joulani et al. [18] established a
gradual-variation bound for optimistic FTRL.

• Cesa-Bianchi et al. [7] initiated the study of second-order regret bounds. Hazan and Kale
[13] derived a regret bound characterized by the empirical variance of loss vectors for online
linear optimization. In the presence of the no-junk-bonds assumption, Hazan and Kale [14]
proved a regret bound for OPS characterized by the empirical variance of price relatives.

Except for those for specific loss functions, these data-dependent bounds assume either smoothness
or Lipschitzness of the loss functions. Nevertheless, both assumptions are violated in OPS.

Recently, Hu et al. [16] established small-loss and gradual-variation bounds in the context of Rieman-
nian online convex optimization. We are unaware of any Riemannian structure on the probability
simplex that would render the loss functions in OPS geodesically convex and geodesically smooth.
For instance, Appendix B shows that the loss functions in OPS are not geodesically convex on the
Hessian manifold induced by the log-barrier.

3 Analysis of Optimistic FTRL with Self-Concordant Regularizers

This section presents Theorem 3.2, a general regret bound for optimistic FTRL with regularizers that
are self-concordant but not necessarily barriers. This regret bound forms the basis for the analyses
in the remainder of the paper and, as detailed in Section 2.2, generalizes the results of Rakhlin and
Sridharan [31] and Zimmert et al. [38, Appendix H].

Consider the following online linear optimization problem involving two players, LEARNER and
REALITY. Let X ⊆ Rd be a closed convex set. At the t-th round,

• first, LEARNER announces xt ∈ X ;
• then, REALITY announces a vector vt ∈ Rd;
• finally, LEARNER suffers a loss given by ⟨vt, xt⟩.

For any given time horizon T ∈ N, the regret RT (x) is defined as the difference between the
cumulative loss of LEARNER and that yielded by the action x ∈ X ; that is,

RT (x) :=

T∑
t=1

⟨vt, xt⟩ −
T∑
t=1

⟨vt, x⟩ , ∀x ∈ X .

The objective of LEARNER is to achieve a small regret against all x ∈ X . Algorithm 1 provides a
strategy for LEARNER, called optimistic FTRL.

We focus on the case where the regularizer φ is a self-concordant function.
Definition 3.1 (Self-concordant functions). A closed convex function φ : Rd → (−∞,∞] with an
open domain domφ is said to be M -self-concordant if it is three-times continuously differentiable on
domφ and ∣∣D3φ(x)[u, u, u]

∣∣ ≤ 2M ⟨u,∇2φ(x)u⟩3/2 , ∀x ∈ domφ, u ∈ Rd.
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Algorithm 1 Optimistic FTRL for Online Linear Optimization
Input: A sequence of learning rates {ηt} ⊂ R++.

1: v̂1 ← 0.
2: x1 ∈ argminx∈X η

−1
0 φ(x).

3: for all t ∈ N do
4: Announce xt and receive vt ∈ Rd.
5: Choose an estimate v̂t+1 for vt+1.
6: xt+1 ← argminx∈X ⟨v1:t, x⟩+ ⟨v̂t+1, x⟩+ η−1

t φ(x).
7: end for

Suppose that ∇2φ is positive definite at a point x. The associated local and dual local norms are
given by ∥v∥x :=

√
⟨v,∇2φ(x)v⟩ and ∥v∥x,∗ :=

√
⟨v,∇−2φ(x)v⟩, respectively. Define ω(t) :=

t− log(1 + t).
Theorem 3.2. Let φ be an M -self-concordant function such that X is contained in the closure of
domφ and minx∈X φ(x) = 0. Suppose that ∇2φ(x) is positive definite for all x ∈ X ∩ domφ and
the sequence of learning rates {ηt} is non-increasing. Then, Algorithm 1 satisfies

RT (x) ≤
φ(x)

ηT
+

T∑
t=1

(
⟨vt − v̂t, xt − xt+1⟩ −

1

ηt−1M2
ω(M∥xt − xt+1∥xt

)

)
.

If in addition, ηt−1∥vt − v̂t∥xt,∗ ≤ 1/(2M) for all t ∈ N, then Algorithm 1 satisfies

RT (x) ≤
φ(x)

ηT
+

T∑
t=1

ηt−1∥vt − v̂t∥2xt,∗.

The proof of Theorem 3.2 is deferred to Appendix D. It is worth noting that the crux of the proof lies
in Lemma D.1; the remaining steps follow standard procedure.

4 “Smoothness” in Online Portfolio Selection

4.1 Online Portfolio Selection

Online Portfolio Selection (OPS) is a multi-round game between two players, say INVESTOR and
MARKET. Suppose there are d investment alternatives. A portfolio of INVESTOR is represented by
a vector in the probability simplex in Rd, which indicates the distribution of INVESTOR’s wealth
among the d investment alternatives. The price relatives of the investment alternatives at the t-th
round are listed in a vector at ∈ Rd+.

The game has T rounds. At the t-th round,

• first, INVESTOR announces a portfolio xt ∈ ∆ ⊂ Rd;
• then, MARKET announces the price relatives at ∈ Rd+;
• finally, INVESTOR suffers a loss given by ft(xt), where the loss function ft is defined as

ft(x) := − log ⟨at, x⟩ .

The objective of INVESTOR is to achieve a small regret against all portfolios x ∈ ∆, defined as2

RT (x) :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x), ∀x ∈ ∆ ∩
T⋂
t=1

dom ft.

In the context of OPS, the regret corresponds to the logarithm of the ratio between the wealth growth
rate of INVESTOR and that yielded by the constant rebalanced portfolio represented by x ∈ ∆.
Assumption 1. The vector of price relatives at is non-zero and satisfies ∥at∥∞ = 1 for all t ∈ N.

2Because the vectors at can have zero entries, in general, dom ft does not contain ∆.
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The assumption on ∥at∥∞ does not restrict the problem’s applicability. If the assumption does not
hold, then we can consider another OPS game with at replaced by ãt := at/∥at∥∞ and develop
algorithms and define the regret with respect to ãt. It is obvious that the regret values defined with at
and ãt are the same.

The following observation, readily verified by direct calculation, will be useful in the proofs.
Lemma 4.1. The vector x⊙ (−∇ft(x)) lies in ∆ for all x ∈ ri∆ and t ∈ N.

4.2 Log-Barrier

Standard online convex optimization algorithms, such as those in the lecture notes by Orabona [28]
and Hazan [12], assume that the loss functions are either Lipschitz or smooth.
Definition 4.2 (Lipschitzness and smoothness). A function φ is said to be Lipschitz with respect to a
norm ∥·∥ if

|φ(y)− φ(x)| ≤ L∥y − x∥, ∀x, y ∈ domφ

for some L > 0. It is said to be smooth with respect to the norm ∥·∥ if

∥∇φ(y)−∇φ(x)∥∗ ≤ L
′∥y − x∥, ∀x, y ∈ dom∇φ (1)

for some L′ > 0, where ∥·∥∗ denotes the dual norm.

Given that ⟨at, x⟩ can be arbitrarily close to zero on ∆ ∩ dom ft in OPS, it is well known that
there does not exist a Lipschitz parameter L nor a smoothness parameter L′ for all loss functions ft.
Therefore, standard online convex optimization algorithms do not directly apply.

We define the log-barrier as3

h(x) := −d log d−
d∑
i=1

log x(i), ∀(x(1), . . . , x(d)) ∈ Rd++. (2)

It is easily checked that the local and dual local norms associated with the log-barrier are given by

∥u∥x := ∥u⊘ x∥2, ∥u∥x,∗ = ∥u⊙ x∥2. (3)

In the remainder of the paper, we will only consider this pair of local and dual local norms.

Note that Lipschitzness implies boundedness of the gradient. The following observation motivates
the use of the log-barrier in OPS, showing that the gradients in OPS are bounded with respect to the
dual local norms defined by the log-barrier.
Lemma 4.3. It holds that ∥∇ft(x)∥x,∗ ≤ 1 for all x ∈ ri∆ and t ∈ N.

A similar result was proved by van Erven et al. [35, (2)]. We provide a proof of Lemma 4.3 in
Section E for completeness.

The following fact will be useful.
Lemma 4.4 (Nesterov [27, Example 5.3.1 and Theorem 5.3.2]). The log-barrier h and loss functions
ft in OPS are both 1-self-concordant.

4.3 “Smoothness” in OPS

Existing results on small-loss and gradual-variation bounds require the loss functions to be smooth.
For example, Chiang et al. [8] exploited the definition of smoothness (1) to derive gradual-variation
bounds; Srebro et al. [33] and Orabona et al. [29] used the “self-bounding property,” a consequence
of smoothness, to derive small-loss bounds.
Lemma 4.5 (Self-bounding property [33, Lemma 2.1]). Let f : Rd → R be an L-smooth convex
function with dom f = Rd. Then, ∥∇f(x)∥2∗ ≤ 2L(f(x)−miny∈Rd f(y)) for all x ∈ Rd.

While the loss functions in OPS are not smooth, we provide two smoothness characterizations of the
loss functions in OPS. The first is analogous to the definition of smoothness (1).

3The definition here slightly differs from those typically seen in the literature with an additional −d log d
term. The additional term helps us remove a log d term in the regret bounds.
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Lemma 4.6. Let f(x) = − log ⟨a, x⟩ for some a ∈ Rd+. Under Assumption 1 on the vector a,

∥(x⊙∇f(x))− (y ⊙∇f(y))∥2 ≤ 4min
{
∥x− y∥x, ∥x− y∥y

}
, ∀x, y ∈ ri∆,

where ⊙ denotes the entrywise product and ∥·∥x and ∥·∥y are the local-norms defined by the log-
barrier (3).

The second smoothness characterization is analogous to the self-bounding property (Lemma 4.5).
For any x ∈ ri∆ and v ∈ Rd, define

αx(v) :=
−
∑d
i=1 x

2(i)v(i)∑d
i=1 x

2(i)
, ∀x ∈ ri∆, (4)

where x(i) and v(i) denote the i-th entries of x and v, respectively.

Lemma 4.7. Let f(x) = − log ⟨a, x⟩ for some a ∈ Rd+. Then, under Assumption 1 on the vector a,
it holds that

∥∇f(x) + αx(∇f(x))e∥2x,∗ ≤ 4f(x), ∀x ∈ ri∆,

where the notation e denotes the all-ones vector and ∥·∥x,∗ denotes the dual local norm defined by
the log-barrier (3).

Remark 4.8. The value αx(v) is indeed chosen to minimize ∥v + αe∥2x,∗ over all α ∈ R.

The proofs of Lemma 4.6 and Lemma 4.7 are deferred to Appendix E.

5 LB-FTRL with Multiplicative-Gradient Optimism

Define gt := ∇ft(xt). By the convexity of the loss functions, OPS can be reduced to an online linear
optimization problem described in Section 3 with vt = gt and X being the probability simplex ∆.
Set the regularizer φ as the log-barrier (2) in Optimistic FTRL (Algorithm 1). By Lemma 4.4, for
the regret guarantee in Theorem 3.2 to be valid, it remains to ensure that ĝt, the estimate of gt, is
selected to satisfy ηt−1∥gt − ĝt∥xt,∗ ≤ 1/2 for all t. However, as xt, which defines the dual local
norm, depends on ĝt in Algorithm 1, selecting such ĝt is non-trivial.

To address this issue, we introduce Algorithm 2. This algorithm simultaneously computes the next
iterate xt+1 and the gradient estimate ĝt+1 by solving a system of nonlinear equations (5). As we
estimate xt+1 ⊙ gt+1 instead of gt+1, we call the algorithm LB-FTRL with Multiplicative-Gradient
Optimism. Here, LB indicates that the algorithm adopts the log-barrier as the regularizer.

Algorithm 2 LB-FTRL with Multiplicative-Gradient Optimism for OPS
Input: A sequence of learning rates {ηt} ⊆ R++.

1: h(x) := −d log d−
∑d
i=1 log x(i).

2: ĝ1 := 0.
3: x1 ← argminx∈∆ η

−1
0 h(x).

4: for all t ∈ N do
5: Announce xt and receive at.
6: gt := ∇ft(xt).
7: Choose an estimate pt+1 ∈ Rd for xt+1 ⊙ gt+1.
8: Compute xt+1 and ĝt+1 such that{

xt+1 ⊙ ĝt+1 = pt+1,

xt+1 ∈ argminx∈∆ ⟨g1:t, x⟩+ ⟨ĝt+1, x⟩+ η−1
t h(x).

(5)

9: end for

By the definitions of the dual local norm (3) and pt (5), we write

∥gt − ĝt∥xt,∗ = ∥xt ⊙ gt − xt ⊙ ĝt∥2 = ∥xt ⊙ gt − pt∥2.
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It suffices to choose pt such that ηt−1∥xt ⊙ gt − pt∥2 ≤ 1/2. Indeed, Algorithm 3 and Algorithm 4
correspond to choosing pt = xt−1 ⊙ gt−1 and pt = 0, respectively. Algorithm 5 in Appendix I
corresponds to choosing pt = (1/η0:t−2)

∑t−1
τ=1 ητ−1xτ ⊙ gτ .

Theorem 5.1 guarantees that xt and ĝt are well-defined and can be efficiently computed. Its proof
and the computational details can be found in Appendix F.1.

Theorem 5.1. If ηtpt+1 ∈ [−1, 0]d, then the system of nonlinear equations (5) has a solution. The
solution can be computed in Õ(d) time.

Algorithm 2 corresponds to Algorithm 1 with vt = gt, v̂t = ĝt = pt ⊘ xt, and φ(x) = h(x).
Corollary 5.2 then follows from Theorem 3.2. Its proof can be found in Appendix F.2.

Corollary 5.2. Assume that the sequence {ηt} is non-increasing and pt ∈ (−∞, 0]d for all t ∈ N.
Under Assumption 1, Algorithm 2 satisfies

RT (x) ≤
d log T

ηT
+

T∑
t=1

(
⟨gt − pt ⊘ xt, xt − xt+1⟩ −

1

ηt−1
ω(∥xt − xt+1∥xt

)

)
+ 2,

In addition, for any sequence of vectors {ut} such that ηt−1∥(gt + ut)⊙ xt − pt∥2 ≤ 1/2 and
⟨ut, xt − xt+1⟩ = 0 for all t ∈ N, Algorithm 2 satisfies

RT (x) ≤
d log T

ηT
+

T∑
t=1

ηt−1∥(gt + ut)⊙ xt − pt∥22 + 2.

Remark 5.3. The vectors ut are deliberately introduced to derive a small-loss bound for OPS.

6 Data-Dependent Bounds for OPS

6.1 Gradual-Variation Bound

We define the gradual variation as

VT :=

T∑
t=2

∥∇ft(xt−1)−∇ft−1(xt−1)∥2xt−1,∗ ≤
T∑
t=2

max
x∈∆
∥∇ft(x)−∇ft−1(x)∥2x,∗, (6)

where ∥·∥∗ denotes the dual local norm associated with the log-barrier. The definition is a local-norm
analog to the existing one [8, 18], defined as

∑T
t=2 maxx∈∆ ∥∇ft(x)−∇ft−1(x)∥2 for a fixed

norm ∥·∥. Regarding Lemma 4.3, our definition appears to be a natural extension.

In this sub-section, we introduce Algorithm 3, LB-FTRL with Last-Multiplicative-Gradient Optimism,
and Theorem 6.1, which provides the first gradual-variation bound for OPS. Algorithm 3 is an instance
of Algorithm 2 with p1 = 0 and pt = xt−1 ⊙ gt−1 for t ≥ 2. Note that the learning rates specified in
Theorem 6.1 do not require the knowledge of VT in advance and can be computed on the fly.

The proof of Theorem 6.1 can be found in Appendix G.

Theorem 6.1. Let η0 = η1 = 1/(16
√
2) and ηt =

√
d/(512d+ 2 + Vt) for t ≥ 2. Then, Algo-

rithm 3 satisfies

RT (x) ≤ (log T + 8)
√
dVT + 512d2 +

√
2d log T + 2− 128

√
2d, ∀T ∈ N.

By the definition of the dual local norm (3) and Lemma 4.1,

VT =
T∑
t=2

∥xt−1 ⊙∇ft(xt−1)− xt−1 ⊙∇ft−1(xt−1)∥22 ≤ 2(T − 1).

As a result, the worst-case regret of Algorithm 3 isO(
√
dT log T ), comparable to the regret bounds of

the barrier subgradient method [26], Soft-Bayes [30], and LB-OMD [34] up to logarithmic factors. On
the other hand, if the price relatives remain constant over rounds, then VT = 0 and RT = O(d log T ).
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Algorithm 3 LB-FTRL with Last-Multiplicative-Gradient Optimism for OPS
Input: A sequence of learning rates {ηt} ⊆ R++.

1: h(x) := −d log d−
∑d
i=1 log x(i).

2: p1 ← 0.
3: x1 ← argminx∈X η

−1
0 h(x).

4: for all t ∈ N do
5: Announce xt and receive at.
6: gt ← ∇ft(xt).
7: pt+1 ← xt ⊙ gt.
8: Compute xt+1 and ĝt+1 such that{

xt+1 ⊙ ĝt+1 = pt+1,

xt+1 ∈ argminx∈∆ ⟨g1:t, x⟩+ ⟨ĝt+1, x⟩+ η−1
t h(x).

9: end for

Time Complexity. The vectors gt and pt+1, as well as the the quantity Vt, can be computed using
O(d) arithmetic operations. By Theorem 5.1, the iterate xt+1 can be computed in Õ(d) arithmetic
operations. Therefore, the per-round time of Algorithm 3 is Õ(d).

6.2 Small-Loss Bound

In this sub-section, we introduce Algorithm 4, Adaptive LB-FTRL, and Theorem 6.2, the first small-
loss bound for OPS. The algorithm is an instance of Algorithm 2 with pt = 0. Then, ĝt+1 = 0 and
xt+1 is directly given by Line 8 of Algorithm 4. Note that Theorem 5.1 still applies.

Algorithm 4 Adaptive LB-FTRL for OPS

1: h(x) := −d log d−
∑d
i=1 log x(i).

2: x1 ← argminx∈∆ η
−1
0 h(x).

3: for all t ∈ N do
4: Announce xt and receive at.
5: gt ← ∇ft(xt) = − at

⟨at,xt⟩ .
6: αt ← αxt

(gt) (see the definition (4)).
7: ηt ←

√
d√

4d+1+
∑t

τ=1 ∥gτ+ατe∥2
xτ ,∗

.

8: xt+1 ← argminx∈∆ ⟨g1:t, x⟩+ η−1
t h(x).

9: end for

The proof of Theorem 6.2 is provided in Appendix H.

Theorem 6.2. Let L⋆T = minx∈∆

∑T
t=1 ft(x). Then, under Assumption 1, Algorithm 4 satisfies

RT (x) ≤ 2(log T + 2)
√
4dL⋆T + 4d2 + d+ d(log T + 2)2.

Under Assumption 1,

L⋆T = min
x∈∆

T∑
t=1

− log ⟨at, x⟩ ≤
T∑
t=1

− log
∥a∥1
d

=

T∑
t=1

log d = T log d.

Assuming T > d, the worst-case regret bound is O(
√
dT log d log T ), also comparable to the regret

bounds of the barrier subgradient method [26], Soft-Bayes [30], and LB-OMD [34] up to logarithmic
factors. On the other hand, suppose that there exists an i⋆ ∈ [d] such that at(i⋆) = 1 for all t ∈ [T ].
That is, the i⋆-th investment alternative always outperforms all the other investment alternatives.
Then, L⋆T = 0 and RT = O(d log2 T ).

Assumption 1 does not restrict the applicability of Theorem 6.2, as mentioned earlier. If the as-
sumption does not hold, Theorem 6.2 is applied with respect to the normalized price relatives
ãt = at/∥at∥∞. In this case, L⋆T is defined with respect to {ãt}.
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Time Complexity. Since ∥gt + αte∥2xt,∗ = ∥xt ⊙ gt + αtxt∥22, it is obvious that computing αt,
ηt, and g1:t can be done in O(d) arithmetic operations. By Theorem 5.1, the iterate xt+1 can be
computed in Õ(d) arithmetic operations. Hence, the per-round time of Algorithm 4 is Õ(d).

7 Concluding Remarks

We have presented Theorem 6.1 and Theorem 6.2, the first gradual-variation and small-loss bounds
for OPS that do not require the no-junk-bonds assumption, respectively. The algorithms exhibit
sublinear regrets in the worst cases and achieve logarithmic regrets in the best cases, with per-round
time almost linear in the dimension. They mark the first data-dependent bounds for non-Lipschitz
non-smooth losses.

A potential direction for future research is to extend our analyses for a broader class of online
convex optimization problems. In particular, it remains unclear how to extend the two smoothness
characterizations (Lemma 4.6 and Lemma 4.7) for other loss functions.

Orabona et al. [29] showed that achieving a regret rate of O(d2 + logL⋆T ) is possible under the
no-junk-bonds assumption, where L⋆T denotes the cumulative loss of the best constant rebalanced
portfolio. This naturally raises the question: can a similar regret rate be attained without relying
on the no-junk-bonds assumption? If so, then the regret rate will be constant in T in the best
cases and logarithmic in T in the worst cases. However, considering existing results in probability
forecasting with the logarithmic loss [5, Chapter 9]—a special case of OPS without the no-junk-bonds
assumption—such a data-dependent regret rate seems improbable. Notably, classical rate-optimal
algorithms for probability forecasting with the logarithmic loss, such as Shtarkov’s minimax-optimal
algorithm, the Laplace mixture, and the Krichevsky-Trofimov mixture, all achieve logarithmic regret
rates for all possible data sequences [5, Chapter 9].

Zhao et al. [37] showed that for Lipschitz and smooth losses, an algorithm with a gradual-variation
bound automatically achieves a small-loss bound. Generalizing their argument for non-Lipschitz
non-smooth losses is a natural direction to consider.

Acknowledgments and Disclosure of Funding

The authors are supported by the Young Scholar Fellowship (Einstein Program) of the National
Science and Technology Council of Taiwan under grant number NSTC 112-2636-E-002-003, by
the 2030 Cross-Generation Young Scholars Program (Excellent Young Scholars) of the National
Science and Technology Council of Taiwan under grant number NSTC 112-2628-E-002-019-MY3,
and by the research project “Pioneering Research in Forefront Quantum Computing, Learning and
Engineering” of National Taiwan University under grant number NTU-CC-112L893406.

References
[1] Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Interior-Point Methods for Full-

Information and Bandit Online Learning. IEEE Trans. Inf. Theory, 58(7):4164–4175, 2012.

[2] Amit Agarwal, Elad Hazan, Satyen Kale, and Robert E. Schapire. Algorithms for Portfolio
Management Based on the Newton Method. In Proc. 23rd Int. Conf. Machine Learning, pages
9–16, 2006.

[3] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond Lipschitz
gradient continuity: first-order methods revisited and applications. Math. Oper. Res., 42(2):
330–348, 2017.

[4] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, 2023.

[5] Nicoló Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

[6] Nicoló Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-Case Quadratic Loss
Bounds for Prediction Using Linear Functions and Gradient Descent. IEEE Trans. Neural Netw.,
7(3):604–619, 1996.

10



[7] Nicoló Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for
prediction with expert advice. Mach. Learn., 66:321–352, 2007.

[8] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin,
and Shenghuo Zhu. Online Optimization with Gradual Variations. In Proc. 25th Annu. Conf.
Learning Theory, volume 23, pages 6.1–6.20, 2012.

[9] Thomas M Cover. Universal portfolios. Math. Financ., 1991.

[10] Thomas M. Cover and Erick Ordentlich. Universal portfolios with side information. IEEE
Trans. Inf. Theory, 42(2):348–363, 1996.

[11] H. Gzyl and F. Nielsen. Geometry of the probability simplex and its connection to the maximum
entropy method. J. Appl. Math., Stat. Inf., 16(1):25–35, 2020.

[12] Elad Hazan. Introduction to Online Convex Optimization. The MIT Press, 2022.

[13] Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by variation
in costs. Mach. Learn., 80:165–188, 2010.

[14] Elad Hazan and Satyen Kale. An Online Portfolio Selection Algorithm with Regret Logarithmic
in Price Variation. Math. Financ., 25(2):288–310, 2015.

[15] David P. Helmbold, Robert E. Schapire, Yoran Singer, and Manfred K. Warmuth. On-Line
Portfolio Selection Using Multiplicative Updates. Math. Financ., 8(4):325–347, 1998.

[16] Zihao Hu, Guanghui Wang, and Jacob Abernethy. Minimizing Dynamic Regret on Geodesic
Metric Spaces. arXiv preprint arXiv:2302.08652, 2023.

[17] Rémi Jézéquel, Dmitrii M. Ostrovskii, and Pierre Gaillard. Efficient and Near-Optimal Online
Portfolio Selection. arXiv preprint arXiv:2209.13932, 2022.

[18] Pooria Joulani, András György, and Csaba Szepesvári. A Modular Analysis of Adaptive (Non-)
Convex Optimization: Optimism, Composite Objectives, and Variational Bounds. In Proc. 28th
Int. Conf. Algorithmic Learning Theory, volume 76, pages 681–720, 2017.

[19] Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-)
convex optimization: Optimism, composite objectives, variance reduction, and variational
bounds. Theor. Comput. Sci., 808:108–138, 2020. Special Issue on Algorithmic Learning
Theory.

[20] A. Kalai and S. Vempala. Efficient Algorithms for Universal Portfolios. In Proc. 41st Annu.
Symposium on Foundations of Computer Science, pages 486–491, 2000.

[21] Haihao Lu, Robert M. Freund, and Yurii Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM J. Optim., 28(1):333–354, 2018.

[22] Haipeng Luo, Chen-Yu Wei, and Kai Zheng. Efficient Online Portfolio with Logarithmic Regret.
In Adv. Neural Information Processing Systems, volume 31, 2018.

[23] H. Brendan McMahan. A survey of Algorithms and Analysis for Adaptive Online Learning. J.
Mach. Learn. Res., 18(90):1–50, 2017.

[24] Zakaria Mhammedi and Alexander Rakhlin. Damped Online Newton Step for Portfolio Selec-
tion. In Proc. 35th Annu. Conf. Learning Theory, 2022.

[25] Mehryar Mohri and Scott Yang. Accelerating Online Convex Optimization via Adaptive
Prediction. In Proc. 19th Int. Conf. Artificial Intelligence and Statistics, volume 51, pages
848–856, 2016.

[26] Yurii Nesterov. Barrier subgradient method. Math. Program., Ser. B, 127:31–56, 2011.

[27] Yurii Nesterov. Lectures on Convex Optimization. Springer, second edition, 2018.

[28] Francesco Orabona. A Modern Introduction to Online Learning. arXiv preprint
arXiv:1912.13213, 2022.

11



[29] Francesco Orabona, Nicoló Cesa-Bianchi, and Claudio Gentile. Beyond Logarithmic Bounds in
Online Learning. In Proc. 15th Int. Conf. Artificial Intelligence and Statistics, volume 22, pages
823–831, 2012.

[30] Laurent Orseau, Tor Lattimore, and Shane Legg. Soft-Bayes: Prod for Mixtures of Experts with
Log-Loss. In Proc. 28th Int. Conf. Algorithmic Learning Theory, volume 76, pages 372–399,
2017.

[31] Alexander Rakhlin and Karthik Sridharan. Online Learning with Predictable Sequences. In
Proc. 26th Annu. Conf. Learning Theory, pages 993–1019. PMLR, 2013.

[32] Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable
sequences. In Adv. Neural Information Processing Systems 26, 2013.

[33] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, Low Noise and Fast Rates.
In Adv. Neural Information Processing Systems, volume 23, 2010.

[34] Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li. Online Self-Concordant and Relatively
Smooth Minimization, With Applications to Online Portfolio Selection and Learning Quantum
States. In Proc. 34th Int. Conf. Algorithmic Learning Theory, 2023.

[35] Tim van Erven, Dirk Van der Hoeven, Wojciech Kotłowski, and Wouter M. Koolen. Open
Problem: Fast and Optimal Online Portfolio Selection. In Proc. 33rd Annu. Conf. Learning
Theory, volume 125, pages 3864–3869, 2020.

[36] V. Vovk. A Game of Prediction with Expert Advice. J. Comput. Syst. Sci., 56(2):153–173, 1998.

[37] Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-
stationarity: Problem-dependent dynamic regret for online convex optimization. arXiv preprint
arXiv:2112.14368, 2021.

[38] Julian Zimmert, Naman Agarwal, and Satyen Kale. Pushing the Efficiency-Regret Pareto
Frontier for Online Learning of Portfolios and Quantum States. In Proc. 35th Annu. Conf.
Learning Theory, 2022.

12



A A Summary of OPS Algorithms

Table 1: A summary of existing algorithms for online portfolio selection without the no-junk-bonds
assumption. Assume T ≫ d.

Algorithms
Regret (Õ)

Per-round time (Õ)
Best-case Worst-case

Universal Portfolio [9, 20] d log T d4T 14

ẼG [15, 34] d1/3T 2/3 d

BSM [26], Soft-Bayes [30], LB-OMD [34]
√
dT d

ADA-BARRONS [22] d2 log4 T d2.5T

LB-FTRL without linearized losses [35] d logd+1 T d2T

PAE+DONS [24] d2 log5 T d3

BISONS [38] d2 log2 T d3

VB-FTRL [17] d log T d2T

This work (Algorithm 3) d log T
√
dT d

This work (Algorithm 4) d log2 T
√
dT d

B Loss Functions in OPS are not Geodesically Convex

Let h(x) := −d log d −
∑d
i=1 log x(i) be the log-barrier. Let (M, g) be the Hessian mani-

fold induced by the log-barrier, where M = ri∆ and g is the Riemannian metric defined by
⟨u, v⟩x := ⟨u,∇2h(x)v⟩.
Lemma B.1 (Gzyl and Nielsen [11, Theorem 3.1]). Let x, y ∈ ri∆. The geodesic γ : [0, 1]→ ri∆
connecting x, y is given by

γ(t)(i) =
x(i)1−ty(i)t∑d
j=1 x(j)

1−ty(j)t
, ∀i ∈ [d],

where γ(t)(i) denotes the i-th entry of the vector γ(t) ∈ ri∆.

The proposition below shows that the loss functions in OPS are not geodesically convex on (M, g)
in general.

Proposition B.2. Let a = (2, 1) ∈ R2
++. The function f(x) = − log ⟨a, x⟩ is not geodesically

convex on (M, g).

Proof. It suffices to show that f ◦ γ : [0, 1]→ R is not a convex function [4, Definition 11.3]. Let
x = (1/2, 1/2) and y = (1/(1 + e), e/(1 + e)). By Lemma B.1, the geodesic connecting x, y is
γ(t) = (1/(1 + et), et/(1 + et)). We write

(f ◦ γ)′′(t) = (2− e2t)et

(2 + et)2(1 + et)2
< 0, ∀t > log 2

2
,

showing that f ◦ γ is not convex. The proposition follows.

C Properties of Self-Concordant Functions

This section reviews properties of self-concordant functions relevant to our proofs. Readers are
referred to the book by Nesterov [27] for a complete treatment.
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Throughout this section, let φ be a self-concordant function (Definition 3.1) and ∥·∥x be the associated
local norm, i.e.,

∥u∥x :=
√
⟨u,∇2φ(x)u⟩, ∀u ∈ Rd, x ∈ domφ.

Self-concordant functions are neither smooth nor strongly convex in general. The following theorem
indicates that nevertheless, they are locally smooth and strongly convex.
Theorem C.1 (Nesterov [27, Theorem 5.1.7]). For any x, y ∈ domφ such that r := ∥y − x∥x <
1/M ,

(1−Mr)2∇2φ(x) ≤ ∇2φ(y) ≤ 1

(1−Mr)2
∇2φ(x).

Define ω(t) := t− log(1 + t). Let ω∗ be its Fenchel conjugate, i.e., ω∗(t) = −t− log(1− t).
Theorem C.2 (Nesterov [27, Theorem 5.1.8 and 5.1.9]). For any x, y ∈ domφ with r := ∥y − x∥x,

⟨∇φ(y)−∇φ(x), y − x⟩ ≥ r2

1 +Mr
,

φ(y) ≥ φ(x) + ⟨∇φ(x), y − x⟩+ 1

M2
ω(Mr).

(7)

If r < 1/M , then

⟨∇φ(y)−∇φ(x), y − x⟩ ≤ r2

1−Mr
,

φ(y) ≤ φ(x) + ⟨∇φ(x), y − x⟩+ 1

M2
ω∗(Mr).

(8)

The following proposition bounds the growth of ω and ω∗.
Proposition C.3 (Nesterov [27, Lemma 5.1.5]). For any t ≥ 0,

t2

2(1 + t)
≤ ω(t) ≤ t2

2 + t
.

For any t ∈ [0, 1),
t2

2− t
≤ ω∗(t) ≤

t2

2(1− t)
.

It is easily checked that both the loss functions in OPS and the log-barrier are not only self-concordant
but also self-concordant barriers.
Definition C.4. A 1-self-concordant function φ is said to be a ν-self-concordant barrier if

⟨∇φ(x), u⟩2 ≤ ν ⟨u,∇2φ(x)u⟩ , ∀x ∈ domφ, u ∈ Rd.
Lemma C.5 (Nesterov [27, (5.4.3)]). The log-barrier (2) is a d-self-concordant barrier.

D Proof of Theorem 3.2 (Regret Analysis of Optimistic FTRL With
Self-Concordant Regularizers)

D.1 Proof of Theorem 3.2

The proof of the following stability lemma is deferred to the next subsection.

Lemma D.1. Define Ft+1(x) := ⟨v1:t, x⟩ + η−1
t φ(x). Let {ηt} be a non-increasing sequence of

strictly positive numbers such that ηt−1∥vt − v̂t∥xt,∗ ≤ 1/(2M). Then, Algorithm 1 satisfies

Ft(xt)− Ft+1(xt+1) + ⟨vt, xt⟩ ≤ ⟨vt − v̂t, xt − xt+1⟩ −
1

ηt−1M2
ω(M∥xt+1 − xt∥xt

)

≤ 1

ηt−1M2
ω∗(ηt−1M∥vt − v̂t∥xt,∗)

≤ ηt−1∥vt − v̂t∥2xt,∗.
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Define F̂t(x) := Ft(x) + ⟨v̂t, x⟩. Since v̂T+1 has no effect on the regret, we set v̂T+1 = 0. By the
strong FTRL lemma [28, Lemma 7.1],

RT (x) =

T∑
t=1

(⟨vt, xt⟩ − ⟨vt, x⟩)

= ⟨v̂T+1, x⟩+
φ(x)

ηT
−min
x∈X

φ(x)

η0
+

T∑
t=1

(F̂t(xt)− F̂t+1(xt+1) + ⟨vt, xt⟩)

+ F̂T+1(xT+1)− F̂T+1(x)

≤ φ(x)

ηT
+

T∑
t=1

(F̂t(xt)− F̂t+1(xt+1) + ⟨vt, xt⟩)

≤ φ(x)

ηT
+

T∑
t=1

(Ft(xt)− Ft+1(xt+1) + ⟨vt, xt⟩).

The penultimate line above follows from the assumption that minx∈X φ(x) = 0 and that xT+1

minimizes F̂T+1 on X ; the last line above follows from a telescopic sum and v̂1 = v̂T+1 = 0. The
theorem then follows from Lemma D.1.

D.2 Proof of Lemma D.1

Since φ is M -self-concordant, the function ηt−1Ft is M -self-concordant. By Theorem C.2,
ηt−1Ft(xt+1)− ηt−1Ft(xt)

≥ ⟨ηt−1∇Ft(xt), xt+1 − xt⟩+
1

M2
ω(M∥xt − xt+1∥xt

)

= ⟨ηt−1(∇Ft(xt) + v̂t), xt+1 − xt⟩ − ηt−1 ⟨v̂t, xt+1 − xt⟩+
1

M2
ω(M∥xt − xt+1∥xt

).

Since xt minimizes Ft(x) + ⟨v̂t, x⟩ on X , the optimality condition implies
⟨∇Ft(xt) + v̂t, xt+1 − xt⟩ ≥ 0.

Then, we obtain

ηt−1Ft(xt+1)− ηt−1Ft(xt) ≥ −ηt−1 ⟨v̂t, xt+1 − xt⟩+
1

M2
ω(M∥xt+1 − xt∥xt

).

Next, by the non-increasing of {ηt}, φ(xt+1) ≥ 0, and the last inequality,
Ft(xt)− Ft+1(xt+1) + ⟨vt, xt⟩

= Ft(xt)− Ft(xt+1) + ⟨vt, xt⟩ − ⟨vt, xt+1⟩+
(

1

ηt−1
− 1

ηt

)
φ(xt+1)

≤ Ft(xt)− Ft(xt+1) + ⟨vt, xt − xt+1⟩

≤ ⟨vt − v̂t, xt − xt+1⟩ −
1

ηt−1M2
ω(M∥xt+1 − xt∥xt

).

This proves the first inequality in the lemma.

By Hölder’s inequality,

Ft(xt)− Ft+1(xt+1) + ⟨vt, xt⟩ ≤ ∥vt − v̂t∥xt,∗∥xt − xt+1∥xt
− 1

ηt−1M2
ω(M∥xt − xt+1∥xt

).

(9)

By the Fenchel-Young inequality,
ω(M∥xt − xt+1∥xt

) + ω∗(ηt−1M∥vt − v̂t∥xt,∗) ≥ ηt−1M
2∥xt+1 − xt∥xt

∥vt − v̂t∥xt,∗. (10)

Combining (9) and (10) yields

Ft(xt)− Ft+1(xt+1) + ⟨vt, xt⟩ ≤
1

ηt−1M2
ω∗(ηt−1M∥vt − v̂t∥xt,∗).

which proves the second inequality. The third inequality in the lemma then follows from the
assumption that ηt−1∥vt − v̂t∥xt,∗ ≤ 1/(2M) and Proposition C.3.
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E Proofs in Section 4 (Smoothness Characterizations)

E.1 Proof of Lemma 4.3

We write

∥∇f(x)∥2x,∗ =

∑d
i=1 a(i)

2x(i)2(∑d
i=1 a(i)x(i)

)2 ≤ 1.

E.2 Proof of Lemma 4.6

Define r := ∥x− y∥y . Consider the following two cases.

(i) Suppose that r ≥ 1/2. By Lemma 4.1,

∥x⊙∇f(x)− y ⊙∇f(y)∥2 ≤
√
2 ≤ 4 · 1

2
≤ 4∥x− y∥y.

(ii) Suppose that r < 1/2. We write

r2 = ∥x− y∥2y =

d∑
i=1

(
1− x(i)

y(i)

)2

≥
(
1− x(i)

y(i)

)2

, ∀i ∈ [d],

showing that

0 < 1− r ≤ x(i)

y(i)
≤ 1 + r, ∀i ∈ [d].

Then [10, Lemma 1],

⟨a, y⟩
⟨a, x⟩

=

∑
i a(i)y(i)∑
i a(i)x(i)

≤ max
i∈[d]

a(i)y(i)

a(i)x(i)
= max

i∈[d]

y(i)

x(i)
≤ 1

1− r
;

similarly,
⟨a, y⟩
⟨a, x⟩

≥ 1

1 + r
.

We obtain
−2r
1− r

= 1− 1 + r

1− r
≤ 1− x(i) ⟨a, y⟩

y(i) ⟨a, x⟩
≤ 1− 1− r

1 + r
=

2r

1 + r
.

Since r < 1/2,(
1− x(i) ⟨a, y⟩

y(i) ⟨a, x⟩

)2

≤ max

{(
−2r
1− r

)2

,

(
2r

1 + r

)2
}

=
4r2

(1− r)2
< 16r2.

Therefore,

∥x⊙∇f(x)− y ⊙∇f(y)∥22 =

d∑
i=1

(
a(i)x(i)

⟨a, x⟩
− a(i)y(i)

⟨a, y⟩

)2

=

d∑
i=1

(
a(i)y(i)

⟨a, y⟩

)2(
1− x(i) ⟨a, y⟩

y(i) ⟨a, x⟩

)2

< 16r2
d∑
i=1

(
a(i)y(i)

⟨a, y⟩

)2

< 16r2,

showing that ∥x⊙∇f(x)− y ⊙∇f(y)∥2 < 4∥x− y∥y .

Combining the two cases, we obtain ∥x⊙∇f(x)− y ⊙∇f(y)∥2 ≤ 4∥x− y∥y. Since x and y are
symmetric, we also have ∥x⊙∇f(x)− y ⊙∇f(y)∥2 ≤ 4∥x− y∥x. This completes the proof.
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E.3 Proof of Lemma 4.7

We will use the notion of relative smoothness.
Definition E.1 (Bauschke et al. [3], Lu et al. [21]). A function f is said to be L-smooth relative to a
function h if the function Lh− f is convex.
Lemma E.2 (Bauschke et al. [3, Lemma 7]). Let f(x) = − log ⟨a, x⟩ for some non-zero a ∈ Rd+.
Then, f is 1-smooth relative to the logarithmic barrier h.

Fix x ∈ ri∆. By Lemma E.2, the function h− f is convex and hence

h(x)− f(x) + ⟨∇h(x)−∇f(x), v⟩ ≤ h(x+ v)− f(x+ v), ∀v ∈ ri∆− x,
where ri∆ − x := {u − x|u ∈ ri∆}. By Lemma 4.4, Theorem C.2, and Proposition C.3, if
∥v∥x ≤ 1/2,

h(x+ v)− h(x)− ⟨∇h(x), v⟩ ≤ ω∗(∥v∥x) ≤ ∥v∥
2
x.

Combining the two inequalities above yields

⟨−∇f(x), v⟩ − ∥v∥2x ≤ f(x)− f(x+ v).

Since f(x+ v) ≥ miny∈∆ f(y) = 0 (Assumption 1) and ⟨e, v⟩ = 0, we write

⟨−∇f(x)− αe, v⟩ − ∥v∥2x ≤ f(x), ∀α ∈ R, v ∈ ri∆− x such that ∥v∥x ≤ 1/2.

The left-hand side is continuous in v, so the condition that v ∈ ri∆ − x can be relaxed to v ∈
∆− x := {u− x|u ∈ ∆}. We get

⟨−∇f(x)− αe, v⟩ − ∥v∥2x ≤ f(x), ∀α ∈ R, v ∈ ∆− x such that ∥v∥x ≤ 1/2. (11)

We show that choosing
v = −c∇−2h(x)(∇f(x) + αx(∇f(x))e), (12)

for any c ∈ (0, 1/2] ensures that v ∈ ∆− x and ∥v∥x ≤ 1/2.

• First, we check whether ∥v∥x ≤ 1/2. We write

∥v∥x = c
∥∥∇−2h(x)(∇f(x) + αx(∇f(x))e)

∥∥
x

= c∥∇f(x) + αx(∇f(x))e∥x,∗
≤ c∥∇f(x)∥x,∗
≤ c
≤ 1/2,

where the last line follows from Remark 4.8 and Lemma 4.3.
• Then, we check whether v ∈ ∆− x or, equivalently, whether v + x ∈ ∆. By the definition

of αx(∇f(x)) (4), each entry of v is given by

vi = −cx(i)2
(
∇if(x)−

∑
j x(j)

2∇jf(x)∑
j x(j)

2

)
, ∀i ∈ [d],

where∇jf(x) is the j-th entry of∇f(x). Obviously,

d∑
i=1

v(i) =

d∑
i=1

−cx(i)2
(
∇if(x)−

∑
j x(j)

2∇jf(x)∑
j x(j)

2

)
= 0,

so
∑
i x(i) + v(i) = 1. It remains to check whether x(i) + v(i) ≥ 0 for all i ∈ [d]. Notice

that∇f(x) is entrywise negative. Then,

x(i) + v(i) = x(i)− cx(i)2
(
∇if(x)−

∑
j x(j)

2∇jf(x)∑
j x(j)

2

)

≥ x(i) + cx(i)2
∑
j x(j)

2∇jf(x)∑
j x(j)

2
.
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To show that the lower bound is non-negative, we write

−x(i)2
∑
j x(j)

2∇jf(x)∑
j x(j)

2
=
x(i)2

∑
j a(j)x(j)

2∑
j x(j)

2 ⟨a, x⟩

≤ x(i)2∑
j x(j)

2
max
j∈[d]

x(j)

= x(i) ·max
j

x(i)x(j)∑
k x(k)

2
.

If i = j, then maxj
x(i)x(j)∑

k x(k)
2 ≤ 1; otherwise,

max
j ̸=i

x(i)x(j)∑
k x(k)

2
≤ max

j ̸=i

x(i)x(j)

x(i)2 + x(j)2
≤ 1

2
.

Therefore,

x(i) + v(i) ≥ (1− c)x(i) ≥ 1

2
x(i) ≥ 0, ∀i ∈ [d].

Plug the chosen v (12) into the inequality (11). We write

f(x) ≥ sup
0≤c≤1/2

c∥∇f(x) + αx(∇f(x))e∥2x,∗ − c
2∥∇f(x) + αx(∇f(x))e∥2x,∗

= sup
0≤c≤1/2

(c− c2)∥∇f(x) + αx(∇f(x))e∥2x,∗

=
1

4
∥∇f(x) + αx(∇f(x))e∥2x,∗.

This completes the proof.

F Proof in Section 5 (LB-FTRL with Multiplicative-Gradient Optimism)

F.1 Proof of Theorem 5.1

We first check existence of a solution. For convenience, we omit the subscripts in pt+1 and ηt and
write g for g1:t.

Proposition F.1. Assume that ηp ∈ [−1, 0]d. Define

λ⋆ ∈ argmin
λ∈domψ

ψ(λ), ψ(λ) := λ−
d∑
i=1

(1− ηp(i)) log(λ+ ηg(i)). (13)

Then, λ⋆ exists and is unique. The pair (xt+1, ĝt+1), defined by

xt+1(i) :=
1− ηp(i)
λ⋆ + ηg(i)

, ĝt+1(i) := p(i) · λ
⋆ + ηg(i)

1− ηp(i)
, (14)

solves the system of nonlinear equations (5).

We will use the following observation [27, Theorem 5.1.1].
Lemma F.2. The function ψ is 1-self-concordant.

Proof of Proposition F.1. By Lemma F.2 and the fact that domψ does not contain any line, the
minimizer λ⋆ exists and is unique [27, Theorem 5.1.13]; sine ηp ∈ [−1, 0]d and λ ∈ domψ, we have
xt+1(i) ≥ 0; moreover,

ψ′(λ⋆) = 1−
d∑
i=1

1− ηp(i)
λ⋆ + ηg(i)

= 0.

Then,
d∑
i=1

xt+1(i) = 1− ψ′(λ⋆) = 1,

18



showing that xt+1 ∈ ∆.

Then, we check whether (xt+1, ĝt+1) satisfies the two equalities (5). It is obvious that xt+1⊙ ĝt+1 =
p. By the method of Lagrange multiplier, if there exists λ ∈ R such that

ηg(i) + ηĝt+1(i)−
1

xt+1(i)
+ λ = 0,

d∑
i=1

xt+1(i) = 1, xt+1(i) ≥ 0,

then xt+1 ∈ argminx∈∆ ⟨g, x⟩+ ⟨ĝt+1, x⟩+η−1h(x). It is easily checked that the above conditions
are satisfied with λ = λ⋆ and (14). The proposition follows.

We now analyze the time complexity. Nesterov [26, Section 7] [27, Appendix A.2] proved that
when p = 0, Newton’s method for solving (13) reaches the region of quadratic convergence of the
intermediate Newton’s method [27, Section 5.2.1] after O(log d) iterations. A generalization for
possibly non-zero p is provided in Proposition F.3 below. The proof essentially follows the approach
of Nesterov [27, Appendix A.2]. It is worth noting that while the function ψ is self-concordant,
directly applying existing results on self-concordant minimization by Newton’s method [27, Section
5.2.1] does not yield the desired O(log d) iteration complexity bound.

Starting with an initial iterate λ0 ∈ R, Newton’s method for the optimization problem (13) iterates as

λt+1 = λt − ψ′(λt)/ψ
′′(λt), ∀t ∈ {0} ∪ N. (15)

Proposition F.3. Assume that ηp ∈ [−1, 0]d. Define i⋆ ∈ argmini∈[d](−g(i)). Then, Newton’s
method with the initial iterate

λ0 = 1− ηg(i⋆)
enters the region of quadratic convergence of the intermediate Newton’s method [27, Section 5.2.1]
after O(log d) iterations.

Firstly, we will establish Lemma F.4 and Lemma F.5. These provide characterizations of ψ′ and λt
that are necessary for the proof of Proposition F.3.
Lemma F.4. The following hold.

(i) ψ′ is a strictly increasing and strictly concave function.

(ii) ψ′(λ⋆) = 0.

(iii) λ0 ≤ λ⋆.

Proof of Lemma F.4. The first item follows by a direct calculation:

ψ′′(λ) =

d∑
i=1

1− ηp(i)
(λ+ ηg(i))2

> 0, ψ′′′(λ) = −
d∑
i=1

2 (1− ηp(i))
(λ+ ηg(i))3

< 0.

The second item has been verified in the proof of Proposition F.1. As for the third item, we write

ψ′(λ0) = 1−
d∑
i=1

1− ηp(i)
λ0 + ηg(i)

≤ 1− 1− ηp(i⋆)
λ0 + ηg(i⋆)

= ηp(i⋆) ≤ 0 = ψ′(λ⋆).

The third item then follows from ψ′(λ0) ≤ ψ′(λ⋆) and the first item.

Lemma F.5. Let {λt} be the sequence of iterates of Newton’s method (15). For any t ≥ 0, ψ′(λt) ≤ 0
and λt ≤ λ⋆.

Proof of Lemma F.5. Recall that domψ = (−g(i⋆),∞). We proceed by induction. Obviously,
λ0 ∈ domψ. By Lemma F.4, the lemma holds for t = 0. Assume that the lemma holds for some
non-negative integer t. By the iteration rule of Newton’s method (15) and the assumption that
ψ′(λt) ≤ 0,

λt+1 = λt −
ψ′(λt)

ψ′′(λt)
≥ λt,
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which ensures that λt+1 ∈ domψ. By Lemma F.4 (i) and the iteration rule of Newton’s method (15),
we have

ψ′(λt+1) ≤ ψ′(λt) + ψ′′(λt)(λt+1 − λt) = ψ′(λt)− ψ′′(λt)
ψ′(λt)

ψ′′(λt)
= 0.

By Lemma F.4 (i) and Lemma F.4 (ii), λt+1 ≤ λ⋆. The lemma follows.

Proof of Proposition F.3. Define the Newton decrement as

δ(λ) :=
|ψ′(λt)|∣∣∣ψ′(λ)/
√
ψ′′(λ)

∣∣∣ .
By Lemma F.2, the region of quadratic convergence is [27, Theorem 5.2.2]

Q := {λ ∈ domψ : δ(λ) < 1/2}.
Define T := ⌈(9 + 7 log2 d)/4⌉. By Lemma F.5, ψ′(λt) ≤ 0 for all t ≥ 0. If ψ′(λt) = 0 for some
0 ≤ t ≤ T , then Newton’s method reaches Q within T steps and the proposition follows. Now, let us
assume that ψ′(λt) < 0 for all 0 ≤ t ≤ T . By the concavity of ψ′ (Lemma F.4 (i)),

ψ′(λt−1) ≤ ψ′(λt) + ψ′′(λt)(λt−1 − λt) = ψ′(λt) +
ψ′′(λt)

ψ′′(λt−1)
ψ′(λt−1).

Divide both sides by ψ′(λt−1). By Lemma F.5 and the AM-GM inequality,

1 ≥ ψ′(λt)

ψ′(λt−1)
+

ψ′′(λt)

ψ′′(λt−1)
≥ 2

√
ψ′(λt)ψ′′(λt)

ψ′(λt−1)ψ′′(λt−1)
.

Then, for all 1 ≤ t ≤ T + 1,

|ψ′(λt)ψ
′′(λt)| ≤

1

4
|ψ′(λt−1)ψ

′′(λt−1)|.

This implies that for all 0 ≤ t ≤ T + 1,

|ψ′(λt)ψ
′′(λt)| ≤

1

4t
|ψ′(λ0)ψ

′′(λ0)|,

which further implies that

δ(λt)
2 =

(ψ′(λt)ψ
′′(λt))

2

(ψ′′(λt))3
≤ 1

16t
· (ψ

′(λ0)ψ
′′(λ0))

2

(ψ′′(λt))3
.

It remains to estimate ψ′(λ0), ψ′′(λ0), and ψ′′(λt). Given ηp ∈ [−1, 0]d and λ0 + ηg(i) ≥ 1,
through direct calculation,

|ψ′(λ0)| =
d∑
i=1

1− ηp(i)
λ0 + ηg(i)

− 1 ≤
d∑
i=1

(1− ηp(i))− 1 < 2d,

ψ′′(λ0) =

d∑
i=1

1− ηp(i)
(λ0 + ηg(i))2

≤
d∑
i=1

2

1
= 2d.

Since

ψ′(λt) = 1−
d∑
i=1

1− ηp(i)
λt + ηg(i)

≤ 0,

by the Cauchy-Schwarz inequality,

ψ′′(λt) =

d∑
i=1

1− ηp(i)
(λt + ηg(i))2

≥

(∑d
i=1

1−ηp(i)
λt+ηg(i)

)2
∑d
i=1(1− ηp(i))

≥ 1∑d
i=1(1− ηp(i))

≥ 1

2d
.

Therefore, for 0 ≤ t ≤ T + 1,

δ(λt)
2 <

(2d)7

16t
.

In particular, δ(λT+1) < 1/2, i.e., λT+1 ∈ Q. This concludes the proof.
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Proposition F.3 suggests that after O(log d) iterations of Newton’s method, we can switch to the
intermediate Newton’s method which exhibits quadratic convergence [27, Theorem 5.2.2]. Each
iteration of both Newton’s method and the intermediate Newton’s method takes O(d) time. Therefore,
it takes Õ(d log d) time to approximate λ⋆. Given λ⋆, both xt+1 and ĝt+1 can be computed in O(d)
time, according to their respective definitions in Equation (14). Therefore, the overall time complexity
of computing xt+1 and ĝt+1 is Õ(d).

F.2 Proof of Corollary 5.2

By the definition of local norms (3), we write

∥gt − ĝt + ut∥xt,∗ = ∥(gt + ut)⊙ xt − pt ⊘ xt ⊙ xt∥2 = ∥(gt + ut)⊙ xt − pt∥2.

By Lemma 4.4 and Theorem 3.2, if ηt−1∥(gt + ut)⊙ xt − pt∥2 ≤ 1/2, then Algorithm 2 satisfies

RT (x) ≤
h(x)

ηT
+

T∑
t=1

ηt−1∥(gt + ut)⊙ xt − pt∥22.

For any x ∈ ∆, define x′ = (1− 1/T )x+ e/(dT ). Then,

h(x′) ≤ −d log d−
d∑
i=1

log

(
1

dT

)
= d log T, ∀x ∈ ∆

and hence [22, Lemma 10]

RT (x) ≤ RT (x′) + 2 ≤ d log T

ηT
+

T∑
t=1

ηt−1∥(gt + ut)⊙ xt − pt∥22 + 2.

G Proof of Theorem 6.1 (Gradual-Variation Bound)

G.1 Proof of Theorem 6.1

We will use the following lemma, whose proof is postponed to the end of the section.

Lemma G.1. Let {xt} be the iterates of Algorithm 2. If for all t ≥ 1,

ηt ≤
1

6
, ηt−1∥gt − ĝt∥xt,∗ ≤

1

6
,

(
1− 1

6
√
d

)
ηt−1 ≤ ηt ≤ ηt−1, and ∥ĝt∥xt,∗ ≤ 1,

(16)
then ∥xt+1 − xt∥xt

≤ 1.

We start with checking the conditions in Lemma G.1.

• It is obvious that ηt ≤ 1/(16
√
2) ≤ 1/6.

• By the definition of the dual local norm (3), the definition of ĝt, and Lemma 4.3,

∥ĝt∥xt,∗ = ∥ĝt ⊙ xt∥2 = ∥gt−1 ⊙ xt−1∥2 = ∥gt−1∥xt−1,∗ ≤ 1, ∀t ≥ 2.

• Then, by the triangle inequality and Lemma 4.3,

ηt−1∥gt − ĝt∥xt,∗ ≤
1

16
√
2

(
∥gt∥xt,∗ + ∥ĝt∥xt,∗

)
≤ 1

8
√
2
≤ 1

6
.
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• It is obvious that the sequence {ηt} is non-increasing. By the triangle inequality, Lemma 4.3
and the fact that

√
a+ b ≤

√
a+
√
b for non-negative numbers a and b, we write

ηt
ηt−1

=

√
512d+ 2 + Vt−1√
512d+ 2 + Vt

≥
√
512d+ 2 + Vt−1√

512d+ 2 + Vt−1 + 2

≥
√
512d+ 2 + Vt−1√

512d+ 2 + Vt−1 +
√
2

= 1−
√
2√

512d+ 2 + Vt−1 +
√
2

≥ 1− 1

16
√
d

≥ 1− 1

6
√
d
.

Then, Lemma G.1 implies that
rt := ∥xt+1 − xt∥xt

≤ 1.

By Proposition C.3,

ω(∥xt − xt+1∥xt
) ≥ r2t

4
.

By Corollary 5.2,

RT ≤
d log T

ηT
+

T∑
t=1

(
⟨gt − pt ⊘ xt, xt − xt+1⟩ −

1

4ηt−1
r2t

)
+ 2.

For t ≥ 2, by Hölder’s inequality and the definition of the dual local norm (3),

⟨gt − pt ⊘ xt, xt − xt+1⟩ ≤ ∥gt − pt ⊘ xt∥xt,∗rt

= ∥xt ⊙ gt − pt∥2rt
= ∥xt ⊙ gt − xt−1 ⊙ gt−1∥2rt.

By the triangle inequality,

∥xt ⊙ gt − xt−1 ⊙ gt−1∥2rt
≤ ∥xt ⊙ gt − xt−1 ⊙∇ft(xt−1)∥2rt + ∥xt−1 ⊙∇ft(xt−1)− xt−1 ⊙ gt−1∥2rt.

We bound the two terms separately. By the AM-GM inequality and Lemma 4.6, the first term is
bounded by

∥xt ⊙ gt − xt−1 ⊙∇ft(xt−1)∥2rt ≤ 4ηt−1∥xt ⊙ gt − xt−1 ⊙∇ft(xt−1)∥22 +
1

16ηt−1
r2t

≤ 64ηt−1r
2
t−1 +

1

16ηt−1
r2t .

By the AM-GM inequality, the second term is bounded by

∥xt−1 ⊙∇ft(xt−1)− xt−1 ⊙ gt−1∥2rt = ∥∇ft(xt−1)− gt−1∥xt−1,∗rt

≤ 4ηt−1∥∇ft(xt−1)− gt−1∥2xt−1,∗ +
1

16ηt−1
r2t .

Combine all inequalities above. We obtain

⟨gt − pt ⊘ xt, xt − xt+1⟩ −
1

4ηt−1
r2t

≤ 4ηt−1∥∇ft(xt−1)− gt−1∥2xt−1,∗ + 64ηt−1r
2
t−1 −

1

8ηt−1
r2t

(17)
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For t = 1, by a similar argument,

⟨g1, x1 − x2⟩ −
1

4η0
r21 ≤ r1 −

1

4η0
r21 ≤

1

2
(4η0 +

1

4η0
r21)−

1

4η0
r21 = 2η0 −

1

8η0
r21. (18)

By combining (17) and (18) and noticing that ηt−1ηt ≤ 1/512,
T∑
t=1

⟨gt − pt ⊘ xt, xt − xt+1⟩ −
1

4ηt−1
r2t

≤ 2η0 +

T∑
t=2

4ηt−1∥∇ft(xt−1)− gt−1∥2xt−1,∗ +

T−1∑
t=1

(
64ηt −

1

8ηt−1

)
r2t

≤ 2η0 +

T∑
t=2

4ηt−1∥∇ft(xt−1)− gt−1∥2xt−1,∗.

By Corollary 5.2,

RT ≤
d log T

ηT
+ 2η0 +

T∑
t=2

4ηt−1∥∇ft(xt−1)−∇ft−1(xt−1)∥2xt−1,∗ + 2.

Plug in the choice of learning rates into the regret bound. We obtain [28, Lemma 4.13]

RT ≤
√
d log T

√
VT + 512d+ 2 + 4

√
d

T∑
t=2

∥∇ft(xt−1)−∇ft−1(xt−1)∥2xt−1,∗√
512d+ 2 + Vt−1

+ 3

≤
√
d log T

√
VT + 512d+ 2 + 4

√
d

T∑
t=2

∥∇ft(xt−1)−∇ft−1(xt−1)∥2xt−1,∗√
512d+ Vt

+ 3

≤
√
d log T (

√
VT + 512d+

√
2) + 4

√
d

∫ VT

0

ds√
512d+ s

+ 3

≤ (log T + 8)
√
dVT + 512d2 +

√
2d log T + 2− 128

√
2d.

G.2 Proof of Lemma G.1

Define
yt ∈ argmin

x∈∆
⟨g1:t, x⟩+

1

ηt−1
h(x), zt ∈ argmin

x∈∆
⟨g1:t, x⟩+

1

ηt
h(x).

By the triangle inequality,

∥xt − xt+1∥xt
≤ ∥xt − yt∥xt

+ ∥yt − zt∥xt
+ ∥zt − xt+1∥xt

. (19)

Define d1 := ∥xt − yt∥xt
, d2 := ∥yt − zt∥yt , and d3 := ∥zt − xt+1∥xt+1

. Suppose that di ≤ 1/5
for all 1 ≤ i ≤ 3, which we will verify later. By Theorem C.1,

(1− d1)2∇2h(xt) ≤ ∇2h(yt) ≤
1

(1− d1)2
∇2h(xt),

(1− d2)2∇2h(yt) ≤ ∇2h(zt) ≤
1

(1− d2)2
∇2h(yt),

(1− d3)2∇2h(xt+1) ≤ ∇2h(zt) ≤
1

(1− d3)2
∇2h(xt+1).

(20)

We obtain

∥yt − zt∥xt
≤ d2

1− d1
, ∥zt − xt+1∥xt

≤ d3
(1− d1)(1− d2)(1− d3)

.

Then, the inequality (19) becomes

∥xt − xt+1∥xt
≤ d1 +

d2
1− d1

+
d3

(1− d1)(1− d2)(1− d3)
.

23



It is easily checked that the maximum of the right-hand side is attained at d1 = d2 = d3 = 1/5 and
the maximum value equals 269/320. This proves the lemma.

Now, we prove that di ≤ 1/5 for all 1 ≤ i ≤ 3.

1. (Upper bound of d1.) By the optimality conditions of xt and yt,

⟨ηt−1g1:t +∇h(yt), xt − yt⟩ ≥ 0

⟨ηt−1g1:t−1 + ηt−1ĝt +∇h(xt), yt − xt⟩ ≥ 0.

Sum up the two inequalities. We get

ηt−1 ⟨gt − ĝt, xt − yt⟩ ≥ ⟨∇h(xt)−∇h(yt), xt − yt⟩

By Hölder’s inequality, Lemma 4.4, and Theorem C.2, we obtain

ηt−1∥gt − ĝt∥xt,∗d1 ≥
d21

1 + d1
.

Then, by the assumption (16), we write

d1 ≤
ηt−1∥gt − ĝt∥xt,∗

1− ηt−1∥gt − ĝt∥xt,∗
≤ 1/5.

2. (Upper bound of d2.) By the optimality conditions of yt and zt,

⟨g1:t +
1

ηt
∇h(zt), yt − zt⟩ ≥ 0

⟨g1:t +
1

ηt−1
∇h(yt), zt − yt⟩ ≥ 0.

Sum up the two inequalities. We get(
1

ηt
− 1

ηt−1

)
⟨∇h(yt), yt − zt⟩ ≥

1

ηt
⟨∇h(yt)−∇h(zt), yt − zt⟩ .

By Definition C.4, Lemma C.5, and Theorem C.2,(
1

ηt
− 1

ηt−1

)√
dd2 ≥

1

ηt

d22
1 + d2

.

Then, by the assumption (16), we write

d2 ≤
(1− ηt/ηt−1)

√
d

1− (1− ηt/ηt−1)
√
d
≤ 1

5
.

3. (Upper bound of d3.) By the optimality conditions of zt and xt+1,

⟨ηtg1:t + ηtĝt+1 +∇h(xt+1), zt − xt+1⟩ ≥ 0

⟨ηtg1:t +∇h(zt), xt+1 − zt⟩ ≥ 0.

Sum up the two inequalities. We get

ηt ⟨ĝt+1, zt − xt+1⟩ ≥ ⟨∇h(zt)−∇h(xt+1), zt − xt+1⟩ .

By Hölder’s inequality, the assumption (16), and Theorem C.2, we obtain

ηtd3 ≥ ηt∥ĝt+1∥xt+1,∗d3 ≥
d23

1 + d3
.

Then, by the assumption (16), we write

d3 ≤
ηt

1− ηt
≤ 1/5.
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H Proof of Theorem 6.2 (Small-Loss Bound)

Recall that αt minimizes ∥gt + αe∥2xt,∗ over all α ∈ R (Remark 4.8). We write

∥gt + αte∥2xt,∗ ≤ ∥gt∥
2
xt,∗ ≤ 1,

which, with the observation that ηt ≤ 1/2 for all t ∈ N, implies that ηt−1∥gt + αte∥xt,∗ ≤ 1/2.
Then, since the all-ones vector e is orthogonal to the set ∆−∆, by Corollary 5.2 with pt = 0 and
ut = αte, we get

RT ≤
d log T

ηT
+

T∑
t=1

ηt−1∥(gt + αte)⊙ xt∥22 + 2

=
d log T

ηT
+

T∑
t=1

ηt−1∥gt + αte∥2xt,∗ + 2

Plug in the explicit expressions of the learning rates ηt. We write [28, Lemma 4.13]

RT ≤
d log T

ηT
+
√
d

T∑
t=1

∥gt + αte∥2xt,∗√
4d+ 1 +

∑t−1
τ=1 ∥gτ + ατe∥2xτ ,∗

+ 2

≤ d log T

ηT
+
√
d

T∑
t=1

∥gt + αte∥2xt,∗√
4d+

∑t
τ=1 ∥gτ + ατe∥2xτ ,∗

+ 2

≤
√
d log T

√√√√4d+ 1 +

T∑
t=1

∥gt + αte∥2xt,∗ +
√
d

∫ ∑T
t=1 ∥gt+αte∥2

xt,∗

0

ds√
4d+ s

+ 2

≤ (log T + 2)

√√√√d

T∑
t=1

∥gt + αte∥2xt,∗ + 4d2 + d

≤ (log T + 2)

√√√√d

T∑
t=1

∥gt + αte∥2xt,∗ + 4d2 + d.

Finally, by Lemma 4.7,

RT ≤ (log T + 2)

√√√√4d

T∑
t=1

ft(xt) + 4d2 + d.

The theorem then follows from Lemma 4.23 of Orabona [28].

I A Second-Order Regret Bound

In this section, we introduce AA + LB-FTRL with Average-Multiplicative-Gradient Optimism
(Algorithm 6) that achieves a second-order regret bound. This bound is characterized by the variance-
like quantity

QT := min
p∈Rd

T∑
t=1

∥xt ⊙∇ft(xt)− p∥22.

For comparison, existing second-order bounds are characterized by the quantity

VT := min
u∈Rd

T∑
t=1

∥∇ft(xt)− u∥22,
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T times the empirical variance of the gradients (see, e.g., Section 7.12.1 in the lecture note of Orabona
[28]). Given that every p ∈ Rd can be expressed as p = xt ⊙ v for v = p⊘ xt, and by the definition
of the dual local norm (3), we obtain

QT = min
v∈Rd

T∑
t=1

∥∇ft(xt)− v∥2xt,∗,

showing that QT is a local-norm analogue of VT .

The flexibility introduced by optimizingQT over all v ∈ Rd allows for a fast regret rate when the data
is easy. In particular, Theorem I.2 in Section I.3 shows that when QT ≤ 1, then Algorithm 6 achieves
a fast O(d log T ) regret rate. However, while QT looks reasonable as a mathematical extension of
VT , the empirical variance interpretation for VT does not extend to QT . Interpreting QT or seeking a
“more natural” variant of QT is left as a future research topic.

I.1 The Gradient Estimation Problem

To obtain a better regret bound by using Corollary 5.2, one has to design a good strategy of choosing
pt. In Section 6.1, we have used pt = xt−1 ⊙ gt−1. In this section, we consider a different approach.

Consider the following online learning problem, which we call the Gradient Estimation Problem.
It is a multi-round game between LEARNER and REALITY. In the t-th round, LEARNER chooses
a vector pt ∈ Rd; then, REALITY announces a convex loss function ℓt(p) = ηt−1∥xt ⊙ gt − p∥22;
finally, LEARNER suffers a loss ℓt(pt).

I.2 LB-FTRL with Average-Multiplicative-Gradient Optimism

In the gradient estimation problem, the loss functions are strongly-convex. A natural strategy of
choosing pt is then following the leader (FTL). In the t-th round, FTL suggests choosing

pt =
1

η0:t−2

t−1∑
τ=1

ητ−1xτ ⊙ gτ ∈ argmin
p∈Rd

t−1∑
τ=1

ℓτ (p).

This strategy leads to Algorithm 5. Theorem I.1 provides a regret bound for Algorithm 5.

Algorithm 5 LB-FTRL with Average-Multiplicative-Gradient Optimism
Input: A sequence of learning rates {ηt}t≥0 ⊆ R++.

1: h(x) := −d log d−
∑d
i=1 log x(i).

2: x1 ← argminx∈∆ η
−1
0 h(x).

3: for all t ∈ N do
4: Announce xt and receive at.
5: gt := ∇ft(xt).
6: pt+1 ← (1/η0:t−1)

∑t
τ=1 ητ−1xτ ⊙ gτ .

7: Solve xt+1 and ĝt+1 satisfying{
xt+1 ⊙ ĝt+1 = pt+1,

xt+1 ∈ argminx∈∆ ⟨g1:t, x⟩+ ⟨ĝt+1, x⟩+ η−1
t h(x).

8: end for

Theorem I.1. Assume that the sequence of learning rates {ηt} is non-increasing and η0 ≤ 1/(2
√
2).

Then, Algorithm 5 achieves

RT ≤
d log T

ηT
+ 2

T∑
t=1

η2t−1

η0:t−1
+ 2 + min

p∈Rd

T∑
t=1

ηt−1∥xt ⊙∇ft(xt)− p∥22.

If ηt = η ≤ 1/(2
√
2) is a constant, then

RT ≤
d log T

η
+ 2η(log T + 1) + 2 + ηQT .
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Proof. Since pt is a convex combination of xτ ⊙ gτ , by Lemma 4.1, pt ∈ −∆. We restrict the action
set of the gradient estimation problem to be −∆. By the regret bound of FTL for strongly convex
losses [28, Corollary 7.24],

T∑
t=1

ℓt(pt)− min
p∈−∆

T∑
t=1

ℓt(p) ≤
1

2

T∑
t=1

(2
√
2ηt−1)

2

2η0:t−1
= 2

T∑
t=1

η2t−1

η0:t−1
.

Then, by Corollary 5.2,

RT ≤
d log T

ηT
+ 2 +

T∑
t=1

ℓt(pt) ≤
d log T

ηT
+ 2 + 2

T∑
t=1

η2t−1

η0:t−1
+ min
p∈−∆

T∑
t=1

ℓt(p).

The first bound in the theorem follows from

min
p∈−∆

T∑
t=1

ℓt(p) = min
p∈Rd

T∑
t=1

ηt−1∥xt ⊙ gt − p∥22.

The second bound in the theorem follows from the inequality
∑T
t=1 η

2/(tη) ≤ η(log T + 1).

Time Complexity. Suppose that a constant learning rate is used. Then, both gt and pt+1 can be
computed in O(d) arithmetic operations. By Theorem 5.1, xt+1 can be computed in Õ(d) time.
Hence, the per-round time of Algorithm 5 is Õ(d).

I.3 AA + LB-FTRL with Average-Multiplicative-Gradient Optimism

The constant learning rate that minimizes the regret bound in Theorem I.1 is η = O(
√
d log T/QT ).

However, the value of QT is not unknown to INVESTOR initially.

In this section, we propose Algorithm 6, which satisfies a second-order regret bound without the need
for knowing QT in advance. Algorithm 6 uses multiple instances of Algorithm 5, which we call
experts, with different learning rates. The outputs of the experts are aggregated by the Aggregating
Algorithm (AA) due to Vovk [36].

Algorithm 6 AA + LB-FTRL with Average-Multiplicative-Gradient Optimism
Input: The time horizon T .

1: K := 1 + ⌈log2 T ⌉.
2: for all k ∈ [K] do
3: w

(k)
1 ← 1.

4: q(k) ← 2k.
5: η(k) ←

√
d log T

2
√
2d log T+

√
q(k)

.

6: Initialize Algorithm 5 with the constant learning rate η(k) as the k-th expert Ak.
7: Obtain x(k)1 from Ak.
8: end for
9: x1 := 1∑K

k=1 w
(k)
1

∑K
k=1 w

(k)
1 x

(k)
1 .

10: for all t ∈ [T ] do
11: Observe at.
12: for all k ∈ [K] do
13: w

(k)
t+1 = w

(k)
t ⟨at, x

(k)
t ⟩.

14: Feed at into Ak and obtain x(k)t+1.
15: end for
16: Output xt+1 := 1∑K

k=1 w
(k)
t+1

∑K
k=1 w

(k)
t+1x

(k)
t+1.

17: end for

The regret bound of Algorithm 6 is stated in Theorem I.2, which follows from the regret of AA and
Theorem I.1.
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Theorem I.2. Algorithm 6 with input T ∈ N satisfies

RT ≤

{
(1 +

√
2)
√
dQT log T + 2

√
2d log T + 1√

2
log T + log(log2 T + 2) + 3, if QT ≥ 1,

2
√
2d log T + 1√

2
log T +

√
2d log T + log(log2 T + 2) + 4, if QT < 1.

Remark I.3. Since QT ≤ 2T , the regret bound in Theorem I.2 is O(
√
dT log T ) in the worst case.

Proof. K = 1+ ⌈log2 T ⌉ is the number of experts in Algorithm 6. Let R(k)
T be the regret of the k-th

expert Ak. Since the loss functions ft(x) = − log ⟨at, x⟩ are 1-mixable, by the regret bound of AA
[36],

RT ≤ min
k∈[K]

R
(k)
T + logK,

where RT and R(k)
T denote the regret of Algorithm 6 and the regret of the k-th expert, respectively.

The quantity q(k) in Algorithm 6 is used as an estimate of QT . Notice that QT ≤ 2T ≤ q(K). If
QT ≥ 1, then there exists k⋆ ∈ [K] such that q(k

⋆−1) ≤ QT ≤ q(k
⋆). By Theorem I.1 and some

direct calculations,

R
(k⋆)
T ≤ (1 +

√
2)
√
dQT log T + 2

√
2d log T +

1√
2
log T + 3.

If QT < 1, then by Theorem I.1,

R
(1)
T (x) ≤ 2

√
2d log T +

√
2d log T +

1√
2
log T + 4.

The theorem follows by combining the inequalities above.

Time Complexity. In each round, Algorithm 6 requires implementing O(log log T ) copies of
Algorithm 5. By Theorem 5.1, the per-round time is Õ(d log log T ).
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