
Sensitivity in Translation Averaging

Lalit Manam
Indian Institute of Science
Bengaluru, India - 560012
lalitmanam@iisc.ac.in

Venu Madhav Govindu
Indian Institute of Science
Bengaluru, India - 560012

venug@iisc.ac.in

Abstract

In 3D computer vision, translation averaging solves for absolute translations given
a set of pairwise relative translation directions. While there has been much work
on robustness to outliers and studies on the uniqueness of the solution, this paper
deals with a distinctly different problem of sensitivity in translation averaging
under uncertainty. We first analyze sensitivity in estimating scales corresponding
to relative directions under small perturbations of the relative directions. Then,
we formally define the conditioning of the translation averaging problem, which
assesses the reliability of estimated translations based solely on the input directions.
We give a sufficient criterion to ensure that the problem is well-conditioned. Subse-
quently, we provide an efficient algorithm to identify and remove combinations of
directions which make the problem ill-conditioned while ensuring uniqueness of
the solution. We demonstrate the utility of such analysis in global structure-from-
motion pipelines for obtaining 3D reconstructions, which reveals the benefits of
filtering the ill-conditioned set of directions in translation averaging in terms of
reduced translation errors, a higher number of 3D points triangulated and faster
convergence of bundle adjustment.

1 Introduction

The goal of the translation averaging problem is to recover absolute translations given a redundant set
of pairwise relative translation directions. This problem has been relatively less studied compared
to the case when pairwise displacements are available [31, 12, 6, 51]. These methods belong to the
category of averaging or map synchronization [43, 46], which can be modelled as a network with
known pairwise relations between nodes and unknown node values to be estimated. For our specific
problem of translation averaging, G = (V, E) represents a network, with N nodes, V , denoting the
absolute translations Ti ∈ R3, i ∈ V , and M edges, E , denoting the pairwise relative direction
measurements between the nodes vij ∈ S2, (i, j) ∈ E . Here, all the relative directions vij’s are
in the same coordinate frame. Ideally, vij should be the unit vector in the direction of Tj − Ti.
Since the measurements made are directions, these networks are also called bearing-based networks.
This problem finds a place in global methods [23, 24, 18, 52] for solving Structure-from-Motion
(SfM) [28] in 3D computer vision, where a network of cameras is present with relative translation
directions measured between the cameras.

Solving translation averaging is a challenging problem since it requires estimating translation scales
in a context of dissimilarity in the input (directions) and output (absolute translations). Due to
this dissimilarity, the solutions are defined upto a global scale and a choice of origin. The well-
posedness of the bearing-based network problems has been studied under the lens of parallel rigidity
theory [45, 19, 36, 42, 56, 2]. This theory determines whether a given set of input directions will
have a unique solution (upto a global scale and an origin) for absolute translations.

Distinction from parallel rigidity and outlier detection: This paper takes the first step to deal with
sensitivity in translation averaging under uncertainty, i.e. determining under what configuration of

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

input directions the solution is reliable. This can be seen as a perturbation analysis of the translation
averaging solution with respect to small changes in the input directions. Although there have
been empirical studies on small-scale datasets (3 to 20 cameras) on the effect of perturbing input
directions [48, 40, 32], to the best of our knowledge, analysis on large-scale networks, both theoretical
and empirical, has not been done for bearing-based networks. This analysis is independent of parallel
rigidity [2] since parallel rigidity deals with uniqueness of the solution, while we deal with change
in solution for small input perturbations. Parallel rigidity can be equivalently described with the
algebraic rank of a specific matrix [2], which is similar to the analysis of uniqueness of a solution
given a matrix obtained from a linear system of equations. Sensitivity analysis is similar in spirit to
the conditioning of a matrix while solving a linear system of equations (Ax = b problem) where
the reliability of a solution is studied. Sensitivity is also different from outlier detection in the
data because it only deals with small perturbations of the given input directions and not with the
noise/outlier levels. The issue of sensitivity remains relevant even without outliers.

Our contributions: We first analyze the sensitivity in estimating edge scales in translation averaging
by small perturbations to input directions on the smallest solvable bearing-based network. Then, we
characterize the conditioning of the translation averaging problem based only on input directions,
without any perturbation, for the smallest solvable network i.e. 3 edges between all 3 nodes, and
extend it to a general network. We provide a sufficient condition for the network to be well-
conditioned. We propose an efficient algorithm to identify ill-conditioned parts of the network,
filter them and extract the maximal parallel rigid graph without explicit computation that checks for
parallel rigidity. Finally, we show the usefulness of such a filter in the context of SfM with improved
translation accuracy, more 3D points triangulated and faster convergence of bundle adjustment after
removing ill-conditioned parts of the network.

2 Literature Review

In this section, we briefly discuss the relevant literature on translation averaging and parallel rigidity.

Translation averaging in SfM: In SfM, the input data contains relative translation directions that
are not aligned to a common reference frame. To get the input directions in a common global frame,
absolute rotations for each node are estimated using rotation averaging methods [27, 10, 11, 21, 47].
Many translation averaging methods have been proposed over the last two decades. Govindu [23]
minimized the cross-product between the input directions and directions obtained from absolute
translations. Jiang et al. [32] considered triplets of nodes and used the constraints of a triangle to
formulate the problem. Wilson et al. [55] minimized the deviation between the input directions
and directions estimated from absolute translations. Tron et al. [54] minimized the squared relative
displacements and solved it in a distributed manner. Ozyesil et al. proposed the Least Unsquared
Deviations (LUD) method, extending [54], with L1 loss for robustness which made the problem
as a convex program. Arrigoni et al. [5] minimized the squared error of the orthogonal projection
of the estimated relative translations onto input directions. Goldstein et al. [22] also minimized
the orthogonal projection using ADMM but used an L1 loss for robustness. Zhuang et al. [57]
relaxed the cost in [55] by comparing estimated relative translations to that of the observed directions
and called it Bilinear Angle-based Translation Averaging (BATA). Other methods include using
two-view and three-view geometry [28] of the cameras to set up the problem [1, 40], estimating edge
scales through cycles in a network before solving for absolute translations [3, 4] or through point
correspondence constraints [13, 14], iteratively refining input directions [37], averaging matrices
obtained from two view geometry [33, 34], and exploiting the structure of the matrix generated from
pairwise displacements [15].

Parallel rigidity: Several works about parallel rigidity are present in the literature arising from
different communities: computer vision [42, 3, 2], robotics [36], computer-aided design [45] and
decision control [20, 19, 53, 56]. The node-based formulation is the classical way to approach
parallel rigidity, which deals with absolute translations (also called point formation) [45, 20, 19].
The edge-based formulation is a more recent approach which reasons about parallel rigidity based
on edge lengths in terms of the cycles in the network [35, 3, 53]. Readers are referred to [2] for an
excellent survey on parallel rigidity.

2

3 Sensitivity in Scale Estimation from Directions

In this section, we study the sensitivity in estimating edge scales in translation averaging. At first, we
define the notion of a consistent set of directions for a network G, which will be useful for further
discussion.
Definition 1 (Consistent Directions). A set of relative directions, vij , (i, j) ∈ E in a bearing-based
network G, are said to be consistent if there exist absolute translations, Ti, i ∈ V , such that
Tj−Ti

‖Tj−Ti‖ = vij .

We consider the smallest possible bearing-based network which is solvable, i.e. a network G∆ of 3
nodes, V∆ = {1, 2, 3}, with all possible edges, E∆ = {(1, 2), (2, 3), (3, 1)}. When these edges are
consistent, they form a triangle. Let V be the matrix containing relative directions vij , (i, j) ∈ E∆
in its columns and s be the vector containing edge scales sij . Then, the least squares problem to
estimate the scales can be written as

min
s
‖Vs‖2 s.t. ‖s‖2 = 1, (1)

where the unit norm constraint on s is used to fix the global scale. The solution to the problem in
Eqn. 1 is given by the eigenvector corresponding to the smallest eigenvalue of VTV.

To analyze the sensitivity of the estimated scales, we perturb each direction in G∆ by a small 3D
rotation δRij ∈ SO(3), therby ensuring that the perturbed vectors always lie on the unit sphere. Let
nij ∈ S2 and δθij > 0 be the rotation axis and angle for δRij , respectively. Then, the small rotation
can be approximated to a first order, using Rodrigues’ rotation formula, as δRij ≈ I + δθij [nij]×,
where [nij]× ∈ R3×3 is a matrix such that [nij]×h = nij × h for any h ∈ R3, and I is the 3 × 3
identity matrix. For small perturbations to vij by δRij , the following theorem holds:
Theorem 1. For a set of consistent directions, vij , (i, j) ∈ E∆, in G∆, the absolute change in any
eigenvalue of VTV, denoted as |δλ|, when the directions vij are perturbed by small rotations δRij ,
with nij and δθij > 0 being the rotation axis and angle, is bounded by

|δλ| ≤
∑

(k,i,j)∈TI(∆)

δθij · ‖v
nij⊥
ki ‖ · ‖vnij⊥

kj ‖ ·

∣∣∣sinφnij⊥
(k,i),(k,j)

∣∣∣
sin2 φ(k,i),(k,j)

·

[(
1 + (vTikvjk)2

) (
(vTijvik)2 + (vTijvjk)2

)
− 4 · vTikvjk · vTijvik · vTijvjk

] 1
2 , (2)

where TI(∆) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, vnij⊥ is the component of v orthogonal to nij ,
φ
nij⊥
(k,i),(k,j) is the angle between v

nij⊥
ki and v

nij⊥
kj , and φ(k,i),(k,j) is the angle between vki and vkj .

The proof of Thm. 1 uses eigenvalue perturbation theory [30]. Please refer to the appendix for the
proof. From Thm. 1, it can be observed that the bound for absolute change in any eigenvalue is
inversely dependent on the square of the sine of angles of the triangle formed by the unperturbed
directions. Since the scale estimate, s, is the eigenvector corresponding to the smallest eigenvalue of
VTV, Thm. 1 reveals that scales are sensitive to small perturbation of directions when at least one
angle in the triangle is small. The term in the square root in Eqn. 2 is bounded due to the dot product
of unit norm vectors and is strictly greater than zero since the unperturbed directions are consistent.
We note that the bound is also directly proportional to the sine of the angle between the directions
projected onto the orthogonal space of the rotation axis. This suggests that the effect of perturbation
is maximum when the rotation axis is orthogonal to the directions. This is the same as the case in
Cor. 1 when the perturbed directions are consistent.
Corollary 1. For a set of consistent directions, vij , (i, j) ∈ E∆, in G∆, the absolute change in any
eigenvalue of VTV, denoted as |δλ|, when the directions vij are perturbed by small rotations δRij ,
with nij and δθij > 0 being the rotation axis and angle, and nij being othogonal to vki and vkj for
all (i, j, k) ∈ TI(∆), is bounded by

|δλ| ≤
∑

(k,i,j)∈TI(∆)

δθij ·
1

| sinφ(k,i),(k,j)|
·

[(
1 + (vTikvjk)2

) (
(vTijvik)2 + (vTijvjk)2

)
− 4 · vTikvjk · vTijvik · vTijvjk

] 1
2 , (3)

3

(a) Well-conditioned triangle (b) Ill-conditioned triangle (Type-I) (c) Ill-conditioned triangle (Type-II)

Figure 1: Conditioning of triangles: analyzing change in output with small perturbation in input
direction (green: given direction; red: perturbed direction; change in output: from A to A’).

where TI(∆) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, and φ(k,i),(k,j) is the angle between vki and vkj .

Cor. 1 reveals that the scale estimates are unstable with small angles, even in the case when the
perturbed directions are consistent. We call triangles with at least one small angle as skewed triangles.
In Fig. 1, we show conditioning of the triangle under different scenarios, with green and red depicting
the unperturbed and perturbed directions, respectively. For a well-conditioned triangle, a small
change in direction leads to a small change in the absolute translation. But for an ill-conditioned
triangle (skewed triangle), a small change in the direction leads to a large change in the absolute
translation. Fig. 1a shows a well-conditioned triangle, Fig. 1b shows a triangle with one small
angle due to which it is ill-conditioned (Type I) and Fig. 1c shows a triangle with two small angles
making it ill-conditioned (Type II). Such skewed triangles are known to be problematic in different
fields. In numerical analysis [25, 8], the skewed triangles are termed as ‘needle-like’ triangles, and
measuring their area and angles have numerical issues. In computational topology and computer
graphics [17, 38], skewed triangles (also called sliver triangles) are often avoided, as in Delaunay
triangulation, or are filtered out. We note that none of them deal with directions as input. Our aim is
to quantify the conditioning of the triangle and the translation averaging problem based solely on the
input directions, without actual perturbation, and filter out skewed triangles, which are discussed in
subsequent sections.

4 Conditioning of Translation Averaging

In this section, we first analyze the conditioning of the bearing-based network with 3 nodes and 3
edges, i.e. G∆ (as defined in Sec. 3). We define an angle matrix, AG∆ ∈ R3×3, as follows:

AG∆ =

φ(1,2),(1,2) φ(2,1),(2,3) φ(1,2),(1,3)

φ(2,3),(2,1) φ(2,3),(2,3) φ(3,2),(3,1)

φ(1,3),(1,2) φ(3,1),(3,2) φ(3,1),(3,1)

 =

 0 φ(2,1),(2,3) φ(1,2),(1,3)

φ(2,1),(2,3) 0 φ(3,2),(3,1)

φ(1,2),(1,3) φ(3,2),(3,1) 0

 , (4)

where φ(k,i),(k,j) is the angle between vki and vkj (as defined in Thm. 1). The rows and columns of
AG∆

signify edges in G∆ and its entries are the angular differences between directions with angles
being measured within the triangle using the common node between two edges as the reference
point for measuring directions. Since φ(k,i),(k,j) = φ(k,j),(k,i), AG∆ is symmetric, and since
φ(k,i),(k,i) = 0, AG∆ has zero diagonal entries. We quantify conditioning of the translation averaging
problem on G∆ as conditioning of the matrix AG∆ based on the following theorem:
Theorem 2. Consider the bearing based-network of 3 nodes and 3 edges, G∆ = (V∆, E∆), and the
corresponding angle matrix AG∆

. The conditioning of the matrix AG∆
signifies the skewness of the

triangle formed using the directions in E∆.

The proof of Thm. 2 involves proving AG∆ being non-singular for non-zero angles using its deter-
minant and checking for the closeness of columns in relation to the angle values. We choose this
approach instead of checking determinant since the later is not a good measure of closeness of a
matrix to singularity [39]. Please refer to the appendix for the complete proof. Thm. 2 reveals that
the conditioning of G∆ can be characterized by the condition number of matrix AG∆

.

4

We generalize the angle matrix and Thm. 2 for any bearing-based network G. We assume all edges in
G are a part of at least one triplet (a triplet consists of 3 nodes with all possible edges between them).
We use the terms triplet and triangle interchangeably since a triplet forms a triangle for our specific
problem. If this assumption is not satisfied, we remove the edges in G, which are not a part of any
triplet and consider its maximum connected component. This will enable us to use G∆ as the basic
building block of G and thus characterizing the conditioning of G.

We now expand the angle matrix to a general bearing-based network G in which every edge is a part
of at least one triplet. We denote the angle matrix for the general network as AG ∈ RM×M (M is
the number of edges in G), where the rows and columns signify edges in G, and its entries, aij,klG ,
corresponding to the row for the edge (i, j) and the column for the edge (k, l), are defined as follows:

aij,klG =

φ(c,c′1),(c,c′2) if (i, j) and (k, l) belong to the same triplet

with c ∈ {i, j} ∩ {k, l} and c′1, c
′
2 ∈ {i, j} ∪ {k, l} \ {c};

0 otherwise.
(5)

In AG , we measure the angles between the directions formed by triplet. In such cases, to ensure
that the directions are measured within the triangle, similar to AG∆

, the common node, c, is taken as
reference and the directions are measured from c to other nodes c′1 and c′2. From Eqn. 5, it is clear that
the diagonal entries are zero (φ(k,i),(k,i) = 0) and the matrix is symmetric (φ(k,i),(k,j) = φ(k,j),(k,i)).
We note that AG is not the same as that of the distance matrix used in Multi-Dimensional Scaling
(MDS) [7, 9]. In instances when a node appears in more than one triplet, angles between the
edges belonging to the different triplets are not computed, but in MDS, such angles would also be
considered. This restricts the angle matrix AG to contain information only about triangles and not of
other structures. Such a construction helps to extend the findings from AG∆ to AG . We define the
conditioning of the translation averaging problem as the condition number of angle matrix AG .
The following theorem states a sufficiency condition for a well-conditioned angle matrix:

Theorem 3. Consider a bearing-based network G, with all edges contributing to triplets. The angle
matrix AG , corresponding to G, is well conditioned if the minimum angle (or equivalently all the
angles) in all the triangles formed by the triplets are sufficiently large.

The proof for 3 is similar to the proof for Thm. 2. Here, we check for different combinations of
columns based on the structure of G and check for their closeness. Please refer to the appendix for
the proof.

We note that we do not need G to be parallel rigid for the angle matrix AG to be well conditioned,
implying that sensitivity and parallel rigidity are different aspects of the bearing-based network.
However, we need G to be parallel rigid to ensure a unique solution. In general, computing the
maximal parallel rigid component is expensive. Since we remove edges in G not contributing to
triplets, this can affect its parallel rigidity. We avoid such expensive computation since we deal with
triplets. We construct a triplet network GT = (VT , ET), as done in [32], where nodes VT denote
a triplet in G and edges ET connect the nodes if an edge is common between the triplets in G. By
construction, it can be seen that disconnected components in G will be disconnected in GT since there
cannot be shared edges among disconnected components. The following theorem enables extracting
the maximal parallel rigid graph when G contains all edges contributing to triplets:

Theorem 4. Given a bearing-based network G, with all edges contributing to triplets forming
triangles, and its corresponding triplet network GT , the maximal parallel rigid component of G can
be determined by the edges in G contributing to the largest connected component of GT .

Please refer to the appendix for proof of Thm. 4. Based on Thms. 3 and 4, we develop an algorithm
to identify and remove skewed triangles from the translation averaging problem while ensuring that
the network is parallel rigid, which is discussed in the next section.

5 Proposed Method

In this section, we show how to efficiently identify skewed triangles in G. First, we get the list of
nodes and edges contributing to each triplet in G, for which efficient implementations exist [52, 26].
The brute force way to identify skewed triangles is to compute the angles in each triangle using the
relative directions vij and mark triangles with the minimum angle less than a threshold. The number

5

of triplets depends on the sparsity of the network G, which, in general, is large. This makes the
brute force method time-consuming. In contrast with the brute force approach, we use vectorized
operations to construct the angle matrix AG and filter skewed triangles, making it time efficient.
It is observed that the vectorized version is ∼ 100 times faster than the parallelized version (with
20 threads) of the brute force method for ∼ 105 triplets coming from ∼ 104 edges, and this gain
increases significantly with an increase in the number of triplets and edges. A time comparison
between the brute force method and our method is given in the appendix. In real-world data, the
large-scale bearing-based networks are sparse, making AG sparse. We present our method for sparse
networks in the following steps and for dense networks in the appendix.

Step 1: The first step is to identify which entries are non-zero in the angle matrix AG . Since we
are considering only triplets, we require a matrix that captures which edges are part of a triplet.
In computational topology [29, 16], higher order relationships in G = (V, E) (other than node-to-
node relationship via edges) are studied using simplices. A k-simplex is a subset of the vertex
set V with (k + 1) elements. A finite collection of simplices, such as nodes (0-simplices), edges
(1-simplices), and triangles (2-simplices), is called a simplicial complex. The boundary matrix Bk of
a simplicial complex encodes which (k − 1)-simplex contributes to k-simplex. In our case, we need
the relationship between 1-simplices (edges) and 2-simplices (triangles). The (i, j)th element of the
boundary matrix B2 ∈ RM×W , with M edges and W triplets, is given as:

bij2 =

{
1 if ith edge contributes to jth triangle;

0 otherwise.
(6)

It is easy to compute B2 since we have the list of edges contributing to each triplet. The row and
column indices of non-zero elements in B2B

T
2 give us the edge pairs participating in triplets. Only

these elements in AG are to be computed (except diagonals in B2B
T
2 which are non-zero). The

corresponding dot products between the edges are computed in a vectorized fashion and stored.

Step 2: We need to identify the correct signs for the dot products to ensure that the dot products
reflect the cosine of the angles of the triangles. Since the dot products are cosφ(i,j),(k,l) for edges
(i, j), (k, l) ∈ E in triplets, there will be one common node c ∈ {i, j} ∩ {k, l}. The directions vij
and vkl should be measured with reference to the common node to get the angle of the triangle that
includes those edges. We need the dot product between vcc′1 and vcc′2 , where c′1 ∈ {i, j} \ {c} and
c′2 ∈ {k, l} \ {c}. Using vTcc′1

vcc′2 = vTc′1c
vc′2c and vij = −vji, we premultiply each dot product by

mij,kl, where mij,kl is determined as follows:

mij,kl =

1 if i = k or j = l;

−1 if i = l or j = k;

0 otherwise.
(7)

Since edges (i, j), (k, l) are part of a triplet, the third case in Eqn. 7 will not arise, but it will be
helpful in the dense network case. We premultiply mij,kl to the corresponding dot products. We take
the inverse cosine of the sign-corrected dot products to get the angles and allocate AG .

Step 3: It is easy to extract angles from AG since edges corresponding to a triplet are known and AG
provides an easy way to index edges based on its rows and columns. Let Trp be the set of triplets
in G. We check if the angles of the triangles are greater than a minimum threshold and remove
the triplets having skewed triangles. This creates two sets of triplets TrpRet and TrpRem denoting
retained and removed triplets, both being mutually exclusive. Let the edges contributing to the two
triplet sets be Eret and Erem, respectively, such that E = Eret ∪Erem. We note that Eret ∩Erem is not
necessarily empty. For a parallel rigid G, the two edge sets are not mutually exclusive since there will
be common edges between the triplets of Eret and Erem, as a consequence of Thm. 4. Let the filtered
network be denoted as G̃F = (ṼF , ẼF). There are two ways to remove edges: one is to remove edges
aggressively such that ẼF = E \ Erem and the other way is non-aggressive i.e. ẼF = Eret. Since
all operations are vectorized, this makes the whole process of extracting the angles and removal of
skewed triangles time efficient. Next, we construct the triplet network GT (as discussed in Sec. 4)
from G̃F and extract the largest connected component of GT , to ensure that the network is connected
and is parallel rigid. The edges of G̃F contributing to the largest connected component of GT gives
the final network GF = (VF , EF). The whole process is summarized in Algo 1. In our experiments,
the network G is sparse, and we choose the non-aggressive way of removing the edges, which ensures

6

Algorithm 1: Removal of Skewed Triangles from Sparse Networks
Input: Bearing-based network G = (V, E), containing only triplets and is parallel rigid, and the

triplet list of G.
Output: Bearing-based network GF = (VF , EF), containing only triplets and is parallel rigid,

without skewed triangles.
1 Compute the non-zero elements in angle matrix AG using the boundary matrix B2 (Eqn. 6).
2 Compute the dot product for the non-zero elements in AG .
3 Get the signs of the dot product i.e. mij,kl using Eqn. 7.
4 Multiply dot products with their corresponding signs mij,kl.
5 Take the inverse cosine of dot products.
6 Allocate the matrix AG . Extract the angles of the triplets from AG .
7 Filter out the triplets with the minimum angle less than a threshold to get G̃F = (ṼF , ẼF).
8 Construct the triplet network GT using G̃F .
9 Get the largest connected component of GT .

10 Get the edges of G̃F contributing to the largest connected component of GT to get
GF = (VF , EF), which is connected and is parallel rigid.

that the connected component of GF is large. We note that with non-aggressive pruning, we still
ensure that the nodes are estimated reliably since the nodes are also a part of atleast one triplet, which
belong to the set of non-skewed triangles.

6 Experiments

We consider SfM datasets provided in 1DSfM [55] for the experiments. It provides the relative
motions and a reference reconstruction using Bundler [49, 50]. Since Bundler was published more
than ten years ago, we use COLMAP [44] to generate the pairwise relative rotations and translations
and use COLMAP’s solution as the ground truth to get a better reconstruction. We take COLMAP
solution and align it to the solution provided in 1DSfM to get absolute translations in meters. We
compute absolute rotations using [11] and use them to align the relative translation directions into
a global coordinate frame. The output of this process gives us a bearing-based network. Then, we
extract triplets from the network and ensure parallel rigidity. Since the filtering process is independent
of the cost function to solve the problem, we consider two representative cost functions. Revised
LUD (an improvement on [41], provided by [57]), compares relative displacements, and BATA [57],
compares relative directions. Please refer to appendix for the problem formulations. Our code is
implemented in MATLAB. All experiments are performed on a PC with Intel Xeon Silver 4210
processor with 128 GB RAM. Finally, in each table, Mean-ATE and RMS-ATE denote the mean
and RMS absolute translation errors, respectively, w/o and w/ filter denotes the network before and
after removing skewed triangles and bold entries denote better performance between the solutions
of the two networks.

6.1 Analysis of Real Data

In this subsection, we first provide an illustrative example using COLMAP [44] reconstruction and
then analyze the real data. Fig. 2 shows an illustrative example of the existence of such skewed
triangles in the SfM problem. For the Alamo dataset, most images capture the front part of the
museum, and thus, the cameras are densely connected in the network. The blue triangle depicts a
triplet which is Type-I ill-conditioned triangle and the green triangle shows Type-II ill-conditioned
triangle.

Now, we analyze the real data to understand the frequency of occurrence of skewed triangles and their
difference with outlier data. For the analysis, we compute the errors in relative directions with respect
to ground truth. To check whether atleast one outlier is present in the triplet, we check the maximum
error of relative directions in a triplet. Since we identify skewed triangles with the minimum angle in
each triplet, we compare the maximum error of relative directions with the minimum angle between
directions for each triplet. In Fig. 3, we show scatter plots between the two compared quantities for
all the triplets for three datasets with different edge densities. At first, we observe that there are a

7

(a) Piccadilly (ed = 1.16%) (b) Tower of London (ed = 3.91%) (c) Union Square (ed = 2.76%)

Figure 3: Scatter plots of maximum error of relative directions in each triplet (with respect to ground
truth) vs minimum angle between edges in each triplet on datasets from [55]. ed denotes edge density.

considerable number of skewed triangles in the network since there are many points in the scatter
plot which are close to 0◦ in the x-axis (representing the minimum angle in triplets). Next, we can
also see that the minimum angle between edges in the triplets is independent of the maximum error
in the triplets, implying that the presence of an outlier and the skewness of a triangle have no relation.
Also, it can be seen that triplets with minimum angle > 60◦ are clear outliers and all of them have a
high angular error with respect to ground truth. Based on this observation, we first provide results on
outlier-free data, and then we show the results on the real data with outliers in the next subsections.

6.2 Outlier-Free Data

Figure 2: Reference reconstruction of Alamo [55]
using COLMAP [44] for displaying skewed trian-
gles. Blue triangle: Ill-conditioned triangle (Type-I),
Green triangle: Ill-conditioned triangle (Type-II).

In this subsection, we examine the impact of
skewed triangles on the quality of the trans-
lation estimate independent of outliers. First,
we extract the component of the network for
which the ground truth is available. For this
experiment, to remove the effect of errors com-
ing from absolute rotation estimates, we use
ground truth rotations to align the relative di-
rections to a common reference frame. We
consider the edges as outliers if the relative
direction on the edge differs from its ground
truth equivalent by more than 10◦ and remove
them. Then, we extract the triplets from the
network and ensure parallel rigidity. This
gives us a network with no outliers but still
contains skewed triangles. We call it the unfil-
tered network. Now, we use Algo. 1 to remove
skewed triangles (minimum angle < 5◦) and
denote the output as the filtered network and
compare the solutions from the two networks.

In Table 1, we list the number of nodes and edges removed due to the removal of skewed triangles
and check the absolute translation errors obtained using BATA. It can be seen with the removal of a
small number of nodes and edges, the mean and RMS errors of the absolute translations decrease
consistently (see appendix for the number of nodes and edges of the networks). We also check the
errors of the nodes in the unfiltered network, which were removed due to the removal of skewed
triangles. It can be seen that the mean and RMS errors of the removed nodes are high compared to
the overall errors implying that absolute translations at these nodes are not well estimated. Absolute
translation error obtained using Revised LUD is provided in the appendix, which also shows that
removal of skewed triangles leads to improved translation estimates. This shows the impact of skewed
triangles on the translation averaging and the benefits of removing them.

8

Table 1: Absolute translations errors (in meters) on 1DSfM [55] datasets without outliers us-
ing BATA [57]. Removed Node Errors: Errors of removed nodes in the unfiltered network,
#Nrem,#Mrem: No. of nodes and edges removed.

Dataset #Nrem #Mrem Mean-ATE RMS-ATE Removed Node Errors

w/o filter w/ filter w/o filter w/ filter Mean RMS

Alamo (ALM) 17 211 2.4 2.2 4.4 3.9 8.0 10.0
Ellis Island (ELS) 1 15 1.0 0.9 1.5 1.3 5.5 5.5

Gendarmenmarkt (GMM) 9 67 5.1 4.8 8.5 7.9 19.2 21.8
Madrid Metropolis (MDR) 20 184 7.0 6.0 13.6 10.6 23.6 29.7

Montreal Notre Dame (MND) 6 163 2.4 2.3 4.1 3.8 7.1 8.9
NYC Library (NYC) 20 185 2.5 2.3 5.1 5.0 6.2 8.2

Notre Dame (ND) 17 536 2.5 2.4 5.0 4.8 7.6 11.8
Piazza del Popolo (PDP) 10 247 2.7 2.6 4.2 4.5 4.3 5.6

Piccadilly (PIC) 49 780 2.3 2.1 5.4 4.6 8.6 17.0
Roman Forum (ROF) 30 391 9.2 8.9 19.1 16.7 26.9 42.9

Tower of London (TOL) 11 96 8.0 7.5 16.2 14.3 37.8 53.5
Trafalgar (TFG) 184 1879 8.0 6.9 17.1 17.0 21.7 27.9

Union Square (USQ) 21 239 4.9 4.5 6.7 6.0 10.6 13.2
Vienna Cathedral (VNC) 19 275 7.2 7.4 10.6 10.4 15.0 18.0

Yorkminster (YKM) 13 181 4.9 4.8 13.4 14.8 17.5 26.5

Table 2: Details of networks before and after removing skewed triangles from 1DSfM [55] datasets.
#Nrem,#Mrem: No. of nodes and edges removed, κ2(AG): condition number of the angle matrix
with matrix-2 norm, tfilter: time taken to remove skewed triangles.

Dataset #Nodes #Edges #Nrem #Mrem κ2(AG) tfilter (sec)

w/o filter w/ filter w/o filter w/ filter w/o filter w/ filter

ALM 694 682 15619 15422 12 197 2.3e+08 2.4e+07 0.31
ELS 324 316 7411 7342 8 69 2.6e+07 3.8e+06 0.14

GMM 950 926 13913 13656 24 257 2.7e+09 1.8e+08 0.20
MDR 401 377 4367 4170 24 197 7.2e+07 5.6e+06 0.05
MND 564 560 18297 18150 4 147 2.1e+08 3.4e+07 0.67
NYC 450 437 6228 6017 13 211 6.0e+07 4.0e+06 0.08
ND 1421 1418 70759 70651 3 108 5.4e+09 1.2e+10 2.66
PDP 909 891 14770 14502 18 268 1.3e+08 3.1e+07 0.32
PIC 2706 2645 45306 44405 61 901 1.7e+09 6.5e+08 0.55
ROF 1361 1320 18855 18461 41 394 2.5e+09 4.9e+08 0.25
TOL 569 552 8710 8569 17 141 8.2e+07 2.0e+07 0.14
TFG 6327 6110 110876 108142 217 2734 1.5e+11 4.7e+09 1.83
USQ 866 840 12638 12406 26 232 2.7e+09 2.6e+07 0.23
VNC 1015 986 24793 24511 29 282 1.3e+09 1.2e+09 0.65
YKM 964 930 12033 11670 34 363 1.0e+12 1.0e+12 0.18

6.3 Real Data

In this subsection, we deal with real data in the context of SfM, which is obtained as described at the
beginning of this section. We note that this data contain outliers, and our aim is to understand the
impact of skewed triangles in the presence of outliers. We denote the network obtained as unfiltered
and remove the skewed triangles (minimum angle < 5◦) using Algo. 1, calling it the filtered network.
In Table 2, we provide details of the unfiltered and filtered network. It can be observed that the
removal of a small fraction of nodes and edges from skewed triangles leads to a significant decrease in
the condition number of the angle matrix (with matrix-2 norm), κ2(AG), for all datasets expect ND.
We employ non-aggressive pruning due to which some skewed triangles can remain in the filtered
network making the condition number κ2(AG) increase for ND and the same for YKM. We reiterate
that non-aggressive pruning still ensures that the nodes are well estimated (see Step 3 in Sec. 5). This
shows that the conditioning of the translation averaging improves for most datasets, even with the
non-aggressive removal of skewed triangles.

In Table 3, we present the absolute translation errors obtained using BATA without and with filtering
skewed triangles. It can be observed that the mean and RMS errors improve for most of the datasets
after the removal of skewed triangles. Also, errors of the removed nodes in the unfiltered network are
high, which indicates that the absolute translations at these nodes are not reliable in the unfiltered
network. We note that from Tables 2 and 3, the filtering time is ∼ 1% of the time taken for translation
averaging, which shows the practicality of Algo. 1. Next, we perform 3D reconstruction using

9

Table 3: Absolute translations errors (in meters) on 1DSfM [55] datasets using BATA [57]. Removed
Node Errors: Errors of removed nodes in the unfiltered network, tBATA: time taken by BATA.

Dataset Mean-ATE RMS-ATE Removed Node Errors tBATA (sec)

w/o filter w/ filter w/o filter w/ filter Mean RMS

ALM 4.7 4.5 11.1 10.5 22.9 39.5 17
ELS 23.2 22.1 50.7 51.8 98.6 118.1 7

GMM 50.6 40.9 77.8 61.1 149.7 190.8 14
MDR 13.9 12.7 29.4 26.1 54.2 61.2 5
MND 4.4 4.3 10.0 9.9 31.2 34.1 17
NYC 6.5 5.2 15.8 12.6 28.7 38.1 7
ND 3.3 3.3 6.4 6.4 6.9 7.0 71
PDP 8.0 8.0 13.0 13.1 15.0 17.3 16
PIC 5.3 5.1 11.0 10.8 20.8 29.2 68
ROF 12.8 10.4 27.0 19.6 65.4 100.5 24
TOL 15.6 14.5 32.2 30.3 63.7 90.3 10
TFG 20.3 14.5 62.6 31.8 65.0 130.8 287
USQ 14.5 10.6 24.8 18.1 34.5 49.9 14
VNC 10.2 10.2 17.8 18.4 21.4 27.5 28
YKM 20.4 19.3 29.5 28.3 44.0 51.4 13

Table 4: No. of points triangulated (Ptri × 103) and bundle adjustment iterations (BAiters) using the
solutions obtained by BATA for unfiltered and filtered networks on 1DSfM [55] datasets.

Dataset ALM ELS GMM MDR MND NYC ND

Ptri ↑
w/o filter 142 57 101 46 115 77 376
w/ filter 144 58 104 49 118 79 375

BAiters ↓
w/o filter 73 40 31 66 59 100 34
w/ filter 54 33 21 83 37 74 22

PDP PIC ROF TOL USQ VNC YKM

Ptri ↑
w/o filter 91 231 196 107 57 219 175
w/ filter 94 234 196 110 56 222 168

BAiters ↓
w/o filter 34 53 31 89 122 52 58
w/ filter 44 47 21 85 52 25 33

Theia [52] with the absolute translation solutions obtained in Table 3. Theia removes the triangulated
3D points which have reprojection errors greater than 15 pixels. It can be seen from Table 4 that
more 3D points are triangulated in the filtered networks for most of the datasets. We note that filtered
networks have lesser nodes than unfiltered networks, which implies removal of nodes coming from
skewed triangles leads to better conditioning for 3D point triangulation. We also see that the bundle
adjustment converges faster for the filtered networks indicating absolute translations are more stable
in the filtered networks compared to unfiltered networks.

Limitation: Our sensitivity analysis of translation averaging is based on the triplets in the network.
Although we do not lose much in terms of 3D reconstruction in SfM, further work is required to
understand the sensitivity of a general bearing-based network.

7 Conclusion

This paper deals with sensitivity in translation averaging under input uncertainty. We study sensitivity
in estimating edge scales in bearing-based networks which suggests skewed triangles are unstable. We
define the conditioning of the translation averaging problem and provide a sufficient criterion to ensure
that the problem is well-conditioned. Then, we propose an efficient algorithm to remove skewed
triangles from the network while ensuring parallel rigidity. We demonstrate the effectiveness of our
filtering scheme using structure-from-motion data without and with outliers leading to better absolute
translation estimates, more 3D points triangulated and faster convergence of bundle adjustment for
filtered networks.

10

Acknowledgments and Disclosure of Funding

Lalit Manam is supported by a Prime Minister’s Research Fellowship, Government of India. This
research was supported in part by a Core Research Grant from Science and Engineering Research
Board, Department of Science and Technology, Government of India.

References
[1] Mica Arie-Nachimson, Shahar Z Kovalsky, Ira Kemelmacher-Shlizerman, Amit Singer, and Ronen Basri.

Global motion estimation from point matches. In 2012 Second international conference on 3D imaging,
modeling, processing, visualization & transmission, pages 81–88. IEEE, 2012.

[2] Federica Arrigoni and Andrea Fusiello. Bearing-based network localizability: a unifying view. IEEE
transactions on pattern analysis and machine intelligence, 41(9):2049–2069, 2018.

[3] Federica Arrigoni, Andrea Fusiello, and Beatrice Rossi. On computing the translations norm in the epipolar
graph. In 2015 International Conference on 3D Vision, pages 300–308. IEEE, 2015.

[4] Federica Arrigoni, Andrea Fusiello, and Beatrice Rossi. Camera motion from group synchronization. In
2016 Fourth International Conference on 3D Vision (3DV), pages 546–555. IEEE, 2016.

[5] Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Robust and efficient camera motion synchroniza-
tion via matrix decomposition. In International Conference on Image Analysis and Processing, pages
444–455. Springer, 2015.

[6] Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Spectral synchronization of multiple views in se
(3). SIAM Journal on Imaging Sciences, 9(4):1963–1990, 2016.

[7] Richard Beals, David H Krantz, and Amos Tversky. Foundations of multidimensional scaling. Psychologi-
cal review, 75(2):127, 1968.

[8] Sylvie Boldo. How to compute the area of a triangle: a formal revisit. In 2013 IEEE 21st Symposium on
Computer Arithmetic, pages 91–98. IEEE, 2013.

[9] Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory and applications. Springer
Science & Business Media, 2005.

[10] Avishek Chatterjee and Venu Madhav Govindu. Efficient and robust large-scale rotation averaging. In
Proceedings of the IEEE International Conference on Computer Vision, pages 521–528, 2013.

[11] Avishek Chatterjee and Venu Madhav Govindu. Robust relative rotation averaging. IEEE transactions on
pattern analysis and machine intelligence, 40(4):958–972, 2017.

[12] Robert Connelly. Generic global rigidity. Discrete & Computational Geometry, 33(4):549, 2005.
[13] Hainan Cui, Shuhan Shen, and Zhanyi Hu. Robust global translation averaging with feature tracks. In

2016 23rd International Conference on Pattern Recognition (ICPR), pages 3727–3732. IEEE, 2016.
[14] Zhaopeng Cui, Nianjuan Jiang, Chengzhou Tang, and Ping Tan. Linear global translation estimation with

feature tracks. In Proc. ECCV, volume 3, pages 61–75, 2014.
[15] Qiulei Dong, Xiang Gao, Hainan Cui, and Zhanyi Hu. Robust camera translation estimation via rank

enforcement. IEEE transactions on cybernetics, 2020.
[16] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Applied Mathematics. American

Mathematical Society, 2010.
[17] Herbert Edelsbrunner, Xiang-Yang Li, Gary Miller, Andreas Stathopoulos, Dafna Talmor, Shang-Hua

Teng, Alper Üngör, and Noel Walkington. Smoothing and cleaning up slivers. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 273–277, 2000.

[18] Olof Enqvist, Fredrik Kahl, and Carl Olsson. Non-sequential structure from motion. In 2011 IEEE
International Conference on Computer Vision Workshops (ICCV Workshops), pages 264–271. IEEE, 2011.

[19] Tolga Eren, Walter Whiteley, and Peter N Belhumeur. Using angle of arrival (bearing) information in
network localization. In Proceedings of the 45th IEEE Conference on Decision and Control, pages
4676–4681. Ieee, 2006.

[20] Tolga Eren, Walter Whiteley, A Stephen Morse, Peter N Belhumeur, and Brian DO Anderson. Sensor and
network topologies of formations with direction, bearing, and angle information between agents. In 42nd
IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), volume 3, pages
3064–3069. IEEE, 2003.

[21] A. Eriksson, C. Olsson, F. Kahl, and T. Chin. Rotation averaging and strong duality. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 127–135, 2018.

[22] Thomas Goldstein, Paul Hand, Choongbum Lee, Vladislav Voroninski, and Stefano Soatto. Shapefit and
shapekick for robust, scalable structure from motion. In European Conference on Computer Vision, pages
289–304. Springer, 2016.

[23] Venu Madhav Govindu. Combining two-view constraints for motion estimation. In Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, volume 2,
pages II–II. IEEE, 2001.

[24] Venu Madhav Govindu. Lie-algebraic averaging for globally consistent motion estimation. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR
2004., volume 1, pages I–I. IEEE, 2004.

[25] Fred G Gustavson, José E Moreira, and Robert F Enenkel. The fused multiply-add instruction leads to
algorithms for extended-precision floating point: applications to java and high-performance computing.

11

IBM Thomas J. Watson Research Division, 1999.
[26] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and

function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of
the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[27] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1 rotation averaging using the weiszfeld algorithm.
In CVPR 2011, pages 3041–3048. IEEE, 2011.

[28] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press,
ISBN: 0521540518, second edition, 2004.

[29] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002.
[30] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.
[31] Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, and Qixing Huang. Translation synchronization via

truncated least squares. Advances in neural information processing systems, 30, 2017.
[32] Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. A global linear method for camera pose registration. In

Proceedings of the IEEE international conference on computer vision, pages 481–488, 2013.
[33] Yoni Kasten, Amnon Geifman, Meirav Galun, and Ronen Basri. Algebraic characterization of essential

matrices and their averaging in multiview settings. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5895–5903, 2019.

[34] Yoni Kasten, Amnon Geifman, Meirav Galun, and Ronen Basri. Gpsfm: Global projective sfm using
algebraic constraints on multi-view fundamental matrices. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3264–3272, 2019.

[35] Bastian Katz, Marco Gaertler, and Dorothea Wagner. Maximum rigid components as means for direction-
based localization in sensor networks. Lecture Notes in Computer Science, 4362:330, 2007.

[36] Ryan Kennedy, Kostas Daniilidis, Oleg Naroditsky, and Camillo J Taylor. Identifying maximal rigid
components in bearing-based localization. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 194–201. IEEE, 2012.

[37] Lalit Manam and Venu Madhav Govindu. Correspondence reweighted translation averaging. In European
Conference on Computer Vision, Proceedings, Part XXXIII, pages 56–72. Springer, 2022.

[38] de Berg Mark, Cheong Otfried, van Kreveld Marc, and Overmars Mark. Computational geometry
algorithms and applications. Spinger, 2008.

[39] Carl D Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.
[40] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global fusion of relative motions for robust, accurate

and scalable structure from motion. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3248–3255, 2013.

[41] Onur Ozyesil and Amit Singer. Robust camera location estimation by convex programming. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2674–2683, 2015.

[42] Onur Ozyesil, Amit Singer, and Ronen Basri. Stable camera motion estimation using convex programming.
SIAM Journal on Imaging Sciences, 8(2):1220–1262, 2015.

[43] Deepti Pachauri, Risi Kondor, Gautam Sargur, and Vikas Singh. Permutation diffusion maps (pdm)
with application to the image association problem in computer vision. Advances in Neural Information
Processing Systems, 27, 2014.

[44] Johannes Lutz Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 4104–4113, 2016.

[45] Brigitte Servatius and Walter Whiteley. Constraining plane configurations in computer-aided design:
Combinatorics of directions and lengths. SIAM Journal on Discrete Mathematics, 12(1):136–153, 1999.

[46] Yanyao Shen, Qixing Huang, Nati Srebro, and Sujay Sanghavi. Normalized spectral map synchronization.
Advances in neural information processing systems, 29, 2016.

[47] Yunpeng Shi and Gilad Lerman. Message passing least squares framework and its application to rotation
synchronization. In International Conference on Machine Learning, pages 8796–8806. PMLR, 2020.

[48] Kristy Sim and Richard Hartley. Recovering camera motion using l\infty minimization. In 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages
1230–1237. IEEE, 2006.

[49] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in 3d. In
ACM siggraph 2006 papers, pages 835–846. 2006.

[50] Noah Snavely, Steven M Seitz, and Richard Szeliski. Modeling the world from internet photo collections.
International journal of computer vision, 80:189–210, 2008.

[51] Yifan Sun, Jiacheng Zhuo, Arnav Mohan, and Qixing Huang. K-best transformation synchronization. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10252–10261, 2019.

[52] Christopher Sweeney, Tobias Hollerer, and Matthew Turk. Theia: A fast and scalable structure-from-motion
library. In Proceedings of the 23rd ACM international conference on Multimedia, pages 693–696, 2015.

[53] Roberto Tron, Luca Carlone, Frank Dellaert, and Kostas Daniilidis. Rigid components identification
and rigidity control in bearing-only localization using the graph cycle basis. In 2015 American Control
Conference (ACC), pages 3911–3918. IEEE, 2015.

[54] Roberto Tron and René Vidal. Distributed image-based 3-d localization of camera sensor networks. In
Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, pages 901–908. IEEE, 2009.

[55] Kyle Wilson and Noah Snavely. Robust global translations with 1dsfm. In European Conference on
Computer Vision, pages 61–75. Springer, 2014.

12

[56] Shiyu Zhao and Daniel Zelazo. Localizability and distributed protocols for bearing-based network
localization in arbitrary dimensions. Automatica, 69:334–341, 2016.

[57] Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee. Baseline desensitizing in translation averaging.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4539–4547,
2018.

13

Sensitivity in Translation Averaging
Appendix

Lalit Manam
Indian Institute of Science
Bengaluru, India - 560012
lalitmanam@iisc.ac.in

Venu Madhav Govindu
Indian Institute of Science
Bengaluru, India - 560012

venug@iisc.ac.in

8 Proofs for Theorems

Before we prove the theorems, we first state the results, which will be helpful in proving Thm. 1. We
first state a result from first-order eigenvalue perturbation theory [30].

Result 1. Given a matrix X ∈ RM×M and a small additive perturbation on it by a matrix δX ∈
RM×M , the absolute change in eigenvalue, denoted as |δλ(X)|, due to the perturbation is bounded
by

|δλ(X)| ≤ ‖w‖2‖δX‖2‖z‖2
|wHz|

, (8)

where w, z ∈ CM , and are the left and right eigenvectors of X corresponding to the same eigenvalue,
respectively.

Since w and z are eigenvectors, ‖w‖2 = 1 and ‖z‖2 = 1. For a symmetric matrix X, the left and the
right eigenvectors corresponding to any eigenvalue are the same due to which |wHz| = |wHw| = 1.
Hence, for symmetric matrix X, Result 1 can be rewritten as

|δλ(X)| ≤ ‖δX‖2 = σmax(δX), (9)

where σmax(δX) is the maximum singular value of δX. Next, we provide our result on the singular
value decomposition of a specific matrix, which will be used further.

Result 2. Given a matrix X ∈ R3×3 such that

X =

[
0 0 a
0 0 b
a b 0

]
, (10)

the singular value decomposition of X is given as X = USWT , where

U =

 a√
a2+b2

0 −b√
a2+b2

b√
a2+b2

0 a√
a2+b2

0 −1 0

 , S =

√a2 + b2 0 0
0

√
a2 + b2 0

0 0 0

 and

W =

0 −a√
a2+b2

−b√
a2+b2

0 −b√
a2+b2

a√
a2+b2

1 0 0

 .

Now, we prove the theorems stated in the main paper.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Theorem 1. For a set of consistent directions, vij , (i, j) ∈ E∆, in G∆, the absolute change in any
eigenvalue of VTV, denoted as |δλ|, when the directions vij are perturbed by small rotations δRij ,
with nij and δθij > 0 being the rotation axis and angle, is bounded by

|δλ| ≤
∑

(k,i,j)∈TI(∆)

δθij · ‖v
nij⊥
ki ‖ · ‖vnij⊥

kj ‖ ·

∣∣∣sinφnij⊥
(k,i),(k,j)

∣∣∣
sin2 φ(k,i),(k,j)

·

[(
1 + (vTikvjk)2

) (
(vTijvik)2 + (vTijvjk)2

)
− 4 · vTikvjk · vTijvik · vTijvjk

] 1
2 , (2)

where TI(∆) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, vnij⊥ is the component of v orthogonal to nij ,
φ
nij⊥
(k,i),(k,j) is the angle between v

nij⊥
ki and v

nij⊥
kj , and φ(k,i),(k,j) is the angle between vki and vkj .

Proof. Our goal is to check for the absolute change in the eigenvalue of VTV, denoted as |δλ|.
VTV is a symmetric matrix. Using Result 1 and Eqn. 9, finding the matrix-2 norm of the perturbation
on VTV will give us the bound on the change in its eigenvalue.

Let us first look at the case when one edge is perturbed and then extend it later to all edges. We note
that E∆ = {(1, 2), (2, 3)(3, 1)}. Without loss of generality, we perturb v31 and denote the perturbed
vector as vP31. Since the perturbation is made by a small rotation δR31, we can write the perturbed
vector as

vP31 = δR31v31

= (I + δθ31 [n31]×)v31

= v31 + δω31 × v31, (11)

where δω31 = δθ31n31. From Eqn. 11, it can be seen that the perturbation can be treated as an
additive perturbation vP31 = v31 + δv31, where δv31 = δω31 × v31. Let the perturbed matrix of the
directions be VP such that VP = V + δV31, where δV31 = [0 0 δv31]. Then, (VP)TVP can
be written as

(VP)TVP = (V + δV31)
T

(V + δV31)

≈VTV + VT δV31 + δVT
31V [ignoring second order terms]

=VTV + δ31(VTV), (12)

where δ31(VTV) = VT δV31 + δVT
31V. After simplification of δ31(VTV), we get

δ31(VTV) =

 0 0 δωT31(v31 × v12)
0 0 δωT31(v31 × v23)

δωT31(v31 × v12) δωT31(v31 × v23) 0

 . (13)

It can be seen that δ31(VTV) has the same structure as that of the matrix in Eqn. 10. So, using
Result 2, we get

σmax(δ31(VTV)) =

∥∥∥∥[δωT31(v31 × v12)
δωT31(v31 × v23)

]∥∥∥∥ . (14)

Since the directions are consistent, the three directions are coplanar. So, there exists α and β such
that

v31 = αv12 + βv23. (15)
We obtain α and β by premultiplying Eqn. 15 by vT12 and vT23 to get the following set of equations

vT12v31 =αvT12v12 + βvT12v23, (16)

vT23v31 =αvT23v12 + βvT23v23. (17)

Solving Eqns. 16 and 17 and using the fact that vTijvij = 1, we get

α =
vT31v12 − (vT23v31)(vT23v12)

1− (vT12v23)2
, (18)

β =
vT31v23 − (vT12v31)(vT12v23)

1− (vT12v23)2
. (19)

15

Also, using Eqn. 15, we get

v31 × v12 = β(v23 × v12), (20)
v31 × v23 = α(v12 × v23). (21)

Using Eqns. 20 and 21 in Eqn. 14, we get

σmax(δ31(VTV)) =

∥∥∥∥[β · δωT31(v23 × v12)
α · δωT31(v12 × v23)

]∥∥∥∥ = δθ31

∥∥∥∥[β · nT31(v23 × v12)
α · nT31(v12 × v23)

]∥∥∥∥ . (22)

Let us decompose the directions as v = vn‖ + vn⊥, where vn‖ and vn⊥ denote parallel and
perpendicular components of v to n, which can be obtained as

vn‖ = (vTn) · n, (23)

vn⊥ = v − vn‖ = v − (vTn) · n. (24)

Using Eqns. 23 and 24, we get

v23 × v12 =
(

(vT23n31) · n31 + vn31⊥
23

)
×
(

(vT12n31) · n31 + vn31⊥
12

)
=
(
(vT23n31) · n31

)
×
(
(vT12n31) · n31

)
+ (vT23n31) · n31 × vn31⊥

12

+ vn31⊥
23 × (vT12n31) · n31 + vn31⊥

23 × vn31⊥
12

=(vT23n31) ·
(
n31 × vn31⊥

12

)
+ (vT12n31) ·

(
vn31⊥

23 × n31

)
+
(
vn31⊥

23 × vn31⊥
12

)
.

(25)

Premultiplying nT31 in Eqn. 25, we get

nT31 (v23 × v12) = nT31

(
vn31⊥

23 × vn31⊥
12

)
= ‖vn31⊥

23 × vn31⊥
12 ‖, (26)

since, by construction, vn31⊥
23 × vn31⊥

12 = ‖vn31⊥
23 × vn31⊥

12 ‖ · n31. Using Eqn. 26 into Eqn. 22, we
get

σmax(δ31(VTV)) = δθ31 · ‖vn31⊥
12 × vn31⊥

23 ‖ ·
∥∥∥∥[−βα

]∥∥∥∥ . (27)

Using the values of α and β from Eqns. 18 and 19, we get

σmax(δ31(VTV)) = δθ31 ·
‖vn31⊥

12 × vn31⊥
23 ‖

1− (vT12v23)2
·

[(1 + (vT12v23)2) ·
(
(vT23v31)2 + (vT12v31)2

)
− 4 · vT12v23 · vT23v31 · vT31v12]

1
2

= δθ31 · ‖vn31⊥
12 ‖ · ‖vn31⊥

23 ‖ ·
| sinφnij⊥

(2,1),(2,3)|
sinφ2

(2,1),(2,3)

·

[(1 + (vT12v23)2) ·
(
(vT23v31)2 + (vT12v31)2

)
− 4 · vT12v23 · vT23v31 · vT31v12]

1
2 ,

(28)

where φn31⊥
(2,1),(2,3) is the angle between vn31⊥

21 and vn31⊥
23 , and φ(2,1),(2,3) is the angle between v21

and v23.

Now, we perturb all three edges in G∆. Then, Eqn. 12 will change to

(VP)TVP = (V + δV12 + δV23 + δV31)
T

(V + δV12 + δV23 + δV31)

≈VTV + VT δV12 + δVT
12V + VT δV23 + δVT

23V + VT δV31 + δVT
31V

[ignoring second order terms]

=VTV + δ12(VTV) + δ23(VTV) + δ31(VTV). (29)

Using Result 1, we get,

|δλ| ≤‖δ12(VTV) + δ23(VTV) + δ31(VTV)‖2
≤‖δ12(VTV)‖2 + ‖δ23(VTV)‖2 + ‖δ31(VTV)‖2 [using triangle inequality]. (30)

16

Following Eqn. 28 for each edge perturbation in Eqn. 30, we get

|δλ| ≤
∑

(k,i,j)∈TI(∆)

δθij · ‖v
nij⊥
ki ‖ · ‖vnij⊥

kj ‖ ·

∣∣∣sinφnij⊥
(k,i),(k,j)

∣∣∣
sin2 φ(k,i),(k,j)

·

[(
1 + (vTikvjk)2

) (
(vTijvik)2 + (vTijvjk)2

)
− 4 · vTikvjk · vTijvik · vTijvjk

] 1
2 ,

where TI(∆) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. �

Corollary 1. For a set of consistent directions, vij , (i, j) ∈ E∆, in G∆, the absolute change in any
eigenvalue of VTV, denoted as |δλ|, when the directions vij are perturbed by small rotations δRij ,
with nij and δθij > 0 being the rotation axis and angle, and nij being othogonal to vki and vkj for
all (i, j, k) ∈ TI(∆), is bounded by

|δλ| ≤
∑

(k,i,j)∈TI(∆)

δθij ·
1

| sinφ(k,i),(k,j)|
·

[(
1 + (vTikvjk)2

) (
(vTijvik)2 + (vTijvjk)2

)
− 4 · vTikvjk · vTijvik · vTijvjk

] 1
2 , (3)

where TI(∆) = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, and φ(k,i),(k,j) is the angle between vki and vkj .

Proof. The unperturbed directions vij are coplanar since the directions are consistent. Given that the
rotation axis nij for all the rotations δRij are orthogonal to vki and vkj for all (i, j, k) ∈ TI(∆),
the rotation axis nij is orthogonal to vkl, for all (i, j), (k, l) ∈ E∆. This ensures that the perturbed
directions are still coplanar and, thus, are consistent. Since nij is orthogonal to all the directions
vij , the component of directions parallel to the axis are zero, i.e. vn‖ = 0. So, vn⊥ = v (refer to
Eqns. 23 and 24) and sinφ

nij⊥
(k,i),(k,j) = sinφ(k,i),(k,j). Also, ‖vn⊥

ij ‖ = ‖vij‖ = 1 for all (i, j) ∈ E∆.
Hence, using these in Eqn. 2, we get

|δλ| ≤
∑

(k,i,j)∈TI(∆)

δθij ·
1

| sinφ(k,i),(k,j)|
·

[(
1 + (vTikvjk)2

) (
(vTijvik)2 + (vTijvjk)2

)
− 4 · vTikvjk · vTijvik · vTijvjk

] 1
2 .

�

Theorem 2. Consider the bearing based-network of 3 nodes and 3 edges, G∆ = (V∆, E∆), and the
corresponding angle matrix AG∆

. The conditioning of the matrix AG∆
signifies the skewness of the

triangle formed using the directions in E∆.

Proof. The determinant of AG∆ is given as |AG∆ | = 2 · φ(1,2),(1,3) · φ(2,1),(2,3) · φ(3,1),(3,2). The
determinant will be zero if and only if atleast one of the angles in the triangle is zero. So, the matrix
is non-singular when all the angles are non-zero.

It is known that the determinant is not a good measure of the closeness of the matrix to singularity [39].
So, we consider the closeness of any two columns in the matrix in terms of the cosine of the angles
between the column vectors of AG∆ . Let aijG∆

be the column of AG∆ corresponding to the edge
(i, j) ∈ E∆. In G∆, there is one node common for any pair of edges. So, the cosine of the angle be-
tween any two columns is given as cos∠(aijG∆

,ajkG∆
) =

φ(i,j),(i,k)·φ(k,i),(k,j)√
φ2

(i,j),(i,k)
+φ2

(j,i),(j,k)
·
√
φ2

(j,i),(j,k)
+φ2

(k,i),(k,j)

.

It can be clearly seen that if the angle at the common node j is small, i.e. φ(j,i),(j,k) → 0 radian,
then the two columns are very close or cos∠(aijG∆

,ajkG∆
)→ 1. Small values of φ(j,i),(j,k) make AG∆

nearly singular and its condition number high. If all values of φ(j,i),(j,k) are sufficiently large, then
cos∠(aijG∆

,ajkG∆
) between any two columns will not be close to 1 making AG∆

well conditioned with
a low condition number. Thus, the condition number of AG∆

is reflective of the skewness of the
triangle formed from the directions in E∆. �

Theorem 3. Consider a bearing-based network G, with all edges contributing to triplets. The angle
matrix AG , corresponding to G, is well conditioned if the minimum angle (or equivalently all the
angles) in all the triangles formed by the triplets are sufficiently large.

17

Proof. Let us assume that all the angles in all the triangles formed by the triplets in G are sufficiently
large. In AG , no two columns can have exactly the same set of non-zero elements. This is evident
since the diagonal entries are zero. In real-world scenarios, G is a sparse network, and thus AG is
sparse. If two columns have exactly the same set of non-zero elements, then it means the two edges
share exactly the same set of triplets. This is attained only when the two edges are connecting the
same two nodes. But this is not possible since multiple edges between nodes are not allowed. Also,
every column will have atleast two non-zero elements since every edge is a part of atleast one triplet
and angles measured with the common nodes between edges will be present. This makes the angle
matrix non-singular when all the angles in all the triangles are sufficiently large.

Next, we look at the conditioning of the matrix. Let aijG be the column of AG corresponding to the
edge (i, j) ∈ E . We check the cosine of the angle between any two columns of AG to understand
the conditioning of AG . We define triplets to be adjacent if they share a common edge, otherwise
they are non-adjacent. There are only three cases which arise between any two edges (i, j) and (k, l),
(i, j), (k, l) ∈ E , and are listed below:

1. (i, j) and (k, l) belong to the same triplet,

2. (i, j) and (k, l) belong to adjacent triplets,

3. (i, j) and (k, l) belong to non-adjacent triplets.

Since each column in AG represents an edge, there are only the three cases, stated above, which occur
for the pair of columns. For all three cases, the cosine of angles between two columns is checked.
Let Trp be the set of all triplets in G.

Case 1: Edges (i, j) and (k, l) belong to the same triplet.

cos∠(aijG ,a
kl
G)

=
φ(c′1,c),(c

′
1,c

′
2) · φ(c′2,c

′
1),(c′2,c)√∑

p:(i,j,p)∈Trp

(
φ2

(i,j),(i,p) + φ2
(j,i),(j,p)

)
·
√∑

q:(k,l,q)∈Trp

(
φ2

(k,l),(k,p) + φ2
(l,k),(l,q)

) ,
where c ∈ {i, j} ∩ {k, l} is the common node and c′1, c

′
2 ∈ {i, j} ∪ {k, l} \ {c} with c′1 6= c′2 are the

other two nodes in the triplet.

It can be seen that for this case, if all the angles are sufficiently large, then cos∠(aijG ,a
kl
G) cannot be

close to 1, and thus the two columns are not similar.

Case 2: Edges (i, j) and (k, l) belong to adjacent triplets tr1, tr2 ∈ Trp.

Part I: When the edges (i, j) and (k, l) share a common node of the triplets tr1 and tr2:

cos∠(aijG ,a
kl
G)

=
φ(r,c),(r,c′1) · φ(r,c),(r,c′2)√∑

p:(i,j,p)∈Trp

(
φ2

(i,j),(i,p) + φ2
(j,i),(j,p)

)
·
√∑

q:(k,l,q)∈Trp

(
φ2

(k,l),(k,p) + φ2
(l,k),(l,q)

) ,
where c ∈ {i, j} ∩ {k, l} is the common node, (r, c) ∈ E is the common edge between tr1 and tr2,
and c′1 ∈ {i, j} \ {c}, c′2 ∈ {k, l} \ {c} are the other two nodes in the two triplets.

Part II: When the edges (i, j) and (k, l) are connected by the common edge of the triplets tr1 and
tr2:

cos∠(aijG ,a
kl
G)

=
φ(c′1,c

′′
1),(c′1,c

′
2) · φ(c′2,c

′
1),(c′2,c

′′
2)√∑

p:(i,j,p)∈Trp

(
φ2

(i,j),(i,p) + φ2
(j,i),(j,p)

)
·
√∑

q:(k,l,q)∈Trp

(
φ2

(k,l),(k,p) + φ2
(l,k),(l,q)

) ,

18

where (c′1, c
′
2) ∈ E is the common edge between tr1 and tr2 such that c′1, c

′
2 ∈ {i, j, k, l} with

c′1 6= c′2, and c′′1 , c
′′
2 ∈ {i, j, k, l} \ {c′1, c′2} with c′′1 6= c′′2 are the other two nodes in the triplet such

that (c′1, c
′
2, c
′′
1), (c′1, c

′
2, c
′′
2) ∈ Trp .

It can be seen that for both parts in this case, if all the angles are sufficiently large, then cos∠(aijG ,a
kl
G)

cannot be close to 1, and thus the two columns are not similar.

Case 3: Edges (i, j) and (k, l) belong to non-adjacent triplets tr1, tr2 ∈ Trp.

By the construction of the matrix using Eqn. 5, there would be no common non-zero elements in the
two columns. So,

cos∠(aijG ,a
kl
G) = 0.

Thus, if all the angles in all the triangles formed by the triplets in G are sufficiently large, then the angle
matrix AG is non-singular, and the columns are not similar implying that AG is well-conditioned. �

Theorem 4. Given a bearing-based network G, with all edges contributing to triplets forming
triangles, and its corresponding triplet network GT , the maximal parallel rigid component of G can
be determined by the edges in G contributing to the largest connected component of GT .

Proof. It is known that the union of parallel rigid components is parallel rigid if the components
share atleast one edge [2]. Each triplet forming a triangle in G is parallel rigid by itself. Also, by
construction, each connected component of the triplet network GT will have shared edges among
triplets forming triangles, making every component parallel rigid independently. Thus, the maximal
parallel rigid graph of G can be determined by the edges in G participating in the maximum connected
component of GT . �

9 Proposed Method for Dense Networks

In Sec. 5 of the main paper, we presented the algorithm to remove skewed triangles from a sparse
network G. Here, we consider the case when G is dense (nearly all possible edges exist), making AG
dense. We provide the method for removing skewed triangles in the following steps.

Step 1: First, construct a matrix V with columns as the directions in G. The elements of VTV
give the dot product between all possible directions. Then, construct the boundary matrix using
Eqn. 6. The row and column indices of non-zero elements of the matrix B2B

T
2 give us the edge

pairs participating in triplets which are the non-zero elements in the angle matrix AG . So, the zero
elements of the matrix B2B

T
2 can be used to mask the elements in VTV. The net matrix generated

is C̃G .

Step 2: We identify the correct signs for the elements in C̃G to ensure that the dot products reflect
the cosine of the angles of the triangles. We first create a matrix M consisting of mij,kl (Eqn. 7)
as the elements corresponding to the row for (i, j)th edge and column for (k, l)th edge. Then, the
Hadamard product (element-wise multiplication) of C̃G and M gives CG . Once the matrix CG is
formed, we take element-wise inverse cosine to get the angles as the entries and thus the angle matrix
AG .

Step 3: This step is the same as that provided in the main paper.

We summarize the method in Algo. 2.

10 Formulations for Solving Translation Averaging

In Sec. 6 of the main paper, we used two formulations, Revised LUD [41, 57] and BATA [57],
for the experiments. Here, we provide the optimization problems of those methods for ready reference.

19

Algorithm 2: Removal of Skewed Triangles from Dense Networks
Input: Bearing-based network G = (V, E), containing only triplets and is parallel rigid, and the

triplet list of G.
Output: Bearing-based network GF = (VF , EF), containing only triplets and is parallel rigid,

without skewed triangles.
1 Compute the non-zero elements in angle matrix AG using the boundary matrix B2 (Eqn. 6).
2 Construct the matrix V, whose columns consists of directions vij , (i, j) ∈ E .
3 Get dot products between all possible directions using VTV.
4 Use zero elements in BT

2 B2 to mask elements in VTV, and denote it as C̃G .
5 Get the signs of the dot product for non-zero elements of C̃G , i.e. mij,kl using Eqn. 7.
6 Construct a matrix M using mij,kl.
7 Perform element-wise multiplication of C̃G with M to get CG .
8 Get the inverse cosine for every element in CG to get AG .
9 Extract the angles of the triplets from AG .

10 Filter out the triplets with the minimum angle less than a threshold to get G̃F = (ṼF , ẼF).
11 Construct the triplet network GT using the filtered network G̃F .
12 Get the largest connected component of GT .
13 Get the edges of G̃F contributing to the largest connected component of GT to get
GF = (VF , EF), which is connected and is parallel rigid.

Revised LUD [41, 57] (compares relative displacements):

min
Ti,i∈V ,λij,(i,j)∈E

∑
(i,j)∈E

‖Tj −Ti − λijvij‖2 (31)

s.t.
∑
i∈V

Ti = 0,
∑

(i,j)∈E

〈Tj −Ti,vij〉 = 1, λij ≥ 0, ∀(i, j) ∈ E

BATA [57] (compares relative directions):

min
Ti,i∈V ,γij,(i,j)∈E

∑
(i,j)∈E

ρ (‖ (Tj −Ti) γij − vij‖2) (32)

s.t.
∑
i∈V

Ti = 0,
∑

(i,j)∈E

〈Tj −Ti,vij〉 = 1, γij ≥ 0, ∀(i, j) ∈ E

The zero centroid and dot product constraints in Eqns. 31 and 32 fix the origin and the global scale
ambiguities, respectively. ρ denotes the Cauchy loss function. λij and γij are non-negative variables
that are ideally equal to baseline and inverse baseline for the edge (i, j), respectively.

11 Additional Results

As mentioned in the main paper, our filtering scheme uses only input directions and does not favour
any specific cost function used for translation averaging. In Sec. 6 of the main paper, we presented
the results using BATA [57]. In the following subsection, we present the results using Revised
LUD [41, 57] and observe a similar trend as seen for the BATA results.

11.1 Outlier-Free Data

In Sec. 6.2 of the main paper, we provided experimental results on outlier-free data. Here, in Table 5,
we provide the details of the 1DSfM [55] datasets without outliers. It can be seen that only a small
fraction of the nodes and edges are removed due to the removal of skewed triangles. Also, it can be
seen that for many datasets, the condition number of the angle matrix (with matrix-2 norm) decreases.
For remaining datasets, it either increases or is similar for both the unfiltered and filtered networks.
As mentioned in Sec. 5 of the main paper, we perform non-aggressive pruning, due to which some

20

Table 5: Details of networks before and after removing skewed triangles from 1DSfM [55] datasets
without outliers. #Nrem,#Mrem: No. of nodes and edges removed, κ2(AG): condition number of
the angle matrix with matrix-2 norm, tfilter: time taken to remove skewed triangles.

Dataset #Nodes #Edges #Nrem #Mrem κ2(AG) tfilter (sec)

w/o filter w/ filter w/o filter w/ filter w/o filter w/ filter

ALM 560 543 7351 7140 17 211 1.0e+12 1.0e+12 0.06
ELS 129 128 664 649 1 15 5.5e+05 2.4e+05 0.01

GMM 324 315 5231 5164 9 67 4.8e+07 2.5e+08 0.07
MDR 268 248 2545 2361 20 184 5.6e+07 2.6e+06 0.03
MND 445 439 10338 10175 6 163 7.8e+09 3.5e+09 0.25
NYC 337 317 3250 3065 20 185 9.9e+11 9.5e+11 0.02
ND 1199 1182 26414 25878 17 536 1.0e+12 1.0e+12 0.28
PDP 344 334 6196 5949 10 247 2.3e+08 3.3e+08 0.09
PIC 1844 1795 20880 20100 49 780 1.7e+11 1.2e+11 0.15
ROF 994 964 8696 8305 30 391 2.6e+10 2.6e+10 0.07
TOL 450 439 5017 4921 11 96 1.1e+09 5.6e+07 0.04
TFG 3962 3778 51450 49571 184 1879 1.1e+12 4.5e+09 0.52
USQ 403 382 3921 3682 21 239 3.8e+11 3.3e+11 0.04
VNC 724 705 12176 11901 19 275 2.3e+09 3.1e+09 0.17
YKM 385 372 4073 3892 13 181 3.1e+08 1.5e+09 0.04

Table 6: Absolute translation errors (in meters) on 1DSfM [55] datasets without outliers using Revised
LUD [41, 57]. Removed Node Errors: Errors of removed nodes in the unfiltered network (meters),
tRLUD: time taken by Revised LUD.

Dataset Mean-ATE RMS-ATE Removed Node Errors tRLUD (sec)

w/o filter w/ filter w/o filter w/ filter Mean RMS

ALM 2.5 2.4 4.0 3.5 9.3 10.9 6
ELS 1.4 1.5 1.8 2.0 1.5 1.5 1

GMM 5.8 5.3 9.2 8.7 20.6 24.0 4
MDR 8.8 7.9 18.1 16.2 26.9 35.9 2
MND 2.3 2.2 3.2 3.2 4.7 5.7 7
NYC 2.7 2.6 5.6 5.4 5.6 7.4 3
ND 3.5 3.5 5.7 5.5 6.7 8.8 28
PDP 2.6 2.4 3.9 3.5 6.3 8.1 5
PIC 2.9 2.8 6.2 6.1 6.6 8.2 26
ROF 16.5 17.3 29.6 30.5 43.4 59.4 7
TOL 11.1 10.9 23.3 23.2 42.5 60.1 4
TFG 7.9 7.2 17.1 16.3 21.8 27.3 63
USQ 5.2 5.0 7.0 6.8 10.7 13.0 3
VNC 7.6 7.5 11.8 10.8 13.8 18.9 11
YKM 8.2 8.3 21.4 21.1 25.9 44.6 3

skewed triangles are still present. We re-emphasize that non-aggressive pruning still ensures that the
nodes are estimated reliably since the nodes are also a part of atleast one triplet, which belongs to the
set of non-skewed triangles.

In Table 6, we provide the results obtained from Revised LUD. It can be seen that the absolute
translation errors decrease for most of the datasets after the removal of skewed triangles. Moreover,
errors of the removed nodes in the unfiltered network are high compared to the overall errors,
indicating that the removed nodes are not estimated reliably in the unfiltered network. We also
observe that the time taken to filter skewed triangles (from Table 5) is ∼ 1% of the time taken for
translation averaging by Revised LUD (Table 6), which shows the efficiency of Algo. 1 of the main
paper.

11.2 Real Data

In Sec. 6.3 of the main paper, we provided the details of the datasets and the translation averaging
results using BATA [57]. In Table 7, we present the results using Revised LUD. It can be seen that
similar to the trend in BATA results, the absolute translation estimates improve for most datasets.
Also, the errors of the nodes removed due to filtering are high compared to the overall errors in
the unfiltered network, indicating that the filtered nodes are not estimated reliably in the unfiltered
network.

21

Table 7: Absolute translations errors (in meters) on 1DSfM [55] datasets using Revised LUD [41, 57].
Removed Node Errors: Errors of removed nodes in the unfiltered network (meters), tRLUD: time
taken by Revised LUD.

Dataset Mean-ATE RMS-ATE Removed Node Errors tRLUD (sec)

w/o filter w/ filter w/o filter w/ filter Mean RMS

ALM 4.4 4.3 8.0 7.6 10.5 15.3 12
ELS 20.3 19.6 37.5 42.1 82.6 97.9 5

GMM 41.9 45.5 60.6 66.6 69.3 86.0 10
MDR 15.6 14.5 29.5 27.5 39.8 43.2 3
MND 3.9 3.8 5.8 5.8 12.7 13.4 12
NYC 4.5 4.2 8.2 7.3 18.9 24.9 5
ND 4.0 3.9 6.5 6.5 10.1 13.0 68
PDP 7.8 7.7 11.6 11.5 16.5 18.5 11
PIC 5.0 4.9 9.2 9.3 14.4 18.0 63
ROF 17.5 15.7 32.5 28.7 45.7 58.0 17
TOL 18.5 17.4 36.7 33.7 69.3 100.9 6
TFG 19.6 13.1 68.5 25.5 58.8 137.2 214
USQ 12.9 12.3 20.0 19.3 32.8 42.3 9
VNC 9.6 10.2 14.0 15.3 15.4 16.8 19
YKM 20.6 20.0 30.0 29.0 42.1 52.9 7

Table 8: Details of networks after applying 1DSfM outlier filter [55] without and with removal of
skewed triangles (Algo. 1). #Nrem,#Mrem: No. of nodes and edges removed.

Dataset #Nrem #Mrem

Our filter→ w/o filter w/ filter w/o filter w/ filter

ALM 19 36 269 416
ELS 2 13 368 427

GMM 4 76 1062 1470
MDR 1 32 136 326
MND 3 7 1242 1312
NYC 2 17 251 443
ND 0 6 3790 3832
PDP 3 32 504 827
PIC 13 101 5229 6443
ROF 17 75 1953 2429
TOL 1 21 339 449
USQ 130 166 1769 1991
VNC 2 2 2120 2120
YKM 313 389 3223 3872

Next, we apply 1DSfM outlier filter (Algo. 2, [55]) on the datasets to study the complementary
benefits of removal of skewed triangles after applying an outlier filter. We reiterate that the removal of
skewed triangles and outlier edges are two distinct aspects of the problem. In Table 8, we provide the
network details after applying 1DSfM outlier filter without and with the removal of skewed triangles
and compare their performance in Table 9. It can be seen that applying the 1DSfM outlier filter and
then removing skewed triangles with our filter leads to better translation estimates. Moreover, our
filter + 1DSfM outlier filter removes the nodes which are poorly estimated than only 1DSfM outlier
filter, as seen from removed node errors in the unfiltered network in Table 9. Since both outliers and
skewed triangles are different issues, combining filters for both types improves accuracy.

In Sec. 5, we mentioned the improved speed using Algo. 1 compared to the brute force method. In
Table 10, we compare the time taken by the brute force method to remove skewed triangles to that of
our method in Algo. 1. In the brute force method, all three angles in every triangle are computed, and
then the skewed triangles are identified and removed. We used 20 threads in parallel for the brute
force method, while our method is based only on vectorized operations without any parallelization. It
can be seen that Algo. 1 is significantly faster than the brute force method with ∼ 100 times faster for
most datasets and ∼ 1000 times faster for large scale datasets. This shows the efficiency of Algo. 1.

Finally, we show the differences in reconstructions obtained without and with using our filter. In
Fig. 4, the arch in the Notre Dame reconstruction is misplaced due to improper translation estimates,
as seen in the lateral view. Using our filter removes such a misplaced arch. In Fig. 5, the wall in the

22

Table 9: Absolute translations errors (in meters) after applying 1DSfM [55] outlier filter without and
with removal of skewed triangles (Algo. 1). Removed Node Errors: Errors of removed nodes in the
unfiltered network.

Dataset Mean ATE RMS ATE Removed Nodes Errors (Mean) Removed Nodes Errors (RMS)

Our filter→ w/o filter w/ filter w/o filter w/ filter w/o filter w/ filter w/o filter w/ filter

ALM 4.6 4.4 10.5 10.5 12.4 11.8 25.2 23.7
ELS 23.3 21.5 51.2 50.5 15.9 70.6 15.9 96.8

GMM 42.4 41.1 64.2 60.6 20.7 121.1 33.3 158.1
MDR 13.6 12.9 28.2 26.0 20.2 48.5 20.2 57.1
MND 4.5 4.3 10.0 9.8 9.5 20.9 15.3 26.5
NYC 6.6 5.2 15.4 12.1 9.4 36.8 9.4 46.4
ND 3.3 3.3 6.4 6.4 0 9.0 0 9.3
PDP 7.9 8.0 13.0 13.1 10.1 12.6 11.6 14.9
PIC 5.4 5.2 11.1 10.8 8.3 17.7 13.3 25.6
ROF 14.3 15.3 27.7 26.8 57.8 57.5 67.9 83.9
TOL 15.6 14.3 32.4 29.7 7.3 54.9 7.3 81.2
USQ 9.7 10.9 14.5 18.2 23.6 23.8 37.3 36.2
VNC 10.8 10.5 18.1 18.4 13.5 19.2 14.6 25.1
YKM 13.9 11.2 26.6 22.7 34.5 34.8 38.2 39.1

Table 10: Time taken (in sec) for removal of skewed triangles with brute force method and Algo. 1.
Dataset Brute Force Algo. 1

ALM 20.55 0.31
ELS 5.28 0.14

GMM 12.40 0.20
MDR 0.96 0.05
MND 55.18 0.67
NYC 2.16 0.08
ND 1047.90 2.66
PDP 16.07 0.32
PIC 118.46 0.55
ROF 17.87 0.25
TOL 4.27 0.14
TFG 1110.40 1.83
USQ 11.33 0.23
VNC 72.63 0.65
YKM 7.36 0.18

Piazza del Popolo reconstruction is misplaced, but such an effect is not seen after applying our filter.
This reveals that removing skewed triangles helps get more accurate reconstructions.

23

(a) Without Algo. 1 (b) With Algo. 1 (c) Reference reconstruction

Figure 4: Lateral view of Notre Dame [55] reconstruction. Improper reconstruction of the arch (red
ellipse) obtained due to incorrect estimation of camera translation, which is not present after filtering
skewed triangles with our method (Algo. 1). Reference reconstruction shows the position of the arch.

(a) Without Algo. 1 (b) With Algo. 1

Figure 5: Plan view of Piazza del Popolo [55] reconstruction. A misplaced wall (red ellipse) obtained
due to incorrect estimation of camera translations, which is not present after filtering skewed triangles
with our method (Algo. 1).

24

	Introduction
	Literature Review
	Sensitivity in Scale Estimation from Directions
	Conditioning of Translation Averaging
	Proposed Method
	Experiments
	Analysis of Real Data
	Outlier-Free Data
	Real Data

	Conclusion
	Proofs for Theorems
	Proposed Method for Dense Networks
	Formulations for Solving Translation Averaging
	Additional Results
	Outlier-Free Data
	Real Data

